Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
9bcb2d26
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
9bcb2d26
编写于
1月 17, 2018
作者:
G
guosheng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Add python wrapper for matmul_op and dot_product_attention
上级
234013a9
变更
5
显示空白变更内容
内联
并排
Showing
5 changed file
with
121 addition
and
67 deletion
+121
-67
doc/api/v2/fluid/layers.rst
doc/api/v2/fluid/layers.rst
+6
-0
doc/api/v2/fluid/nets.rst
doc/api/v2/fluid/nets.rst
+6
-0
python/paddle/v2/fluid/layers/nn.py
python/paddle/v2/fluid/layers/nn.py
+52
-63
python/paddle/v2/fluid/nets.py
python/paddle/v2/fluid/nets.py
+53
-0
python/paddle/v2/fluid/tests/test_matmul_op.py
python/paddle/v2/fluid/tests/test_matmul_op.py
+4
-4
未找到文件。
doc/api/v2/fluid/layers.rst
浏览文件 @
9bcb2d26
...
@@ -364,6 +364,12 @@ split
...
@@ -364,6 +364,12 @@ split
.. autofunction:: paddle.v2.fluid.layers.split
.. autofunction:: paddle.v2.fluid.layers.split
:noindex:
:noindex:
matmul
------
.. autofunction:: paddle.v2.fluid.layers.matmul
:noindex:
logsigmoid
logsigmoid
----------
----------
.. autofunction:: paddle.v2.fluid.layers.logsigmoid
.. autofunction:: paddle.v2.fluid.layers.logsigmoid
...
...
doc/api/v2/fluid/nets.rst
浏览文件 @
9bcb2d26
...
@@ -25,3 +25,9 @@ glu
...
@@ -25,3 +25,9 @@ glu
.. autofunction:: paddle.v2.fluid.nets.glu
.. autofunction:: paddle.v2.fluid.nets.glu
:noindex:
:noindex:
dot_product_attention
---------------------
.. autofunction:: paddle.v2.fluid.nets.dot_product_attention
:noindex:
python/paddle/v2/fluid/layers/nn.py
浏览文件 @
9bcb2d26
...
@@ -37,6 +37,7 @@ __all__ = [
...
@@ -37,6 +37,7 @@ __all__ = [
'sequence_last_step'
,
'sequence_last_step'
,
'dropout'
,
'dropout'
,
'split'
,
'split'
,
'matmul'
,
]
]
...
@@ -1586,83 +1587,71 @@ def split(input, num_or_sections, dim=-1):
...
@@ -1586,83 +1587,71 @@ def split(input, num_or_sections, dim=-1):
return
outs
return
outs
def
matmul
(
x
,
y
):
def
matmul
(
x
,
y
,
transpose_x
=
False
,
transpose_y
=
False
,
name
=
None
):
"""
"""
Applies matrix multipication to two tensors.
Applies matrix multipication to two tensors. Currently only rank 1 to rank
3 input tensors are supported.
Th
is operator is used to perform (batched) matrix multiplication
Th
e actual behavior depends on the shapes of :math:`x`, :math:`y` and the
over the last two dimensions of the input tensors `X` and `Y`.
flag values of :attr:`transpose_x`, :attr:`transpose_y`. Specifically:
If a transpose flag is specified, the last two dimensions of the
- If a transpose flag is specified, the last two dimensions of the tensor
tensor are transposed. If the tensor is rank-1 of shape [D], then
are transposed. If the tensor is rank-1 of shape :math:`[D]`, then for
for `X` it is treated as [1, D] in nontransposed form and as [D, 1]
:math:`x` it is treated as :math:`[1, D]` in nontransposed form and as
in transposed form, whereas for `Y` it is the opposite: It is treated
:math:`[D, 1]` in transposed form, whereas for :math:`y` it is the
as [D, 1] in nontransposed form and as [1, D] in transposed form.
opposite: It is treated as :math:`[D, 1]` in nontransposed form and as
:math:`[1, D]` in transposed form.
Examples without transpose:
- After transpose, the two tensors are 2-D or 3-D and matrix multipication
- X: [K], Y: [K] => Out: [1]
performs in the following way.
- X: [K], Y: [K, N] => Out: [N]
- X: [B, M, K], Y: [K] => Out: [B, M]
- X: [M, K], Y: [B, K, N] => Out: [B, M, N]
- X: [B, M, K], Y: [B, K, N] => Out: [B, M, N]
The behavior is designed to be similar to the `numpy.matmul` function
.
- If both are 2-D, they are multiplied like conventional matrices
.
The differences are:
- If either is 3-D, it is treated as a stack of matrices residing in the
- Currently only rank 1 to rank 3 input tensors are supported.
last two dimensions and a batched matrix multiply supporting broadcast
- We add `transpose_X` and `transpose_Y` flag
s.
applies on the two tensor
s.
Both the input `X` and `Y` can carry the LoD (Level of Details) information,
Also note that if the raw tensor :math:`x` or :math:`y` is rank-1 and
or not. But the output only shares the LoD information with input `X`.
nontransposed, the prepended or appended dimension :math:`1` will be
removed after matrix multipication.
Args:
Args:
x (Variable): The input variable which is a Tensor or LoDTensor.
x (Variable): The input variable which is a Tensor or LoDTensor.
y (Variable): If :attr:`num_or_sections` is an integer,
y (Variable): The input variable which is a Tensor or LoDTensor.
then the integer indicates the number of equal sized sub-tensors
transpose_x (bool): Whether to transpose :math:`x` before multiplication.
that the tensor will be divided into. If :attr:`num_or_sections`
transpose_y (bool): Whether to transpose :math:`y` before multiplication.
is a list of integers, the length of list indicates the number of
name(str|None): A name for this layer(optional). If set None, the layer
sub-tensors and the integers indicate the sizes of sub-tensors'
will be named automatically.
:attr:`dim` dimension orderly.
dim (int): The dimension along which to split. If :math:`dim < 0`, the
dimension to split along is :math:`rank(input) + dim`.
Returns:
Returns:
List: The list of segmented tensor variables
.
Variable: The product Tensor variable
.
Examples:
Examples:
.. code-block:: python
.. code-block:: python
# x is a Tensor variable with shape [3, 9, 5]:
# Examples to clarify shapes of the inputs and output
x0, x1, x2 = fluid.layers.split(x, num_or_sections=3, dim=1)
# x: [B, M, K], y: [B, K, N]
x0.shape # [3, 3, 5]
fluid.layers.matmul(x, y) # out: [B, M, N]
x1.shape # [3, 3, 5]
# x: [B, M, K], y: [K, N]
x2.shape # [3, 3, 5]
fluid.layers.matmul(x, y) # out: [B, M, N]
x0, x1, x2 = fluid.layers.split(x, num_or_sections=[2, 3, 4], dim=1)
# x: [B, M, K], y: [K]
x0.shape # [3, 2, 5]
fluid.layers.matmul(x, y) # out: [B, M]
x1.shape # [3, 3, 5]
# x: [M, K], y: [K, N]
x2.shape # [3, 4, 5]
fluid.layers.matmul(x, y) # out: [M, N]
# x: [K], y: [K]
fluid.layers.matmul(x, y) # out: [1]
# x: [M], y: [N]
fluid.layers.matmul(x, y, True, True) # out: [M, N]
"""
"""
helper
=
LayerHelper
(
'split'
,
**
locals
())
helper
=
LayerHelper
(
'matmul'
,
**
locals
())
input_shape
=
input
.
shape
assert
max
(
dim
=
(
len
(
input_shape
)
+
dim
)
if
dim
<
0
else
dim
len
(
x
.
shape
),
len
(
y
.
shape
)
if
isinstance
(
num_or_sections
,
int
):
)
<=
3
,
'Currently only rank 1 to rank 3 input tensors are supported.'
assert
num_or_sections
>
1
,
'num_or_sections must be more than 1.'
out
=
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
num
=
num_or_sections
else
:
assert
len
(
num_or_sections
)
<
input_shape
[
dim
],
'len(num_or_sections) must not be more than input.shape[dim].'
num
=
len
(
num_or_sections
)
outs
=
[
helper
.
create_tmp_variable
(
dtype
=
helper
.
input_dtype
())
for
i
in
range
(
num
)
]
helper
.
append_op
(
helper
.
append_op
(
type
=
'split'
,
type
=
'matmul'
,
inputs
=
{
'X'
:
input
},
inputs
=
{
'X'
:
x
,
outputs
=
{
'Out'
:
outs
},
'Y'
:
y
},
attrs
=
{
outputs
=
{
'Out'
:
out
},
'num'
:
num_or_sections
if
isinstance
(
num_or_sections
,
int
)
else
0
,
attrs
=
{
'transpose_X'
:
transpose_x
,
'sections'
:
num_or_sections
'transpose_Y'
:
transpose_y
})
if
isinstance
(
num_or_sections
,
list
)
else
[],
return
out
'axis'
:
dim
})
return
outs
python/paddle/v2/fluid/nets.py
浏览文件 @
9bcb2d26
...
@@ -4,6 +4,7 @@ __all__ = [
...
@@ -4,6 +4,7 @@ __all__ = [
"simple_img_conv_pool"
,
"simple_img_conv_pool"
,
"sequence_conv_pool"
,
"sequence_conv_pool"
,
"glu"
,
"glu"
,
""
,
]
]
...
@@ -135,3 +136,55 @@ def glu(input, dim=-1):
...
@@ -135,3 +136,55 @@ def glu(input, dim=-1):
a
,
b
=
layers
.
split
(
input
,
num_or_sections
=
2
,
dim
=
dim
)
a
,
b
=
layers
.
split
(
input
,
num_or_sections
=
2
,
dim
=
dim
)
out
=
layers
.
elementwise_mul
(
x
=
a
,
y
=
b
)
out
=
layers
.
elementwise_mul
(
x
=
a
,
y
=
b
)
return
out
return
out
def
dot_product_attention
(
querys
,
keys
,
values
):
"""
The dot-product attention.
Attention mechanism can be seen as mapping a query and a set of key-value
pairs to an output. The output is computed as a weighted sum of the values,
where the weight assigned to each value is computed by a compatibility
function (dot-product here) of the query with the corresponding key.
The dot-product attention can be implemented through (batch) matrix
multipication as follows:
.. math::
Attention(Q, K, V)= softmax(QK^\mathrm{T})V
Refer to `Attention Is All You Need
<https://arxiv.org/pdf/1706.03762.pdf>`_.
Note that batch data containing sequences with different lengths is not
supported by this because of the (batch) matrix multipication.
Args:
query (Variable): The input variable which is a Tensor or LoDTensor.
key (Variable): The input variable which is a Tensor or LoDTensor.
value (Variable): The input variable which is a Tensor or LoDTensor.
Returns:
tuple: The Tensor variables representing the output and attention scores.
Examples:
.. code-block:: python
# Suppose q, k, v are tensor variables with the following shape:
# q: [3, 5, 9], k: [3, 6, 9], v: [3, 6, 10]
out, attn_scores = fluid.nets.dot_product_attention(q, k, v)
out.shape # [3, 5, 10]
attn_scores.shape # [3, 5, 6]
"""
assert
keys
.
shape
[
-
2
]
==
values
.
shape
[
-
2
],
'The shapes of keys and values mismatch.'
assert
querys
.
shape
[
-
1
]
==
keys
.
shape
[
-
1
],
'The shapes of querys and keys mismatch.'
product
=
layers
.
matmul
(
x
=
querys
,
y
=
keys
,
transpose_y
=
True
)
attn_scores
=
layers
.
reshape
(
x
=
layers
.
reshape
(
x
=
product
,
shape
=
[
-
1
,
product
.
shape
[
-
1
]],
act
=
'softmax'
),
shape
=
product
.
shape
)
out
=
layers
.
matmul
(
attn_scores
,
values
)
return
out
,
attn_scores
python/paddle/v2/fluid/tests/test_matmul_op.py
浏览文件 @
9bcb2d26
...
@@ -83,18 +83,18 @@ class Generator(object):
...
@@ -83,18 +83,18 @@ class Generator(object):
self
.
outputs
=
{
'Out'
:
Out
}
self
.
outputs
=
{
'Out'
:
Out
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
(
atol
=
1e-
2
)
self
.
check_output
(
atol
=
1e-
3
)
def
test_check_grad_normal
(
self
):
def
test_check_grad_normal
(
self
):
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
0.5
)
self
.
check_grad
([
'X'
,
'Y'
],
'Out'
,
max_relative_error
=
1e-3
)
def
test_check_grad_ignore_x
(
self
):
def
test_check_grad_ignore_x
(
self
):
self
.
check_grad
(
self
.
check_grad
(
[
'Y'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
"X"
))
[
'Y'
],
'Out'
,
max_relative_error
=
1e-3
,
no_grad_set
=
set
(
"X"
))
def
test_check_grad_ignore_y
(
self
):
def
test_check_grad_ignore_y
(
self
):
self
.
check_grad
(
self
.
check_grad
(
[
'X'
],
'Out'
,
max_relative_error
=
0.5
,
no_grad_set
=
set
(
'Y'
))
[
'X'
],
'Out'
,
max_relative_error
=
1e-3
,
no_grad_set
=
set
(
'Y'
))
# Generate test cases for all possibilities
# Generate test cases for all possibilities
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录