diff --git a/.gitignore b/.gitignore index 020d3f0c303f7d850f4ec9c0efe58ab2d57dce2e..ac56a3320ec85769d2c87c072512f5217eca0c24 100644 --- a/.gitignore +++ b/.gitignore @@ -28,3 +28,4 @@ cmake_install.cmake paddle/.timestamp python/paddlepaddle.egg-info/ paddle/pybind/pybind.h +python/paddle/version.py diff --git a/CMakeLists.txt b/CMakeLists.txt index 36b6168076d04acf9e7f3e50815fcd11e6668557..b309ff37e52b4fd28b14925bdd7e3740e1e2fa47 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -16,10 +16,14 @@ cmake_minimum_required(VERSION 3.0) set(CMAKE_MODULE_PATH ${CMAKE_MODULE_PATH} "${CMAKE_CURRENT_SOURCE_DIR}/cmake") set(PADDLE_SOURCE_DIR ${CMAKE_CURRENT_SOURCE_DIR}) set(PADDLE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR}) +SET(CMAKE_CXX_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG") +SET(CMAKE_C_FLAGS_RELWITHDEBINFO "-O3 -g -DNDEBUG") include(system) project(paddle CXX C Go) +message(STATUS "CXX compiler: " ${CMAKE_CXX_COMPILER} ", version: " ${CMAKE_CXX_COMPILER_VERSION}) +message(STATUS "C compiler: " ${CMAKE_C_COMPILER} ", version: " ${CMAKE_C_COMPILER_VERSION}) find_package(Sphinx) if(NOT CMAKE_CROSSCOMPILING) @@ -56,6 +60,7 @@ option(GLIDE_INSTALL "Download and install go dependencies " ON) option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF) option(WITH_DISTRIBUTE "Compile with grpc distributed support" OFF) option(USE_EIGEN_FOR_BLAS "Use matrix multiplication in Eigen" OFF) +option(WITH_ARM_FP16 "Use half precision support on armv8.2-a cpu" OFF) # CMAKE_BUILD_TYPE if(NOT CMAKE_BUILD_TYPE) @@ -81,6 +86,8 @@ if(ANDROID OR IOS) "Disable RDMA when cross-compiling for Android and iOS" FORCE) set(WITH_MKL OFF CACHE STRING "Disable MKL when cross-compiling for Android and iOS" FORCE) + set(WITH_GOLANG OFF CACHE STRING + "Disable golang when cross-compiling for Android and iOS" FORCE) # Compile PaddlePaddle mobile inference library if (NOT WITH_C_API) diff --git a/README.md b/README.md index db0fbd88b250cdc2a3cc77521cc1c2cea77c6e87..577528e7aaf45ce002467590ec66b19afb145920 100644 --- a/README.md +++ b/README.md @@ -2,8 +2,8 @@ [![Build Status](https://travis-ci.org/PaddlePaddle/Paddle.svg?branch=develop)](https://travis-ci.org/PaddlePaddle/Paddle) -[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://doc.paddlepaddle.org/develop/doc/) -[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://doc.paddlepaddle.org/develop/doc_cn/) +[![Documentation Status](https://img.shields.io/badge/docs-latest-brightgreen.svg?style=flat)](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html) +[![Documentation Status](https://img.shields.io/badge/中文文档-最新-brightgreen.svg)](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html) [![Coverage Status](https://coveralls.io/repos/github/PaddlePaddle/Paddle/badge.svg?branch=develop)](https://coveralls.io/github/PaddlePaddle/Paddle?branch=develop) [![Release](https://img.shields.io/github/release/PaddlePaddle/Paddle.svg)](https://github.com/PaddlePaddle/Paddle/releases) [![License](https://img.shields.io/badge/license-Apache%202-blue.svg)](LICENSE) @@ -36,7 +36,7 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl examples: - Optimized math operations through SSE/AVX intrinsics, BLAS libraries - (e.g. MKL, ATLAS, cuBLAS) or customized CPU/GPU kernels. + (e.g. MKL, OpenBLAS, cuBLAS) or customized CPU/GPU kernels. - Highly optimized recurrent networks which can handle **variable-length** sequence without padding. - Optimized local and distributed training for models with high dimensional @@ -61,32 +61,32 @@ Please refer to our [release announcement](https://github.com/PaddlePaddle/Paddl ## Installation It is recommended to check out the -[Docker installation guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/docker_install_en.html) +[Docker installation guide](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/docker_install_en.html) before looking into the -[build from source guide](http://doc.paddlepaddle.org/develop/doc/getstarted/build_and_install/build_from_source_en.html). +[build from source guide](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/build_from_source_en.html). ## Documentation -We provide [English](http://doc.paddlepaddle.org/develop/doc/) and -[Chinese](http://doc.paddlepaddle.org/doc_cn/) documentation. +We provide [English](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/index_en.html) and +[Chinese](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/index_cn.html) documentation. -- [Deep Learning 101](http://book.paddlepaddle.org/index.html) +- [Deep Learning 101](http://www.paddlepaddle.org/docs/develop/book/01.fit_a_line/index.html) You might want to start from this online interactive book that can run in a Jupyter Notebook. -- [Distributed Training](http://doc.paddlepaddle.org/develop/doc/howto/usage/cluster/cluster_train_en.html) +- [Distributed Training](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/usage/cluster/cluster_train_en.html) You can run distributed training jobs on MPI clusters. -- [Distributed Training on Kubernetes](http://doc.paddlepaddle.org/develop/doc/howto/usage/k8s/k8s_en.html) +- [Distributed Training on Kubernetes](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/usage/cluster/k8s_en.html) You can also run distributed training jobs on Kubernetes clusters. -- [Python API](http://doc.paddlepaddle.org/develop/doc/api/index_en.html) +- [Python API](http://www.paddlepaddle.org/docs/develop/documentation/en/api/index_en.html) Our new API enables much shorter programs. -- [How to Contribute](http://doc.paddlepaddle.org/develop/doc/howto/dev/contribute_to_paddle_en.html) +- [How to Contribute](http://www.paddlepaddle.org/docs/develop/documentation/en/howto/dev/contribute_to_paddle_en.html) We appreciate your contributions! diff --git a/RELEASE.cn.md b/RELEASE.cn.md index 5deaf230a8f5dd3089993f0fc79b9460fd049750..494c59730dd3c2830514e8924aa3d59a34ac412e 100644 --- a/RELEASE.cn.md +++ b/RELEASE.cn.md @@ -1,3 +1,62 @@ +# v0.11.0版本 + +## PaddlePaddle Fluid + +- PaddlePaddle发布版本v0.11.0包含一个新的特性*PaddlePaddle Fluid*. Fluid 是设计用来让用户像Pytorch和Tensorflow Eager Execution一样执行程序。在这些系统中,不再有*模型*这个概念,应用也不再包含一个用于描述Operator图或者一系列层的符号描述,而是像通用程序那样描述训练或者预测的过程。而Fluid与PyTorch或Eager Execution的区别在于Fluid不依赖Python提供的控制流,例如 if-else-then或者for,而是提供了基于C++实现的控制流并暴露了对应的用with语法实现的Python接口。例如: + + https://github.com/PaddlePaddle/Paddle/blob/3df78ed2a98d37f7ae6725894cc7514effd5664b/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44 + +- 在v0.11.0版本中,我们提供了一个C++类`Executor`用于运行一个Fluid程序。Executor类似一个解释器。在未来的版本中,我们将提升和优化Executor成为一个调试器,就像GDB。并可能提供一些编译器,这个编译器会读取一个上文所描述的应用然后编译成一个等价的 +源代码,这个源代码可以被nvcc编译成可以使用CUDA的二进制,或者被icc编译成可以充分利用Intel CPU的二进制。 + + +## 新特点 + +* 发布 `PaddlePaddle Fluid`。 +* 增加了用于模型预测的C-API。 +* 用Fluid API实现了一个简单的GAN的例子。 +* 增加了关于性能调优的文档。 +* 为`paddle.v2.dataset`下载数据集提供了重试机制. +* C++中使用protobuf-lite替换protobuf减少了二进制的大小。 +* 发布了新特性 [Elastic Deep Learning (EDL)](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment). +* 基于Bazel API利用cmake实现了一个的新的构建系统函数库。 +* 当使用编译选项`WITH_MKL=ON`时自动下载和编译Intel® [MKLML](https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz) 函数库. +* [Intel® MKL-DNN on PaddlePaddle](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn): + - 完成了 11个 MKL-DNN 层: Convolution, Fully connectivity, Pooling, ReLU, Tanh, ELU, Softmax, BatchNorm, AddTo, Concat, LRN。 + - 完成了 3个 MKL-DNN 网络: VGG-19, ResNet-50, GoogleNet + - 基于Intel Skylake 6148 CPU的[性能测试](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) : 相对于MKLML有2~3倍的训练加速。 +* 增加 [softsign activation](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/activation.html#softsign) +* 增加 [dot product layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#dot-prod) +* 增加 [L2 distance layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#l2-distance) +* 增加 [sub-nested sequence layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#sub-nested-seq) +* 增加 [kmax sequence score layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#kmax-sequence-score) +* 增加 [sequence slice layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#seq-slice) +* 增加 [row convolution layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#row-conv) +* 增加移动端友好的网页 + +## 改进 + +* 使用一个Python`whl`包即可安装. +* [V2 API可以实现用户定制化评估](https://github.com/PaddlePaddle/models/tree/develop/ltr#训练过程中输出自定义评估指标)。 +* 将 `PADDLE_ONLY_CPU` 改为 `PADDLE_WITH_GPU`, 因为我们会支持多种设备。 +* 删除了有一些bug的BarrierStat。 +* 清理和删除了paddle::Parameter中未使用的函数。 +* 删除了ProtoDataProvider。 +* Huber loss同时支持回归和分类。 +* 为sequence pooling 层增加`stride`参数。 +* v2 API自动使用cudnn batch normalization。 +* 可以使用一个固定的参数名共享BN层的参数。 +* 2D convolution operation支持variable-dimension input特性。 +* 重构cmake中关于CUDA的部分并实现自动检测GPU架构的功能。 +* 优化网页导航。 + +## 错误修复 + +* 修复ROI pooling的Bug. cc9a761 +* 修复当label是dense vector是AUC变成0的问题. #5274 +* 修复WarpCTC 层的Bug. + + # v0.10.0版本 我们非常高兴发布了PaddlePaddle V0.10.0版,并开发了新的[Python API](http://research.baidu.com/paddlepaddles-new-api-simplifies-deep-learning-programs/)。 diff --git a/RELEASE.md b/RELEASE.md index 146f7afa7dfbc152500b82fde28445ae3155c16c..5a62c955131007c9f3329d162c20d1b462550019 100644 --- a/RELEASE.md +++ b/RELEASE.md @@ -1,3 +1,75 @@ +# Release v0.11.0 + +## PaddlePaddle Fluid + +- Release 0.11.0 includes a new feature *PaddlePaddle Fluid*. Fluid is + designed to allow users to program like PyTorch and TensorFlow Eager Execution. + In these systems, there is no longer the concept *model* and applications + do not include a symbolic description of a graph of operators nor a sequence + of layers. Instead, applications look exactly like a usual program that + describes a process of training or inference. The difference between + Fluid and PyTorch or Eager Execution is that Fluid doesn't rely on Python's + control-flow, `if-then-else` nor `for`. Instead, Fluid provides its + C++ implementations and their Python binding using the `with` statement. For an example + + https://github.com/PaddlePaddle/Paddle/blob/3df78ed2a98d37f7ae6725894cc7514effd5664b/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44 + +- In 0.11.0, we provides a C++ class `Executor` to run a Fluid program. +Executor works like an interpreter. In future version, we will improve +`Executor` into a debugger like GDB, and we might provide some compilers, +which, for example, takes an application like the above one, and outputs +an equivalent C++ source program, which can be compiled using +[`nvcc`](http://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html) +to generate binaries that use CUDA, or using +[`icc`](https://software.intel.com/en-us/c-compilers) to generate binaries +that make full use of Intel CPUs. + +## New Features + +* Release `PaddlePaddle Fluid`. +* Add C-API for model inference +* Use fluid API to create a simple GAN demo. +* Add develop guide about performance tunning. +* Add retry when download `paddle.v2.dataset`. +* Linking protobuf-lite not protobuf in C++. Reduce the binary size. +* Feature [Elastic Deep Learning (EDL)](https://github.com/PaddlePaddle/cloud/tree/develop/doc/autoscale/experiment) released. +* A new style cmake functions for Paddle. It is based on Bazel API. +* Automatically download and compile with Intel® [MKLML](https://github.com/01org/mkl-dnn/releases/download/v0.11/mklml_lnx_2018.0.1.20171007.tgz) library as CBLAS when build `WITH_MKL=ON`. +* [Intel® MKL-DNN on PaddlePaddle](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/design/mkldnn): + - Complete 11 MKL-DNN layers: Convolution, Fully connectivity, Pooling, ReLU, Tanh, ELU, Softmax, BatchNorm, AddTo, Concat, LRN. + - Complete 3 MKL-DNN networks: VGG-19, ResNet-50, GoogleNet + - [Benchmark](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) on Intel Skylake 6148 CPU: 2~3x training speedup compared with MKLML. +* Add the [`softsign` activation](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/activation.html#softsign). +* Add the [dot product layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#dot-prod). +* Add the [L2 distance layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#l2-distance). +* Add the [sub-nested sequence layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#sub-nested-seq). +* Add the [kmax sequence score layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#kmax-sequence-score). +* Add the [sequence slice layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#seq-slice). +* Add the [row convolution layer](http://www.paddlepaddle.org/docs/develop/documentation/zh/api/v2/config/layer.html#row-conv) +* Add mobile friendly webpages. + +## Improvements + +* Build and install using a single `whl` package. +* [Custom evaluating in V2 API](https://github.com/PaddlePaddle/models/tree/develop/ltr#训练过程中输出自定义评估指标). +* Change `PADDLE_ONLY_CPU` to `PADDLE_WITH_GPU`, since we will support many kinds of devices. +* Remove buggy BarrierStat. +* Clean and remove unused functions in paddle::Parameter. +* Remove ProtoDataProvider. +* Huber loss supports both regression and classification. +* Add the `stride` parameter for sequence pooling layers. +* Enable v2 API use cudnn batch normalization automatically. +* The BN layer's parameter can be shared by a fixed the parameter name. +* Support variable-dimension input feature for 2D convolution operation. +* Refine cmake about CUDA to automatically detect GPU architecture. +* Improved website navigation. + +## Bug Fixes + +* Fix bug in ROI pooling. cc9a761 +* Fix AUC is zero when label is dense vector. #5274 +* Fix bug in WarpCTC layer. + # Release v0.10.0 We are glad to release version 0.10.0. In this version, we are happy to release the new diff --git a/benchmark/IntelOptimizedPaddle.md b/benchmark/IntelOptimizedPaddle.md index 16c2390fd31bf1c79f29735fb98180d3f7302eb2..8ee7fd28c58f2a2bcb82040eb824a37062bd4e9c 100644 --- a/benchmark/IntelOptimizedPaddle.md +++ b/benchmark/IntelOptimizedPaddle.md @@ -2,27 +2,25 @@ Machine: -- Server - - Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket -- Laptop - - DELL XPS15-9560-R1745: i7-7700HQ 8G 256GSSD - - i5 MacBook Pro (Retina, 13-inch, Early 2015) -- Desktop - - i7-6700k +- Server: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket +- Laptop: TBD System: CentOS release 6.3 (Final), Docker 1.12.1. -PaddlePaddle: paddlepaddle/paddle:latest (for MKLML and MKL-DNN), paddlepaddle/paddle:latest-openblas (for OpenBLAS) -- MKL-DNN tag v0.11 -- MKLML 2018.0.1.20171007 -- OpenBLAS v0.2.20 -(TODO: will rerun after 0.11.0) +PaddlePaddle: (TODO: will rerun after 0.11.0) +- paddlepaddle/paddle:latest (for MKLML and MKL-DNN) + - MKL-DNN tag v0.11 + - MKLML 2018.0.1.20171007 +- paddlepaddle/paddle:latest-openblas (for OpenBLAS) + - OpenBLAS v0.2.20 On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. ## Benchmark Model ### Server + +#### Training Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz Input image size - 3 * 224 * 224, Time: images/second @@ -35,9 +33,7 @@ Input image size - 3 * 224 * 224, Time: images/second | MKLML | 12.12 | 13.70 | 16.18 | | MKL-DNN | 28.46 | 29.83 | 30.44 | - -chart on batch size 128 -TBD + - ResNet-50 @@ -47,9 +43,7 @@ TBD | MKLML | 32.52 | 31.89 | 33.12 | | MKL-DNN | 81.69 | 82.35 | 84.08 | - -chart on batch size 128 -TBD + - GoogLeNet @@ -59,10 +53,35 @@ TBD | MKLML | 128.46| 137.89| 158.63 | | MKL-DNN     | 250.46| 264.83| 269.50 | -chart on batch size 128 -TBD + + +#### Inference +Test on batch size 1, 2, 4, 8, 16 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz +- VGG-19 + +| BatchSize | 1 | 2 | 4 | 8 | 16 | +|-----------|-------|-------|-------|-------|-------| +| OpenBLAS | 1.07 | 1.08 | 1.06 | 0.88 | 0.65 | +| MKLML | 5.58 | 9.80 | 15.15 | 21.21 | 28.67 | +| MKL-DNN | 75.07 | 88.64 | 82.58 | 92.29 | 96.75 | + +- ResNet-50 + +| BatchSize | 1 | 2 | 4 | 8 | 16 | +|-----------|-------|--------|--------|--------|--------| +| OpenBLAS | 3.35 | 3.19 | 3.09 | 2.55 | 1.96 | +| MKLML | 6.33 | 12.02 | 22.88 | 40.53 | 63.09 | +| MKL-DNN | 107.83| 148.84 | 177.78 | 189.35 | 217.69 | + + +- GoogLeNet + +| BatchSize | 1 | 2 | 4 | 8 | 16 | +|-----------|--------|--------|--------|--------|--------| +| OpenBLAS | 12.04 | 11.31 | 10.00 | 9.07 | 4.34 | +| MKLML | 22.74 | 41.56 | 81.22 | 133.47 | 210.53 | +| MKL-DNN | 175.10 | 272.92 | 450.70 | 512.00 | 600.94 | + ### Laptop TBD -### Desktop -TBD diff --git a/benchmark/figs/googlenet-cpu-train.png b/benchmark/figs/googlenet-cpu-train.png new file mode 100644 index 0000000000000000000000000000000000000000..c3f67faf096fe9b45dd815f294b41679dc7c9e54 Binary files /dev/null and b/benchmark/figs/googlenet-cpu-train.png differ diff --git a/benchmark/figs/resnet-cpu-train.png b/benchmark/figs/resnet-cpu-train.png new file mode 100644 index 0000000000000000000000000000000000000000..b96ecd5ff940c0d000613b1ed1f11fb16796cf47 Binary files /dev/null and b/benchmark/figs/resnet-cpu-train.png differ diff --git a/benchmark/figs/vgg-cpu-train.png b/benchmark/figs/vgg-cpu-train.png new file mode 100644 index 0000000000000000000000000000000000000000..f830ca6a87d10b72a5113636dd5686ab25a2e864 Binary files /dev/null and b/benchmark/figs/vgg-cpu-train.png differ diff --git a/benchmark/paddle/image/alexnet.py b/benchmark/paddle/image/alexnet.py index 3358d43a4b08c6a9b89d59e1a8be53ee1f12bbe0..77d130ae34059d1e87040d00346ac1dadd86b0d8 100644 --- a/benchmark/paddle/image/alexnet.py +++ b/benchmark/paddle/image/alexnet.py @@ -6,8 +6,18 @@ height = 227 width = 227 num_class = 1000 batch_size = get_config_arg('batch_size', int, 128) +gp = get_config_arg('layer_num', int, 1) +is_infer = get_config_arg("is_infer", bool, False) +num_samples = get_config_arg('num_samples', int, 2560) -args = {'height': height, 'width': width, 'color': True, 'num_class': num_class} +args = { + 'height': height, + 'width': width, + 'color': True, + 'num_class': num_class, + 'is_infer': is_infer, + 'num_samples': num_samples +} define_py_data_sources2( "train.list", None, module="provider", obj="process", args=args) @@ -31,7 +41,7 @@ net = img_pool_layer(input=net, pool_size=3, stride=2) # conv2 net = img_conv_layer( - input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=1) + input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=gp) net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75) net = img_pool_layer(input=net, pool_size=3, stride=2) @@ -40,11 +50,11 @@ net = img_conv_layer( input=net, filter_size=3, num_filters=384, stride=1, padding=1) # conv4 net = img_conv_layer( - input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=1) + input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=gp) # conv5 net = img_conv_layer( - input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=1) + input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=gp) net = img_pool_layer(input=net, pool_size=3, stride=2) net = fc_layer( @@ -59,6 +69,9 @@ net = fc_layer( layer_attr=ExtraAttr(drop_rate=0.5)) net = fc_layer(input=net, size=1000, act=SoftmaxActivation()) -lab = data_layer('label', num_class) -loss = cross_entropy(input=net, label=lab) -outputs(loss) +if is_infer: + outputs(net) +else: + lab = data_layer('label', num_class) + loss = cross_entropy(input=net, label=lab) + outputs(loss) diff --git a/benchmark/paddle/image/googlenet.py b/benchmark/paddle/image/googlenet.py index 7059c13bd2c2b98eb3fbcf633a6f7064e54d5402..2a850ccb7f2c75b467554181fc5f4aa8f2b97a09 100644 --- a/benchmark/paddle/image/googlenet.py +++ b/benchmark/paddle/image/googlenet.py @@ -7,13 +7,15 @@ num_class = 1000 batch_size = get_config_arg('batch_size', int, 128) use_gpu = get_config_arg('use_gpu', bool, True) is_infer = get_config_arg("is_infer", bool, False) +num_samples = get_config_arg('num_samples', int, 2560) args = { 'height': height, 'width': width, 'color': True, 'num_class': num_class, - 'is_infer': is_infer + 'is_infer': is_infer, + 'num_samples': num_samples } define_py_data_sources2( "train.list" if not is_infer else None, diff --git a/benchmark/paddle/image/provider.py b/benchmark/paddle/image/provider.py index 927b1759941f362ef4b5ffe84dd01332986d9306..1018ec9ce1e529f618ddd7b7afa72a84c5e876a1 100644 --- a/benchmark/paddle/image/provider.py +++ b/benchmark/paddle/image/provider.py @@ -14,6 +14,7 @@ def initHook(settings, height, width, color, num_class, **kwargs): else: settings.data_size = settings.height * settings.width settings.is_infer = kwargs.get('is_infer', False) + settings.num_samples = kwargs.get('num_samples', 2560) if settings.is_infer: settings.slots = [dense_vector(settings.data_size)] else: @@ -23,7 +24,7 @@ def initHook(settings, height, width, color, num_class, **kwargs): @provider( init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM) def process(settings, file_list): - for i in xrange(2560 if settings.is_infer else 1024): + for i in xrange(settings.num_samples): img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten() if settings.is_infer: yield img.astype('float32') diff --git a/benchmark/paddle/image/resnet.py b/benchmark/paddle/image/resnet.py index 4a14363ff1db48a5072cbb5f5eb3bc9241ffca8f..2846e4763f1cda4602f03af5ec649d57ee6cf0d8 100644 --- a/benchmark/paddle/image/resnet.py +++ b/benchmark/paddle/image/resnet.py @@ -7,13 +7,15 @@ num_class = 1000 batch_size = get_config_arg('batch_size', int, 64) layer_num = get_config_arg("layer_num", int, 50) is_infer = get_config_arg("is_infer", bool, False) +num_samples = get_config_arg('num_samples', int, 2560) args = { 'height': height, 'width': width, 'color': True, 'num_class': num_class, - 'is_infer': is_infer + 'is_infer': is_infer, + 'num_samples': num_samples } define_py_data_sources2( "train.list" if not is_infer else None, diff --git a/benchmark/paddle/image/run_mkldnn_infer.sh b/benchmark/paddle/image/run_mkl_infer.sh similarity index 87% rename from benchmark/paddle/image/run_mkldnn_infer.sh rename to benchmark/paddle/image/run_mkl_infer.sh index 03a76c0540092501b33e1fdd430ae4e754744fd0..62c9bf6efd3810f506fd4592b2ba3a21b1b7f0e7 100755 --- a/benchmark/paddle/image/run_mkldnn_infer.sh +++ b/benchmark/paddle/image/run_mkl_infer.sh @@ -4,7 +4,7 @@ function clock_to_seconds() { hours=`echo $1 | awk -F ':' '{print $1}'` mins=`echo $1 | awk -F ':' '{print $2}'` secs=`echo $1 | awk -F ':' '{print $3}'` - echo `bc -l <<< "$secs + $mins * 60 + $hours * 3600"` + echo `awk 'BEGIN{printf "%.2f",('$secs' + '$mins' * 60 + '$hours' * 3600)}'` } function infer() { @@ -37,7 +37,7 @@ function infer() { --trainer_count=1 \ --num_passes=1 \ --save_dir="models/${topology}-${layer_num}" \ - --config_args="batch_size=128,layer_num=${layer_num}" \ + --config_args="batch_size=128,layer_num=${layer_num},num_samples=256" \ > /dev/null 2>&1 echo "Done" fi @@ -58,9 +58,9 @@ function infer() { end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs` start_sec=`clock_to_seconds $start` end_sec=`clock_to_seconds $end` - fps=`bc <<< "scale = 2; 1280 / ($end_sec - $start_sec)"` + fps=`awk 'BEGIN{printf "%.2f",(1280 / ('$end_sec' - '$start_sec'))}'` echo "Last 1280 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log} - echo "FPS: $fps images/sec" >> ${log} + echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} } if [ ! -f "train.list" ]; then @@ -79,8 +79,9 @@ fi # inference benchmark for use_mkldnn in True False; do for batchsize in 1 2 4 8 16; do - infer googlenet v1 $batchsize $use_mkldnn - infer resnet 50 $batchsize $use_mkldnn infer vgg 19 $batchsize $use_mkldnn + infer resnet 50 $batchsize $use_mkldnn + infer googlenet v1 $batchsize $use_mkldnn + infer alexnet 2 $batchsize $use_mkldnn done done diff --git a/benchmark/paddle/image/run_mkldnn_train.sh b/benchmark/paddle/image/run_mkl_train.sh similarity index 83% rename from benchmark/paddle/image/run_mkldnn_train.sh rename to benchmark/paddle/image/run_mkl_train.sh index 320206239ae960bd088b05d3b10934a98da741b1..03d2d378fb72e36f765d89af788f6ee96fe21d4e 100755 --- a/benchmark/paddle/image/run_mkldnn_train.sh +++ b/benchmark/paddle/image/run_mkl_train.sh @@ -28,6 +28,10 @@ function train() { --test_period=100 \ --config_args=$args \ 2>&1 | tee ${log} + + avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'` + fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'` + echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} } if [ ! -f "train.list" ]; then @@ -43,5 +47,6 @@ for use_mkldnn in True False; do train vgg 19 $batchsize $use_mkldnn train resnet 50 $batchsize $use_mkldnn train googlenet v1 $batchsize $use_mkldnn + train alexnet 2 $batchsize $use_mkldnn done done diff --git a/benchmark/paddle/image/run_openblas_infer.sh b/benchmark/paddle/image/run_openblas_infer.sh new file mode 100755 index 0000000000000000000000000000000000000000..da034f3b9dff794e22086a5295ad2b0c2361c356 --- /dev/null +++ b/benchmark/paddle/image/run_openblas_infer.sh @@ -0,0 +1,64 @@ +set -e + +function clock_to_seconds() { + hours=`echo $1 | awk -F ':' '{print $1}'` + mins=`echo $1 | awk -F ':' '{print $2}'` + secs=`echo $1 | awk -F ':' '{print $3}'` + echo `awk 'BEGIN{printf "%.2f",('$secs' + '$mins' * 60 + '$hours' * 3600)}'` +} + +function infer() { + unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY + topology=$1 + layer_num=$2 + bs=$3 + thread=`nproc` + if [ $thread -gt $bs ]; then + thread=$bs + fi + log="logs/infer-${topology}-${layer_num}-${thread}openblas-${bs}.log" + + models_in="models/${topology}-${layer_num}/pass-00000/" + if [ ! -d $models_in ]; then + echo "./run_mkl_infer.sh to save the model first" + exit 0 + fi + log_period=$((32 / bs)) + paddle train --job=test \ + --config="${topology}.py" \ + --use_mkldnn=False \ + --use_gpu=False \ + --trainer_count=$thread \ + --log_period=$log_period \ + --config_args="batch_size=${bs},layer_num=${layer_num},is_infer=True,num_samples=256" \ + --init_model_path=$models_in \ + 2>&1 | tee ${log} + + # calculate the last 5 logs period time of 160(=32*5) samples, + # the time before are burning time. + start=`tail ${log} -n 7 | head -n 1 | awk -F ' ' '{print $2}' | xargs` + end=`tail ${log} -n 2 | head -n 1 | awk -F ' ' '{print $2}' | xargs` + start_sec=`clock_to_seconds $start` + end_sec=`clock_to_seconds $end` + fps=`awk 'BEGIN{printf "%.2f",(160 / ('$end_sec' - '$start_sec'))}'` + echo "Last 160 samples start: ${start}(${start_sec} sec), end: ${end}(${end_sec} sec;" >> ${log} + echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} +} + +if [ ! -f "train.list" ]; then + echo " " > train.list +fi +if [ ! -f "test.list" ]; then + echo " " > test.list +fi +if [ ! -d "logs" ]; then + mkdir logs +fi + +# inference benchmark +for batchsize in 1 2 4 8 16; do + infer vgg 19 $batchsize + infer resnet 50 $batchsize + infer googlenet v1 $batchsize + infer alexnet 2 $batchsize +done diff --git a/benchmark/paddle/image/run_openblas_train.sh b/benchmark/paddle/image/run_openblas_train.sh new file mode 100755 index 0000000000000000000000000000000000000000..e9df83fee2a3f796b7234b39619364f6ee4d5dc9 --- /dev/null +++ b/benchmark/paddle/image/run_openblas_train.sh @@ -0,0 +1,41 @@ +set -e + +function train() { + unset OMP_NUM_THREADS MKL_NUM_THREADS OMP_DYNAMIC KMP_AFFINITY + topology=$1 + layer_num=$2 + bs=$3 + thread=`nproc` + # each trainer_count use only 1 core to avoid conflict + log="logs/train-${topology}-${layer_num}-${thread}openblas-${bs}.log" + args="batch_size=${bs},layer_num=${layer_num}" + config="${topology}.py" + paddle train --job=time \ + --config=$config \ + --use_mkldnn=False \ + --use_gpu=False \ + --trainer_count=$thread \ + --log_period=3 \ + --test_period=30 \ + --config_args=$args \ + 2>&1 | tee ${log} + + avg_time=`tail ${log} -n 1 | awk -F ' ' '{print $8}' | sed 's/avg=//'` + fps=`awk 'BEGIN{printf "%.2f",('$bs' / '$avg_time' * 1000)}'` + echo "FPS: $fps images/sec" 2>&1 | tee -a ${log} +} + +if [ ! -f "train.list" ]; then + echo " " > train.list +fi +if [ ! -d "logs" ]; then + mkdir logs +fi + +# training benchmark +for batchsize in 64 128 256; do + train vgg 19 $batchsize + train resnet 50 $batchsize + train googlenet v1 $batchsize + train alexnet 2 $batchsize +done diff --git a/benchmark/paddle/image/vgg.py b/benchmark/paddle/image/vgg.py index 8d0a1e97a451cd52ef17e4e326673cc90059ef3c..ca0a6798fb8c35b68cf84d263855955eb93ba0b0 100644 --- a/benchmark/paddle/image/vgg.py +++ b/benchmark/paddle/image/vgg.py @@ -7,13 +7,15 @@ num_class = 1000 batch_size = get_config_arg('batch_size', int, 64) layer_num = get_config_arg('layer_num', int, 19) is_infer = get_config_arg("is_infer", bool, False) +num_samples = get_config_arg('num_samples', int, 2560) args = { 'height': height, 'width': width, 'color': True, 'num_class': num_class, - 'is_infer': is_infer + 'is_infer': is_infer, + 'num_samples': num_samples } define_py_data_sources2( "train.list" if not is_infer else None, diff --git a/cmake/cblas.cmake b/cmake/cblas.cmake index b21fc43904d9aafe9f7d019dfbe5b1c0d3f9e2d6..6320b17520a687f88993b6f464d9115838b0f96b 100644 --- a/cmake/cblas.cmake +++ b/cmake/cblas.cmake @@ -3,7 +3,7 @@ # It will search MKLML, atlas, OpenBlas, reference-cblas in order. # # If any cblas implementation found, the following variable will be set. -# CBLAS_PROVIDER # one of MKLML, ATLAS, OPENBLAS, REFERENCE +# CBLAS_PROVIDER # one of MKLML, OPENBLAS, REFERENCE # CBLAS_INC_DIR # the include directory for cblas. # CBLAS_LIBS # a list of libraries should be linked by paddle. # # Each library should be full path to object file. @@ -17,7 +17,7 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB) set(CBLAS_INC_DIR ${MKLML_INC_DIR}) set(CBLAS_LIBRARIES ${MKLML_LIB}) - add_definitions(-DPADDLE_USE_MKLML) + add_definitions(-DPADDLE_WITH_MKLML) add_definitions(-DLAPACK_FOUND) message(STATUS "Found cblas and lapack in MKLML " @@ -25,42 +25,6 @@ if(WITH_MKLML AND MKLML_INC_DIR AND MKLML_LIB) return() endif() -## Then find atlas. -set(ATLAS_ROOT $ENV{ATLAS_ROOT} CACHE PATH "Folder contains Atlas") -set(ATLAS_INCLUDE_SEARCH_PATHS - ${ATLAS_ROOT}/include - /usr/include - /usr/include/atlas) -set(ATLAS_LIB_SEARCH_PATHS - ${ATLAS_ROOT}/lib - /usr/lib - /usr/lib/blas/atlas - /usr/lib/atlas - /usr/lib/atlas-base # special for ubuntu 14.04. - ) -find_path(ATLAS_INC_DIR NAMES cblas.h - PATHS ${ATLAS_INCLUDE_SEARCH_PATHS}) -find_path(ATLAS_CLAPACK_INC_DIR NAMES clapack.h - PATHS ${ATLAS_INCLUDE_SEARCH_PATHS}) -find_library(ATLAS_CBLAS_LIB NAMES cblas libcblas.so.3 - PATHS ${ATLAS_LIB_SEARCH_PATHS}) -find_library(ATLAS_CLAPACK_LIB NAMES lapack_atlas liblapack_atlas.so.3 - PATHS ${ATLAS_LIB_SEARCH_PATHS}) - -if(ATLAS_CLAPACK_INC_DIR AND ATLAS_INC_DIR AND ATLAS_CBLAS_LIB AND ATLAS_CLAPACK_LIB) - set(CBLAS_FOUND ON) - set(CBLAS_PROVIDER ATLAS) - set(CBLAS_INC_DIR ${ATLAS_INC_DIR} ${ATLAS_CLAPACK_INC_DIR}) - set(CBLAS_LIBRARIES ${ATLAS_CLAPACK_LIB} ${ATLAS_CBLAS_LIB}) - - add_definitions(-DPADDLE_USE_ATLAS) - add_definitions(-DLAPACK_FOUND) - - message(STATUS "Found ATLAS (include: ${ATLAS_INC_DIR}, library: ${CBLAS_LIBRARIES})") - message(STATUS "Found lapack in ATLAS (include: ${ATLAS_CLAPACK_INC_DIR})") - return() -endif() - ## Then find openblas. set(OPENBLAS_ROOT $ENV{OPENBLAS_ROOT} CACHE PATH "Folder contains Openblas") set(OPENBLAS_INCLUDE_SEARCH_PATHS diff --git a/cmake/configure.cmake b/cmake/configure.cmake index e550ec285668ea25757eeee9e7c5dc48fc9d339d..5c6bcfde76a1201f792d04766d698db8cd395a49 100644 --- a/cmake/configure.cmake +++ b/cmake/configure.cmake @@ -24,6 +24,11 @@ if(WITH_DOUBLE) add_definitions(-DPADDLE_TYPE_DOUBLE) endif(WITH_DOUBLE) +if(WITH_ARM_FP16) + add_definitions(-DPADDLE_ARM_FP16) + add_definitions("-march=armv8.2-a+fp16+simd") +endif(WITH_ARM_FP16) + if(WITH_TESTING) add_definitions(-DPADDLE_WITH_TESTING) endif(WITH_TESTING) diff --git a/cmake/external/cares.cmake b/cmake/external/cares.cmake index ac456933bd2260b2bbde2de78c486a5c0a1f5a96..aec51410b33669f8a549f2eca193cc6aa2d07a13 100644 --- a/cmake/external/cares.cmake +++ b/cmake/external/cares.cmake @@ -33,7 +33,7 @@ ExternalProject_Add( UPDATE_COMMAND "" CONFIGURE_COMMAND ./buildconf && ./configure --disable-shared --prefix=${CARES_INSTALL_DIR} BUILD_IN_SOURCE 1 - BUILD_COMMAND make + BUILD_COMMAND make -j8 INSTALL_COMMAND make install ) diff --git a/cmake/external/mkldnn.cmake b/cmake/external/mkldnn.cmake index fc52d339d7a336b44c97f2e0a9fc8d6604854365..5d24caebdcc5a28823164d718fb1628be5c4179d 100644 --- a/cmake/external/mkldnn.cmake +++ b/cmake/external/mkldnn.cmake @@ -67,5 +67,5 @@ ADD_LIBRARY(mkldnn SHARED IMPORTED GLOBAL) SET_PROPERTY(TARGET mkldnn PROPERTY IMPORTED_LOCATION ${MKLDNN_LIB}) ADD_DEPENDENCIES(mkldnn ${MKLDNN_PROJECT}) MESSAGE(STATUS "MKLDNN library: ${MKLDNN_LIB}") -add_definitions(-DPADDLE_USE_MKLDNN) +add_definitions(-DPADDLE_WITH_MKLDNN) LIST(APPEND external_project_dependencies mkldnn) diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake index 4c4f59656dae68739f2f07f3febd510e727fe2dd..97857a686b38d935b19f510ecdcb66bcca91fe03 100644 --- a/cmake/external/openblas.cmake +++ b/cmake/external/openblas.cmake @@ -114,11 +114,7 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR}) # linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas) SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c) FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";") -IF("${CBLAS_PROVIDER}" STREQUAL "MKLML") - ADD_LIBRARY(cblas SHARED ${dummyfile}) -ELSE() - ADD_LIBRARY(cblas STATIC ${dummyfile}) -ENDIF() +ADD_LIBRARY(cblas STATIC ${dummyfile}) TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES}) IF(NOT ${CBLAS_FOUND}) diff --git a/cmake/external/protobuf.cmake b/cmake/external/protobuf.cmake index fab2af362bb070a54987b6499748056f3d12a56b..ff5855052dabaa0b63099cd219f3f04e22f1aa85 100644 --- a/cmake/external/protobuf.cmake +++ b/cmake/external/protobuf.cmake @@ -253,9 +253,9 @@ IF(NOT PROTOBUF_FOUND) IF(WITH_C_API) INSTALL(DIRECTORY ${PROTOBUF_INCLUDE_DIR} DESTINATION third_party/protobuf) IF(ANDROID) - INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI}) + INSTALL(FILES ${PROTOBUF_LITE_LIBRARY} DESTINATION third_party/protobuf/lib/${ANDROID_ABI}) ELSE() - INSTALL(FILES ${PROTOBUF_LIBRARY} DESTINATION third_party/protobuf/lib) + INSTALL(FILES ${PROTOBUF_LITE_LIBRARY} DESTINATION third_party/protobuf/lib) ENDIF() ENDIF() diff --git a/doc/api/index_cn.rst b/doc/api/index_cn.rst index 9be0b370ee5e301aee4a6e31b1cfa905754968e8..84f9097a6cdc2da269bd6a0685796e14e26da37e 100644 --- a/doc/api/index_cn.rst +++ b/doc/api/index_cn.rst @@ -7,3 +7,4 @@ API 模型配置 数据访问 训练与应用 + v2/fluid.rst diff --git a/doc/api/index_en.rst b/doc/api/index_en.rst index 25c1dd00b9cbb3ab647e04cdc2b4c27c552a2332..e6f632e1a5b9c4b50b7c6aa96a120030bd6ce338 100644 --- a/doc/api/index_en.rst +++ b/doc/api/index_en.rst @@ -7,3 +7,4 @@ API v2/model_configs.rst v2/data.rst v2/run_logic.rst + v2/fluid.rst diff --git a/doc/api/v2/config/activation.rst b/doc/api/v2/config/activation.rst index eca3ce03bcdc599edca802d8dfca48d4f28275a2..5317e66b64bbd85c61f19700a9d2c1d239dee573 100644 --- a/doc/api/v2/config/activation.rst +++ b/doc/api/v2/config/activation.rst @@ -99,3 +99,10 @@ STanh .. automodule:: paddle.v2.activation :members: STanh :noindex: + +SoftSign +======== + +.. automodule:: paddle.v2.activation + :members: SoftSign + :noindex: diff --git a/doc/api/v2/config/layer.rst b/doc/api/v2/config/layer.rst index c3f9c18d0663a7a24880b441981875c1e4f015aa..d81481ca819c13ee0e299c204f998f3915c34bd4 100644 --- a/doc/api/v2/config/layer.rst +++ b/doc/api/v2/config/layer.rst @@ -467,7 +467,7 @@ lambda_cost :noindex: square_error_cost --------- +----------------- .. autoclass:: paddle.v2.layer.square_error_cost :noindex: @@ -533,7 +533,7 @@ Miscs ===== dropout --------------- +-------- .. autoclass:: paddle.v2.layer.dropout :noindex: diff --git a/doc/api/v2/fluid.rst b/doc/api/v2/fluid.rst new file mode 100644 index 0000000000000000000000000000000000000000..43fc19dc492bbc119f2356034b81c65e443db2fa --- /dev/null +++ b/doc/api/v2/fluid.rst @@ -0,0 +1,18 @@ +====================== +Fluid +====================== + +.. toctree:: + :maxdepth: 1 + + fluid/layers.rst + fluid/data_feeder.rst + fluid/executor.rst + fluid/initializer.rst + fluid/evaluator.rst + fluid/nets.rst + fluid/optimizer.rst + fluid/param_attr.rst + fluid/profiler.rst + fluid/regularizer.rst + diff --git a/doc/api/v2/fluid/data_feeder.rst b/doc/api/v2/fluid/data_feeder.rst new file mode 100644 index 0000000000000000000000000000000000000000..0fa78f7dfb04c13be7eb83b7fd35cb03f2f4a7fa --- /dev/null +++ b/doc/api/v2/fluid/data_feeder.rst @@ -0,0 +1,9 @@ +=========== +DataFeeder +=========== + +DataFeeder +----------- +.. automodule:: paddle.v2.fluid.data_feeder + :members: DataFeeder + :noindex: diff --git a/doc/api/v2/fluid/evaluator.rst b/doc/api/v2/fluid/evaluator.rst new file mode 100644 index 0000000000000000000000000000000000000000..a23f3301d0331e0ea3733f06444515eb4680cd31 --- /dev/null +++ b/doc/api/v2/fluid/evaluator.rst @@ -0,0 +1,9 @@ +=========== +Evaluator +=========== + +Evaluator +----------- +.. automodule:: paddle.v2.fluid.evaluator + :members: Evaluator + :noindex: diff --git a/doc/api/v2/fluid/executor.rst b/doc/api/v2/fluid/executor.rst new file mode 100644 index 0000000000000000000000000000000000000000..3a283538c120cfa1ef646c390bb71c6251c23675 --- /dev/null +++ b/doc/api/v2/fluid/executor.rst @@ -0,0 +1,9 @@ +=========== +Executor +=========== + +Executor +----------- +.. automodule:: paddle.v2.fluid.executor + :members: Executor + :noindex: diff --git a/doc/api/v2/fluid/initializer.rst b/doc/api/v2/fluid/initializer.rst new file mode 100644 index 0000000000000000000000000000000000000000..8f587837e9873370722062404f511654a9460587 --- /dev/null +++ b/doc/api/v2/fluid/initializer.rst @@ -0,0 +1,50 @@ +=========== +Initializer +=========== + + + +Initializer +----------- +.. automodule:: paddle.v2.fluid.initializer + :members: Initializer + :noindex: + + + +ConstantInitializer +------------------- +.. automodule:: paddle.v2.fluid.initializer + :members: ConstantInitializer + :noindex: + + + +UniformInitializer +------------------ +.. automodule:: paddle.v2.fluid.initializer + :members: UniformInitializer + :noindex: + + + +NormalInitializer +----------------- +.. automodule:: paddle.v2.fluid.initializer + :members: NormalInitializer + :noindex: + + +XavierInitializer +----------------- +.. automodule:: paddle.v2.fluid.initializer + :members: XavierInitializer + :noindex: + + +MSRAInitializer +--------------- +.. automodule:: paddle.v2.fluid.initializer + :members: MSRAInitializer + :noindex: + diff --git a/doc/api/v2/fluid/layers.rst b/doc/api/v2/fluid/layers.rst new file mode 100644 index 0000000000000000000000000000000000000000..333c5a856bc12a96ec5e3a7afbaafd85c8558b8d --- /dev/null +++ b/doc/api/v2/fluid/layers.rst @@ -0,0 +1,326 @@ +========== +Layers +========== + + +fc +--- +.. autofunction:: paddle.v2.fluid.layers.fc + :noindex: + +embedding +--------- +.. autofunction:: paddle.v2.fluid.layers.embedding + :noindex: + +dynamic_lstm +------------ +.. autofunction:: paddle.v2.fluid.layers.dynamic_lstm + :noindex: + +data +---- +.. autofunction:: paddle.v2.fluid.layers.data + :noindex: + +mean +---- +.. autofunction:: paddle.v2.fluid.layers.mean + :noindex: + +mul +--- +.. autofunction:: paddle.v2.fluid.layers.mul + :noindex: + +elementwise_add +--------------- +.. autofunction:: paddle.v2.fluid.layers.elementwise_add + :noindex: + +elementwise_div +--------------- +.. autofunction:: paddle.v2.fluid.layers.elementwise_div + :noindex: + + +dropout +------- +.. autofunction:: paddle.v2.fluid.layers.dropout + :noindex: + + +reshape +-------- +.. autofunction:: paddle.v2.fluid.layers.reshape + :noindex: + + +sigmoid +--------- +.. autofunction:: paddle.v2.fluid.layers.sigmoid + :noindex: + + +scale +--------- +.. autofunction:: paddle.v2.fluid.layers.scale + :noindex: + + +reshape +--------- +.. autofunction:: paddle.v2.fluid.layers.reshape + :noindex: + + +transpose +--------- +.. autofunction:: paddle.v2.fluid.layers.transpose + :noindex: + + +sigmoid_cross_entropy_with_logits +--------------------------------- +.. autofunction:: paddle.v2.fluid.layers.esigmoid_cross_entropy_with_logits + :noindex: + + +cast +---- +.. autofunction:: paddle.v2.fluid.layers.cast + :noindex: + + +concat +------- +.. autofunction:: paddle.v2.fluid.layers.concat + :noindex: + + +sums +---- +.. autofunction:: paddle.v2.fluid.layers.sums + :noindex: + + +linear_chain_crf +---------------- +.. autofunction:: paddle.v2.fluid.layers.linear_chain_crf + :noindex: + + +assign +------- +.. autofunction:: paddle.v2.fluid.layers.embedding + :noindex: + + +split_lod_tensor +---------------- +.. autofunction:: paddle.v2.fluid.layers.split_lod_tensor + :noindex: + + +merge_lod_tensor +---------------- +.. autofunction:: paddle.v2.fluid.layers.merge_lod_tensor + :noindex: + +cos_sim +-------- +.. autofunction:: paddle.v2.fluid.layers.cos_sim + :noindex: + + +cross_entropy +------------- +.. autofunction:: paddle.v2.fluid.layers.cross_entropy + :noindex: + + + +square_error_cost +----------------- +.. autofunction:: paddle.v2.fluid.layers.square_error_cost + :noindex: + + +accuracy +--------- +.. autofunction:: paddle.v2.fluid.layers.accuracy + :noindex: + + +sequence_conv +------------- +.. autofunction:: paddle.v2.fluid.layers.sequence_conv + :noindex: + + +conv2d +------ +.. autofunction:: paddle.v2.fluid.layers.conv2d + :noindex: + + +sequence_pool +------------- +.. autofunction:: paddle.v2.fluid.layers.sequence_pool + :noindex: + + +pool2d +------ +.. autofunction:: paddle.v2.fluid.layers.pool2d + :noindex: + + +batch_norm +---------- +.. autofunction:: paddle.v2.fluid.layers.batch_norm + :noindex: + + +beam_search_decode +------------------ +.. autofunction:: paddle.v2.fluid.layers.beam_search_decode + :noindex: + + +lod_rank_table +-------------- +.. autofunction:: paddle.v2.fluid.layers.lod_rank_table + :noindex: + + +max_sequence_len +---------------- +.. autofunction:: paddle.v2.fluid.layers.max_sequence_len + :noindex: + + +topk +----- +.. autofunction:: paddle.v2.fluid.layers.topk + :noindex: + + +lod_tensor_to_array +------------------- +.. autofunction:: paddle.v2.fluid.layers.lod_tensor_to_array + :noindex: + + + +array_to_lod_tensor +------------------- +.. autofunction:: paddle.v2.fluid.layers.array_to_lod_tensor + :noindex: + + + + +fill_constant +------------- +.. autofunction:: paddle.v2.fluid.layers.fill_constant + :noindex: + + + +fill_constant_batch_size_like +----------------------------- +.. autofunction:: paddle.v2.fluid.layers.fill_constant_batch_size_like + :noindex: + + +ones +---- +.. autofunction:: paddle.v2.fluid.layers.ones + :noindex: + + +zeros +----- +.. autofunction:: paddle.v2.fluid.layers.zeros + :noindex: + + +increment +--------- +.. autofunction:: paddle.v2.fluid.layers.increment + :noindex: + + +array_write +----------- +.. autofunction:: paddle.v2.fluid.layers.array_write + :noindex: + + + +create_array +------------ +.. autofunction:: paddle.v2.fluid.layers.create_array + :noindex: + + +less_than +--------- +.. autofunction:: paddle.v2.fluid.layers.less_than + :noindex: + + +array_read +---------- +.. autofunction:: paddle.v2.fluid.layers.array_read + :noindex: + + +shrink_memory +-------------- +.. autofunction:: paddle.v2.fluid.layers.shrink_memory + :noindex: + + +array_length +------------- +.. autofunction:: paddle.v2.fluid.layers.array_length + :noindex: + + +conv2d_transpose +---------------- +.. autofunction:: paddle.v2.fluid.layers.conv2d_transpose + :noindex: + + +sequence_expand +--------------- +.. autofunction:: paddle.v2.fluid.layers.sequence_expand + :noindex: + + +lstm_unit +--------- +.. autofunction:: paddle.v2.fluid.layers.lstm_unit + :noindex: + + +sequence_softmax +---------------- +.. autofunction:: paddle.v2.fluid.layers.sequence_softmax + :noindex: + + +reduce_sum +---------- +.. autofunction:: paddle.v2.fluid.layers.reduce_sum + :noindex: + + +reduce_mean +--------- +.. autofunction:: paddle.v2.fluid.layers.reduce_mean + :noindex: + diff --git a/doc/api/v2/fluid/nets.rst b/doc/api/v2/fluid/nets.rst new file mode 100644 index 0000000000000000000000000000000000000000..b792efb71f85ae643df655568da69c82414e9d5d --- /dev/null +++ b/doc/api/v2/fluid/nets.rst @@ -0,0 +1,22 @@ +=========== +Nets +=========== + +simple_img_conv_pool +-------------------- +.. autofunction:: paddle.v2.fluid.nets.simple_img_conv_pool + :noindex: + + +img_conv_group +--------------- +.. autofunction:: paddle.v2.fluid.nets.img_conv_group + :noindex: + + +sequence_conv_pool +------------------ +.. autofunction:: paddle.v2.fluid.nets.sequence_conv_pool + :noindex: + + diff --git a/doc/api/v2/fluid/optimizer.rst b/doc/api/v2/fluid/optimizer.rst new file mode 100644 index 0000000000000000000000000000000000000000..19b4940f08de3e2f7dc177f2961e538946d10a78 --- /dev/null +++ b/doc/api/v2/fluid/optimizer.rst @@ -0,0 +1,54 @@ +=========== +Optimizer +=========== + +Optimizer +----------- +.. automodule:: paddle.v2.fluid.optimizer + :members: Optimizer + :noindex: + + +SGDOptimizer +----------- +.. automodule:: paddle.v2.fluid.optimizer + :members: SGDOptimizer + :noindex: + + + +MomentumOptimizer +----------------- +.. automodule:: paddle.v2.fluid.optimizer + :members: MomentumOptimizer + :noindex: + + + +AdagradOptimizer +---------------- +.. automodule:: paddle.v2.fluid.optimizer + :members: AdagradOptimizer + :noindex: + + +AdamOptimizer +------------- +.. automodule:: paddle.v2.fluid.optimizer + :members: AdamOptimizer + :noindex: + + +AdamaxOptimizer +----------- +.. automodule:: paddle.v2.fluid.optimizer + :members: AdamaxOptimizer + :noindex: + + +DecayedAdagradOptimizer +----------------------- +.. automodule:: paddle.v2.fluid.optimizer + :members: DecayedAdagradOptimizer + :noindex: + diff --git a/doc/api/v2/fluid/param_attr.rst b/doc/api/v2/fluid/param_attr.rst new file mode 100644 index 0000000000000000000000000000000000000000..ca0c8af9e8c4f2271de7a131ad0d27c0e8635f50 --- /dev/null +++ b/doc/api/v2/fluid/param_attr.rst @@ -0,0 +1,11 @@ +=========== +ParamAttr +=========== + + + +ParamAttr +----------- +.. automodule:: paddle.v2.fluid.param_attr + :members: ParamAttr + :noindex: diff --git a/doc/api/v2/fluid/profiler.rst b/doc/api/v2/fluid/profiler.rst new file mode 100644 index 0000000000000000000000000000000000000000..7d4042d1f41c12c4a551ba6576559d612116872a --- /dev/null +++ b/doc/api/v2/fluid/profiler.rst @@ -0,0 +1,10 @@ +=========== +Profiler +=========== + + + +Profiler +----------- +.. autofunction:: paddle.v2.fluid.profiler.cuda_profiler + :noindex: diff --git a/doc/api/v2/fluid/regularizer.rst b/doc/api/v2/fluid/regularizer.rst new file mode 100644 index 0000000000000000000000000000000000000000..868e225ed3d59e79aeb217fb88081ea25f80fa2c --- /dev/null +++ b/doc/api/v2/fluid/regularizer.rst @@ -0,0 +1,25 @@ +=========== +Regularizer +=========== + +WeightDecayRegularizer +---------------------- +.. automodule:: paddle.v2.fluid.regularizer + :members: WeightDecayRegularizer + :noindex: + + +L2DecayRegularizer +------------------ +.. automodule:: paddle.v2.fluid.regularizer + :members: L2DecayRegularizer + :noindex: + + + +L1DecayRegularizer +------------------- +.. automodule:: paddle.v2.fluid.regularizer + :members: L1DecayRegularizer + + diff --git a/doc/design/evaluator.md b/doc/design/evaluator.md index a62d75ffef14962aec8c7587e172d78dfe0cb4be..11cc129d56905a9ee666da92fbe6f8559c6d325a 100644 --- a/doc/design/evaluator.md +++ b/doc/design/evaluator.md @@ -1,22 +1,22 @@ ## Evaluator Design -### The Problem +### Problem Statement -During training or serving, we provide the evaluation function to measure the model performance, e.g., accuracy, precision. In the operator based framework design, the data go through the network pipeline batch by batch. As a result, inside the operator, we only can calculate one minibatch metrics. We need to provide a mechanism to calculate the metrics for each N pass/batch the user wanted. +During training or inference, we provide an evaluation function to measure the model performance, for example, accuracy, precision, etc. In the operator based framework design, the data passes through the network pipeline batch by batch. As a result, inside the operator, we only calculate the metrics for one minibatch. Thus, we need to provide a mechanism to calculate the metrics for each N pass/batch the user wants. ### Evaluator Design -Currently, every operation is expressed in the graph. we divide the evaluator process into three steps. +Currently, every operation is expressed in the graph. We divide the evaluator process into three steps. 1. Initialize the metric state and add it into the block. -2. Calculate the statistic of the metric state in every mini-batch. The single operator is only responsible for calculating necessary statistics for one mini-batch. For example, accuracy operator only calculate a minibatch data if run once. +2. Calculate the concerned metrics for every mini-batch. The single evaluator operator is only responsible for calculating the necessary statistics for one mini-batch. For example, the accuracy operator only calculates the accuracy for a minibatch data if run once. 3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices. ### Implementation -This design is shown in python API. -Each metric operator need to caculate the metric statistic and return the batch aware states, Python side responsible for accumulate the states for each pass. +This design is shown in the Python API. +Each metric operator needs to caculate the metric statistic and return the batch-aware states. Python side is responsible for accumulating the states for each pass. ```python diff --git a/doc/design/executor.md b/doc/design/executor.md index b5fb6c5c3c1da3c112ce63878322083dd5c42b70..2d4b371cc56db82ce5747da6db07f05aa7f7e6c1 100644 --- a/doc/design/executor.md +++ b/doc/design/executor.md @@ -1,23 +1,29 @@ # Executor Design Doc ## Motivation +In [fluid](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/fluid.md), we encourage the user to use deep learning programming paradigms to describe the training process. When the user-written Python program is executed, it will first create a protobuf message +[`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145) that describes the process and is conceptually like an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree). -We use executor to do the runtime evaluation of a `ProgramDesc`. +The executor runs the `ProgramDesc` like an interpreter. `ProgramDesc` contains the intrinsics (operators in this case) and variables which will be used, executor explicitly executes the stored precompiled code. ## Overview -An executor takes a `ProgramDesc`, a `block_id` and a `Scope`. The `ProgramDesc` is a list of blocks and each block contains the protobuf definition of all the parameters and operators. The `block_id` specifies the entrance block. And the `Scope` is the container of all the variable instance, which is persistent throughout different runs. +An executor takes a `ProgramDesc`, a `block_id` and a `Scope`. The `ProgramDesc` is a list of blocks and each block contains the protobuf definition of all the parameters and operators in the block. The `block_id` specifies the entrance block. And the `Scope` is the container of all the variable instances, which is persistent throughout different runs. -### What does executor do? +## Executor -It evaluates all the operators in the `block_id`th block of a `ProgramDesc`. +The `Executor` explicitly executes all the intrinsics (operators here) in the `block_id`th block of a `ProgramDesc`. Essentially, it instantiates Variables and Operators, then runs all the operators in sequence one-by-one. +It is very similar to how a push stack frame works when entering a block, following which it cleans up all the temporary variables when a mini-batch is finished. It does not however, have the stack frame pop process. -### What does executor NOT do? +### The interface +```c++ + Executor(places); +``` +A executor does not own any computing resources, a user can only construct an executor using the specified places. -It does not do runtime optimization, meaning intelligently parse the dependency of each op a choose which one to be run and in which order they should be run. +### Running an Executor -It does not do graph partitioning, meaning dividing the `ProgramDesc` into several small pieces and executing them on different devices. - -## Implementation - -`Executor` evaluates a `ProgramDesc`. Essentially, it instantiates Variables and Operators, then run all the operators in sequence. [[code]](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.cc) +``` + void Run(ProgramDesc, Scope, block_id, create_local_scope); +``` +An `Executor` only provides a unified way to execute `ProgramDesc`. `ProgramDesc` is the target that will be executed, the `Scope` specifies the variable container, the `block_id` indicates the entrance block and `create_local_scope` is a boolean that states whether it will destroy the temporary variables after the execution is finished. diff --git a/doc/design/fluid-compiler.graffle b/doc/design/fluid-compiler.graffle new file mode 100644 index 0000000000000000000000000000000000000000..c933df2cb855462c52b2d25f7f9a99b95652961d Binary files /dev/null and b/doc/design/fluid-compiler.graffle differ diff --git a/doc/design/fluid-compiler.png b/doc/design/fluid-compiler.png new file mode 100644 index 0000000000000000000000000000000000000000..1b0ffed2039c91a3a00bbb719da08c91c3acf7bb Binary files /dev/null and b/doc/design/fluid-compiler.png differ diff --git a/doc/design/fluid.md b/doc/design/fluid.md new file mode 100644 index 0000000000000000000000000000000000000000..585dc8ef39c0cfb30f470d79f7b27a59ceb5e940 --- /dev/null +++ b/doc/design/fluid.md @@ -0,0 +1,122 @@ +# Design Doc: PaddlePaddle Fluid + +## Why Fluid + +When Baidu developed PaddlePaddle in 2013, the only well-known open source deep learning system at the time was Caffe. However, when PaddlePaddle was open-sourced in 2016, many other choices were available. There was a challenge -- what is the need for open sourcing yet another deep learning framework? + +Fluid is the answer. Fluid is similar to PyTorch and TensorFlow Eager Execution, which describes the "process" of training or inference using the concept of a model. In fact in PyTorch, TensorFlow Eager Execution and Fluid, there is no concept of a model at all. The details are covered in the sections below. Fluid is currently more extreme in the above mentioned idea than PyTorch and Eager Execution, and we are trying to push Fluid towards the directions of a compiler and a new programming language for deep learning. + +## The Evolution of Deep Learning Systems + +Deep learning infrastructure is one of the fastest evolving technologies. Within four years, there have already been three generations of technologies invented. + +| Existed since | model as sequence of layers | model as graph of operators | No model | +|--|--|--|--| +| 2013 | Caffe, Theano, Torch, PaddlePaddle | | | +| 2015 | | TensorFlow, MxNet, Caffe2, ONNX, n-graph | | +| 2016 | | | PyTorch, TensorFlow Eager Execution, PaddlePaddle Fluid | + +From the above table, we see that the deep learning technology is evolving towards getting rid of the concept of a model. To understand the reasons behind this direction, a comparison of the *programming paradigms* or the ways to program deep learning applications using these systems, would be helpful. The following section goes over these. + +## Deep Learning Programming Paradigms + +With the systems listed as the first or second generation, e.g., Caffe or TensorFlow, an AI application training program looks like the following: + +```python +x = layer.data("image") +l = layer.data("label") +f = layer.fc(x, W) +s = layer.softmax(f) +c = layer.mse(l, s) + +for i in xrange(1000): # train for 1000 iterations + m = read_minibatch() + forward({input=x, data=m}, minimize=c) + backward(...) + +print W # print the trained model parameters. +``` + +The above program includes two parts: + +1. The first part describes the model, and +2. The second part describes the training process (or inference process) for the model. + +This paradigm has a well-known problem that limits the productivity of programmers. If the programmer made a mistake in configuring the model, the error messages wouldn't show up until the second part is executed and `forward` and `backward` propagations are performed. This makes it difficult for the programmer to debug and locate a mistake that is located blocks away from the actual error prompt. + +This problem of being hard to debug and re-iterate fast on a program is the primary reason that programmers, in general, prefer PyTorch over the older systems. Using PyTorch, we would write the above program as following: + +```python +W = tensor(...) + +for i in xrange(1000): # train for 1000 iterations + m = read_minibatch() + x = m["image"] + l = m["label"] + f = layer.fc(x, W) + s = layer.softmax(f) + c = layer.mse(l, s) + backward() + +print W # print the trained model parameters. +``` + +We can see that the main difference is the moving the model configuration part (the first step) into the training loop. This change would allow the mistakes in model configuration to be reported where they actually appear in the programming block. This change also represents the model better, or its forward pass, by keeping the configuration process in the training loop. + +## Describe Arbitrary Models for the Future + +Describing the process instead of the model also brings Fluid, the flexibility to define different non-standard models that haven't been invented yet. + +As we write out the program for the process, we can write an RNN as a loop, instead of an RNN as a layer or as an operator. A PyTorch example would look like the following: + +```python +for i in xrange(1000): + m = read_minibatch() + x = m["sentence"] + for t in xrange x.len(): + h[t] = the_step(x[t]) +``` + +With Fluid, the training loop and the RNN in the above program are not really Python loops, but just a "loop structure" provided by Fluid and implemented in C++ as the following: + +```python +train_loop = layers.While(cond) +with train_loop.block(): + m = read_minibatch() + x = m["sentence"] + rnn = layers.While(...) + with rnn.block(): + h[t] = the_step(input[t]) +``` + +An actual Fluid example is described [here](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/python/paddle/v2/fluid/tests/test_while_op.py#L36-L44). + +From the example, the Fluid programs look very similar to their PyTorch equivalent programs, except that Fluid's loop structure, wrapped with Python's `with` statement, could run much faster than just a Python loop. + +We have more examples of the [`if-then-else`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/if_else_op.md) structure of Fluid. + +## Turing Completeness + +In computability theory, a system of data-manipulation rules, such as a programming language, is said to be Turing complete if it can be used to simulate any Turing machine. For a programming language, if it provides if-then-else and loop, it is Turing complete. From the above examples, Fluid seems to be Turing complete; however, it is noteworthy to notice that there is a slight difference between the `if-then-else` of Fluid and that of a programming language. The difference being that the former runs both of its branches and splits the input mini-batch into two -- one for the True condition and another for the False condition. This hasn't been researched in depth if this is equivalent to the `if-then-else` in programming languages that makes them Turing-complete. Based on a conversation with [Yuang Yu](https://research.google.com/pubs/104812.html), it seems to be the case but this needs to be looked into in-depth. + +## The Execution of a Fluid Program + +There are two ways to execute a Fluid program. When a program is executed, it creates a protobuf message [`ProgramDesc`](https://github.com/PaddlePaddle/Paddle/blob/a91efdde6910ce92a78e3aa7157412c4c88d9ee8/paddle/framework/framework.proto#L145) that describes the process and is conceptually like an [abstract syntax tree](https://en.wikipedia.org/wiki/Abstract_syntax_tree). + +There is a C++ class [`Executor`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.h), which runs a `ProgramDesc`, similar to how an interpreter runs a Python program. + +Fluid is moving towards the direction of a compiler, which is explain in more detail later in this article. + +## Backward Compatibility of Fluid + +Given all the advantages from the removal of the concept of a *model*, hardware manufacturers might still prefer the existence of the concept of a model, so it would be easier for them to support multiple frameworks all at once and could run a trained model during inference. For example, Nervana, a startup company acquired by Intel, has been working on an XPU that reads the models in the format known as [n-graph](https://github.com/NervanaSystems/ngraph). Similarly, [Movidius](https://www.movidius.com/) is producing a mobile deep learning chip that reads and runs graphs of operators. The well-known [ONNX](https://github.com/onnx/onnx) is also a file format of graphs of operators. + +For Fluid, we can write a converter that extracts the parts in the `ProgramDesc` protobuf message, converts them into a graph of operators, and exports the graph into the ONNX or n-graph format. + +## Towards a Deep Learning Language and the Compiler + +We can change the `if-then-else` and loop structure a little bit in the above Fluid example programs, to make it into a new programming language, different than Python. + +Even if we do not invent a new language, as long as we get the `ProgramDesc` message filled in, we can write a transpiler, which translates each invocation to an operator, into a C++ call to a kernel function of that operator. For example, a transpiler that weaves the CUDA kernels outputs an NVIDIA-friendly C++ program, which can be built using `nvcc`. Another transpiler could generate MKL-friendly code that should be built using `icc` from Intel. More interestingly, we can translate a Fluid program into its distributed version of two `ProgramDesc` messages, one for running on the trainer process, and the other one for the parameter server. For more details of the last example, the [concurrent programming design](concurrent_programming.md) document would be a good pointer. The following figure explains the proposed two-stage process: + +![](fluid-compiler.png) diff --git a/doc/design/images/multigpu_allreduce.graffle b/doc/design/images/multigpu_allreduce.graffle new file mode 100644 index 0000000000000000000000000000000000000000..cb5bc420ceafe8ba4c87694d44ee4e5e4ad06779 Binary files /dev/null and b/doc/design/images/multigpu_allreduce.graffle differ diff --git a/doc/design/images/multigpu_allreduce.png b/doc/design/images/multigpu_allreduce.png new file mode 100644 index 0000000000000000000000000000000000000000..87a1b3e8f6dd4a713ec9df9f0037d1da04e9178a Binary files /dev/null and b/doc/design/images/multigpu_allreduce.png differ diff --git a/doc/design/images/multigpu_before_convert.graffle b/doc/design/images/multigpu_before_convert.graffle new file mode 100644 index 0000000000000000000000000000000000000000..6c35ab1b21fb76ceae82d3693ed0d085b5bc0855 Binary files /dev/null and b/doc/design/images/multigpu_before_convert.graffle differ diff --git a/doc/design/images/multigpu_before_convert.png b/doc/design/images/multigpu_before_convert.png new file mode 100644 index 0000000000000000000000000000000000000000..9c8f7711165d80a2fa3911280fdee91855a401b1 Binary files /dev/null and b/doc/design/images/multigpu_before_convert.png differ diff --git a/doc/design/kernel_hint_design.md b/doc/design/kernel_hint_design.md new file mode 100644 index 0000000000000000000000000000000000000000..a54b7da045e1a362626ef066f9ebb56af2c3181a --- /dev/null +++ b/doc/design/kernel_hint_design.md @@ -0,0 +1,57 @@ +## Problem +In PaddlePaddle's [Design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md), one Operator may have multiple kernels. Users may have some personal preference to choose a certain type of kernel for an operator, such as `force_cpu` to choose a CPU kernel, `use_cudnn` to choose a CUDNN kernel, we need to provide a way for users to do this. + +In the current design, we use KernelType to describe one kernel. + +```cpp +struct KernelType { + Place place_; + DataType data_type_; + LayoutType layout_; +}; +``` + `place_` `data_type_` and `layout_` can be got from the input tensors of the operator, `GetActualKernelType(inputs)` use inputs to infer the proper kernel key that fit the incoming data, but users can not directly configure it. + +The [design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md) also provides a virtual method `GetExpectedKernelType` that user can overload and use to choose the KernelType they want to use. + +So we should send the information user defined in proto to `GetExpectedKernelType` for choosing a kernel. + +The problem is, how should we define and send the information for `GetExpectedKernelType` to use? + +## Solution + +### Potential choice +1. Do nothing, let the user add the information they want to operator‘s attribute and get them inside `GetExpectedKernelType`, this can work properly. But there is a little problem that users may define many kinds of hints for the same purpose, such as `force_cpu`, `use_cpu`, `cpu_kernel` to choose CPU kernel, and `use_cudnn`, `force_cudnn`, `cudnn_kernel` to choose CUDNN kernel. + +2. Pre-define all the needed option and use a single attr key such as `kernel_hint` for the user, this is not so flexible if the user wants to define some more kind of hint. + +### Final choice +To provide enough flexibility while avoiding confusion definition, we can define some global constants for these attribute names, such as `force_cpu`, `use_cudnn`, `use_mkldnn` for a user to choose. + +In C++ + +```cpp +const std::string kForceCPU = "force_cpu"; +const std::string kUseCUDNN = "use_cudnn"; +const std::string kUseMKLDNN = "use_mkldnn"; + +KernelType GetExpectedKernelType() { + if (Attr(kForceCPU)) { + return KernelType(CPUPlace, ...) + } else { + ... + } +} +``` + +In Python code + +```python +FORCE_CPU = core.kForceCPU() + +def xx_layer(..., force_cpu=false): + layer_helper = LayerHelper(...) + layer_helper.append_op( + type="xx", + attr={FORCE_CPU: force_cpu}) +``` diff --git a/doc/design/mkl/image/engine.png b/doc/design/mkl/image/engine.png new file mode 100644 index 0000000000000000000000000000000000000000..1f5f65c2cc765a514a3ba9e7b7f468e1dc4b0c3b Binary files /dev/null and b/doc/design/mkl/image/engine.png differ diff --git a/doc/design/mkl/image/gradients.png b/doc/design/mkl/image/gradients.png new file mode 100644 index 0000000000000000000000000000000000000000..f031bcf8e4cec14e63075b8b9d2c7bbd9f1b1a3c Binary files /dev/null and b/doc/design/mkl/image/gradients.png differ diff --git a/doc/design/mkl/image/layers.png b/doc/design/mkl/image/layers.png new file mode 100644 index 0000000000000000000000000000000000000000..306f79b7a844610915eb8944128f57d2b7a3065a Binary files /dev/null and b/doc/design/mkl/image/layers.png differ diff --git a/doc/design/mkl/image/matrix.png b/doc/design/mkl/image/matrix.png new file mode 100644 index 0000000000000000000000000000000000000000..c33ce9cf0335e47cc8c1253304d0fe179186e6f2 Binary files /dev/null and b/doc/design/mkl/image/matrix.png differ diff --git a/doc/design/mkl/image/overview.png b/doc/design/mkl/image/overview.png new file mode 100644 index 0000000000000000000000000000000000000000..8fb7bbb9dd654bf363d701d0c8cd4a557043d188 Binary files /dev/null and b/doc/design/mkl/image/overview.png differ diff --git a/doc/design/mkl/mkl_packed.md b/doc/design/mkl/mkl_packed.md new file mode 100644 index 0000000000000000000000000000000000000000..0123315ad4368e68b377f66119949bfd6c1c7860 --- /dev/null +++ b/doc/design/mkl/mkl_packed.md @@ -0,0 +1,108 @@ +# Intel® MKL Packed on PaddlePaddle: Design Doc + + +## Contents + +- [Overview](#overview) +- [Key Points](#key-points) + - [Background](#background) + - [Solution](#solution) +- [Actions](#actions) + - [CMake](#cmake) + - [Layers](#layers) + - [Unit Tests](#unit-tests) + - [Python API](#python-api) + - [Benchmarking](#benchmarking) + + +## Overview +我们计划将 Intel® MKL 中引入的 GEMM Packed APIs\[[1](#references)\] 集成到 PaddlePaddle 中,充分发挥英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。 +现阶段的优化主要针对 Recurrent Neural Network(以下简称RNN)相关层(包括`RecurrentLayer`, `GatedRecurrentLayer`和`LstmLayer`), 以及 PaddlePaddle V1 API。 + +## Key Points + +### Background +目前PaddlePaddle采用了 Intel® MKL库的[cblas_?gemm](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm)函数,这个函数本身会在计算前将原数据转换为更适合英特尔平台的内部格式。 + +1. 转换耗时 \ +这一数据格式的转换操作(Packing),在问题本身的计算量比较小的时候,显得相对来说较为耗时。例如在DeepSpeech2 \[[2](#references)\] 的Vanilla RNN部分中,矩阵大小是`batch_size * 2048`。 +2. 转换冗余 \ +由于在现有的某些情况下(例如RNN),多次调用 cblas_?gemm 会使用相同的原数据,因此,每次调用时对原数据的重复Packing便成为了冗余。 + +为了最大程度减少多次调用 cblas_?gemm 在Packing上的耗时,Intel® MKL 引入了以下四个API: + * [cblas_?gemm_alloc](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm-alloc) + * [cblas_?gemm_pack](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm-pack) + * [cblas_?gemm_compute](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm-compute) + * [cblas_?gemm_free](https://software.intel.com/en-us/mkl-developer-reference-c-cblas-gemm-free) + +通过使用这些API,我们可以先完成对原数据的Packing操作,再把已转换为Packed格式的数据传递给那些复用同一数据的gemm_compute函数,从而避免了Packing冗余。 + +### Solution +在RNN的情况下,同一次前向、后向(forward/backward)过程中所有时间步(time step)共享同一个权重(weight)。当只做推断(inference)时,各次前向之间也都使用了相同的权重,没有必要在每次前向中每个时间步的计算时对权重进行重复的Packing操作。 + +我们通过使用新引入的GEMM Packed APIs,在层初始化的时候,先完成对权重的Packing操作,然后在前向,后向时复用已经转换过的权重,并在每次权重更新后,对新的权重进行转换用于下次迭代。 + +* 优化前,对于序列长度(sequence length)为`T`的网络模型(model), `N`次迭代执行的转换次数为: + - `inference`: `N * T` + - `training`: `2 * N * T` +* 优化后,对于同样设置的网络模型,其转换次数减少至: + - `inference`: `1` + - `training`: `2 * N` + +## Actions + +添加的相关文件和目录结构如下: + +```txt +PaddlePaddle/Paddle +├── ... +└── paddle/ + ├── ... + └── gserver/ + ├── ... + ├── layers/ + │ ├── ... + │ ├── MKLPackedRecurrentLayer.* + | ├── MKLPackedGatedRecurrentLayer.* + | ├── MKLPackedLstmLayer.* + | └── MKLPackedGemm.h + └── tests/ + ├── ... + └── test_MKLPacked.cpp +``` + +### CMake +在对应的`CMakeLists.txt`中根据`WITH_MKL`是否打开,来决定是否开启MKL Packed相关功能。 + +### Layers +所有的`MKLPacked*Layer`都继承于PaddlePaddle的基类`Layer`, 并添加头文件 `MKLPackedGemm.h`,该文件对相关GEMM Packed APIs做了封装。 + +### Unit Tests +我们会添加`test_MKLPacked.cpp`用于MKL Packed优化后layer的测试。 +对于每一个新加的RNN layer,我们会对比如下2个方面: +1. 对比优化后layer自身,sequence mode(`rnn_use_batch=false`)与batch mode(`rnn_use_batch=true`)的结果。 +2. 对比优化后layer与相对应的PaddlePaddle原有layer, 在batch mode下的结果。 + +### Python API +计划在`paddle/utils.Flags`中添加`use_mkl_packed`的flag,用于选择是否使用相关功能,并且当编译时`WITH_MKL=ON`的情况下,默认设置为`true`。 + +同时,在`python/paddle/trainer/config_parser.py`中对应的layer处,添加`use_mkl_packed`这个选择,方便用户在Python端选择是否启用这个功能。 + +具体实现方式比如: + +```python +use_mkl_packed = bool(int(g_command_config_args.get("use_mkl_packed", 0))) +if use_mkl_packed: + self.layer_type = mkl_packed_* +``` + +所有相关的`layer_type`会以*mkl_packed_*开头,这些会在`MKLPacked*Layer`注册layer的时候保证,以示区分。 + + +### Benchmarking +会添加相应的脚本用于测试和对比在使用MKL Packed recurrent layers 前后的网络性能。 + +## References +1. [Introducing the new Packed APIs for GEMM](https://software.intel.com/en-us/articles/introducing-the-new-packed-apis-for-gemm) +2. [DeepSpeech2 on PaddlePaddle](https://github.com/PaddlePaddle/DeepSpeech#deepspeech2-on-paddlepaddle) + diff --git a/doc/design/mkl/mkldnn.md b/doc/design/mkl/mkldnn.md new file mode 100644 index 0000000000000000000000000000000000000000..e2fe1e6b26ffa73fda81863abfadf697c0acbfcf --- /dev/null +++ b/doc/design/mkl/mkldnn.md @@ -0,0 +1,210 @@ +# Intel® MKL-DNN on PaddlePaddle: Design Doc + +我们计划将英特尔深度神经网络数学库[Intel MKL-DNN](https://github.com/01org/mkl-dnn) +(Intel Math Kernel Library for Deep Neural Networks)集成到PaddlePaddle, +充分展现英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。 + +
+
+Figure 1. PaddlePaddle on IA +
+ +近期目标 + +- 完成常用Layer的MKL-DNN实现。 +- 完成常见深度神经网络VGG,GoogLeNet 和 ResNet的MKL-DNN实现。 + +目前的优化,主要针对PaddlePaddle在重构之前的代码框架以及V1的API。 +具体的完成状态可以参见[这里](https://github.com/PaddlePaddle/Paddle/projects/21)。 + +## Contents + +- [Overview](#overview) +- [Actions](#actions) + - [CMake](#cmake) + - [Matrix](#matrix) + - [Layers](#layers) + - [Activations](#activations) + - [Parameters](#parameters) + - [Gradients](#gradients) + - [Unit Tests](#unit-tests) + - [Python API](#python-api) + - [Benchmarking](#benchmarking) + - [Others](#others) +- [Design Concerns](#design-concerns) + +## Overview + +我们会把MKL-DNN会作为第三方库集成进PaddlePaddle,与其他第三方库一样,会在编译PaddlePaddle的时候下载并编译MKL-DNN。 + +同时,为了进一步提升PaddlePaddle在基本数学运算的计算速度,我们也将MKLML即(MKL small library\[[1](#references)\]) +作为另一个第三方库集成进PaddlePaddle,它只会包括生成好的动态库和头文件。 + +MKL,MKLML以及MKL-DNN三者关系如下表: + +| Name | Open Source | License | Descriptions | +| :---------- | :--------------- | :---------- | :------------ | +| MKL | No | Proprietary | Accelerate math processing routines | +| MKLML | No | Proprietary | Small package of MKL, especially for Machine Learning | +| MKL-DNN | Yes | Apache 2.0 | Accelerate primitives processing routines especially for Deep Neural Networks | + +MKLML可以与MKL-DNN共同使用,以此达到最好的性能。 + +
+
+Figure 2. PaddlePaddle with MKL Engines +
+ +## Actions + +添加的相关文件和目录结构如下: + +```txt +PaddlePaddle/Paddle +├── ... +├── cmake/ +│ ├── external/ +│ │ ├── ... +│ │ ├── mkldnn.cmake +│ │ └── mklml.cmake +└── paddle/ + ├── ... + ├── math/ + │ ├── ... + │ └── MKLDNNMatrix.* + └── gserver/ + ├── ... + ├── layers/ + │ ├── ... + │ └── MKLDNN*Layer.* + ├── activations/ + │ ├── ... + │ └── MKLDNNActivations.* + └── tests/ + ├── ... + ├── MKLDNNTester.* + └── test_MKLDNN.cpp +``` + +### CMake +在`CMakeLists.txt`中提供一个与MKL有关的总开关:`WITH_MKL`,它负责决定编译时是否使用MKLML和MKL-DNN + +- `WITH_MKLML` 控制是否使用MKLML库。 +当打开`WITH_MKL`时,会自动使用MKLML库作为PaddlePaddle的CBLAS和LAPACK库,同时会开启Intel OpenMP用于提高MKLML的性能。 +编译时会把对应的头文件和库放在`build/third_party/install/mklml/*`目录下对应的地方。 +MKLML的库目前都是动态库,主要包括`libiomp5.so`和`libmklml_intel.so`。 +- `WITH_MKLDNN` 控制是否使用MKL-DNN。 +当开启`WITH_MKL`时,会自动根据硬件配置[[2](#references)]选择是否编译MKL-DNN。 +编译时会把对应的头文件和库放在`build/third_party/install/mkldnn/*`目录下对应的地方。 +MKL-DNN的库目前只有动态库`libmkldnn.so`。 + +### Matrix +目前在PaddlePaddle中数据都是以`NCHW`的格式存储,但是在MKL-DNN中的排列方式不止这一种。 +所以我们定义了一个`MKLDNNMatrix`用于管理MKL-DNN数据的不同格式以及相互之间的转换。 + +
+
+Figure 3. MKLDNNMatrix +
+ +### Layers +所有MKL-DNN的Layers都会继承于`MKLDNNLayer`,该类继承于PaddlePaddle的基类`Layer`。 +在`MKLDNNLayer`中会提供一些必要的接口和函数,并且会写好`forward`和`backward`的基本逻辑, +子类只需要使用定义好的接口,实现具体的函数功能即可。 + +
+
+Figure 4. MKLDNNLayer +
+ +每个MKLDNNLayer都包含用于内部存储和外部存储的一系列MKLDNNMatrix: + +- 内部存储(internel memory):`inVal_`,`inGrad_`,`outVal_`和`outGrad_`,分别代表输入数据,输入梯度,输出数据和输出梯度。 +- 外部存储(external memory):都是以ext开头,比如`extInVal_`和`extInGrad_`,它们主要是用于, +当数据格式与PaddlePaddle默认的`NCHW`格式不匹配时,转换内存的工作。 +需要注意的是,PaddlePaddle的activation会直接使用`output_.value`和`output_.grad`, +所以`extOutVal_`和`extOutGrad_`必须分别与`output_.value`和`output_.grad`共享内存, +如果不需要外部存储用于转换,那么对应的内部存储也会与它们共享内存。 +- 转换函数(resetXXX): 包括`resetInValue`,`resetInGrad`,`resetOutValue`和`resetOutGrad`, +表示对输入数据,输入梯度,输出数据和输出梯度的转换。 +这些函数会根据输入参数重新设置内部和外部存储,当然这两者也可以相等,即表示不需要转换。 + +注意:每个`MKLDNNlayer`的子类只需要使用内部存储就可以了,所有外部的转换工作都会在reset系列函数中都准备好。 + +### Activations +在重构前的PaddlePaddle中,激活函数是独立于`Layer`的概念,并且输入输出都是共用一块内存, +所以添加了对应的`MKLDNNActivation`来实现,方式类似于`MKLDNNLayer`。 + +### Parameters +对于有参数的层,我们会保证`MKLDNNLayer`使用的参数与PaddlePaddle申请的buffer共用一块内存。 +如果存在数据排列格式不一样的情况时,我们会在网络训练之前把格式转换为MKL-DNN希望的格式, +在训练结束的时候再保存为PaddlePaddle的格式,但是整个训练过程中不需要任何转换。 +这样既使得最终保存的参数格式与PaddlePaddle一致,又可以避免不必要的转换。 + +### Gradients +由于MKL-DNN的操作都是直接覆盖的形式,也就是说输出的结果不会在原来的数据上累加, +这样带来的好处就是不需要一直清空memory,节省了不必要的操作。 +但是注意的是,当网络出现分支且在`backward`的时候,需要累加不同Layer传过来的梯度。 +所以在`MKLDNNlayer`中实现了一个merge的方法,此时每个小分支的`Input Gradient` +会先临时保存在`MKLDNNMatrix`中,由分支处的Layer负责求和,并把结果放到当前层的`output_.grad`中。 +所以整体上,在实现每个子类的时候就不需要关心分支的事情了。 + +
+
+Figure 5. Merge Gradients +
+ +### Unit Tests +我们会添加`test_MKLDNN.cpp`和`MKLDNNTester.*`用于MKL-DNN的测试。 +测试分为每个Layer(或Activation)的单元测试和简单网络的整体测试。 +每个测试会对比PaddlePaddle中CPU算出的结果与MKL-DNN的结果,小于某个比较小的阈值认为通过。 + +### Python API +目前只考虑**v1 API**。 + +计划在`python/paddle/trainer/config_parser.py`里面添加`use_mkldnn`这个选择,方便用户选择使用MKL-DNN的layers。 + +具体实现方式比如: + +```python +use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0))) +if use_mkldnn + self.layer_type = mkldnn_* +``` + +所有MKL-DNN的`layer_type`会以*mkldnn_*开头,这些会在`MKLDNN*Layer`注册layer的时候保证,以示区分。 + +同时,会在`paddle/utils.Flags`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。 + +### Benchmarking +会添加相应的脚本在[这里](https://github.com/PaddlePaddle/Paddle/tree/develop/benchmark/paddle/image),用于测试和对比在使用MKL-DNN前后的CNN网络性能。 +测试的性能对比结果会在[IntelOptimizedPaddle.md](https://github.com/PaddlePaddle/Paddle/blob/develop/benchmark/IntelOptimizedPaddle.md) + +### Others +1. 如果在使用MKL-DNN的情况下,会把CPU的Buffer对齐为4096,具体可以参考MKL-DNN中的[memory](https://github.com/01org/mkl-dnn/blob/master/include/mkldnn.hpp#L673)。 +2. 深入PaddlePaddle,寻找有没有其他可以优化的可能,进一步优化。比如可能会用OpenMP改进SGD的更新性能。 + +## Design Concerns + +为了更好的符合PaddlePaddle的代码风格\[[3](#references)\],同时又尽可能少的牺牲MKL-DNN的性能\[[4](#references)\]。 + +我们总结出一些特别需要注意的点: + +1. 使用**deviceId_**。为了尽可能少的在父类Layer中添加变量或者函数, +我们决定使用已有的`deviceId_`变量来区分layer的属性,定义`-2`为`MKLDNNLayer`特有的设备ID。 +2. 重写父类Layer的**init**函数,修改`deviceId_`为`-2`,代表这个layer是用于跑在MKL-DNN的环境下。 +3. 创建`MKLDNNBase`,定义一些除了layer和memory相关的类和函数。 +包括MKL-DNN会用到`MKLDNNStream`和`CPUEngine`,和未来可能还会用到`FPGAEngine`等。 +4. 如果MKL-DNN layer的后面接有cpu device,那么就会使`output_.value`与`extOutVal_`共享内存, +同时数据格式就是`NCHW`,这样下一个cpu device就能拿到正确的数据。 +在有普通的CPU layer时, `extOutVal_`和`extOutGrad_`的格式始终是`NCHW`或者`NC`。 + +## References +1. [MKL small library](https://github.com/01org/mkl-dnn#linking-your-application)是[Intel MKL](https://software.intel.com/en-us/mkl)的一个子集。 +主要包括了深度学习相关的数学原语与操作,一般由MKL-DNN在发布[新版本](https://github.com/01org/mkl-dnn/releases)时一起更新。 +2. [MKL-DNN System Requirements](https://github.com/01org/mkl-dnn#system-requirements)。 +目前在PaddlePaddle中,仅会在支持AVX2指令集及以上的机器才使用MKL-DNN。 +3. [原来的方案](https://github.com/PaddlePaddle/Paddle/pull/3096)会引入**nextLayer**的信息。 +但是在PaddlePaddle中,无论是重构前的layer还是重构后的op,都不会想要知道next layer/op的信息。 +4. MKL-DNN的高性能格式与PaddlePaddle原有的`NCHW`不同(PaddlePaddle中的cuDNN部分使用的也是`NCHW`,所以不存在这个问题)。 +所以需要引入一个转换方法,并且只需要在必要的时候转换这种格式,才能更好的发挥MKL-DNN的性能。 diff --git a/doc/design/mkldnn/README.MD b/doc/design/mkldnn/README.MD deleted file mode 100644 index ec6d4681836e189f46dbb9b915a237dc15cda7cf..0000000000000000000000000000000000000000 --- a/doc/design/mkldnn/README.MD +++ /dev/null @@ -1,120 +0,0 @@ -# Intel® MKL-DNN on PaddlePaddle: Design Doc - -我们计划将Intel深度神经网络数学库(**MKL-DNN**\[[1](#references)\])集成到PaddlePaddle,充分展现英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。 - -我们短期内的基本目标是: - -- 完成常用layer的MKL-DNN实现。 -- 完成常见深度神经网络VGG,GoogLeNet 和 ResNet的MKL-DNN实现。 - - -## Contents - -- [Overview](#overview) -- [Actions](#actions) - - [CMake](#cmake) - - [Layers](#layers) - - [Activations](#activations) - - [Weights](#weights) - - [Unit Tests](#unit-tests) - - [Protobuf Messages](#protobuf-messages) - - [Python API](#python-api) - - [Demos](#demos) - - [Benchmarking](#benchmarking) - - [Others](#others) -- [Design Concerns](#design-concerns) - -## Overview - -我们会把MKL-DNN作为第三方库集成进PaddlePaddle,整体框架图 -
-
-Figure 1. PaddlePaddle on IA. -
- -## Actions -我们把集成方案大致分为了如下几个方面。 - -### CMake -我们会在`CMakeLists.txt`中会给用户添加一个`WITH_MKL`的开关,他是负责`WITH_MKLML`和`WITH_MKLDNN`的总开关。 - -当打开`WITH_MKL`时,会开启MKLML的功能,作为PaddlePaddle的CBLAS和LAPACK库,同时会开启Intel OpenMP用于提高MKLML的性能。 如果系统支持AVX2指令集及以上,同时会开启MKL-DNN功能。 - -当关闭`WITH_MKL`时,MKLML和MKL-DNN功能会同时关闭。 - -所以,我们会在`cmake/external`目录新建`mkldnn.cmake`和`mklml.cmake`文件,它们会在编译PaddlePaddle的时候下载对应的软件包,并放到PaddlePaddle的third party目录中。 - -### Layers -所有MKL-DNN相关的C++ layers,都会按照PaddlePaddle的目录结构存放在 -`paddle/gserver/layers`中,并且文件名都会一以*MKLDNN*开头。 - -所有MKL-DNN的layers都会继承于一个叫做`MKLDNNLayer`的父类,该父类继承于PaddlePaddle的基类`Layer`。 - -在`MKLDNNLayer`中会提供一些必要的接口和函数,并且会写好`forward`和`backward`的基本逻辑。部分函数定义为纯虚函数,子类只需要实现这些函数即可。 - -### Activations -由于在PaddlePaddle中,激活函数是独立于layer概念的,所以会在`paddle/gserver/activations`目录下添加`MKLDNNActivation.h`和`MKLDNNActivation.cpp`文件用于定义和使用MKL-DNN的接口。 - -### Weights -由于有些layer是含有参数的,我们会尽量让MKL-DNN的参数与PaddlePaddle中`parameter`共享一块内存。 -同时,由于MKL-DNN在训练时使用的参数layout可能与PaddlePaddle默认的`nchw`不一致,我们会在网络训练的开始和结束时分别转换这个layout,使得最终保存的参数格式与PaddlePaddle一致。 - -### Unit Tests -会在`paddle/gserver/test`目录下添加`test_MKLDNN.cpp`和`MKLDNNTester.*`用于MKL-DNN的测试。 -测试分为每个layer(或activation)的单元测试和简单网络的整体测试。 -每个测试会对比PaddlePaddle中CPU算出的结果与MKL-DNN的结果,小于某个比较小的阈值认为通过。 - -### Protobuf Messages -根据具体layer的需求可能会在`proto/ModelConfig.proto`里面添加必要的选项。 - -### Python API -目前只考虑**v1 API**。 - -计划在`python/paddle/trainer/config_parser.py`里面添加`use_mkldnn`这个选择,方便用户选择使用MKL-DNN的layers。 - -具体实现方式比如: - -```python -use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0))) -if use_mkldnn - self.layer_type = mkldnn_* -``` - -所有MKL-DNN的layer type会以*mkldnn_*开头,以示区分。 - -并且可能在`python/paddle/trainer_config_helper`目录下的`activations.py `和`layers.py`里面添加必要的MKL-DNN的接口。 - -### Demos - -会在`v1_api_demo`目录下添加一个`mkldnn`的文件夹,里面放入一些用于MKL-DNN测试的demo脚本。 - -### Benchmarking -会添加`benchmark/paddle/image/run_mkldnn.sh`,用于测试使用MKL-DNN之后的性能。 - -### Others -1. 如果在使用MKL-DNN的情况下,会把CPU的Buffer对齐为64。 -2. 深入PaddlePaddle,寻找有没有其他可以优化的可能,进一步优化。比如可能会用OpenMP改进SGD的更新性能。 - -## Design Concerns - -为了更好的符合PaddlePaddle的代码风格\[[2](#references)\],同时又尽可能少的牺牲MKL-DNN的性能\[[3](#references)\]。 - -我们总结出一些特别需要注意的点: - -1. 使用**deviceId_**。为了尽可能少的在父类Layer中添加变量或者函数,我们决定使用已有的`deviceId_`变量来区分layer的属性,定义`-2`为`MKLDNNLayer`特有的设备ID。 -2. 重写父类Layer的**init**函数,修改`deviceId_`为`-2`,代表这个layer是用于跑在MKL-DNN的环境下。 -3. 创建`MKLDNNMatrix`,同时继承`CpuMatrix`和`mkldnn::memory`。用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。 -4. 创建`MKLDNNBase`,定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到`MKLDNNStream`和`CPUEngine`,和未来可能还会用到`FPGAEngine`等。 -5. 每个`MKLDNNlayer`都会有`inVal_`,`inGrad_`,`outVal_`和`outGrad_`,分别代表input value, input gradient,output value和output gradient。他们会存放MKL-DNN用到的internal memory。同时还会定义以*ext*开头的`MKLDNNMatrix`(表示external的memory),主要是在格式与PaddlePaddle默认的`nchw`格式不匹配时,用于转换内存的工作。必要的转换函数也会在`MKLDNNLayer`中提前定义好,每个子类只需要调用定义好的reset buffer函数即可。 -6. 每个`MKLDNNlayer`的resetbuffer相关的函数(包括reset input、output的Value和grad),他们会根据输入参数reset internal和external的memory,当然这两者也可以相等,即表示不需要转换。只需要把握一个原则,每个`MKLDNNlayer`的子类,只需要使用internal的memory就可以了,所有external的转换工作在父类的reset函数中都提前准备好了。 -7. 一般来说,external的memory会尽量与PaddlePaddle中的`value`和`grad`共享内存。同时每个`MKLDNNLayer`中的external output value和gradient(也就是`extOutVal_`和`extOutGrad_`)必须分别与`output_.value`和`output_.grad`共享内存,因为PaddlePaddle的activation会直接使用`output_.value`和`output_.grad`。如果不需要external的buffer用于转换,那么internal的buffer也会与他们共享内存。 -8. 如果MKL-DNN layer的后面接有cpu device,那么就会使`output_.value`与`extOutVal_`共享内存,同时数据格式就是`nchw`,这样下一个cpu device就能拿到正确的数据。在有cpu device的时候,external的memory的格式始终是`nchw`或者`nc`。 -9. 由于MKL-DNN的输出操作都是覆盖data的,不是在原来的数据上累加,所以当网络出现分支时,在`backward`时会需要merge不同layer的梯度。`MKLDNNlayer`中会实现merge的方法,此时每个小分支的input gradient会先临时保存在一个`MKLDNNMatrix`中,由分支处的layer负责求和,并把结果放到这个layer的`output_.grad`中。所以整体上,每个子类并不会需要关心分支的事情,也是在父类都实现好了。 -10. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。 - -## References - -1. [Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)](https://github.com/01org/mkl-dnn "Intel MKL-DNN") -2. [原来的方案](https://github.com/PaddlePaddle/Paddle/pull/3096)会引入**nextLayer**的信息。但是在PaddlePaddle中,无论是重构前的layer还是重构后的op,都不会想要知道next layer/op的信息。 -3. MKL-DNN的高性能格式与PaddlePaddle原有的`NCHW`不同(PaddlePaddle中的CUDNN部分使用的也是`NCHW`,所以不存在这个问题),所以需要引入一个转换方法,并且只需要在必要的时候转换这种格式,才能更好的发挥MKL-DNN的性能。 - diff --git a/doc/design/mkldnn/image/overview.png b/doc/design/mkldnn/image/overview.png deleted file mode 100644 index 84b455c28230703599a2529f014cfbb222138fef..0000000000000000000000000000000000000000 Binary files a/doc/design/mkldnn/image/overview.png and /dev/null differ diff --git a/doc/design/operator_kernel_type.md b/doc/design/operator_kernel_type.md new file mode 100644 index 0000000000000000000000000000000000000000..aa82e96bf79319f1a57e2ad58aa9826e57be6470 --- /dev/null +++ b/doc/design/operator_kernel_type.md @@ -0,0 +1,91 @@ +# Design Doc: The Keys of Operator Kernel Type +## Problem +An operator can have different kernel implementations, and each operator will have a map to store the related kernels. Fluid uses `OpKernelType` as a key to identify a unique Kernel. Before an operator runs, an certain kernel must be chosen by a key of `OpKernelType`. Currently, `OpKernelType` is defined as follows: + +```cpp +struct OpKernelType { + platform::Place place_; + proto::DataType data_type_; +}; +``` +For more details, please refer to [codes](https://github.com/PaddlePaddle/Paddle/blob/2d5ec16bc8a09fb8e0f62c89b116b0cd1d333907/paddle/framework/operator.h#L348-L374) in github. + +It contains two keys, `Place` and `DataType`. And these two keys will be hashed to a unique key to represent a certain type of kernel. However, these two keys are not enough. We need a more complete representation of `OpKernelType`. + +We often implement a kernel of an operator with some computing library in certain device(place). Please remind that computing library and device are not one-to-one corresponding. A device can have a lot of computing libraries and a computing library can also support several devices. + +For example, Eigen library can support Nvidia GPU/AMD GPU/CPU. And MKLDNN library can support Intel CPU/Intel FPGA. Both `Place` and `Library` should be a key of `OpKernelType`. + +It's obvious that different DataTypes, like fp64/fp32/int8 will have different kernels. But the data layout of a Tensor will also lead to different implementation. Please refer to the batch norm operator [kernels](https://github.com/PaddlePaddle/Paddle/blob/a948fac4d0ad7e0412d373b8aabeb711c2899563/paddle/operators/batch_norm_op.cc#L180-L209). Data Layout should also be taken into consideration. + +## Solution + +There are four keys to determine a kernel type of an operator: `Place`/`Library`/`DataType`/`Layout`. + +```cpp +struct OpKernelType { + platform::Place place_; + platform::Library library_; + proto::DataType data_type_; + framework::Layout layout_; +}; +``` + +Following is the details: + +### Place + +`Place` is defined as follows: + +```cpp +typedef boost::variant Place; +``` + +`Place` is to represent the device memory where data is locating. + + +### Library + +One operator kernel is usually implemented based on one library. `Library` is defined as a enum variable: + +```cpp +enum Library { Plain, MKLDNN, CUDNN }; +``` + +We use `Plain` enumerator to represent default library. Since most operators in Fluid are implemented based on `Eigen` library, we take `Eigen` library as the `Plain` enumerator. +A library usually has a corresponding `DeviceContext` which contains some handles needed by computation. Fluid now have two default DeviceContexts in CPU and CUDA, `CPUDeviceContext` and `CUDADeviceContext`. `CPUDeviceContext` contains a Eigen library handle and `CDUADeviceContext` contains a Eigen library handle and cuBLAS handle. + +If we want to support new Library, a new enumerator need to be added to `Library` and a new corresponding `LibraryDeviceContext` will be created. + + +### DataType + + +`DataType` is defined in [framework.proto](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto). Currently, int32/int64/fp32/fp64 are supported. + +### Layout + +Actually, a Tensor is a view of a block of memory. Besides a pointer to the memory, we also have to get some other descriptions of this block of memory, such as shape(ddim), stride, and layout. + +Different layout leads to different implementation of operator kernel. There are mainly 4 principles we have to follow to support layout in our fluid framework. + +- We take layout as a data member of Tensor. Layout is actually a enum variable. If fluid is built with MKLDNN, then, the memory format in MKLDNN will be added into this enum variable too. + +- Users have to set layout for input data. And some operators like fill_constant/random, also have to set layout of generating data. Of course, we can have some default layout, like NCHW. + +- The inference of Layout is at run-time, not compile-time. + +- Every operator have to implement different kernels for different layouts. Let's take MKLDNN as an example, if we want to implement a MKLDNN convolution operator, we have to realize all the kernels for different layout, list at [here](http://01org.github.io/mkl-dnn/structmkldnn_1_1memory.html). And we will have a special macro to do registering kernels for MKLDNN operators. + +`Layout` is also defined as a enum variable: + +```cpp +enum Layout { + kNCHW, + kNHWC, +#ifdef PADDLE_WITH_MKLDNN + knChw8c + ... +#endif +}; +``` diff --git a/doc/design/paddle_nccl.md b/doc/design/paddle_nccl.md new file mode 100644 index 0000000000000000000000000000000000000000..c7dac70998a6cfec3a6d2fc72b698ff9722e6805 --- /dev/null +++ b/doc/design/paddle_nccl.md @@ -0,0 +1,65 @@ +# Design Doc: NCCL support in Paddle Fluid + +## Abstract + +This Design Doc refers to the NCCL feature in paddle. We propose an approach to support NCCL library both on a single machine and multiple machines. We wrapper the NCCL primitives `Broadcast`, `Allreduce`, `Reduce` as operators to utilize Multi-GPU powers in one script. + + +## Motivation + +[NCCL](https://developer.nvidia.com/nccl) is a NVIDIA library support Multi-GPU communicating and optimized for NVIDIA GPUs, it provides routines such as all-gather, all-reduce, broadcast, reduce, reduce-scatter, that can achieve high bandwidth over PCIe and NVLink high-speed interconnect. With NCCL library, we can easily accelerate the training in parallel. + +- Pros +1. easily plug-in with [NCCL2](https://developer.nvidia.com/nccl) library. +1. high performance in NVIDIA GPUs. +1. MPI like primitives, which have low learning cost for users. + +- Cons +1. Only design for NVIDIA GPUs, not a general multi-device solution. +1. Although NCCL1 is opensourced under BSD license, but NCCL2 is not opensourced anymore. + +At the beginning of training, the framework needs to distribute the same parameters to every GPU, and merge the gradients at any time user interests. + +As a result, during training, we need the operations of peer to peer copy between different GPUs, aggregating gradients/parameters from GPUs, and broadcasting parameters to GPUs. Every GPU only need to run the operator with correct place information. + +Besides, it needs interfaces to synchronize model update with each different GPU Cards. + +## Implementation + +As mentioned above, we wrap the NCCL routines as several kinds of operators. Need to note that NCCL need to create Communicator between gpu at the beginning, so there is a NCCLInit operator created. + +### Transpiler + +To be compatible with [parameter server design doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/ops/dist_train.md), the transpiler compiles the user defined operation graph into sub-graphs to be executed on different devices. + +1. The user-defined model will be a single device program + +2. Broadcast/Reduce operators between GPUs will be inserted into the program, even for the multi-node, may insert the `Send`, `Recv` operator. + + *Broadcast, AllReduce in a single machine. And Broadcast, AllReduce, [Send, Recv](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/ops/dist_train.md#graph-converter) in multiple machines* + + + +After compiling, the graph as shows + + + +Operators are added to the sub-graphs. Every GPU assigned a role of `rank0`, `rank1` etc. + +- **Broadcast**. Broadcast operator distribute initialized parameter to all the GPUs from the GPU who owns it. e.g. from`rank0` GPU. +- **AllReduce**. AllReduce operator synchronizes parameters/gradients between GPUs. AllReduce implemented in the Ring-Based communicating method, avoid of the bottle neck in a single GPU. + +Need to notice that AllReduce operator force GPUs synchronized at that point. The whole training process in asynchronous or synchronous mode depends on the AllReduce point in the graph. + +As it shown in the picture, when each GPU compute the gradient of `W`, followed with a `AllReduce` operator, accumulate the `dW` to full batch of data, then run the optimize process individually and apply the gradient to its `W`. + +- **AllReduce** + Need to note that our AllReduce operator is a ring-base AllReduce implementation. If we use the NCCL2 AllReduce primitive, every GPU optimized full batch of data, wasted (n-1) GPU compute resources. In addition, NCCL2 built-in AllReduce will only utilize the communicating resource during synchronization, then update the gradient will be a subsequent phase. In fact, we can amortize the update gradient time cost into the communicating phase. The process is +1. Every parameter has its root card. That card will responsible for aggregating the gradients from GPUs. +2. The whole model's parameter will be hashed to different root card, ensure the load balance between GPUs. +3. Logically neighberhood card will start send parameter to the next one. After one round, the parameter main card will aggregate the full gradients. +4. Then the root card will optimize the parameter. +5. This parameter card will send its optimized result to its neighberhood, then the neighberhood will send parameter to its next one. +6. Finish the sychronization round. + +The total time cost will be 2 * (n-1) * per-parameter-send-time, we reach the goal of amortize the upgrade time into communicating phase. diff --git a/doc/design/refactor/distributed_architecture.md b/doc/design/refactor/distributed_architecture.md index 2b4f921ae93c3b443ed62a28b1fa9fbda14f73ab..d9fe7d6bbb0eeb73fcdca3ee749a4f10bcdda682 100644 --- a/doc/design/refactor/distributed_architecture.md +++ b/doc/design/refactor/distributed_architecture.md @@ -53,7 +53,7 @@ The IR for PaddlePaddle after refactoring is called a `Block`, it specifies the The user can not directly specify the parameter update rule for the parameter server in the Python module, since the parameter server does not use the same computation definition as the trainer. Instead, the update rule is baked inside the parameter server. The user can not specify the update rule explicitly. This could be fixed by making the parameter server run the same computation definition as the trainer (the user's Python module). For a detailed explanation, refer to this document - -[Design Doc: Operation Graph Based Parameter Server](./dist_train.md) +[Design Doc: Operation Graph Based Parameter Server](./parameter_server.md) ## Distributed Training Architecture diff --git a/doc/design/refactor/multi_cpu.md b/doc/design/refactor/multi_cpu.md new file mode 100644 index 0000000000000000000000000000000000000000..a8d8ee0422acc84835170a44eb83f9b5f0c6bb40 --- /dev/null +++ b/doc/design/refactor/multi_cpu.md @@ -0,0 +1,43 @@ +# Design Doc: Execute the Program with Multi CPU + +## Abstract + +This Design Doc propose an approach to make the user-defined Op graph +running with multi-CPU, we will use an auto transpiler to convert the user-defined +Op graph to a multi-CPU Op graph, and run `ParallelDo` Op to run the graph. + +## Transpiler + + + +After converted: + + + +## Implement + +- `Multi-CPU Transpiler` will convert the graph to a multi-CPU graph + which would be executed with multi-threads. +- `BlockingCounter` will `Init/Decrement` an atomic counter, and Blocking `Wait` + for the atomic counter become `0`: + ```cpp + BlockingCounter bc(thread_count); + for (int i = 0; i < thread_count; ++i) { + thread_pool->Start([&bc] {bc.DecrementCount(); }) + } + bc.Wait(); + ``` +- `ParallelDo` Operator + - Initialize a thread pool which is a Singleton. + - Use a block id as the input, and create run the specify Block on independent scope + with multi-threads. + - Initialize a `BlockingCounter` instance and wait until all threads are done. +- `Split` Operator will split the Input Tensor into a TensorArray. +- `Merge` merge all the gradients which calculated in different threads + with `mean/sum/max/min...` method, and then run the Optimizer Op to optimize `W`. + +## TODO + +- Improve the optimizer stage with multi-threads, since we could + assign the parameters to the different threads and execute + optimizer with multi-threads. diff --git a/doc/design/refactor/src/multi-threads.graffle b/doc/design/refactor/src/multi-threads.graffle new file mode 100644 index 0000000000000000000000000000000000000000..e71173715fff92a0a933d0c7d83599ba948552c6 Binary files /dev/null and b/doc/design/refactor/src/multi-threads.graffle differ diff --git a/doc/design/refactor/src/multi-threads/multi-threads@3x.png b/doc/design/refactor/src/multi-threads/multi-threads@3x.png new file mode 100644 index 0000000000000000000000000000000000000000..e40a869987dbbf5019d4cb03c1dab55b74d6c9f9 Binary files /dev/null and b/doc/design/refactor/src/multi-threads/multi-threads@3x.png differ diff --git a/doc/design/refactor/src/multi-threads/single-thread@3x.png b/doc/design/refactor/src/multi-threads/single-thread@3x.png new file mode 100644 index 0000000000000000000000000000000000000000..4083aebfdd45af5fbac25fa2c4176bc08c3cb44a Binary files /dev/null and b/doc/design/refactor/src/multi-threads/single-thread@3x.png differ diff --git a/doc/design/releasing_process.md b/doc/design/releasing_process.md index 62ff8f3229bbbb5bc82e4da29259baffc30c2c87..14c081ea84282e52a2e36475c3c0ea755122d154 100644 --- a/doc/design/releasing_process.md +++ b/doc/design/releasing_process.md @@ -5,8 +5,9 @@ PaddlePaddle使用git-flow branching model做分支管理,使用[Semantic Vers PaddlePaddle每次发新的版本,遵循以下流程: 1. 从`develop`分支派生出新的分支,分支名为`release/版本号`。例如,`release/0.10.0` -2. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。 -3. 对这个版本的提交,做如下几个操作: +1. 将新分支的版本打上tag,tag为`版本号rc.Patch号`。第一个tag为`0.10.0rc1`,第二个为`0.10.0rc2`,依次类推。 +1. 对这个版本的提交,做如下几个操作: + * 修改`python/setup.py.in`中的版本信息,并将`istaged`字段设为`True`。 * 编译这个版本的Docker发行镜像,发布到dockerhub。如果失败,修复Docker编译镜像问题,Patch号加一,返回第二步 * 编译这个版本的Ubuntu Deb包。如果失败,修复Ubuntu Deb包编译问题,Patch号加一,返回第二步。 * 使用Regression Test List作为检查列表,测试Docker镜像/ubuntu安装包的功能正确性 @@ -20,9 +21,9 @@ PaddlePaddle每次发新的版本,遵循以下流程: pip install twine twine upload dist/[package to upload] ``` -4. 第三步完成后,将`release/版本号`分支合入master分支,并删除`release/版本号`分支。将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。最后删除`release/版本号`分支。 -5. 编译master分支的Docker发行镜像,发布到dockerhub。编译ubuntu的deb包,发布到github release页面 -6. 协同完成Release Note的书写 +1. 第三步完成后,将`release/版本号`分支合入master分支,并删除`release/版本号`分支。将master分支的合入commit打上tag,tag为`版本号`。同时再将`master`分支合入`develop`分支。最后删除`release/版本号`分支。 +1. 编译master分支的Docker发行镜像,发布到dockerhub。编译ubuntu的deb包,发布到github release页面 +1. 协同完成Release Note的书写 需要注意的是: @@ -30,7 +31,7 @@ PaddlePaddle每次发新的版本,遵循以下流程: * `release/版本号`分支一旦建立,一般不允许再从`develop`分支合入`release/版本号`。这样保证`release/版本号`分支功能的封闭,方便测试人员测试PaddlePaddle的行为。 * 在`release/版本号`分支存在的时候,如果有bugfix的行为,需要将bugfix的分支同时merge到`master`, `develop`和`release/版本号`这三个分支。 -# PaddlePaddle 分支规范 +## PaddlePaddle 分支规范 PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git-branching-model/)分支规范,并适应github的特性做了一些区别。 @@ -47,11 +48,11 @@ PaddlePaddle开发过程使用[git-flow](http://nvie.com/posts/a-successful-git- * BugFix分支也是在开发者自己的fork版本库维护,与功能分支不同的是,BugFix分支需要分别给主版本库的`master`、`develop`与可能有的`release/版本号`分支,同时提起`Pull Request`。 -# PaddlePaddle回归测试列表 +## PaddlePaddle回归测试列表 本列表说明PaddlePaddle发版之前需要测试的功能点。 -## PaddlePaddle Book中所有章节 +### PaddlePaddle Book中所有章节 PaddlePaddle每次发版本首先要保证PaddlePaddle Book中所有章节功能的正确性。功能的正确性包括验证PaddlePaddle目前的`paddle_trainer`训练和纯使用`Python`训练模型正确性。 diff --git a/doc/design/support_new_device.md b/doc/design/support_new_device.md new file mode 100644 index 0000000000000000000000000000000000000000..fd23dc211a35fdc9d87bc9233fcf4e90254da748 --- /dev/null +++ b/doc/design/support_new_device.md @@ -0,0 +1,248 @@ +# Design Doc: Supporting new Device/Library + +## Background + +Deep learning has a high demand for computing resources. New high-performance devices and computing libraries are appearing very frequently. Deep learning frameworks have to integrate these high-performance devices and computing libraries flexibly and efficiently. + +On one hand, hardware and computing libraries usually do not have a one-to-one correspondence. For example,Intel CPUs support Eigen and MKL computing libraries while Nvidia GPUs support Eigen and cuDNN computing libraries. We have to implement operator specific kernels for each computing library. + +On the other hand, users usually do not want to care about the low-level hardware and computing libraries when writing a neural network configuration. In Fluid, `Layer` is exposed in `Python`, and `Operator` is exposed in `C++`. Both `Layer` and `Operator` are hardware independent. + +So, how to support a new Device/Library in Fluid becomes a challenge. + + +## Basic: Integrate A New Device/Library + +For a general overview of fluid, please refer to the [overview doc](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/read_source.md). + +There are mainly three parts that we have to consider while integrating a new device/library: + +- Place and DeviceContext: indicates the device id and manages hardware resources + +- Memory and Tensor: malloc/free data on certain device + +- Math Functor and OpKernel: implement computing unit on certain devices/libraries + +### Place and DeviceContext + + +#### Place +Fluid uses class [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L55) to represent different devices and computing libraries. There are inheritance relationships between different kinds of `Place`. + +``` + | CPUPlace --> MKLDNNPlace +Place --| CUDAPlace --> CUDNNPlace + | FPGAPlace +``` + +And `Place` is defined as follows: + +``` +typedef boost::variant Place; +``` + +#### DeviceContext + +Fluid uses class [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L30) to manage the resources in different hardwares, such as CUDA stream in `CDUADeviceContext`. There are also inheritance relationships between different kinds of `DeviceContext`. + + +``` + /-> CPUDeviceContext --> MKLDeviceContext +DeviceContext ----> CUDADeviceContext --> CUDNNDeviceContext + \-> FPGADeviceContext +``` + +An example of Nvidia GPU is as follows: + +- DeviceContext + + +``` +class DeviceContext { + virtual Place GetPlace() const = 0; +}; +``` + + +- CUDADeviceContext + + +``` +class CUDADeviceContext : public DeviceContext { + Place GetPlace() const override { return place_; } +private: + CUDAPlace place_; + cudaStream_t stream_; + cublasHandle_t cublas_handle_; + std::unique_ptr eigen_device_; // binds with stream_ +}; +``` + +- CUDNNDeviceContext + +``` +class CUDNNDeviceContext : public CUDADeviceContext { + private: + cudnnHandle_t cudnn_handle_; +}; +``` + + +### Memory and Tensor + + +#### memory module + +Fluid provides the following [memory interfaces](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/memory/memory.h#L36): + +``` +template +void* Alloc(Place place, size_t size); + +template +void Free(Place place, void* ptr); + +template +size_t Used(Place place); +``` + +To implementing these interfaces, we have to implement MemoryAllocator for different Devices + + +#### Tensor + +[Tensor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/tensor.h#L36) holds data with some shape in a specific Place. + +```cpp +class Tensor { + public: + /*! Return a pointer to mutable memory block. */ + template + inline T* data(); + + /** + * @brief Return a pointer to mutable memory block. + * @note If not exist, then allocation. + */ + template + inline T* mutable_data(platform::Place place); + + /** + * @brief Return a pointer to mutable memory block. + * + * @param[in] dims The dimensions of the memory block. + * @param[in] place The place of the memory block. + * + * @note If not exist, then allocation. + */ + template + inline T* mutable_data(DDim dims, platform::Place place); + + /*! Resize the dimensions of the memory block. */ + inline Tensor& Resize(const DDim& dims); + + /*! Return the dimensions of the memory block. */ + inline const DDim& dims() const; + + private: + /*! holds the memory block if allocated. */ + std::shared_ptr holder_; + + /*! points to dimensions of memory block. */ + DDim dim_; +}; +``` + +`Placeholder` is used to delay memory allocation; that is, we can first define a tensor, using `Resize` to configure its shape, and then call `mutuable_data` to allocate the actual memory. + +```cpp +paddle::framework::Tensor t; +paddle::platform::CPUPlace place; +// set size first +t.Resize({2, 3}); +// allocate memory on CPU later +t.mutable_data(place); +``` + + + +### Math Functor and OpKernel + +Fluid implements computing units based on different DeviceContexts. Some computing units are shared between operators. This common part will be put in operators/math directory as basic Functors. + +Let's take [MaxOutFunctor](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/math/maxouting.h#L27) as an example: + +The interface is defined in header file. + +``` +template +class MaxOutFunctor { + public: + void operator()(const DeviceContext& context, const framework::Tensor& input, + framework::Tensor* output, int groups); +}; +``` + +CPU implemention is in .cc file + +``` +template +class MaxOutFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + const framework::Tensor& input, framework::Tensor* output, + int groups) { + ... + } +}; +``` + +CUDA implemention is in .cu file + +``` +template +class MaxOutFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + const framework::Tensor& input, framework::Tensor* output, + int groups) { + ... + } +}; +``` + + +We get computing handle from a concrete DeviceContext, and make compution on tensors. + +The implemention of `OpKernel` is similar to math functors, the extra thing we need to do is to register the OpKernel in a global map. + +Fluid provides different register interfaces in op_registry.h + + +Let's take [Crop](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/crop_op.cc#L134) operator as an example: + +In .cc file: + +``` +REGISTER_OP_CPU_KERNEL(crop, ops::CropKernel); +REGISTER_OP_CPU_KERNEL( + crop_grad, ops::CropGradKernel); +``` + +In .cu file: + +``` +REGISTER_OP_CUDA_KERNEL(crop, ops::CropKernel); +REGISTER_OP_CUDA_KERNEL( + crop_grad, ops::CropGradKernel); +``` + + +## Advanced topics: How to switch between different Device/Library + +Generally, we will impelement OpKernel for all Device/Library of an Operator. We can easily train a Convolutional Neural Network in GPU. However, some OpKernel is not sutibale on a specific Device. For example, crf operator can only run on CPU, whereas most other operators can run at GPU. To achieve high performance in such circumstance, we have to switch between different Device/Library. + + +We will discuss how to implement an efficient OpKernel switch policy. + +- TBD diff --git a/doc/design/switch_kernel.md b/doc/design/switch_kernel.md new file mode 100644 index 0000000000000000000000000000000000000000..1846e5d9f99dd433b44ac6b5ae52893ec8f0d451 --- /dev/null +++ b/doc/design/switch_kernel.md @@ -0,0 +1,66 @@ +## Background +Every operator has many kernels because there are multiple data types, places, data layout that Fluid supports. We use the `KernelType` to describe kernel types that operators can hold. + +The `KernelType` is as follows. + +``` +struct KernelType { + Place place_; + DataType data_type_; + LayoutType layout_; +}; +``` + +The `place_` is a descriptor of the device and the computational library, e.g., `MKLDNNPlace`, `CUDAPlace`. + +The `data_type_` is the data type that this kernel performs on, e.g., `FP32`, `INT64`. Note that one kernel may have inputs with different data types. However, it will be a major `data_type`. For example, the `cross_entropy` takes `int64` as it label, and `double`/`float` as its input logit and output cost. The major `data_type` of `cross_entropy` is `float`/`double`. + +The `layout` is useful for some computational library. One example is that MKLDNN uses many kinds of layout, such as `nChw8c`. Each kind of layout will invoke the different kernel. + +## Problem + +We register a kernel for every operator and every kernel type ideally. However, it is impracticable for the following situations. + +1. Some operators, like CRF, are complicated and inefficient to be implemented on GPU. The CRF operator will only have a CPU kernel. +2. Some operators will take too many memory. It is better to force them into CPU. However, the rest of operators in this neural network will be performed on GPU, i.e., model parallel problem. +3. Some layout and place are particular. One example is that MKLDNN uses `nChw8` and there is no other library uses `nChw8c`. + +Problems under these situations are similar. We can formalise this problem as follow. + +We register kernels with types $KT = \{kt_1, kt_2, kt_3, ...\}$ for one operator. The inputs of this operator should be run on kernel type $kt_{?}$, which the $kt_{?} \notin KT$. How to cast the input of this operator from $kt_{?}$ to any of kernel type in $KT$. + +## Solution + +It is clearly that transforming inputs of an operator toadapt another kernel type is not related to the particular operator. So we should register these transformation methods as global methods. + +We can infer a kernel type from the inputs of an operators. We let this kernel type as `actual kernel type`, which means this kernel type is the actually kernel type that operator should be performed. + +We can get a kernel type by 1) The configuration of operator description. (Users may want to force use `MKL` for `conv` operator). 2) The place of the current executor. (Executor is running on GPU). This kernel type is what we expect the operator will be performed on. We let this kernel type as `expect kernel type`. + +We transform the input data from `actual` to `expect` if the expect kernel type is not as same as actual kernel type. + +The algorithm is described as follow + +```cpp +using DataTransformationFN = std::function; +using KernelTypePair = std::pair; + +map g_data_transformation_; + +void OpWithKernel::Run() { + vec inputs = ... + auto actual_kernel_type = GetActualKernelType(inputs); + + // The expected kernel type is related to actual kernel type. + // For the most operators, the expected kernel type is as same as + // actual kernel type. + // + // So we pass `actual_kernel_type` as a parameter of + // GetExpectedKernelType + auto expect_kernel_type = GetExpectedKernelType(actual_kernel_type); + + auto trans = g_data_transformation_[{actual_kernel_type, expect_kernel_type}]; + + kernel.run(trans(inputs)); +} +``` diff --git a/doc/faq/build_and_install/index_cn.rst b/doc/faq/build_and_install/index_cn.rst index f1677e216f31d79b53ac29a0afbf6fbb886a0dcd..a2bdeead7841393fdfe90c78e5b91d9e61678a24 100644 --- a/doc/faq/build_and_install/index_cn.rst +++ b/doc/faq/build_and_install/index_cn.rst @@ -14,7 +14,7 @@ $ export CUDA_SO="$(\ls usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" $ export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') - $ docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddlepaddle:latest-gpu + $ docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu 更多关于Docker的安装与使用, 请参考 `PaddlePaddle Docker 文档 `_ 。 diff --git a/doc/getstarted/build_and_install/build_from_source_cn.rst b/doc/getstarted/build_and_install/build_from_source_cn.rst index 3c525bdad6f6118dcd560e2cb7bfaf89737c1362..41ac07ca5674d2c121baba77c58226ad328cd681 100644 --- a/doc/getstarted/build_and_install/build_from_source_cn.rst +++ b/doc/getstarted/build_and_install/build_from_source_cn.rst @@ -19,7 +19,7 @@ PaddlePaddle主要使用 `CMake `_ 以及GCC, G++作为编译 git clone https://github.com/PaddlePaddle/Paddle.git cd Paddle # 如果使用Docker编译环境,执行下面的命令编译CPU-Only的二进制 - docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/scripts/docker/build.sh + docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x /paddle/paddle/scripts/docker/build.sh # 如果不使用Docker编译环境,执行下面的命令 mkdir build cd build @@ -30,7 +30,7 @@ PaddlePaddle主要使用 `CMake `_ 以及GCC, G++作为编译 .. code-block:: bash - pip install python/dist/*.whl + pip install build/python/dist/*.whl .. _run_test: @@ -45,7 +45,7 @@ PaddlePaddle主要使用 `CMake `_ 以及GCC, G++作为编译 .. code-block:: bash - docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=ON" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/scripts/docker/build.sh + docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=ON" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x /paddle/paddle/scripts/docker/build.sh 如果不使用Docker,可以执行ctest命令即可: @@ -70,13 +70,13 @@ PaddlePaddle编译需要使用到下面的依赖(包含但不限于),其 :header: "依赖", "版本", "说明" :widths: 10, 15, 30 - "CMake", ">=3.5", "" + "CMake", ">=3.2", "" "GCC", "4.8.2", "推荐使用CentOS的devtools2" - "Python", "2.7.x", "依赖libpython2.7.so" - "pip", ">=9.0", "" - "numpy", "", "" + "Python", "2.7.x", "依赖libpython2.7.so" + "pip", ">=9.0", "" + "numpy", "", "" "SWIG", ">=2.0", "" - "Go", ">=1.8", "可选" + "Go", ">=1.8", "可选" .. _build_options: diff --git a/doc/getstarted/build_and_install/build_from_source_en.rst b/doc/getstarted/build_and_install/build_from_source_en.rst index 76fbc43de2e83580dd79b874507c103533022436..92211aee8c3bc0ae6e1a38311d40ddf92117cac7 100644 --- a/doc/getstarted/build_and_install/build_from_source_en.rst +++ b/doc/getstarted/build_and_install/build_from_source_en.rst @@ -21,7 +21,7 @@ Then run: git clone https://github.com/PaddlePaddle/Paddle.git cd Paddle # run the following command to build a CPU-Only binaries if you are using docker - docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/scripts/docker/build.sh + docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=OFF" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x /paddle/paddle/scripts/docker/build.sh # else run these commands mkdir build cd build @@ -34,7 +34,7 @@ machine or copy it to the target machine. .. code-block:: bash - pip install python/dist/*.whl + pip install build/python/dist/*.whl .. _run_test: @@ -49,7 +49,7 @@ Set :code:`WITH_GPU=ON` Can also run tests on GPU. .. code-block:: bash - docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=ON" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/scripts/docker/build.sh + docker run -it -v $PWD:/paddle -e "WITH_GPU=OFF" -e "WITH_TESTING=ON" -e "RUN_TEST=ON" paddlepaddle/paddle_manylinux_devel:cuda8.0_cudnn5 bash -x paddle/paddle/scripts/docker/build.sh If you don't use Docker, just run ctest will start the tests: @@ -76,13 +76,13 @@ will be downloaded automatically. :header: "Dependency", "Version", "Description" :widths: 10, 15, 30 - "CMake", ">=3.5", "" + "CMake", ">=3.2", "" "GCC", "4.8.2", "Recommend devtools2 for CentOS" - "Python", "2.7.x", "Need libpython2.7.so" - "pip", ">=9.0", "" - "numpy", "", "" + "Python", "2.7.x", "Need libpython2.7.so" + "pip", ">=9.0", "" + "numpy", "", "" "SWIG", ">=2.0", "" - "Go", ">=1.8", "Optional" + "Go", ">=1.8", "Optional" .. _build_options: @@ -117,7 +117,7 @@ You can add :code:`-D` argument to pass such options, like: "WITH_PYTHON", "Build with integrated Python interpreter", "ON" "WITH_STYLE_CHECK", "Check code style when building", "ON" "WITH_TESTING", "Build unit tests", "ON" - "WITH_DOC", "Build documentaions", "OFF" + "WITH_DOC", "Build documentations", "OFF" "WITH_SWIG_PY", "Build Python SWIG interface for V2 API", "Auto" "WITH_GOLANG", "Build fault-tolerant parameter server written in go", "ON" "WITH_MKL", "Use MKL as BLAS library, else use OpenBLAS", "ON" diff --git a/doc/getstarted/build_and_install/docker_install_cn.rst b/doc/getstarted/build_and_install/docker_install_cn.rst index f78b1fb0e11aa028a4b7abb5270740b97f8039e9..fa1b6a372728ccac128d2e6e79a6514b8884ea3f 100644 --- a/doc/getstarted/build_and_install/docker_install_cn.rst +++ b/doc/getstarted/build_and_install/docker_install_cn.rst @@ -114,7 +114,7 @@ PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Note .. code-block:: bash - nvidia-docker run -it -v $PWD:/work paddledev/paddle:latest-gpu /bin/bash + nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash **注: 如果没有安装nvidia-docker,可以尝试以下的方法,将CUDA库和Linux设备挂载到Docker容器内:** @@ -122,13 +122,13 @@ PaddlePaddle Book是为用户和开发者制作的一个交互式的Jupyter Note export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') - docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:latest-gpu + docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu **关于AVX:** AVX是一种CPU指令集,可以加速PaddlePaddle的计算。最新的PaddlePaddle Docker镜像默认 是开启AVX编译的,所以,如果您的电脑不支持AVX,需要单独 -`编译 <./build_from_source_cn.rst>`_ PaddlePaddle为no-avx版本。 +`编译 <./build_from_source_cn.html>`_ PaddlePaddle为no-avx版本。 以下指令能检查Linux电脑是否支持AVX: diff --git a/doc/getstarted/build_and_install/docker_install_en.rst b/doc/getstarted/build_and_install/docker_install_en.rst index d7acc7aeb744b19d83acb520d07c8551168dd096..06012bf65e75c32957516f6b7f62e09480871b84 100644 --- a/doc/getstarted/build_and_install/docker_install_en.rst +++ b/doc/getstarted/build_and_install/docker_install_en.rst @@ -122,7 +122,7 @@ GPU driver installed before move on. .. code-block:: bash - nvidia-docker run -it -v $PWD:/work paddledev/paddle:latest-gpu /bin/bash + nvidia-docker run -it -v $PWD:/work paddlepaddle/paddle:latest-gpu /bin/bash **NOTE: If you don't have nvidia-docker installed, try the following method to mount CUDA libs and devices into the container.** @@ -130,14 +130,14 @@ GPU driver installed before move on. export CUDA_SO="$(\ls /usr/lib64/libcuda* | xargs -I{} echo '-v {}:{}') $(\ls /usr/lib64/libnvidia* | xargs -I{} echo '-v {}:{}')" export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}') - docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:latest-gpu + docker run ${CUDA_SO} ${DEVICES} -it paddlepaddle/paddle:latest-gpu **About AVX:** AVX is a kind of CPU instruction can accelerate PaddlePaddle's calculations. The latest PaddlePaddle Docker image turns AVX on by default, so, if your computer doesn't support AVX, you'll probably need to -`build <./build_from_source_en.rst>`_ with :code:`WITH_AVX=OFF`. +`build <./build_from_source_en.html>`_ with :code:`WITH_AVX=OFF`. The following command will tell you whether your computer supports AVX. diff --git a/doc/getstarted/build_and_install/index_cn.rst b/doc/getstarted/build_and_install/index_cn.rst index 88c5142ddee994ed0c0dc520195311e97f5a549e..c9ba84c842b530162c92713046e64fdf82bd441b 100644 --- a/doc/getstarted/build_and_install/index_cn.rst +++ b/doc/getstarted/build_and_install/index_cn.rst @@ -13,7 +13,7 @@ PaddlePaddle提供pip和Docker的安装方式: pip_install_cn.rst docker_install_cn.rst - + ../../howto/dev/build_cn.md 编译流程 ++++++++ diff --git a/doc/getstarted/build_and_install/index_en.rst b/doc/getstarted/build_and_install/index_en.rst index c8b60d03578ba6a9b73134ec53b440d057e36079..32d66d63dd5b2a30d5de4a088dc80b680830cb84 100644 --- a/doc/getstarted/build_and_install/index_en.rst +++ b/doc/getstarted/build_and_install/index_en.rst @@ -13,6 +13,7 @@ You can choose either pip or Docker to complete your install: pip_install_en.rst docker_install_en.rst + ../../howto/dev/build_en.md Build from Source diff --git a/doc/getstarted/build_and_install/pip_install_cn.rst b/doc/getstarted/build_and_install/pip_install_cn.rst index b26bf4c95cb18f36408eb75894e8b9b674efc67b..a4587f82a984acf243f49834e707fcd66d5b1252 100644 --- a/doc/getstarted/build_and_install/pip_install_cn.rst +++ b/doc/getstarted/build_and_install/pip_install_cn.rst @@ -34,14 +34,14 @@ PaddlePaddle可以使用常用的Python包管理工具 :align: center .. csv-table:: 各个版本最新的whl包 - :header: "版本说明", "cp27-cp27mu", "cp27-cp27mu", "C-API" + :header: "版本说明", "cp27-cp27mu", "cp27-cp27m", "C-API" :widths: 1, 3, 3, 3 - "cpu_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cpu_avx_openblas", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "暂无" - "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "暂无" + "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" .. _pip_dependency: @@ -83,4 +83,4 @@ PaddlePaddle发布的安装包会尽量对齐 `manylinux1 `_ 链接中找到。 - 如果系统支持的是 linux_x86_64 而安装包是 manylinux1_x86_64 ,需要升级pip版本到最新; 如果系统支持 manylinux1_x86_64 而安装包(本地)是 linux_x86_64 ,可以重命名这个whl包为 manylinux1_x86_64 再安装。 \ No newline at end of file + 如果系统支持的是 linux_x86_64 而安装包是 manylinux1_x86_64 ,需要升级pip版本到最新; 如果系统支持 manylinux1_x86_64 而安装包(本地)是 linux_x86_64 ,可以重命名这个whl包为 manylinux1_x86_64 再安装。 diff --git a/doc/getstarted/build_and_install/pip_install_en.rst b/doc/getstarted/build_and_install/pip_install_en.rst index 113790e4e4ca116e91f11f8a233eae874d9d1b7a..55e31560a0f5087ab69966a6281c6c8573c04204 100644 --- a/doc/getstarted/build_and_install/pip_install_en.rst +++ b/doc/getstarted/build_and_install/pip_install_en.rst @@ -37,14 +37,14 @@ If the links below shows up the login form, just click "Log in as guest" to star :align: center .. csv-table:: whl package of each version - :header: "version", "cp27-cp27mu", "cp27-cp27mu", "C-API" + :header: "version", "cp27-cp27mu", "cp27-cp27m", "C-API" :widths: 1, 3, 3, 3 - "cpu_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cpu_avx_openblas", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "Not Available" - "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle-0.10.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.10.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "Not Available" + "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" .. _pip_dependency: diff --git a/doc/getstarted/concepts/src/infer.py b/doc/getstarted/concepts/src/infer.py new file mode 100644 index 0000000000000000000000000000000000000000..4cc58dfee0bd6dade0340b4fd0ee1adb49ffebf6 --- /dev/null +++ b/doc/getstarted/concepts/src/infer.py @@ -0,0 +1,18 @@ +import paddle.v2 as paddle +import numpy as np + +paddle.init(use_gpu=False) +x = paddle.layer.data(name='x', type=paddle.data_type.dense_vector(2)) +y_predict = paddle.layer.fc(input=x, size=1, act=paddle.activation.Linear()) + +# loading the model which generated by training +with open('params_pass_90.tar', 'r') as f: + parameters = paddle.parameters.Parameters.from_tar(f) + +# Input multiple sets of data,Output the infer result in a array. +i = [[[1, 2]], [[3, 4]], [[5, 6]]] +print paddle.infer(output_layer=y_predict, parameters=parameters, input=i) +# Will print: +# [[ -3.24491572] +# [ -6.94668722] +# [-10.64845848]] diff --git a/doc/getstarted/concepts/src/train.py b/doc/getstarted/concepts/src/train.py index 8aceb23406a476f08639cc6223cdf730b728a705..4bccbfca3c70c12aec564e2cae3b8ca174b68777 100644 --- a/doc/getstarted/concepts/src/train.py +++ b/doc/getstarted/concepts/src/train.py @@ -26,6 +26,11 @@ def event_handler(event): if event.batch_id % 1 == 0: print "Pass %d, Batch %d, Cost %f" % (event.pass_id, event.batch_id, event.cost) + # product model every 10 pass + if isinstance(event, paddle.event.EndPass): + if event.pass_id % 10 == 0: + with open('params_pass_%d.tar' % event.pass_id, 'w') as f: + trainer.save_parameter_to_tar(f) # define training dataset reader diff --git a/doc/getstarted/concepts/use_concepts_cn.rst b/doc/getstarted/concepts/use_concepts_cn.rst index c243083794bb3c4659242de99b3b2715af9d7c24..e695ff283e2e806377a51c559b37e8068360a4ff 100644 --- a/doc/getstarted/concepts/use_concepts_cn.rst +++ b/doc/getstarted/concepts/use_concepts_cn.rst @@ -147,4 +147,9 @@ PaddlePaddle支持不同类型的输入数据,主要包括四种类型,和 .. literalinclude:: src/train.py :linenos: +使用以上训练好的模型进行预测,取其中一个模型params_pass_90.tar,输入需要预测的向量组,然后打印输出: + +.. literalinclude:: src/infer.py + :linenos: + 有关线性回归的实际应用,可以参考PaddlePaddle book的 `第一章节 `_。 diff --git a/doc/howto/dev/build_cn.md b/doc/howto/dev/build_cn.md index 0b911f7b7509da4a147c65954acb7e7c38f489da..4a80a5245102fb992f513a749f6a02e1130188af 100644 --- a/doc/howto/dev/build_cn.md +++ b/doc/howto/dev/build_cn.md @@ -1,4 +1,4 @@ -# 编译PaddlePaddle和运行单元测试 +# 用Docker编译和测试PaddlePaddle ## 需要的软硬件 diff --git a/doc/howto/dev/build_en.md b/doc/howto/dev/build_en.md index d0048e3714a5861a503736879d6c0870e5906c95..91c41ef8ce3abdec5d69a9cbcebbc49b17d8f663 100644 --- a/doc/howto/dev/build_en.md +++ b/doc/howto/dev/build_en.md @@ -1,4 +1,4 @@ -# Build PaddlePaddle from Source Code and Run Unit Test +# Build using Docker ## What Developers Need diff --git a/doc/howto/dev/contribute_to_paddle_cn.md b/doc/howto/dev/contribute_to_paddle_cn.md index 699390145226ec2b65fdf5122db187e1d30d669e..3e0bf7b3973079a2063d33b6be4fe8a9dc5c07bb 100644 --- a/doc/howto/dev/contribute_to_paddle_cn.md +++ b/doc/howto/dev/contribute_to_paddle_cn.md @@ -76,18 +76,18 @@ no changes added to commit (use "git add" and/or "git commit -a") ## 构建和测试 -编译 PaddlePaddle 的源码以及生成文档需要多种开发工具。为了方便大家,我们的标准开发流程是把这些工具都装进一个Docker image,称为*开发镜像*,通常名字是 `paddle:dev`。然后所有用 `cmake && make` 的地方(比如IDE配置里)都用 `docker run paddle:dev`来代替。 +编译 PaddlePaddle 的源码以及生成文档需要多种开发工具。为了方便大家,我们的标准开发流程是把这些工具都装进一个Docker image,称为*开发镜像*,通常名字是 `paddle:latest-dev` 或者 `paddle:[version tag]-dev` 如 `paddle:0.11.0-dev`。然后所有用 `cmake && make` 的地方(比如IDE配置里)都用 `docker run paddle:latest-dev`来代替。 如要build这个开发镜像,在源码目录树的根目录中运行: ```bash -➜ docker build -t paddle:dev . +➜ docker build -t paddle:latest-dev . ``` 随后可以用这个开发镜像开始build PaddlePaddle的源码。比如如果要build一个不依赖GPU,但是支持AVX指令集,并且包括unit tests的PaddlePaddle,可以: ```bash -➜ docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TEST=ON" paddle:dev +➜ docker run -v $(pwd):/paddle -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TESTING=ON" paddle:latest-dev ``` 这个过程除了编译PaddlePaddle为 `./build/libpaddle.so`,并且输出一个 `./build/paddle.deb`文件之外,还会输出一个 `build/Dockerfile`。我们只需要运行下面命令把编译好的PaddlePaddle打包成一个*生产镜像*(`paddle:prod`): @@ -99,7 +99,7 @@ no changes added to commit (use "git add" and/or "git commit -a") 如果要运行所有的单元测试,可以用如下命令: ```bash -➜ docker run -it -v $(pwd):/paddle paddle:dev bash -c "cd /paddle/build && ctest" +➜ docker run -it -v $(pwd):/paddle paddle:latest-dev bash -c "cd /paddle/build && ctest" ``` 关于构建和测试的更多信息,请参见[这篇文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)。 diff --git a/doc/howto/dev/new_op_cn.md b/doc/howto/dev/new_op_cn.md index 6cfc9536f20e88571a9845a50be0341fe4d9f78b..3109d72001f13a38a93b9ca39d3f8525c8cea9f1 100644 --- a/doc/howto/dev/new_op_cn.md +++ b/doc/howto/dev/new_op_cn.md @@ -1,17 +1,18 @@ # 如何写新的Operator - [概念简介](#概念简介) - - [实现C++类](#实现C++类) - - [定义ProtoMaker类](#定义ProtoMaker类) - - [定义Operator类](#定义Operator类) - - [定义OpKernel类](#定义OpKernel类) - - [注册Operator](#注册Operator) + - [实现C++类](#实现c类) + - [定义ProtoMaker类](#定义protomaker类) + - [定义Operator类](#定义operator类) + - [定义OpKernel类](#定义opkernel类) + - [注册Operator](#注册operator) - [编译](#编译) - - [绑定Python](#绑定Python) + - [绑定Python](#绑定python) - [实现单元测试](#实现单元测试) - - [前向Operator单测](#前向Operator单测) - - [反向Operator单测](#反向Operator单测) + - [前向Operator单测](#前向operator单测) + - [反向Operator单测](#反向operator单测) - [编译和执行](#编译和执行) + - [注意事项](#注意事项) ## 概念简介 @@ -30,8 +31,8 @@ -------------- | :---------------------- OpProtoMake定义 | `.cc`文件,Backward Op不需要定义OpProtoMake Op定义 | `.cc`文件 -Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,GPU 实现在`.cu`文件中。 -注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,GPU实现在`.cu`文件中 +Kernel实现 | CPU、CUDA共享Kernel实现在`.h`文件中,否则,CPU 实现在`.cc`文件中,CUDA 实现在`.cu`文件中。 +注册Op | Op注册实现在`.cc`文件;Kernel注册CPU实现在`.cc`文件中,CUDA实现在`.cu`文件中 实现新的op都添加至目录[paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators)下,文件命名以`*_op.h`(如有) 、 `*_op.cc` 、`*_op.cu`(如有)结尾。**系统会根据文件名自动构建op和其对应的Python扩展。** @@ -43,7 +44,7 @@ Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU ## 实现C++类 -### 1. 定义ProtoMaker类 +### 定义ProtoMaker类 矩阵乘法的公式:$Out = X * Y$, 可见该计算由两个输入,一个输出组成。 @@ -52,7 +53,7 @@ Kernel实现 | CPU、GPU共享Kernel实现在`.h`文件中,否则,CPU ```cpp class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + MulOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor), 2D tensor of size (M x K)"); AddInput("Y", "(Tensor), 2D tensor of size (K x N)"); @@ -81,7 +82,7 @@ The equation is: Out = X * Y template class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ScaleOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of scale operator.").NotInGradient(); AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); @@ -100,7 +101,7 @@ The equation is: Out = scale*X - `AddAttr("scale", "...").SetDefault(1.0);` : 增加`scale`系数,作为参数属性,并且设置默认值为1.0。 -### 2. 定义Operator类 +### 定义Operator类 下面的点实现了MulOp的定义: @@ -149,11 +150,11 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, 通常`OpProtoMaker`和`Op`类的定义写在`.cc`文件中,和下面将要介绍的注册函数一起放在`.cc`中 -### 3. 定义OpKernel类 +### 定义OpKernel类 `MulKernel`继承自`framework::OpKernel`,带有下面两个模板参数: -- `typename Place`: 表示设备类型,不同设备(CPU、GPU)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 +- `typename DeviceContext`: 表示设备类型,不同设备(CPU、CUDA)共享同一个Kernel时,需加该模板参数,不共享则不加,一个不共享的例子是[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 - `typename T` : 表示数据类型,如`float`, `double`等。 @@ -165,7 +166,7 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, 下面是 `MulKernel` `Compute`的实现: ```cpp - template + template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -173,33 +174,32 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, auto* Y = context.Input("Y"); auto* Z = context.Output("Out"); Z->mutable_data(context.GetPlace()); - auto* device_context = - const_cast(context.device_context_); - math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); + auto& device_context = context.template device_context(); + math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); } }; ``` -需要注意:**不同设备(CPU、GPU)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。** +需要注意:**不同设备(CPU、CUDA)共享一个Op定义,是否则共享同一个`OpKernel`,取决于`Compute`调用的函数是否支持不同设备。** -`MulOp`的CPU、GPU实现共享同一个`Kernel`。`OpKernel`不共享的例子可以参考:[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 +`MulOp`的CPU、CUDA实现共享同一个`Kernel`。`OpKernel`不共享的例子可以参考:[`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43)。 -为了使`OpKernel`的计算过程书写更加简单,并且CPU、GPU的代码可以复用,我们通常借助 Eigen unsupported Tensor模块来实现`Compute`接口。关于在PaddlePaddle中如何使用Eigen库,请参考[使用文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md)。 +为了使`OpKernel`的计算过程书写更加简单,并且CPU、CUDA的代码可以复用,我们通常借助 Eigen unsupported Tensor模块来实现`Compute`接口。关于在PaddlePaddle中如何使用Eigen库,请参考[使用文档](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md)。 到此,前向Op实现完成。接下来,需要在`.cc`文件中注册该op和kernel。 反向Op类的定义,反向OpKernel的定义与前向Op类似,这里不再赘述。**但需注意反向Op没有`ProtoMaker`**。 -### 4. 注册Operator +### 注册Operator - 在`.cc`文件中注册前向、反向Op类,注册CPU Kernel。 ```cpp namespace ops = paddle::operators; REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); - REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); + REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); REGISTER_OP_CPU_KERNEL(mul_grad, - ops::MulGradKernel); + ops::MulGradKernel); ``` 在上面的代码中: @@ -209,20 +209,20 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, - `REGISTER_OP_CPU_KERNEL` :注册`ops::MulKernel`类,并特化模板参数为`paddle::platform::CPUPlace`和`float`类型,同理,注册`ops::MulGradKernel`类。 -- 在 `.cu`文件中注册GPU Kernel。 - - 请注意,如果GPU Kernel的实现基于Eigen unsupported模块,那么在 `.cu`的开始请加上宏定义 `#define EIGEN_USE_GPU`,代码示例如下: +- 在 `.cu`文件中注册CUDA Kernel。 + - 请注意,如果CUDA Kernel的实现基于Eigen unsupported模块,那么在 `.cu`的开始请加上宏定义 `#define EIGEN_USE_GPU`,代码示例如下: ```cpp // if use Eigen unsupported module before include head files - // #define EIGEN_USE_GPU + #define EIGEN_USE_GPU namespace ops = paddle::operators; - REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); - REGISTER_OP_GPU_KERNEL(mul_grad, - ops::MulGradKernel); + REGISTER_OP_CUDA_KERNEL(mul, ops::MulKernel); + REGISTER_OP_CUDA_KERNEL(mul_grad, + ops::MulGradKernel); ``` -### 5. 编译 +### 编译 运行下面命令可以进行编译: @@ -236,71 +236,57 @@ make mul_op ## 实现单元测试 -单测包括对比前向Op不同设备(CPU、GPU)的实现、对比反向OP不同设备(CPU、GPU)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。 +单测包括对比前向Op不同设备(CPU、CUDA)的实现、对比反向OP不同设备(CPU、CUDA)的实现、反向Op的梯度测试。下面介绍介绍[`MulOp`的单元测试](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/framework/tests/test_mul_op.py)。 -### 前向Operator单元测试 +### 前向Operator单测 -前向Op单元测试继承自`unittest.TestCase`,并定义元类`__metaclass__ = OpTestMeta`。各项更加具体的单元测试在`OpTestMeta`里完成。测试前向Operator,需要: +Op单元测试继承自`OpTest`。各项更加具体的单元测试在`TestMulOp`里完成。测试Operator,需要: 1. 在`setUp`函数定义输入、输出,以及相关的属性参数。 2. 生成随机的输入数据。 3. 在Python脚本中实现与前向operator相同的计算逻辑,得到输出值,与operator前向计算的输出进行对比。 +4. 反向计算已经自动集成进测试框架,直接调用相应接口即可。 ```python import unittest import numpy as np - from gradient_checker import GradientChecker, create_op - from op_test_util import OpTestMeta + from op_test import OpTest - class TestMulOp(unittest.TestCase): - __metaclass__ = OpTestMeta + class TestMulOp(OpTest): def setUp(self): - self.type = "mul" + self.op_type = "mul" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((84, 100)).astype("float32") } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} - ``` - -上面的代码首先导入依赖的包,下面是对`setUp`函数中操作的重要变量的详细解释: - -- `self.type = "mul" ` : 定义类型,与operator注册时注册的类型一致。 -- `self.inputs` : 定义输入,类型为`numpy.array`,并初始化。 -- `self.outputs` : 定义输出,并在Python脚本中完成与operator同样的计算逻辑,返回Python端的计算结果。 + def test_check_output(self): + self.check_output() -### 反向Operator单元测试 + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) -反向Op单元测试继承自`GradientChecker`,而`GradientChecker`继承自`unittest.TestCase`,因此,**反向单元测试函数需要以`test_`开头**。 + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) -```python -class TestMulGradOp(GradientChecker): - def setUp(self): - self.op = create_op("mul") - self.inputs = { - 'X': np.random.random((32, 84)).astype("float32"), - 'Y': np.random.random((84, 100)).astype("float32") - } - - def test_check_grad_normal(self): - # mul op will enlarge the relative error - self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) + ``` - def test_check_grad_ingore_x(self): - self.check_grad( - ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) +上面的代码首先导入依赖的包,下面是对`setUp`函数中操作的重要变量的详细解释: - def test_check_grad_ingore_y(self): - self.check_grad( - ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) -``` +- `self.op_type = "mul" ` : 定义类型,与operator注册时注册的类型一致。 +- `self.inputs` : 定义输入,类型为`numpy.array`,并初始化。 +- `self.outputs` : 定义输出,并在Python脚本中完成与operator同样的计算逻辑,返回Python端的计算结果。 -下面解释代码中一些关键的地方: +### 反向operator单测 -- 调用`create_op("mul")`创建反向Op对应的前向Op。 +而反向测试中: - `test_check_grad_normal`中调用`check_grad`使用数值法检测梯度正确性和稳定性。 - 第一个参数`["X", "Y"]` : 指定对输入变量`X`、`Y`做梯度检测。 - 第二个参数`"Out"` : 指定前向网络最终的输出目标变量`Out`。 @@ -308,7 +294,7 @@ class TestMulGradOp(GradientChecker): - `test_check_grad_ingore_x`和`test_check_grad_ingore_y`分支用来测试只需要计算一个输入梯度的情况。 -### 编译和执行单元测试 +### 编译和执行 `python/paddle/v2/framework/tests` 目录下新增的 `test_*.py` 单元测试会被自动加入工程进行编译。 @@ -328,5 +314,5 @@ ctest -R test_mul_op - 为每个Op创建单独的`*_op.h`(如有)、`*_op.cc`和`*_op.cu`(如有)。不允许一个文件中包含多个Op,这将会导致编译出错。 - 注册Op时的类型名,需要和该Op的名字一样。即不允许在`A_op.cc`里面,注册`REGISTER_OP(B, ...)`等,这将会导致单元测试出错。 -- 如果Op没有实现GPU Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。 +- 如果Op没有实现CUDA Kernel,请不要创建空的`*_op.cu`,这将会导致单元测试出错。 - 如果多个Op依赖一些共用的函数,可以创建非`*_op.*`格式的文件来存放,如`gather.h`文件。 diff --git a/doc/howto/dev/new_op_en.md b/doc/howto/dev/new_op_en.md index 1e88e1f5b4df710f1b69f0305d8d8a2921c4249a..7175d8370d6ce08c6d502eb42b8e53252db89bbb 100644 --- a/doc/howto/dev/new_op_en.md +++ b/doc/howto/dev/new_op_en.md @@ -1,8 +1,8 @@ # How to write a new operator - [Background](#background) - - [Implementing C++ Types](#implementing-c++-types) - - [Defining ProtoMaker](#defining-protoMaker) + - [Implementing C++ Types](#implementing-c-types) + - [Defining ProtoMaker](#defining-protomaker) - [Defining Operator](#defining-operator) - [Registering Operator](#registering-operator) - [Compilation](#compilation) @@ -28,8 +28,8 @@ An operator can be differentiated by whether in has kernel methods. An operator -------------- | :---------------------- OpProtoMake definition | `.cc`files, Backward Op does not need an OpProtoMake interface. Op definition | `.cc` files -Kernel implementation | The kernel methods shared between CPU and GPU are defined in `.h` files. CPU-specific kernels live in `.cc` files, while GPU-specific kernels are implemented in `.cu`files. -Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the GPU implementation. +Kernel implementation | The kernel methods shared between CPU and CUDA are defined in `.h` files. CPU-specific kernels live in `.cc` files, while CUDA-specific kernels are implemented in `.cu`files. +Registering the Op | Ops are registered in `.cc` files; For Kernel registration, `.cc` files contain the CPU implementation, while `.cu` files contain the CUDA implementation. New Operator implementations are added to the list [paddle/operators](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators), with file names in the format `*_op.h` (if applicable), `*_op.cc`, `*_op.cu` (if applicable).** The system will use the naming scheme to automatically build operators and their corresponding Python extensions. ** @@ -41,7 +41,7 @@ Let's take matrix multiplication operator, [MulOp](https://github.com/PaddlePadd ## Implementing C++ Types -### 1. Defining Class ProtoMaker +### Defining ProtoMaker Matrix Multiplication can be written as $Out = X * Y$, meaning that the operation consists of two inputs and pne output. @@ -50,7 +50,7 @@ First, define `ProtoMaker` to describe the Operator's input, output, and additio ```cpp class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MulOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + MulOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor), 2D tensor of size (M x K)"); AddInput("Y", "(Tensor), 2D tensor of size (K x N)"); @@ -79,7 +79,7 @@ An additional example [`ScaleOp`](https://github.com/PaddlePaddle/Paddle/blob/de template class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ScaleOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of scale operator.").NotInGradient(); AddOutput("Out", "The output tensor of scale operator.").NotInGradient(); @@ -98,7 +98,7 @@ There are two changes in this example: - `AddAttr("scale", "...").SetDefault(1.0);` adds `scale`constant as an attribute, and sets the default value to 1.0. -### 2. Defining Operator +### Defining Operator The following code defines the interface for MulOp: @@ -147,11 +147,11 @@ MulOp(const std::string &type, const framework::VariableNameMap &inputs, Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, which also include the registration methods introduced later. -### 3. Defining OpKernel +### Defining OpKernel `MulKernel` inherits `framework::OpKernel`, which includes the following templates: -- `typename Place` denotes device type. When different devices, namely the CPU and the GPU, share the same kernel, this template needs to be added. If they don't share kernels, this must not be added. An example of a non-sharing kernel is [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). +- `typename DeviceContext` denotes device context type. When different devices, namely the CPUDeviceContext and the CUDADeviceContext, share the same kernel, this template needs to be added. If they don't share kernels, this must not be added. An example of a non-sharing kernel is [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). - `typename T` denotes data type, such as `float` or `double`. @@ -163,7 +163,7 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w `MulKernel`'s implementation of `Compute` is as follows: ```cpp - template + template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -171,16 +171,15 @@ Usually `OpProtoMaker` and `Op`'s type definitions are written in `.cc` files, w auto* Y = context.Input("Y"); auto* Z = context.Output("Out"); Z->mutable_data(context.GetPlace()); - auto* device_context = - const_cast(context.device_context_); - math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); + auto& device_context = context.template device_context(); + math::matmul(*X, false, *Y, false, 1, Z, 0, device_context); } }; ``` -Note that **different devices (CPU, GPU)share an Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions that support both devices.** +Note that **different devices (CPU, CUDA)share an Op definition; whether or not they share the same `OpKernel` depends on whether `Compute` calls functions that support both devices.** -`MulOp`'s CPU and GPU share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). +`MulOp`'s CPU and CUDA share the same `Kernel`. A non-sharing `OpKernel` example can be seen in [`OnehotCrossEntropyOpKernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/cross_entropy_op.h#L43). To ease the writing of `OpKernel` compute, and for reusing code cross-device, [`Eigen-unsupported Tensor`](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md?fileviewer=file-view-default) module is used to implement `Compute` interface. To learn about how the Eigen library is used in PaddlePaddle, please see [usage document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/use_eigen_cn.md). @@ -189,16 +188,16 @@ This concludes the forward implementation of an operator. Next its operation and The definition of its corresponding backward operator, if applicable, is similar to that of an forward operator. **Note that a backward operator does not include a `ProtoMaker`**. -### 4. Registering Operator +### Registering Operator - In `.cc` files, register forward and backward operator classes and the CPU kernel. ```cpp namespace ops = paddle::operators; REGISTER_OP(mul, ops::MulOp, ops::MulOpMaker, mul_grad, ops::MulOpGrad); - REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); + REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); REGISTER_OP_CPU_KERNEL(mul_grad, - ops::MulGradKernel); + ops::MulGradKernel); ``` In that code block, @@ -208,20 +207,20 @@ The definition of its corresponding backward operator, if applicable, is similar - `REGISTER_OP_CPU_KERNEL` registers `ops::MulKernel` class and specialized template types `paddle::platform::CPUPlace` and `float`, which also registers `ops::MulGradKernel`. -- Registering GPU Kernel in `.cu` files - - Note that if GPU Kernel is implemented using the `Eigen unsupported` module, then on top of `.cu`, a macro definition `#define EIGEN_USE_GPU` is needed, such as +- Registering CUDA Kernel in `.cu` files + - Note that if CUDA Kernel is implemented using the `Eigen unsupported` module, then on top of `.cu`, a macro definition `#define EIGEN_USE_GPU` is needed, such as ```cpp // if use Eigen unsupported module before include head files #define EIGEN_USE_GPU namespace ops = paddle::operators; - REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); - REGISTER_OP_GPU_KERNEL(mul_grad, - ops::MulGradKernel); + REGISTER_OP_CUDA_KERNEL(mul, ops::MulKernel); + REGISTER_OP_CUDA_KERNEL(mul_grad, + ops::MulGradKernel); ``` -### 5. Compilation +### Compilation Run the following commands to compile. @@ -253,62 +252,51 @@ A forward operator unit test inherits `unittest.TestCase` and defines metaclass 2. Generating random input data. -3. Implementing the same computation logic in a Python script: +3. Implementing the same computation logic in a Python script. + +4. Call check gradient function to check the backward operator. ```python import unittest import numpy as np - from gradient_checker import GradientChecker, create_op - from op_test_util import OpTestMeta + from op_test import OpTest - class TestMulOp(unittest.TestCase): - __metaclass__ = OpTestMeta + class TestMulOp(OpTest): def setUp(self): - self.type = "mul" + self.op_type = "mul" self.inputs = { 'X': np.random.random((32, 84)).astype("float32"), 'Y': np.random.random((84, 100)).astype("float32") } self.outputs = {'Out': np.dot(self.inputs['X'], self.inputs['Y'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) + + def test_check_grad_ingore_x(self): + self.check_grad( + ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) + + def test_check_grad_ingore_y(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) ``` Get its output, and compare it with the forward operator's own output. The code above first loads required packages. In addition, we have -- `self.type = "mul" ` defines the type that is identical to what the operator's registered type. +- `self.op_type = "mul" ` defines the type that is identical to what the operator's registered type. - `self.inputs` defines input, with type `numpy.array` and initializes it. - `self.outputs` defines output and completes the same operator computation in the Python script, and returns its result from the Python script. ### Testing Backward Operators -A backward operator unit test inherits `GradientChecker`, which inherits `unittest.TestCase`. As a result, **a backward operator unit test needs to be have the prefix `test_`**. - -```python -class TestMulGradOp(GradientChecker): - def setUp(self): - self.op = create_op("mul") - self.inputs = { - 'X': np.random.random((32, 84)).astype("float32"), - 'Y': np.random.random((84, 100)).astype("float32") - } - - def test_check_grad_normal(self): - # mul op will enlarge the relative error - self.check_grad(['X', 'Y'], 'Out', max_relative_error=0.5) - - def test_check_grad_ingore_x(self): - self.check_grad( - ['Y'], 'Out', max_relative_error=0.5, no_grad_set=set("X")) - - def test_check_grad_ingore_y(self): - self.check_grad( - ['X'], 'Out', max_relative_error=0.5, no_grad_set=set('Y')) -``` - -Some key points in the code above include: +Some key points in checking gradient above include: -- `create_op("mul")` creates the backward operator's corresponding forward operator. - `test_normal` calls `check_grad` to validate scaling tests' correctness and stability through numeric methods. - The first variable `["X", "Y"]` appoints `X` and `Y` to be scale tested. - The second variable `"Out"` points to the network's final output target `Out`. @@ -338,5 +326,5 @@ ctest -R test_mul_op - Every `*_op.h` (if applicable), `*_op.cc`, and `*_op.cu` (if applicable) must be created for a unique Op. Compiling will fail if multiple operators are included per file. - The type with which an operator is registered needs to be identical to the Op's name. Registering `REGISTER_OP(B, ...)` in `A_op.cc` will cause unit testing failures. -- If the operator does not implement a GPU kernel, please refrain from creating an empty `*_op.cu` file, or else unit tests will fail. +- If the operator does not implement a CUDA kernel, please refrain from creating an empty `*_op.cu` file, or else unit tests will fail. - If multiple operators rely on some shared methods, a file NOT named `*_op.*` can be created to store them, such as `gather.h`. diff --git a/doc/howto/dev/write_docs_cn.rst b/doc/howto/dev/write_docs_cn.rst index 61f3a223547b352cf7929615cf3682b29b9a738f..1bc947c260d7adb75ee5a2bb10e6b91bc0be2d4c 100644 --- a/doc/howto/dev/write_docs_cn.rst +++ b/doc/howto/dev/write_docs_cn.rst @@ -3,12 +3,64 @@ ################## PaddlePaddle的文档包括英文文档 ``doc`` 和中文文档 ``doc_cn`` 两个部分。文档都是通过 `cmake`_ 驱动 `sphinx`_ 编译生成,生成后的文档分别存储在编译目录的 ``doc`` 和 ``doc_cn`` 两个子目录下。 - +也可以利用PaddlePaddle 工具来编译文档,这个情况下所有的文件会存在整理过的的文件目录 .ppo_workspace/content 下 如何构建文档 ============ -PaddlePaddle的文档构建有两种方式。 +PaddlePaddle的文档构建有三种方式。 + + +使用PaddlePaddle.org工具 +-------------- +这个是目前推荐的使用方法。除了可以自动编译文档,也可以直接在网页预览文档。 + +文件工具是使用Docker,需要在系统里先安装好Docker工具包。Docker安装请参考Docker的官网。安装好Docker之后及可用以下命令启动工具 + +.. code-block:: bash + + mkdir paddlepaddle # Create paddlepaddle working directory + cd paddlepaddle + + # Clone the content repositories + git clone https://github.com/PaddlePaddle/Paddle.git + git clone https://github.com/PaddlePaddle/book.git + git clone https://github.com/PaddlePaddle/models.git + git clone https://github.com/PaddlePaddle/Mobile.git + + # Please specify the working directory through -v + docker run -it -p 8000:8000 -v `pwd`:/var/content paddlepaddle/paddlepaddle.org:latest + +注意: PaddlePaddle.org 会在 -v (volume) 指定的内容存储库运行命令 +之后再用网页连到http://localhost:8000就可以在网页上生成需要的文档 +编译后的文件将被存储在工作目录 /.ppo_workspace/content。 + +如果不想使用 Docker,你还可以通过运行Django框架直接激活工具的服务器。使用下面的命令来运行它。 + +.. code-block:: bash + + mkdir paddlepaddle # Create paddlepaddle working directory + cd paddlepaddle + + # Clone the content repositories and PaddlePaddle.org + git clone https://github.com/PaddlePaddle/Paddle.git + git clone https://github.com/PaddlePaddle/book.git + git clone https://github.com/PaddlePaddle/models.git + git clone https://github.com/PaddlePaddle/Mobile.git + git clone https://github.com/PaddlePaddle/PaddlePaddle.org.git + + # Please specify the PaddlePaddle working directory. In the current setting, it should be pwd + export CONTENT_DIR= + export ENV='' + cd PaddlePaddle.org/portal/ + pip install -r requirements.txt + python manage.py runserver + +工具服务器将读取环境变量 CONTENT_DIR 搜索代码库。请指定的PaddlePaddle工作目录给环境变量 CONTENT_DIR。 +之后再用网页连到http://localhost:8000就可以在网页上生成需要的文档。 +编译后的文件将被存储在工作目录 /.ppo_workspace/content。 + +想了解更多PaddlePaddle.org工具的详细信息,可以 `点击这里 `_ 。 使用Docker构建 -------------- @@ -47,17 +99,12 @@ PaddlePaddle的文档构建有两种方式。 PaddlePaddle文档使用 `sphinx`_ 自动生成,用户可以参考sphinx教程进行书写。 -如何更新文档主题 -================ - -PaddlePaddle文档主题在 `TO_YOUR_PADDLE_CLONE_PATH/doc_theme` 文件夹下,包含所有和前端网页设计相关的文件。 - -如何更新doc.paddlepaddle.org +如何更新www.paddlepaddle.org ============================ -更新的文档以PR的形式提交到github中,提交方式参见 `贡献文档 `_ 。 -目前PaddlePaddle的develop分支的文档是自动触发更新的,用户可以分别查看最新的 `中文文档 `_ 和 -`英文文档 `_ 。 +更新的文档以PR的形式提交到github中,提交方式参见 `贡献文档 `_ 。 +目前PaddlePaddle的develop分支的文档是自动触发更新的,用户可以分别查看最新的 `中文文档 `_ 和 +`英文文档 `_ 。 .. _cmake: https://cmake.org/ diff --git a/doc/howto/dev/write_docs_en.rst b/doc/howto/dev/write_docs_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..b3ef07eb1d0012827df8e6a4f27c5fa643649492 --- /dev/null +++ b/doc/howto/dev/write_docs_en.rst @@ -0,0 +1,80 @@ +################## +Contribute Documentation +################## + +PaddlePaddle supports English documentation ``doc`` and Chinese documentation ``doc_cn``. +Both are compiled by `cmake`_ and `sphinx`_ , the compiled documentations will be stored under ``doc`` and ``doc_cn`` directories. +When using the PaddlePaddle.org to compile documentations, the compiled documentations will be stored under a consolidated directory: .ppo_workspace/content + +How to Build Documentations +============ + +We recommend using PaddlePaddle.org tool to build documentation + + +Use PaddlePaddle.org tool +-------------- +This is the recommended method to build documentation. It can compile documentation and preview the documentation in a web browser. + +The tool uses Docker, please install it on your system. Please check Docker official website on how to install Docker. You may use the following commands to activate the tool + +.. code-block:: bash + + mkdir paddlepaddle # Create paddlepaddle working directory + cd paddlepaddle + + # Clone the content repositories. You may only clone the contents you need + git clone https://github.com/PaddlePaddle/Paddle.git + git clone https://github.com/PaddlePaddle/book.git + git clone https://github.com/PaddlePaddle/models.git + git clone https://github.com/PaddlePaddle/Mobile.git + + # Please specify the working directory through -v + docker run -it -p 8000:8000 -v `pwd`:/var/content paddlepaddle/paddlepaddle.org:latest + +Note: PaddlePaddle.org will read the content repos specified in the -v (volume) flag of the docker run command +Use a web browser and navigate to http://localhost:8000, click the buttons to compile the documentation +The compiled documentations will be stored in /.ppo_workspace/content + + +If you don't wish to use Docker, you can also activate the tool through Django. Use the following the commands to set up + +.. code-block:: bash + + mkdir paddlepaddle # Create paddlepaddle working directory + cd paddlepaddle + + # Clone the content repositories and PaddlePaddle.org + git clone https://github.com/PaddlePaddle/Paddle.git + git clone https://github.com/PaddlePaddle/book.git + git clone https://github.com/PaddlePaddle/models.git + git clone https://github.com/PaddlePaddle/Mobile.git + git clone https://github.com/PaddlePaddle/PaddlePaddle.org.git + + # Please specify the PaddlePaddle working directory. In the current setting, it should be pwd + export CONTENT_DIR= + export ENV='' + cd PaddlePaddle.org/portal/ + pip install -r requirements.txt + python manage.py runserver + +Use a web browser and navigate to http://localhost:8000, click the buttons to compile the documentation +The compiled documentations will be stored in /.ppo_workspace/content + +If you want to learn more on the PaddlePaddle.org, please `click here `_ 。 + +How to write Documentations +============ + +PaddlePaddle uses `sphinx`_ to compile documentations,Please check sphinx official website for more detail. + + +How to update www.paddlepaddle.org +============================ + +Please create PRs and submit them to github, please check `Contribute Code `_ 。 +PaddlePaddle develop branch will update the documentation once the PR is merged. User may check latest `Chinese Docs `_ and +`English Docs `_ 。 + +.. _cmake: https://cmake.org/ +.. _sphinx: http://www.sphinx-doc.org/en/1.4.8/ diff --git a/doc/howto/index_cn.rst b/doc/howto/index_cn.rst index eb95356c67c5df22e4f543f958eb31d79f2c6195..ccd909770253bb85dbc8a5a2560594076c2f68b0 100644 --- a/doc/howto/index_cn.rst +++ b/doc/howto/index_cn.rst @@ -9,9 +9,6 @@ usage/cmd_parameter/index_cn.rst usage/cluster/cluster_train_cn.md - usage/k8s/k8s_basis_cn.md - usage/k8s/k8s_cn.md - usage/k8s/k8s_distributed_cn.md 开发标准 -------- @@ -19,6 +16,7 @@ .. toctree:: :maxdepth: 1 + dev/contribute_to_paddle_cn.md dev/write_docs_cn.rst 模型配置 diff --git a/doc/howto/index_en.rst b/doc/howto/index_en.rst index 1fbfcd260b912078f00ed5b720ed607db725c4e2..6d1bf7dfc003da6de31410ee0a7959233adfaf76 100644 --- a/doc/howto/index_en.rst +++ b/doc/howto/index_en.rst @@ -9,8 +9,6 @@ Usage usage/cmd_parameter/index_en.rst usage/cluster/cluster_train_en.md - usage/k8s/k8s_en.md - usage/k8s/k8s_aws_en.md Development ------------ @@ -20,6 +18,7 @@ Development dev/new_layer_en.rst dev/contribute_to_paddle_en.md + dev/write_docs_en.rst Configuration ------------- diff --git a/doc/howto/read_source.md b/doc/howto/read_source.md new file mode 100644 index 0000000000000000000000000000000000000000..e4211abb3be9cace80bc14dbe3db3e0a31221dd0 --- /dev/null +++ b/doc/howto/read_source.md @@ -0,0 +1,67 @@ +# PaddlePaddle Fluid Source Code Overview + +Examples: https://github.com/PaddlePaddle/Paddle/tree/develop/python/paddle/v2/fluid/tests/book + +Core: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/framework + +Operator: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators + +Memory: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory + +Platform: https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/platform + +# Compile Time + +The following **defines** the NN. The definition goes into this [protocol buffer](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto). + +```python +x = fluid.layers.data(name='x', shape=[13], dtype='float32') +y = fluid.layers.data(name='y', shape=[1], dtype='float32') + +y_predict = fluid.layers.fc(input=x, size=1, act=None) +cost = fluid.layers.square_error_cost(input=y_predict, label=y) +avg_cost = fluid.layers.mean(x=cost) + +sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001) +sgd_optimizer.minimize(avg_cost) +``` + +- Variables: `x`, `y`, `y_predict`, `cost` and `avg_cost`. [Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/framework.py#L93) +- Layers: `fluid.layers.data`, `fluid.layers.fc` and `fluid.layers.mean` are layers. [Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/layers.py) + - Every Layer has one or more operators and variables/parameters + - All the operators are defined at [`paddle/operators/`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/operators). Other worth-looking files: + - Base class: [`paddle/framework/operator.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h) + - Operator Registration: [`paddle/framework/op_registry.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_registry.h) + - Operator Lookup: [`paddle/framework/op_info.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/op_info.h) +- Optimizer: `fluid.optimizer.SGD`. It does the following + - Add backward operators. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/backward.py), [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/backward.cc)] + - Add optimizer operators. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/optimizer.py), [C++](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/optimizer)] + +# Run Time + +The following **evaluates** the NN. Instantiates all the variables, operators. + +```python +place = fluid.CPUPlace() +feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) +exe = fluid.Executor(place) + +# Allocate memory. Initialize Parameter. +exe.run(fluid.default_startup_program()) + +# Allocate memory. Do computation. +exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost]) +``` + +- Place: `place`. one of CPU, GPU or FPGA. [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h) + - The device handle are at [paddle/platform/device_context.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h) +- Executor: `fluid.Executor(place)`. [[Python](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/executor.py), [C++](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/executor.cc)] + - Feeds the data: `feed=feeder.feed(data)` + - Evaluates all the operators + - Fetches the result: `fetch_list=[avg_cost]` +- Other worth looking files: + - Scope: [paddle/framework/scope.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/scope.h). Where all the variables live + - Variable: [paddle/framework/variable.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/variable.h). Where all the data (most likely tensors) live + - Tensor: [paddle/framework/tensor.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/tensor.h). Where we allocate memory through [`paddle/memory/`](https://github.com/PaddlePaddle/Paddle/tree/develop/paddle/memory) diff --git a/doc/howto/usage/cluster/cluster_train_cn.md b/doc/howto/usage/cluster/cluster_train_cn.md index 2e98b3de3fe2284375f87e883ff4bac19255dbeb..659bae9c0ceaf2fb2df8446b9d406a822a9df0ea 100644 --- a/doc/howto/usage/cluster/cluster_train_cn.md +++ b/doc/howto/usage/cluster/cluster_train_cn.md @@ -1,25 +1,8 @@ -# PaddlePaddle分布式训练 - -* [概述](#概述) -* [环境准备](#环境准备) -* [启动参数说明](#启动参数说明) - * [启动参数服务器](#启动参数服务器) - * [启动计算节点](#启动计算节点) - * [准备数据集](#准备数据集) - * [准备训练程序](#准备训练程序) -* [使用分布式计算平台或工具](#使用分布式计算平台或工具) - * [使用Fabric启动集群作业](#使用fabric启动集群作业) - * [准备一个Linux集群](#准备一个linux集群) - * [启动集群作业](#启动集群作业) - * [终止集群作业](#终止集群作业) - * [检查集群训练结果](#检查集群训练结果) - * [检查模型输出](#检查模型输出) - * [在OpenMPI集群中提交训练作业](#在openmpi集群中提交训练作业) - * [准备OpenMPI集群](#准备OpenMPI集群) - * [启动集群作业](#启动集群作业-1) - * [在Kubernetes集群中提交训练作业](#在kubernetes集群中提交训练作业) +# 分布式训练 + ## 概述 + 本文将介绍如何使用PaddlePaddle在不同的集群框架下完成分布式训练。分布式训练架构如下图所示: @@ -32,10 +15,11 @@ 在使用同步SGD训练神经网络时,PaddlePaddle使用同步屏障(barrier),使梯度的提交和参数的更新按照顺序方式执行。在异步SGD中,则并不会等待所有trainer提交梯度才更新参数,这样极大地提高了计算的并行性:参数服务器之间不相互依赖,并行地接收梯度和更新参数,参数服务器也不会等待计算节点全部都提交梯度之后才开始下一步,计算节点之间也不会相互依赖,并行地执行模型的训练。可以看出,虽然异步SGD方式会提高参数更新并行度, 但是并不能保证参数同步更新,在任意时间某一台参数服务器上保存的参数可能比另一台要更新,与同步SGD相比,梯度会有噪声。 + ## 环境准备 1. 准备您的计算集群。计算集群通常由一组(几台到几千台规模)的Linux服务器组成。服务器之间可以通过局域网(LAN)联通,每台服务器具有集群中唯一的IP地址(或者可被DNS解析的主机名)。集群中的每台计算机通常被成为一个“节点”。 -1. 我们需要在集群的所有节点上安装 PaddlePaddle。 如果要启用GPU,还需要在节点上安装对应的GPU驱动以及CUDA。PaddlePaddle的安装可以参考[build_and_install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install)的多种安装方式。我们推荐使用[Docker](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_cn.rst)安装方式来快速安装PaddlePaddle。 +1. 我们需要在集群的所有节点上安装 PaddlePaddle。 如果要启用GPU,还需要在节点上安装对应的GPU驱动以及CUDA。PaddlePaddle的安装可以参考[build_and_install](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/index_cn.html)的多种安装方式。我们推荐使用[Docker](http://www.paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_cn.html)安装方式来快速安装PaddlePaddle。 安装完成之后,执行下面的命令可以查看已经安装的版本(docker安装方式可以进入docker容器执行:`docker run -it paddlepaddle/paddle:[tag] /bin/bash`): ```bash @@ -63,12 +47,12 @@ $ paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradie $ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log ``` -| 参数 | 是否必选 | 默认值 | 说明 | -| ------------- | ------------- | ------------- | ------------- | -| port | 必选 | 7164 | pserver监听的起始端口,根据ports_num决定
总端口个数,从起始端口监听多个端口用于通信 | -| ports_num | 必选 | 1 | 监听的端口个数 | -| ports_num_for_sparse | 必选 | 1 | 用于稀疏类型参数通信的端口个数 | -| num_gradient_servers | 必选 | 1 | 当前训练任务pserver总数 | +参数说明 + +- port:**必选,默认7164**,pserver监听的起始端口,根据ports_num决定总端口个数,从起始端口监听多个端口用于通信 +- ports_num:**必选,默认1**,监听的端口个数 +- ports_num_for_sparse:**必选,默认1**,用于稀疏类型参数通信的端口个数 +- num_gradient_servers:**必选,默认1**,当前训练任务pserver总数 ### 启动计算节点 执行以下命令启动使用python编写的trainer程序(文件名为任意文件名,如train.py) @@ -105,16 +89,16 @@ paddle.init( pservers="127.0.0.1") ``` -| 参数 | 是否必选 | 默认 | 说明 | -| ------------- | ------------- | ------------- | ------------- | -| use_gpu | 可选 | False | 是否启用GPU训练 | -| trainer_count | 必选 | 1 | 当前训练任务trainer总个数 | -| port | 必选 | 7164 | 连接到pserver的端口 | -| ports_num | 必选 | 1 | 连接到pserver的端口个数 | -| ports_num_for_sparse | 必选 | 1 | 和pserver之间用于稀疏类型参数通信的端口个数 | -| num_gradient_servers | 必选 | 1 | 当前训练任务pserver总数 | -| trainer_id | 必选 | 0 | 每个trainer的唯一ID,从0开始的整数 | -| pservers | 必选 | 127.0.0.1 | 当前训练任务启动的pserver的IP列表,多个IP使用“,”隔开 | +参数说明 + +- use_gpu: **可选,默认False**,是否启用GPU训练 +- trainer_count:**必选,默认1**,当前训练任务trainer总个数 +- port:**必选,默认7164**,连接到pserver的端口 +- ports_num:**必选,默认1**,连接到pserver的端口个数 +- ports_num_for_sparse:**必选,默认1**,和pserver之间用于稀疏类型参数通信的端口个数 +- num_gradient_servers:**必选,默认1**,当前训练任务pserver总数 +- trainer_id:**必选,默认0**,每个trainer的唯一ID,从0开始的整数 +- pservers:**必选,默认127.0.0.1**,当前训练任务启动的pserver的IP列表,多个IP使用“,”隔开 ### 准备数据集 @@ -171,7 +155,7 @@ test.txt-00002 - `my_lib.py`:会被`train.py`调用的一些用户定义的库函数,比如PIL库等。 - `word_dict.pickle`:在`train.py`中会使用到的字典数据文件。 -- `train.py`:训练程序,代码参考[api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py)。***注意:*** 对于本样例代码,在使用不同的分布式计算平台时,您可能需要修改`train.py`开头的部分(如下),以便获得训练数据的位置和获取环境变量配置: +- `train.py`:训练程序,代码参考[api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py)。***注意:*** 对于本样例代码,在使用不同的分布式计算平台时,您可能需要修改`train.py`开头的部分(如下),以便获得训练数据的位置和获取环境变量配置: ```python cluster_train_file = "./train_data_dir/train/train.txt" @@ -195,91 +179,10 @@ PaddlePaddle可以使用多种分布式计算平台构建分布式计算任务 在使用分布式计算平台进行训练时,任务被调度在集群中时,分布式计算平台通常会通过API或者环境变量提供任务运行需要的参数,比如节点的ID、IP和任务节点个数等。 -### 使用Fabric启动集群作业 - -#### 准备一个Linux集群 -可以在`paddle/scripts/cluster_train_v2/fabric/docker_cluster`目录下,执行`kubectl -f ssh_servers.yaml`启动一个测试集群,并使用`kubectl get po -o wide`获得这些节点的IP地址。 - -#### 启动集群作业 - -`paddle.py` 提供了自动化脚本来启动不同节点中的所有 PaddlePaddle 集群进程。默认情况下,所有命令行选项可以设置为 `paddle.py` 命令选项并且 `paddle.py` 将透明、自动地将这些选项应用到 PaddlePaddle 底层进程。 - -`paddle.py` 为方便作业启动提供了两个独特的命令选项。 - -- `job_dispatch_package` 设为本地 `workspace` 目录,它将被分发到 `conf.py` 中设置的所有节点。它有助于帮助频繁修改和访问工作区文件的用户减少负担,否则频繁的多节点工作空间部署可能会很麻烦。 -- `job_workspace` 设为已部署的工作空间目录,`paddle.py` 将跳过分发阶段直接启动所有节点的集群作业。它可以帮助减少分发延迟。 - -`cluster_train/run.sh` 提供了命令样例来运行 `doc/howto/usage/cluster/src/word2vec` 集群任务,只需用您定义的目录修改 `job_dispatch_package` 和 `job_workspace`,然后: -``` -sh run.sh -``` - -集群作业将会在几秒后启动。 - -#### 终止集群作业 -`paddle.py`能获取`Ctrl + C` SIGINT 信号来自动终止它启动的所有进程。只需中断 `paddle.py` 任务来终止集群作业。如果程序崩溃你也可以手动终止。 - -#### 检查集群训练结果 -详细信息请检查 $workspace/log 里的日志,每一个节点都有相同的日志结构。 - -`paddle_trainer.INFO` -提供几乎所有训练的内部输出日志,与本地训练相同。这里检验运行时间模型的收敛。 - -`paddle_pserver2.INFO` -提供 pserver 运行日志,有助于诊断分布式错误。 - -`server.log` -提供 parameter server 进程的 stderr 和 stdout。训练失败时可以检查错误日志。 - -`train.log` -提供训练过程的 stderr 和 stdout。训练失败时可以检查错误日志。 - -#### 检查模型输出 -运行完成后,模型文件将被写入节点 0 的 `output` 目录中。 -工作空间中的 `nodefile` 表示当前集群作业的节点 ID。 - -### 在OpenMPI集群中提交训练作业 - -#### 准备OpenMPI集群 - -执行下面的命令以启动3个节点的OpenMPI集群和一个"head"节点: - -```bash -paddle/scripts/cluster_train_v2/openmpi/docker_cluster -kubectl create -f head.yaml -kubectl create -f mpi-nodes.yaml -``` - -然后可以从head节点ssh无密码登录到OpenMPI的每个节点上。 - -#### 启动集群作业 - -您可以按照下面的步骤在OpenMPI集群中提交paddle训练任务: - -```bash -# 获得head和node节点的IP地址 -kubectl get po -o wide -# 将node节点的IP地址保存到machines文件中 -kubectl get po -o wide | grep nodes | awk '{print $6}' > machines -# 拷贝必要的文件到head节点 -scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ -# ssh 登录到head节点 -ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] -# --------------- 以下操作均在head节点中执行 --------------- -# 准备训练数据 -python prepare.py -# 拷贝训练程序和字典文件到每台MPI节点 -cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial -# 创建日志目录 -mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs -# 拷贝训练数据到各自的节点 -scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial -scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial -scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial -# 启动训练任务 -mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh -``` - -### 在Kubernetes集群中提交训练作业 +## 在不同集群中运行 -此部分的使用方法可以参考[here](../k8s/k8s_distributed_cn.md)。 + - [fabric集群](fabric_cn.md) + - [openmpi集群](openmpi_cn.md) + - [kubernetes单机](k8s_cn.md) + - [kubernetes distributed分布式](k8s_distributed_cn.md) + - [AWS上运行kubernetes集群训练](k8s_aws_cn.md) diff --git a/doc/howto/usage/cluster/cluster_train_en.md b/doc/howto/usage/cluster/cluster_train_en.md index baa97c0c02ae490fff8587071bd2d4adfb5325e3..915405ca5b446981515e301ca4b7ee065a82a9ff 100644 --- a/doc/howto/usage/cluster/cluster_train_en.md +++ b/doc/howto/usage/cluster/cluster_train_en.md @@ -1,23 +1,4 @@ -# PaddlePaddle Distributed Training - -* [Introduction](#introduction) -* [Preparations](#preparations) -* [Command-line arguments](#command-line-arguments) - * [Starting parameter server](#starting-parameter-server) - * [Starting trainer](#starting-trainer) - * [Prepare Training Dataset](#prepare-training-dataset) - * [Prepare Training program](#prepare-training-program) -* [Use cluster platforms or cluster management tools](#use-cluster-platforms-or-cluster-management-tools) - * [Cluster Training Using Fabric](#cluster-training-using-fabric) - * [Prepare a Linux cluster](#prepare-a-linux-cluster) - * [Launching Cluster Job](#launching-cluster-job) - * [Kill Cluster Job](#kill-cluster-job) - * [Check Cluster Training Result](#check-cluster-training-result) - * [Check Model Output](#check-model-output) - * [Cluster Training Using OpenMPI](#cluster-training-using-openmpi) - * [Prepare an OpenMPI cluster](#prepare-an-openmpi-cluster) - * [Launching Cluster Job](#launching-cluster-job-1) - * [Cluster Training Using Kubernetes](#cluster-training-using-kubernetes) +# Distributed Training ## Introduction @@ -35,7 +16,7 @@ When training with synchronize SGD, PaddlePaddle uses an internal "synchronize b ## Preparations 1. Prepare your computer cluster. It's normally a bunch of Linux servers connected by LAN. Each server will be assigned a unique IP address. The computers in the cluster can be called "nodes". -2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/getstarted/build_and_install) document. We strongly recommend using [Docker installation](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/getstarted/build_and_install/docker_install_en.rst). +2. Install PaddlePaddle on every node. If you are going to take advantage of GPU cards, you'll also need to install proper driver and CUDA libraries. To install PaddlePaddle please read [this build and install](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/index_en.html) document. We strongly recommend using [Docker installation](http://www.paddlepaddle.org/docs/develop/documentation/en/getstarted/build_and_install/docker_install_en.html). After installation, you can check the version by typing the below command (run a docker container if using docker: `docker run -it paddlepaddle/paddle:[tag] /bin/bash`): @@ -67,12 +48,12 @@ If you wish to run parameter servers in background, and save a log file, you can $ stdbuf -oL /usr/bin/nohup paddle pserver --port=7164 --ports_num=1 --ports_num_for_sparse=1 --num_gradient_servers=1 &> pserver.log ``` -| param | required | default | description | -| ------------- | ------------- | ------------- | ------------- | -| port | required | 7164 | port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput | -| ports_num | required | 1 | total number of ports will listen on | -| ports_num_for_sparse | required | 1 | number of ports which serves sparse parameter update | -| num_gradient_servers | required | 1 | total number of gradient servers | +Parameter Description + +- port: **required, default 7164**, port which parameter server will listen on. If ports_num greater than 1, parameter server will listen on multiple ports for more network throughput. +- ports_num: **required, default 1**, total number of ports will listen on. +- ports_num_for_sparse: **required, default 1**, number of ports which serves sparse parameter update. +- num_gradient_servers: **required, default 1**, total number of gradient servers. ### Starting trainer Type the command below to start the trainer(name the file whatever you want, like "train.py") @@ -111,16 +92,16 @@ paddle.init( pservers="127.0.0.1") ``` -| param | required | default | description | -| ------------- | ------------- | ------------- | ------------- | -| use_gpu | optional | False | set to "True" to enable GPU training | -| trainer_count | required | 1 | total count of trainers in the training job | -| port | required | 7164 | port to connect to parameter server | -| ports_num | required | 1 | number of ports for communication | -| ports_num_for_sparse | required | 1 | number of ports for sparse type caculation | -| num_gradient_servers | required | 1 | total number of gradient server | -| trainer_id | required | 0 | ID for every trainer, start from 0 | -| pservers | required | 127.0.0.1 | list of IPs of parameter servers, separated by "," | +Parameter Description + +- use_gpu: **optional, default False**, set to "True" to enable GPU training. +- trainer_count: **required, default 1**, total count of trainers in the training job. +- port: **required, default 7164**, port to connect to parameter server. +- ports_num: **required, default 1**, number of ports for communication. +- ports_num_for_sparse: **required, default 1**, number of ports for sparse type caculation. +- num_gradient_servers: **required, default 1**, total number of gradient server. +- trainer_id: **required, default 0**, ID for every trainer, start from 0. +- pservers: **required, default 127.0.0.1**, list of IPs of parameter servers, separated by ",". ### Prepare Training Dataset @@ -178,7 +159,7 @@ Your workspace may looks like: - `my_lib.py`: user defined libraries, like PIL libs. This is optional. - `word_dict.pickle`: dict file for training word embeding. -- `train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/prepare.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables: +- `train.py`: training program. Sample code: [api_train_v2_cluster.py](https://github.com/PaddlePaddle/Paddle/tree/develop/doc/howto/usage/cluster/src/word2vec/api_train_v2_cluster.py). ***NOTE:*** You may need to modify the head part of `train.py` when using different cluster platform to retrive configuration environment variables: ```python cluster_train_file = "./train_data_dir/train/train.txt" @@ -202,92 +183,9 @@ We'll introduce cluster job management on these platforms. The examples can be f These cluster platforms provide API or environment variables for training processes, when the job is dispatched to different nodes. Like node ID, IP or total number of nodes etc. -### Cluster Training Using Fabric - -#### Prepare a Linux cluster - -Run `kubectl -f ssh_servers.yaml` under the directory: `paddle/scripts/cluster_train_v2/fabric/docker_cluster` will launch a demo cluster. Run `kubectl get po -o wide` to get IP addresses of these nodes. - -#### Launching Cluster Job -`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can be set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes. - -`paddle.py`provides two distinguished command option for easy job launching. - -- `job_dispatch_package` set it with local `workspace` directory, it will be dispatched to all nodes which is set in `conf.py`. It could be helpful for frequently manipulating workspace files. otherwise, frequent multi-nodes workspace deployment is very annoying. -- `job_workspace` set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy -dispatch latency. - -`cluster_train/run.sh` provides command line sample to run `demo/recommendation` cluster job, just modify `job_dispatch_package` and `job_workspace` with your defined directory, then: -``` -sh run.sh -``` - -The cluster Job will start in several seconds. - -#### Kill Cluster Job -`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should manually kill the job if the program crashed. - -#### Check Cluster Training Result -Check log in $workspace/log for details, each node owns same log structure. - -`paddle_trainer.INFO` -It provides almost all internal output log for training, same as local training. Check runtime model convergence here. - -`paddle_pserver2.INFO` -It provides parameter server running log, which could help to diagnose distributed error. - -`server.log` -It provides stderr and stdout of parameter server process. Check error log if training crashes. - -`train.log` -It provides stderr and stdout of trainer process. Check error log if training crashes. - -#### Check Model Output -After one pass finished, model files will be written in `output` directory in node 0. -`nodefile` in workspace indicates the node id of current cluster job. - -### Cluster Training Using OpenMPI - -#### Prepare an OpenMPI cluster - -Run the following command to start a 3-node MPI cluster and one "head" node. - -```bash -cd paddle/scripts/cluster_train_v2/openmpi/docker_cluster -kubectl create -f head.yaml -kubectl create -f mpi-nodes.yaml -``` - -Then you can log in to every OpenMPI node using ssh without input any passwords. - -#### Launching Cluster Job - -Follow the steps to launch a PaddlePaddle training job in OpenMPI cluster:\ - -```bash -# find out node IP addresses -kubectl get po -o wide -# generate a "machines" file containing node IP addresses -kubectl get po -o wide | grep nodes | awk '{print $6}' > machines -# copy necessary files onto "head" node -scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ -# login to head node using ssh -ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] -# --------------- in head node --------------- -# prepare training data -python prepare.py -# copy training data and dict file to MPI nodes -cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial -# creat a directory for storing log files -mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs -# copy training data to every node -scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial -scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial -scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial -# start the job -mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh -``` - -### Cluster Training Using Kubernetes +## Use different clusters -The details can be found [here](../k8s/k8s_cn.md) + - [fabric](fabric_en.md) + - [openmpi](openmpi_en.md) + - [kubernetes](k8s_en.md) + - [kubernetes on AWS](k8s_aws_en.md) diff --git a/doc/howto/usage/cluster/fabric_cn.md b/doc/howto/usage/cluster/fabric_cn.md new file mode 100644 index 0000000000000000000000000000000000000000..0385e401b399a51fad112e604dc56cb2f84c0a4b --- /dev/null +++ b/doc/howto/usage/cluster/fabric_cn.md @@ -0,0 +1,42 @@ +# 使用fabric启动集群训练 + +## 准备一个Linux集群 +可以在`paddle/scripts/cluster_train_v2/fabric/docker_cluster`目录下,执行`kubectl -f ssh_servers.yaml`启动一个测试集群,并使用`kubectl get po -o wide`获得这些节点的IP地址。 + +## 启动集群作业 + +`paddle.py` 提供了自动化脚本来启动不同节点中的所有 PaddlePaddle 集群进程。默认情况下,所有命令行选项可以设置为 `paddle.py` 命令选项并且 `paddle.py` 将透明、自动地将这些选项应用到 PaddlePaddle 底层进程。 + +`paddle.py` 为方便作业启动提供了两个独特的命令选项。 + +- `job_dispatch_package` 设为本地 `workspace` 目录,它将被分发到 `conf.py` 中设置的所有节点。它有助于帮助频繁修改和访问工作区文件的用户减少负担,否则频繁的多节点工作空间部署可能会很麻烦。 +- `job_workspace` 设为已部署的工作空间目录,`paddle.py` 将跳过分发阶段直接启动所有节点的集群作业。它可以帮助减少分发延迟。 + +`cluster_train/run.sh` 提供了命令样例来运行 `doc/howto/usage/cluster/src/word2vec` 集群任务,只需用您定义的目录修改 `job_dispatch_package` 和 `job_workspace`,然后: +``` +sh run.sh +``` + +集群作业将会在几秒后启动。 + +## 终止集群作业 +`paddle.py`能获取`Ctrl + C` SIGINT 信号来自动终止它启动的所有进程。只需中断 `paddle.py` 任务来终止集群作业。如果程序崩溃你也可以手动终止。 + +## 检查集群训练结果 +详细信息请检查 $workspace/log 里的日志,每一个节点都有相同的日志结构。 + +`paddle_trainer.INFO` +提供几乎所有训练的内部输出日志,与本地训练相同。这里检验运行时间模型的收敛。 + +`paddle_pserver2.INFO` +提供 pserver 运行日志,有助于诊断分布式错误。 + +`server.log` +提供 parameter server 进程的 stderr 和 stdout。训练失败时可以检查错误日志。 + +`train.log` +提供训练过程的 stderr 和 stdout。训练失败时可以检查错误日志。 + +## 检查模型输出 +运行完成后,模型文件将被写入节点 0 的 `output` 目录中。 +工作空间中的 `nodefile` 表示当前集群作业的节点 ID。 diff --git a/doc/howto/usage/cluster/fabric_en.md b/doc/howto/usage/cluster/fabric_en.md new file mode 100644 index 0000000000000000000000000000000000000000..bf270d89ab8514801ca4629cf412f73257429df9 --- /dev/null +++ b/doc/howto/usage/cluster/fabric_en.md @@ -0,0 +1,43 @@ +# Cluster Training Using Fabric + +## Prepare a Linux cluster + +Run `kubectl -f ssh_servers.yaml` under the directory: `paddle/scripts/cluster_train_v2/fabric/docker_cluster` will launch a demo cluster. Run `kubectl get po -o wide` to get IP addresses of these nodes. + +## Launching Cluster Job +`paddle.py` provides automatical scripts to start all PaddlePaddle cluster processes in different nodes. By default, all command line options can be set as `paddle.py` command options and `paddle.py` will transparently and automatically set these options to PaddlePaddle lower level processes. + +`paddle.py`provides two distinguished command option for easy job launching. + +- `job_dispatch_package` set it with local `workspace` directory, it will be dispatched to all nodes which is set in `conf.py`. It could be helpful for frequently manipulating workspace files. otherwise, frequent multi-nodes workspace deployment is very annoying. +- `job_workspace` set it with already deployed workspace directory, `paddle.py` will skip dispatch stage to directly launch cluster job with all nodes. It could help to reduce heavy +dispatch latency. + +`cluster_train/run.sh` provides command line sample to run `demo/recommendation` cluster job, just modify `job_dispatch_package` and `job_workspace` with your defined directory, then: +``` +sh run.sh +``` + +The cluster Job will start in several seconds. + +## Kill Cluster Job +`paddle.py` can capture `Ctrl + C` SIGINT signal to automatically kill all processes launched by it. So just stop `paddle.py` to kill cluster job. You should manually kill the job if the program crashed. + +## Check Cluster Training Result +Check log in $workspace/log for details, each node owns same log structure. + +`paddle_trainer.INFO` +It provides almost all internal output log for training, same as local training. Check runtime model convergence here. + +`paddle_pserver2.INFO` +It provides parameter server running log, which could help to diagnose distributed error. + +`server.log` +It provides stderr and stdout of parameter server process. Check error log if training crashes. + +`train.log` +It provides stderr and stdout of trainer process. Check error log if training crashes. + +## Check Model Output +After one pass finished, model files will be written in `output` directory in node 0. +`nodefile` in workspace indicates the node id of current cluster job. diff --git a/doc/howto/usage/cluster/k8s_aws_cn.md b/doc/howto/usage/cluster/k8s_aws_cn.md new file mode 120000 index 0000000000000000000000000000000000000000..c44cd9a731bed7067cdf19aa2f714abdce6c736a --- /dev/null +++ b/doc/howto/usage/cluster/k8s_aws_cn.md @@ -0,0 +1 @@ +k8s_aws_en.md \ No newline at end of file diff --git a/doc/howto/usage/k8s/k8s_aws_en.md b/doc/howto/usage/cluster/k8s_aws_en.md similarity index 98% rename from doc/howto/usage/k8s/k8s_aws_en.md rename to doc/howto/usage/cluster/k8s_aws_en.md index ce72b0803818d5bf0c18753c421848cf2fc1b668..0dfa8237a3fa2c9c3ee11e873c9fbbed3cd6018f 100644 --- a/doc/howto/usage/k8s/k8s_aws_en.md +++ b/doc/howto/usage/cluster/k8s_aws_en.md @@ -493,7 +493,7 @@ spec: spec: containers: - name: paddle-data - image: paddledev/paddle-tutorial:k8s_data + image: paddlepaddle/paddle-tutorial:k8s_data imagePullPolicy: Always volumeMounts: - mountPath: "/efs" @@ -522,7 +522,7 @@ NAME DESIRED SUCCESSFUL AGE paddle-data 1 1 6m ``` -Data preparation is done by docker image `paddledev/paddle-tutorial:k8s_data`, see [here](src/k8s_data/README.md) for how to build this docker image and source code. +Data preparation is done by docker image `paddlepaddle/paddle-tutorial:k8s_data`, see [here](src/k8s_data/README.md) for how to build this docker image and source code. #### Start Training @@ -545,7 +545,7 @@ spec: claimName: efsvol containers: - name: trainer - image: paddledev/paddle-tutorial:k8s_train + image: paddlepaddle/paddle-tutorial:k8s_train command: ["bin/bash", "-c", "/root/start.sh"] env: - name: JOB_NAME @@ -617,7 +617,7 @@ kubectl --kubeconfig=kubeconfig log -f POD_NAME Run `kubectl --kubeconfig=kubeconfig describe job paddle-cluster-job` to check training job status. It will complete in around 20 minutes. -The details for start `pserver` and `trainer` are hidden inside docker image `paddledev/paddle-tutorial:k8s_train`, see [here](src/k8s_train/README.md) for how to build the docker image and source code. +The details for start `pserver` and `trainer` are hidden inside docker image `paddlepaddle/paddle-tutorial:k8s_train`, see [here](src/k8s_train/README.md) for how to build the docker image and source code. #### Inspect Training Output diff --git a/doc/howto/usage/k8s/k8s_cn.md b/doc/howto/usage/cluster/k8s_cn.md similarity index 83% rename from doc/howto/usage/k8s/k8s_cn.md rename to doc/howto/usage/cluster/k8s_cn.md index ab07cb9cd5b135ddea82b3360720537f1dc5a801..c1a11f7165a2f9da9dd044641274447e7943a597 100644 --- a/doc/howto/usage/k8s/k8s_cn.md +++ b/doc/howto/usage/cluster/k8s_cn.md @@ -1,21 +1,22 @@ # Kubernetes单机训练 -在这篇文档里,我们介绍如何在 Kubernetes 集群上启动一个单机使用CPU的Paddle训练作业。在下一篇中,我们将介绍如何启动分布式训练作业。 +在这篇文档里,我们介绍如何在 Kubernetes 集群上启动一个单机使用CPU的PaddlePaddle训练作业。在下一篇中,我们将介绍如何启动分布式训练作业。 ## 制作Docker镜像 -在一个功能齐全的Kubernetes机群里,通常我们会安装Ceph等分布式文件系统来存储训练数据。这样的话,一个分布式Paddle训练任务中的每个进程都可以从Ceph读取数据。在这个例子里,我们只演示一个单机作业,所以可以简化对环境的要求,把训练数据直接放在 -Paddle的Docker image里。为此,我们需要制作一个包含训练数据的Paddle镜像。 +在一个功能齐全的Kubernetes机群里,通常我们会安装Ceph等分布式文件系统来存储训练数据。这样的话,一个分布式PaddlePaddle训练任务中 +的每个进程都可以从Ceph读取数据。在这个例子里,我们只演示一个单机作业,所以可以简化对环境的要求,把训练数据直接放在 +PaddlePaddle的Docker Image里。为此,我们需要制作一个包含训练数据的PaddlePaddle镜像。 + +PaddlePaddle的 `paddlepaddle/paddle:cpu-demo-latest` 镜像里有PaddlePaddle的源码与demo, +(请注意,默认的PaddlePaddle生产环境镜像 `paddlepaddle/paddle:latest` 是不包括源码的,PaddlePaddle的各版本镜像可以参考 +[Docker Installation Guide](http://paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_cn.html)), +下面我们使用这个镜像来下载数据到Docker Container中,并把这个包含了训练数据的Container保存为一个新的镜像。 -Paddle 的 [Quick Start Tutorial](http://www.paddlepaddle.org/doc/demo/quick_start/index_en.html) -里介绍了用Paddle源码中的脚本下载训练数据的过程。 -而 `paddledev/paddle:cpu-demo-latest` 镜像里有 Paddle 源码与demo,( 请注意,默认的 -Paddle镜像 `paddledev/paddle:cpu-latest` 是不包括源码的, Paddle的各版本镜像可以参考 [Docker installation guide](http://www.paddlepaddle.org/doc/build/docker_install.html) ),所以我们使用这个镜像来下载训练数据到Docker container中,然后把这个包含了训练数据的container保存为一个新的镜像。 - ### 运行容器 ``` -$ docker run --name quick_start_data -it paddledev/paddle:cpu-demo-latest +$ docker run --name quick_start_data -it paddlepaddle/paddle:cpu-demo-latest ``` ### 下载数据 @@ -103,7 +104,7 @@ spec: restartPolicy: Never ``` -### 创建Paddle Job +### 创建PaddlePaddle Job 使用上文创建的yaml文件创建Kubernetes Job,命令为: diff --git a/doc/howto/usage/k8s/k8s_distributed_cn.md b/doc/howto/usage/cluster/k8s_distributed_cn.md similarity index 88% rename from doc/howto/usage/k8s/k8s_distributed_cn.md rename to doc/howto/usage/cluster/k8s_distributed_cn.md index a9bebf09558b06993119803458977abedbbfbdd0..167089b8074b33e3b094fa3ec8e377630cec42ac 100644 --- a/doc/howto/usage/k8s/k8s_distributed_cn.md +++ b/doc/howto/usage/cluster/k8s_distributed_cn.md @@ -1,8 +1,6 @@ # Kubernetes分布式训练 -前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,文章 [Cluster Training](https://github.com/baidu/Paddle/blob/develop/doc/cluster/opensource/cluster_train.md)介绍了一种通过SSH远程分发任务,进行分布式训练的方法,与此不同的是,本文将介绍在Kubernetes容器管理平台上快速构建PaddlePaddle容器集群,进行分布式训练的方案。 - -有关Kubernetes相关概念以及如何搭建和配置Kubernetes集群,可以参考[k8s_basis](./k8s_basis_cn.md)。 +前一篇文章介绍了如何在Kubernetes集群上启动一个单机PaddlePaddle训练作业 (Job)。在这篇文章里,我们介绍如何在Kubernetes集群上进行分布式PaddlePaddle训练作业。关于PaddlePaddle的分布式训练,文章 [Cluster Training](http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cluster/cluster_train_cn.html)介绍了一种通过SSH远程分发任务,进行分布式训练的方法,与此不同的是,本文将介绍在Kubernetes容器管理平台上快速构建PaddlePaddle容器集群,进行分布式训练的方案。 ## 整体方案 @@ -28,7 +26,7 @@ PaddlePaddle镜像需要提供`paddle pserver`与`paddle train`进程的运行 - 拷贝训练文件到容器内 - 生成`paddle pserver`与`paddle train`进程的启动参数,并且启动训练 -因为官方镜像 `paddledev/paddle:cpu-latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能,所以我们可以在这个基础上,添加启动脚本,制作新镜像来完成以上的工作。参考镜像的[*Dockerfile*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/k8s/src/k8s_train/Dockerfile)。 +因为官方镜像 `paddlepaddle/paddle:latest` 内已经包含PaddlePaddle的执行程序但是还没上述功能,所以我们可以在这个基础上,添加启动脚本,制作新镜像来完成以上的工作。参考镜像的[*Dockerfile*](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/usage/cluster/src/k8s_train/Dockerfile)。 ```bash $ cd doc/howto/usage/k8s/src/k8s_train @@ -62,7 +60,7 @@ spec: hostNetwork: true containers: - name: paddle-data - image: paddledev/paddle-tutorial:k8s_data + image: paddlepaddle/paddle-tutorial:k8s_data imagePullPolicy: Always volumeMounts: - mountPath: "/mnt" @@ -149,20 +147,19 @@ spec: 文件中,`metadata`下的`name`表示这个job的名字。`parallelism,completions`字段表示这个job会同时开启3个PaddlePaddle节点,成功训练且退出的pod数目为3时,这个job才算成功结束。然后申明一个存储卷`jobpath`,代表宿主机目录`/home/work/mfs`,在对容器的描述`containers`字段中,将此目录挂载为容器的`/home/jobpath`目录,这样容器的`/home/jobpath`目录就成为了共享存储,放在这个目录里的文件其实是保存到了MFS上。 -`env`字段表示容器的环境变量,我们将`paddle`运行的一些参数通过这种方式传递到容器内。 +`env`字段表示容器的环境变量,我们将`paddle`运行的一些参数通过这种方式传递到容器内: + -环境变量 | 说明 ---- | --- -JOB_PATH | 共享存储挂在的路径 -JOB_NAME | Job的名字 -TRAIN_CONFIG_DIR | 本次训练文件所在目录,与JOB_PATH,JOB_NAME组合可以找到本次训练需要的文件路径 -CONF_PADDLE_NIC | `paddle pserver`进程需要的`--nics`参数,即网卡名 -CONF_PADDLE_PORT | `paddle paserver`的`--port`参数 -CONF_PADDLE_PORTS_NUM | 稠密更新的端口数量,即`--ports_num`参数 -CONF_PADDLE_PORTS_NUM_SPARSE | 稀疏更新的端口数量,即`--ports_num_for_sparse`参数 -CONF_PADDLE_GRADIENT_NUM | 训练节点数量,即`--num_gradient_servers参数` +- JOB_PATH:共享存储挂在的路径 +- JOB_NAME:Job的名字 +- TRAIN_CONFIG_DIR:本次训练文件所在目录,与JOB_PATH,JOB_NAME组合可以找到本次训练需要的文件路径 +- CONF_PADDLE_NIC:`paddle pserver`进程需要的`--nics`参数,即网卡名 +- CONF_PADDLE_PORT:`paddle paserver`的`--port`参数 +- CONF_PADDLE_PORTS_NUM:稠密更新的端口数量,即`--ports_num`参数 +- CONF_PADDLE_PORTS_NUM_SPARSE:稀疏更新的端口数量,即`--ports_num_for_sparse`参数 +- CONF_PADDLE_GRADIENT_NUM:训练节点数量,即`--num_gradient_servers参数` -这些参数的具体描述,读者可以查看[这里](http://www.paddlepaddle.org/doc/ui/cmd_argument/detail_introduction.html#parameter-server-and-distributed-communication)。 +这些参数的具体描述,读者可以查看[这里](http://www.paddlepaddle.org/docs/develop/documentation/zh/howto/usage/cmd_parameter/detail_introduction_cn.html)。 编写完YAML文件后,可以使用Kubernetes的命令行工具创建job。 diff --git a/doc/howto/usage/k8s/k8s_en.md b/doc/howto/usage/cluster/k8s_en.md similarity index 79% rename from doc/howto/usage/k8s/k8s_en.md rename to doc/howto/usage/cluster/k8s_en.md index 0c3ab05b708e7a924577c26496b8c55126e76c62..c374f00a495d705ceddf8d3d930768ceeb93282b 100644 --- a/doc/howto/usage/k8s/k8s_en.md +++ b/doc/howto/usage/cluster/k8s_en.md @@ -1,18 +1,27 @@ -# Paddle On Kubernetes +# PaddlePaddle On Kubernetes ->In this article, we will introduce how to run Paddle training job on single CPU machine using Kubernetes. In next article, we will introduce how to run Paddle training job on distributed cluster. +In this article, we will introduce how to run PaddlePaddle training job on single CPU machine using Kubernetes. In next article, we will introduce how to run PaddlePaddle training job on distributed cluster. ## Build Docker Image -In distributed Kubernetes cluster, we will use Ceph or other shared storage system for storing training related data so that all processes in Paddle training can retrieve data from Ceph. In this example, we will only demo training job on single machine. In order to simplify the requirement of the environment, we will directly put training data into Paddle's Docker Image, so we need to create a Paddle Docker image that already includes the training data. +In distributed Kubernetes cluster, we will use Ceph or other distributed +storage system for storing training related data so that all processes in +PaddlePaddle training can retrieve data from Ceph. In this example, we will +only demo training job on single machine. In order to simplify the requirement +of the environment, we will directly put training data into the PaddlePaddle Docker Image, +so we need to create a PaddlePaddle Docker image that includes the training data. + +The production Docker Image `paddlepaddle/paddle:cpu-demo-latest` has the PaddlePaddle +source code and demo. (Caution: Default PaddlePaddle Docker Image `paddlepaddle/paddle:latest` doesn't include +the source code, PaddlePaddle's different versions of Docker Image can be referred here: +[Docker Installation Guide](http://paddlepaddle.org/docs/develop/documentation/zh/getstarted/build_and_install/docker_install_en.html)), +so we run this Docker Image and download the training data, and then commit the whole +Container to be a new Docker Image. -Paddle's [Quick Start Tutorial](http://www.paddlepaddle.org/doc/demo/quick_start/index_en.html) introduces how to download and train data by using script from Paddle's source code. -And `paddledev/paddle:cpu-demo-latest` image has the Paddle source code and demo. (Caution: Default Paddle image `paddledev/paddle:cpu-latest` doesn't include the source code, Paddle's different versions of image can be referred here: [Docker installation guide](http://www.paddlepaddle.org/doc/build/docker_install.html)), so we run this container and download the training data, and then commit the whole container to be a new Docker image. - ### Run Docker Container ``` -$ docker run --name quick_start_data -it paddledev/paddle:cpu-demo-latest +$ docker run --name quick_start_data -it paddlepaddle/paddle:cpu-demo-latest ``` ### Download Training Data @@ -67,7 +76,7 @@ $ docker commit quick_start_data mypaddle/paddle:quickstart ## Use Kubernetes For Training ->We will use Kubernetes job for training process, following steps shows how to do the training with Kubernetes. +We will use Kubernetes job for training process, following steps shows how to do the training with Kubernetes. ### Create Yaml Files @@ -99,7 +108,7 @@ spec: restartPolicy: Never ``` -### Start Paddle Job +### Start PaddlePaddle Job Using the above yaml file to start the Kubernetes job. diff --git a/doc/howto/usage/cluster/openmpi_cn.md b/doc/howto/usage/cluster/openmpi_cn.md new file mode 100644 index 0000000000000000000000000000000000000000..831cafdc03c6a908f31769d0467de022df42dab5 --- /dev/null +++ b/doc/howto/usage/cluster/openmpi_cn.md @@ -0,0 +1,41 @@ +# 在OpenMPI集群中提交训练作业 + +## 准备OpenMPI集群 + +执行下面的命令以启动3个节点的OpenMPI集群和一个"head"节点: + +```bash +paddle/scripts/cluster_train_v2/openmpi/docker_cluster +kubectl create -f head.yaml +kubectl create -f mpi-nodes.yaml +``` + +然后可以从head节点ssh无密码登录到OpenMPI的每个节点上。 + +## 启动集群作业 + +您可以按照下面的步骤在OpenMPI集群中提交paddle训练任务: + +```bash +# 获得head和node节点的IP地址 +kubectl get po -o wide +# 将node节点的IP地址保存到machines文件中 +kubectl get po -o wide | grep nodes | awk '{print $6}' > machines +# 拷贝必要的文件到head节点 +scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ +# ssh 登录到head节点 +ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] +# --------------- 以下操作均在head节点中执行 --------------- +# 准备训练数据 +python prepare.py +# 拷贝训练程序和字典文件到每台MPI节点 +cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial +# 创建日志目录 +mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs +# 拷贝训练数据到各自的节点 +scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial +scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial +scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial +# 启动训练任务 +mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh +``` diff --git a/doc/howto/usage/cluster/openmpi_en.md b/doc/howto/usage/cluster/openmpi_en.md new file mode 100644 index 0000000000000000000000000000000000000000..09af46e25ebe1f843dc7c7be0997dc706413b65c --- /dev/null +++ b/doc/howto/usage/cluster/openmpi_en.md @@ -0,0 +1,41 @@ +# Cluster Training Using OpenMPI + +## Prepare an OpenMPI cluster + +Run the following command to start a 3-node MPI cluster and one "head" node. + +```bash +cd paddle/scripts/cluster_train_v2/openmpi/docker_cluster +kubectl create -f head.yaml +kubectl create -f mpi-nodes.yaml +``` + +Then you can log in to every OpenMPI node using ssh without input any passwords. + +## Launching Cluster Job + +Follow the steps to launch a PaddlePaddle training job in OpenMPI cluster:\ + +```bash +# find out node IP addresses +kubectl get po -o wide +# generate a "machines" file containing node IP addresses +kubectl get po -o wide | grep nodes | awk '{print $6}' > machines +# copy necessary files onto "head" node +scp -i ssh/id_rsa.mpi.pub machines prepare.py train.py start_mpi_train.sh tutorial@[headIP]:~ +# login to head node using ssh +ssh -i ssh/id_rsa.mpi.pub tutorial@[headIP] +# --------------- in head node --------------- +# prepare training data +python prepare.py +# copy training data and dict file to MPI nodes +cat machines | xargs -i scp word_dict.pickle train.py start_mpi_train.sh machines {}:/home/tutorial +# creat a directory for storing log files +mpirun -hostfile machines -n 3 mkdir /home/tutorial/logs +# copy training data to every node +scp train.txt-00000 test.txt-00000 [node1IP]:/home/tutorial +scp train.txt-00001 test.txt-00001 [node2IP]:/home/tutorial +scp train.txt-00002 test.txt-00002 [node3IP]:/home/tutorial +# start the job +mpirun -hostfile machines -n 3 /home/tutorial/start_mpi_train.sh +``` diff --git a/doc/howto/usage/k8s/src/Dockerfile b/doc/howto/usage/cluster/src/Dockerfile similarity index 54% rename from doc/howto/usage/k8s/src/Dockerfile rename to doc/howto/usage/cluster/src/Dockerfile index 3a73606c61432329b4cc2d2f8daadc5af8735c96..e178bf4da0f32fca9586b5b69a2c7419de5d9cb1 100644 --- a/doc/howto/usage/k8s/src/Dockerfile +++ b/doc/howto/usage/cluster/src/Dockerfile @@ -1,4 +1,4 @@ -FROM paddledev/paddle:cpu-latest +FROM paddlepaddle/paddle:latest MAINTAINER zjsxzong89@gmail.com diff --git a/doc/howto/usage/k8s/src/add_security_group.png b/doc/howto/usage/cluster/src/add_security_group.png similarity index 100% rename from doc/howto/usage/k8s/src/add_security_group.png rename to doc/howto/usage/cluster/src/add_security_group.png diff --git a/doc/howto/usage/k8s/src/create_efs.png b/doc/howto/usage/cluster/src/create_efs.png similarity index 100% rename from doc/howto/usage/k8s/src/create_efs.png rename to doc/howto/usage/cluster/src/create_efs.png diff --git a/doc/howto/usage/k8s/src/efs_mount.png b/doc/howto/usage/cluster/src/efs_mount.png similarity index 100% rename from doc/howto/usage/k8s/src/efs_mount.png rename to doc/howto/usage/cluster/src/efs_mount.png diff --git a/doc/howto/usage/cluster/src/k8s-paddle-arch.png b/doc/howto/usage/cluster/src/k8s-paddle-arch.png new file mode 100644 index 0000000000000000000000000000000000000000..b3800c4fe81302d35e49f7dbacb9221c4dfa5cde Binary files /dev/null and b/doc/howto/usage/cluster/src/k8s-paddle-arch.png differ diff --git a/doc/howto/usage/k8s/src/k8s_data/Dockerfile b/doc/howto/usage/cluster/src/k8s_data/Dockerfile similarity index 100% rename from doc/howto/usage/k8s/src/k8s_data/Dockerfile rename to doc/howto/usage/cluster/src/k8s_data/Dockerfile diff --git a/doc/howto/usage/k8s/src/k8s_data/README.md b/doc/howto/usage/cluster/src/k8s_data/README.md similarity index 100% rename from doc/howto/usage/k8s/src/k8s_data/README.md rename to doc/howto/usage/cluster/src/k8s_data/README.md diff --git a/doc/howto/usage/k8s/src/k8s_data/get_data.sh b/doc/howto/usage/cluster/src/k8s_data/get_data.sh similarity index 100% rename from doc/howto/usage/k8s/src/k8s_data/get_data.sh rename to doc/howto/usage/cluster/src/k8s_data/get_data.sh diff --git a/doc/howto/usage/k8s/src/k8s_train/Dockerfile b/doc/howto/usage/cluster/src/k8s_train/Dockerfile similarity index 77% rename from doc/howto/usage/k8s/src/k8s_train/Dockerfile rename to doc/howto/usage/cluster/src/k8s_train/Dockerfile index c0fca1f9a945921e6e8899fee2db8845e66136a1..77f021a89a70d934bf70424eaa3c6dc3f7c93a28 100644 --- a/doc/howto/usage/k8s/src/k8s_train/Dockerfile +++ b/doc/howto/usage/cluster/src/k8s_train/Dockerfile @@ -1,4 +1,4 @@ -FROM paddledev/paddle:cpu-latest +FROM paddlepaddle/paddle:latest COPY start.sh /root/ COPY start_paddle.py /root/ diff --git a/doc/howto/usage/k8s/src/k8s_train/README.md b/doc/howto/usage/cluster/src/k8s_train/README.md similarity index 100% rename from doc/howto/usage/k8s/src/k8s_train/README.md rename to doc/howto/usage/cluster/src/k8s_train/README.md diff --git a/doc/howto/usage/k8s/src/k8s_train/start.sh b/doc/howto/usage/cluster/src/k8s_train/start.sh similarity index 100% rename from doc/howto/usage/k8s/src/k8s_train/start.sh rename to doc/howto/usage/cluster/src/k8s_train/start.sh diff --git a/doc/howto/usage/k8s/src/k8s_train/start_paddle.py b/doc/howto/usage/cluster/src/k8s_train/start_paddle.py similarity index 100% rename from doc/howto/usage/k8s/src/k8s_train/start_paddle.py rename to doc/howto/usage/cluster/src/k8s_train/start_paddle.py diff --git a/doc/howto/usage/k8s/src/managed_policy.png b/doc/howto/usage/cluster/src/managed_policy.png similarity index 100% rename from doc/howto/usage/k8s/src/managed_policy.png rename to doc/howto/usage/cluster/src/managed_policy.png diff --git a/doc/howto/usage/k8s/src/pserver_and_trainer.png b/doc/howto/usage/cluster/src/pserver_and_trainer.png similarity index 100% rename from doc/howto/usage/k8s/src/pserver_and_trainer.png rename to doc/howto/usage/cluster/src/pserver_and_trainer.png diff --git a/doc/howto/usage/k8s/src/route53_create_recordset.png b/doc/howto/usage/cluster/src/route53_create_recordset.png similarity index 100% rename from doc/howto/usage/k8s/src/route53_create_recordset.png rename to doc/howto/usage/cluster/src/route53_create_recordset.png diff --git a/doc/howto/usage/k8s/src/route53_create_zone.png b/doc/howto/usage/cluster/src/route53_create_zone.png similarity index 100% rename from doc/howto/usage/k8s/src/route53_create_zone.png rename to doc/howto/usage/cluster/src/route53_create_zone.png diff --git a/doc/howto/usage/k8s/src/worker_security_group.png b/doc/howto/usage/cluster/src/worker_security_group.png similarity index 100% rename from doc/howto/usage/k8s/src/worker_security_group.png rename to doc/howto/usage/cluster/src/worker_security_group.png diff --git a/doc/howto/usage/k8s/k8s_basis_cn.md b/doc/howto/usage/k8s/k8s_basis_cn.md deleted file mode 100644 index 4c3dc81ed38f239c1f4a83d22b49cf57b5d16a8b..0000000000000000000000000000000000000000 --- a/doc/howto/usage/k8s/k8s_basis_cn.md +++ /dev/null @@ -1,75 +0,0 @@ -# Kubernetes 简介 - -[*Kubernetes*](http://kubernetes.io/)是Google开源的容器集群管理系统,其提供应用部署、维护、扩展机制等功能,利用Kubernetes能方便地管理跨机器运行容器化的应用。Kubernetes可以在物理机或虚拟机上运行,且支持部署到[AWS](http://kubernetes.io/docs/getting-started-guides/aws),[Azure](http://kubernetes.io/docs/getting-started-guides/azure/),[GCE](http://kubernetes.io/docs/getting-started-guides/gce)等多种公有云环境。介绍分布式训练之前,需要对[Kubernetes](http://kubernetes.io/)有一个基本的认识,下面先简要介绍一下本文用到的几个Kubernetes概念。 - -- [*Node*](http://kubernetes.io/docs/admin/node/) 表示一个Kubernetes集群中的一个工作节点,这个节点可以是物理机或者虚拟机,Kubernetes集群就是由node节点与master节点组成的。 - -- [*Pod*](http://kubernetes.io/docs/user-guide/pods/) 是一组(一个或多个)容器,pod是Kubernetes的最小调度单元,一个pod中的所有容器会被调度到同一个node上。Pod中的容器共享NET,PID,IPC,UTS等Linux namespace。由于容器之间共享NET namespace,所以它们使用同一个IP地址,可以通过*localhost*互相通信。不同pod之间可以通过IP地址访问。 - -- [*Job*](http://kubernetes.io/docs/user-guide/jobs/) 描述Kubernetes上运行的作业,一次作业称为一个job,通常每个job包括一个或者多个pods,job启动后会创建这些pod并开始执行一个程序,等待这个程序执行成功并返回0则成功退出,如果执行失败,也可以配置不同的重试机制。 - -- [*Volume*](http://kubernetes.io/docs/user-guide/volumes/) 存储卷,是pod内的容器都可以访问的共享目录,也是容器与node之间共享文件的方式,因为容器内的文件都是暂时存在的,当容器因为各种原因被销毁时,其内部的文件也会随之消失。通过volume,就可以将这些文件持久化存储。Kubernetes支持多种volume,例如hostPath(宿主机目录),gcePersistentDisk,awsElasticBlockStore等。 - -- [*Namespaces*](https://kubernetes.io/docs/user-guide/namespaces/) 命名空间,在kubernetes中创建的所有资源对象(例如上文的pod,job)等都属于一个命名空间,在同一个命名空间中,资源对象的名字是唯一的,不同空间的资源名可以重复,命名空间主要为了对象进行逻辑上的分组便于管理。本文只使用了默认命名空间。 - -- [*PersistentVolume*](https://kubernetes.io/docs/user-guide/persistent-volumes/): 和[*PersistentVolumeClaim*](https://kubernetes.io/docs/user-guide/persistent-volumes/#persistentvolumeclaims)结合,将外部的存储服务在Kubernetes中描述成为统一的资源形式,便于存储资源管理和Pod引用。 - -## 部署Kubernetes集群 - -Kubernetes提供了多种集群部署的方案,本文档内不重复介绍。这里给出集中常见的部署方法: - -- [*minikube*](https://kubernetes.io/docs/getting-started-guides/minikube/): 快速在本地启动一个单机的kubernetes服务器,便于本地验证和测试。 -- [*kubeadm*](http://kubernetes.io/docs/getting-started-guides/kubeadm/): 在不同操作系统,不同主机(Bare-Metal, AWS, GCE)条件下,快速部署集群。 -- [*AWS EC2*](https://kubernetes.io/docs/getting-started-guides/aws/): 在aws上快速部署集群。 -- [*Bare-Metal*](https://kubernetes.io/docs/getting-started-guides/centos/centos_manual_config/): 在物理机上手动部署。 - -可以参考[这个表格](https://kubernetes.io/docs/getting-started-guides/#table-of-solutions)选择适合您的场景的合适方案。 - -## 选择存储方案 - -容器不会保留在运行时生成的数据,job或者应用程序在容器中运行时生成的数据会在容器销毁时消失。为了完成分布式机器学习训练任务,需要有一个外部的存储服务来保存训练所需数据和训练输出。 -常见的可选存储服务包括: - -- [*NFS*](https://github.com/kubernetes/kubernetes/tree/master/examples/volumes/nfs): 可以将磁盘上某个目录共享给网络中其他机器访问。部署和配置比较简单,可以用于小量数据的验证。不提供分布式存储,高可用,冗余等功能。NFS的部署方法可以参考[这里](http://www.tecmint.com/how-to-setup-nfs-server-in-linux/)。 -- [*GlusterFS*](http://gluster.readthedocs.io/en/latest/Quick-Start-Guide/Quickstart/): 网络分布式文件系统,可以在Kubernetes中按照[这个](https://github.com/kubernetes/kubernetes/tree/master/examples/volumes/glusterfs)例子使用。 -- [*Ceph*](http://docs.ceph.com/docs/master/): 分布式文件系统,支持rbd,POSIX API接口(ceph fs)和对象存储API,参考[这里](https://kubernetes.io/docs/user-guide/volumes/#rbd)。 -- [*MooseFS*](https://moosefs.com/documentation.html): 一个分布式的存储系统。需要先挂载到服务器Node上再通过kubernetes hostPath Volume挂载到容器中。 - -## 配置kubectl - -### 安装kubectl -``` -# OS X -curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/darwin/amd64/kubectl - -# Linux -curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/linux/amd64/kubectl - -# Windows -curl -LO https://storage.googleapis.com/kubernetes-release/release/$(curl -s https://storage.googleapis.com/kubernetes-release/release/stable.txt)/bin/windows/amd64/kubectl.exe -``` - -### 配置kubectl访问你的kubernetes集群 - -编辑`~/.kube/config`这个配置文件,修改`Master-IP`的地址。如果使用SSL认证,则需要配置`certificate-authority`和`users`中的用户证书。如果是使用非SSL方式访问(比如通过8080端口),也可以去掉这些证书的配置。 -``` -apiVersion: v1 -clusters: -- cluster: - certificate-authority: /path/to/ca.crt - server: https://[Master-IP]:443 - name: minikube -contexts: -- context: - cluster: minikube - user: minikube - name: minikube -current-context: minikube -kind: Config -preferences: {} -users: -- name: minikube - user: - client-certificate: /path/to/apiserver.crt - client-key: /Users/wuyi/.minikube/apiserver.key -``` diff --git a/doc/howto/usage/k8s/src/k8s-paddle-arch.png b/doc/howto/usage/k8s/src/k8s-paddle-arch.png deleted file mode 100644 index 2183a232ad402b76f82a67234a5c93e13ce97ac3..0000000000000000000000000000000000000000 Binary files a/doc/howto/usage/k8s/src/k8s-paddle-arch.png and /dev/null differ diff --git a/doc/mobile/cross_compiling_for_ios_cn.md b/doc/mobile/cross_compiling_for_ios_cn.md index 9da48e7f2119ce901fbb3abab73400df27be16d2..d5196d9a4c93c7692d2a624ec7d0650e32806338 100644 --- a/doc/mobile/cross_compiling_for_ios_cn.md +++ b/doc/mobile/cross_compiling_for_ios_cn.md @@ -18,11 +18,11 @@ PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/ - `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`iOS`。在设置`CMAKE_SYSTEM_NAME=iOS`后,PaddlePaddle的CMake系统会自动编译所有的第三方依赖库,并且强制设置一些PaddlePaddle参数的值(`WITH_C_API=ON`、`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`)。 - `WITH_C_API`,是否编译C-API预测库,必须设置为ON。在iOS平台上只支持使用C-API来预测。 -- `WITH_SWIG_PY`,必须设置为ON。在iOS平台上不支持通过swig调用来训练或者预测。 +- `WITH_SWIG_PY`,必须设置为`OFF`。在iOS平台上不支持通过swig调用来训练或者预测。 iOS平台可选配置参数: -- `IOS_PLATFORM`,可设置为`OS/SIMULATOR`,默认值为`OS`。 +- `IOS_PLATFORM`,可设置为`OS`(默认值)或`SIMULATOR`。 - `OS`,构建目标为`arm`架构的iPhone或者iPad等物理设备。 - `SIMULATOR`,构建目标为`x86`架构的模拟器平台。 - `IOS_ARCH`,目标架构。针对不同的`IOS_PLATFORM`,可设置的目标架构如下表所示,默认编译所有架构: diff --git a/doc/mobile/cross_compiling_for_ios_en.md b/doc/mobile/cross_compiling_for_ios_en.md new file mode 100644 index 0000000000000000000000000000000000000000..aa390cd61f3fbd75e5a3b342f3559e76da35a918 --- /dev/null +++ b/doc/mobile/cross_compiling_for_ios_en.md @@ -0,0 +1,120 @@ +# PaddlePaddle Compiling Guide for iOS + +This tutorial will walk you through cross compiling the PaddlePaddle library for iOS from the source in MacOS. + +## Preparation + +Apple provides Xcode for cross-compiling and IDE for iOS development. Download from App store or [here](https://developer.apple.com/cn/xcode/). To verify your installation, run command as follows + +```bash +$ xcodebuild -version +Xcode 9.0 +Build version 9A235 +``` + +## Cross-compiling configurations + +PaddlePaddle provides cross-compiling toolchain configuration documentation [cmake/cross_compiling/ios.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/ios.cmake), which has some default settings for frequently used compilers. + +There are some mandatory environment variables need to be set before cross compiling PaddlePaddle for iOS: + +- `CMAKE_SYSTEM_NAME`, CMake compiling target platform name, has to be `iOS`. PaddlePaddle CMake will compile all the third party dependencies and enforce some parameters (`WITH_C_API=ON`, `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`,`WITH_RDMA=OFF`) when this variable is set with value `iOS`. + +- `WITH_C_API`, Whether to compile inference C-API library, has to be `ON`, since C-API is the only supported interface for inferencing in iOS. +- `WITH_SWIG_PY`, has to be `OFF`. It's not supported to inference or train via swig in iOS. + +Optional environment variables for iOS are: + +- `IOS_PLATFORM`, either `OS` (default) or `SIMULATOR`. + - `OS`, build targets ARM-based physical devices like iPhone or iPad. + - `SIMULATOR`, build targets x86 architecture simulators. +- `IOS_ARCH`, target architecture. By default, all architecture types will be compiled. If you need to specify the architecture to compile for, please find valid values for different `IOS_PLATFORM` settings from the table below: + + + + + + + + + + + + + + + + + + + + + + +
IOS_PLATFORMIOS_ARCH
OSarmv7, armv7s, arm64
SIMULATORi386, x86_64
+ +- `IOS_DEPLOYMENT_TARGET`, minimum iOS version to deployment, `7.0` by default. +- `IOS_ENABLE_BITCODE`, whether to enable [Bitcode](https://developer.apple.com/library/content/documentation/IDEs/Conceptual/AppDistributionGuide/AppThinning/AppThinning.html#//apple_ref/doc/uid/TP40012582-CH35-SW3), values can be `ON/OFF`, `ON` by default. +- `IOS_USE_VECLIB_FOR_BLAS`, whether to use [vecLib](https://developer.apple.com/documentation/accelerate/veclib) framework for BLAS computing. values can be `ON/OFF`, `OFF` by default. +- `IOS_DEVELOPMENT_ROOT`, the path to `Developer` directory, can be explicitly set with your `/path/to/platform/Developer`. If left blank, PaddlePaddle will automatically pick the Xcode corresponding `platform`'s `Developer` directory based on your `IOS_PLATFORM` value. +- `IOS_SDK_ROOT`, the path to `SDK` root, can be explicitly set with your `/path/to/platform/Developer/SDKs/SDK`. if left black, PaddlePaddle will pick the latest SDK in the directory of `IOS_DEVELOPMENT_ROOT`. + +other settings: + +- `USE_EIGEN_FOR_BLAS`, whether to use Eigen for matrix computing. effective when `IOS_USE_VECLIB_FOR_BLAS=OFF`. Values can be `ON/OFF`, `OFF` by default. +- `HOST_C/CXX_COMPILER`, host C/C++ compiler. Uses value from environment variable `CC/CXX` by default or `cc/c++` if `CC/CXX` doesn't exist. + +some typical cmake configurations: + +```bash +cmake -DCMAKE_SYSTEM_NAME=iOS \ + -DIOS_PLATFORM=OS \ + -DIOS_ARCH="armv7;arm64" \ + -DIOS_ENABLE_BITCODE=ON \ + -DIOS_USE_VECLIB_FOR_BLAS=ON \ + -DCMAKE_INSTALL_PREFIX=your/path/to/install \ + -DWITH_C_API=ON \ + -DWITH_TESTING=OFF \ + -DWITH_SWIG_PY=OFF \ + .. +``` + +```bash +cmake -DCMAKE_SYSTEM_NAME=iOS \ + -DIOS_PLATFORM=SIMULATOR \ + -DIOS_ARCH="x86_64" \ + -DIOS_USE_VECLIB_FOR_BLAS=ON \ + -DCMAKE_INSTALL_PREFIX=your/path/to/install \ + -DWITH_C_API=ON \ + -DWITH_TESTING=OFF \ + -DWITH_SWIG_PY=OFF \ + .. +``` + +You can set other compiling parameters for your own need. I.E. if you are trying to minimize the library size, set `CMAKE_BUILD_TYPE` with `MinSizeRel`; or if the performance is your concern, set `CMAKE_BUILD_TYPE` with `Release`. You can even manipulate the PaddlePaddle compiling procedure by manually set `CMAKE_C/CXX_FLAGS` values. + +**TIPS for a better performance**: + +- set `CMAKE_BUILD_TYPE` with `Release` +- set `IOS_USE_VECLIB_FOR_BLAS` with `ON` + +## Compile and install + +After CMake, run following commands, PaddlePaddle will download the compile 3rd party dependencies, compile and install PaddlePaddle inference library. + +``` +$ make +$ make install +``` + +Please Note: if you compiled PaddlePaddle in the source directory for other platforms, do remove `third_party` and `build` directory within the source with `rm -rf` to ensure that all the 3rd party libraries dependencies and PaddlePaddle is newly compiled with current CMake configuration. + +`your/path/to/install` directory will have following directories after `compile` and `install`: + +- `include`, contains all the C-API header files. +- `lib`, contains PaddlePaddle C-API static library. +- `third_party` contains all the 3rd party libraries. + +Please note: if PaddlePaddle library need to support both physical devices and simulators, you will need to compile correspondingly, then merge fat library with `lipo`. + +Now you will have PaddlePaddle library compiled and installed, the fat library can be used in deep learning related iOS APPs. Please refer to C-API documentation for usage guides. diff --git a/doc/mobile/index_en.rst b/doc/mobile/index_en.rst index 3c08d736717cfe8d5fdf449dc58015086befbe60..ef421dacad458828cadf8cf505375d6c4bfd9dde 100644 --- a/doc/mobile/index_en.rst +++ b/doc/mobile/index_en.rst @@ -5,4 +5,5 @@ MOBILE :maxdepth: 1 cross_compiling_for_android_en.md + cross_compiling_for_ios_en.md cross_compiling_for_raspberry_en.md diff --git a/paddle/api/CMakeLists.txt b/paddle/api/CMakeLists.txt index d6b8464100d4497876aa3f6f7cbc666aafae4bfc..cf84568ecdf1227b0d0ed3606a4a9a6e5186af72 100644 --- a/paddle/api/CMakeLists.txt +++ b/paddle/api/CMakeLists.txt @@ -25,8 +25,18 @@ FILE(GLOB PY_PADDLE_PYTHON_FILES ${PADDLE_SOURCE_DIR}/paddle/py_paddle/*.py) SET_SOURCE_FILES_PROPERTIES(Paddle.i PROPERTIES CPLUSPLUS ON) +SET(SWIG_NEED_FLAGS + -ftls-model=global-dynamic + -Wno-parentheses-equality + -Wno-self-assign + -Wno-maybe-uninitialized + -Wno-missing-field-initializers) + FOREACH(flag ${SWIG_NEED_FLAGS}) + safe_set_cxxflag(SWIG_CXX_FLAGS ${flag}) +ENDFOREACH() + SET(CMAKE_SWIG_OUTDIR ${CMAKE_CURRENT_BINARY_DIR}) -SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wno-parentheses-equality -Wno-missing-field-initializers -Wno-self-assign -ftls-model=global-dynamic") +SET(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} ${SWIG_CXX_FLAGS}") SET(SWIG_MODULE_swig_paddle_EXTRA_DEPS paddle_parameter diff --git a/paddle/capi/Main.cpp b/paddle/capi/Main.cpp index bb8249a5511c089ec2f2263ff4cc290f0a5a8fce..c038789340033fcf6dcc07a41b033a50e980c965 100644 --- a/paddle/capi/Main.cpp +++ b/paddle/capi/Main.cpp @@ -43,4 +43,11 @@ paddle_error paddle_init(int argc, char** argv) { isInit = true; return kPD_NO_ERROR; } + +paddle_error paddle_init_thread() { + if (FLAGS_use_gpu) { + hl_init(FLAGS_gpu_id); + } + return kPD_NO_ERROR; +} } diff --git a/paddle/capi/Matrix.cpp b/paddle/capi/Matrix.cpp index 30f3a766f0c65187c8f2dd4603e3d26c9b9a6a3d..cbacd1fb71c14f490ff548db714e728772292b4b 100644 --- a/paddle/capi/Matrix.cpp +++ b/paddle/capi/Matrix.cpp @@ -40,7 +40,7 @@ paddle_error paddle_matrix_destroy(paddle_matrix mat) { paddle_error paddle_matrix_set_row(paddle_matrix mat, uint64_t rowID, paddle_real* rowArray) { - if (mat == nullptr) return kPD_NULLPTR; + if (mat == nullptr || rowArray == nullptr) return kPD_NULLPTR; auto ptr = cast(mat); if (ptr->mat == nullptr) return kPD_NULLPTR; if (rowID >= ptr->mat->getHeight()) return kPD_OUT_OF_RANGE; diff --git a/paddle/capi/error.cpp b/paddle/capi/error.cpp new file mode 100644 index 0000000000000000000000000000000000000000..96ce31b45fc3f83237146443cbe4289af7bfa239 --- /dev/null +++ b/paddle/capi/error.cpp @@ -0,0 +1,32 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "error.h" + +extern "C" const char* paddle_error_string(paddle_error err) { + switch (err) { + case kPD_NULLPTR: + return "nullptr error"; + case kPD_OUT_OF_RANGE: + return "out of range error"; + case kPD_PROTOBUF_ERROR: + return "protobuf error"; + case kPD_NOT_SUPPORTED: + return "not supported error"; + case kPD_UNDEFINED_ERROR: + return "undefined error"; + default: + return ""; + } +} diff --git a/paddle/capi/error.h b/paddle/capi/error.h index 44d8c2040d1aad698398089baeee6f13c3deeb55..2da9e0a3ef604fbcd53bac271c72ef33b3105152 100644 --- a/paddle/capi/error.h +++ b/paddle/capi/error.h @@ -15,6 +15,8 @@ limitations under the License. */ #ifndef __PADDLE_CAPI_ERROR_H__ #define __PADDLE_CAPI_ERROR_H__ +#include "config.h" + /** * Error Type for Paddle API. */ @@ -27,4 +29,17 @@ typedef enum { kPD_UNDEFINED_ERROR = -1, } paddle_error; +#ifdef __cplusplus +extern "C" { +#endif + +/** + * Error string for Paddle API. + */ +PD_API const char* paddle_error_string(paddle_error err); + +#ifdef __cplusplus +} +#endif + #endif diff --git a/paddle/capi/examples/model_inference/multi_thread/CMakeLists.txt b/paddle/capi/examples/model_inference/multi_thread/CMakeLists.txt index 98e411ddc02a46034e8f6ceb00657622d998c9f3..2fc8debddedeab6ae982b0df49ec2b73bc0f85f5 100644 --- a/paddle/capi/examples/model_inference/multi_thread/CMakeLists.txt +++ b/paddle/capi/examples/model_inference/multi_thread/CMakeLists.txt @@ -1,8 +1,29 @@ project(multi_thread) cmake_minimum_required(VERSION 2.8) -aux_source_directory(. SRC_LIST) -add_executable(${PROJECT_NAME} ${SRC_LIST}) + find_package (Threads) + +if(NOT PADDLE_ROOT) + set(PADDLE_ROOT $ENV{PADDLE_ROOT} CACHE PATH "Paddle Path") +endif() +if(PADDLE_ROOT) + include_directories(${PADDLE_ROOT}/include) + link_directories(${PADDLE_ROOT}/lib) +endif() + +set(CPU_SRCS main.c) +add_executable(${PROJECT_NAME} ${CPU_SRCS}) set_property(TARGET ${PROJECT_NAME} PROPERTY C_STANDARD 99) -target_link_libraries(${PROJECT_NAME} -lpaddle_capi_shared - ${CMAKE_THREAD_LIBS_INIT}) +target_link_libraries(${PROJECT_NAME} + -lpaddle_capi_shared + ${CMAKE_THREAD_LIBS_INIT}) + +find_package(CUDA QUIET) +if(CUDA_FOUND) + set(GPU_SRCS main_gpu.c) + cuda_add_executable(${PROJECT_NAME}_gpu ${GPU_SRCS}) + set_property(TARGET ${PROJECT_NAME}_gpu PROPERTY C_STANDARD 99) + target_link_libraries(${PROJECT_NAME}_gpu + -lpaddle_capi_shared + ${CMAKE_THREAD_LIBS_INIT}) +endif(CUDA_FOUND) diff --git a/paddle/capi/examples/model_inference/multi_thread/main_gpu.c b/paddle/capi/examples/model_inference/multi_thread/main_gpu.c new file mode 100644 index 0000000000000000000000000000000000000000..6fd376e0d1a2fee4f9a0f676b53c6f2891795cab --- /dev/null +++ b/paddle/capi/examples/model_inference/multi_thread/main_gpu.c @@ -0,0 +1,113 @@ +#include +#include +#include +#include "../common/common.h" + +#define CONFIG_BIN "./trainer_config.bin" +#define NUM_THREAD 4 +#define NUM_ITER 1000 + +pthread_mutex_t mutex; + +/* + * @brief It is an simple inference example that runs multi-threads on a GPU. + * Each thread holds it own local gradient_machine but shares the same + * parameters. + * If you want to run on different GPUs, you need to launch + * multi-processes or set trainer_count > 1. + */ +void* thread_main(void* gm_ptr) { + // Initialize the thread environment of Paddle. + CHECK(paddle_init_thread()); + + paddle_gradient_machine machine = (paddle_gradient_machine)(gm_ptr); + // Create input arguments. + paddle_arguments in_args = paddle_arguments_create_none(); + // Create input matrix. + paddle_matrix mat = paddle_matrix_create(/* sample_num */ 1, + /* size */ 784, + /* useGPU */ true); + // Create output arguments. + paddle_arguments out_args = paddle_arguments_create_none(); + // Create output matrix. + paddle_matrix prob = paddle_matrix_create_none(); + + // CPU buffer to cache the input and output. + paddle_real* cpu_input = (paddle_real*)malloc(784 * sizeof(paddle_real)); + paddle_real* cpu_output = (paddle_real*)malloc(10 * sizeof(paddle_real)); + for (int iter = 0; iter < NUM_ITER; ++iter) { + // There is only one input layer of this network. + CHECK(paddle_arguments_resize(in_args, 1)); + CHECK(paddle_arguments_set_value(in_args, 0, mat)); + + for (int i = 0; i < 784; ++i) { + cpu_input[i] = rand() / ((float)RAND_MAX); + } + CHECK(paddle_matrix_set_value(mat, cpu_input)); + + CHECK(paddle_gradient_machine_forward(machine, + in_args, + out_args, + /* isTrain */ false)); + + CHECK(paddle_arguments_get_value(out_args, 0, prob)); + CHECK(paddle_matrix_get_value(prob, cpu_output)); + + pthread_mutex_lock(&mutex); + printf("Prob: "); + for (int i = 0; i < 10; ++i) { + printf("%.2f ", cpu_output[i]); + } + printf("\n"); + pthread_mutex_unlock(&mutex); + } + + CHECK(paddle_matrix_destroy(prob)); + CHECK(paddle_arguments_destroy(out_args)); + CHECK(paddle_matrix_destroy(mat)); + CHECK(paddle_arguments_destroy(in_args)); + CHECK(paddle_gradient_machine_destroy(machine)); + + free(cpu_input); + free(cpu_output); + + return NULL; +} + +int main() { + // Initalize Paddle + char* argv[] = {"--use_gpu=True"}; + CHECK(paddle_init(1, (char**)argv)); + + // Reading config binary file. It is generated by `convert_protobin.sh` + long size; + void* buf = read_config(CONFIG_BIN, &size); + + // Create a gradient machine for inference. + paddle_gradient_machine machine; + CHECK(paddle_gradient_machine_create_for_inference(&machine, buf, (int)size)); + CHECK(paddle_gradient_machine_randomize_param(machine)); + + // Loading parameter. Uncomment the following line and change the directory. + // CHECK(paddle_gradient_machine_load_parameter_from_disk(machine, + // "./some_where_to_params")); + srand(time(0)); + pthread_mutex_init(&mutex, NULL); + + pthread_t threads[NUM_THREAD]; + + for (int i = 0; i < NUM_THREAD; ++i) { + paddle_gradient_machine thread_local_machine; + CHECK(paddle_gradient_machine_create_shared_param( + machine, buf, size, &thread_local_machine)); + pthread_create(&threads[i], NULL, thread_main, thread_local_machine); + } + + for (int i = 0; i < NUM_THREAD; ++i) { + pthread_join(threads[i], NULL); + } + + pthread_mutex_destroy(&mutex); + + return 0; +} diff --git a/paddle/capi/main.h b/paddle/capi/main.h index 893ebcbd58dd24cf835fb2005865c94c9ba2a810..99c4e8428dbaa14d36dc2d36b2a4f16c9ec3e0d1 100644 --- a/paddle/capi/main.h +++ b/paddle/capi/main.h @@ -26,6 +26,13 @@ extern "C" { */ PD_API paddle_error paddle_init(int argc, char** argv); +/** + * Initialize the thread environment of Paddle. + * @note it is requisite for GPU runs but optional for CPU runs. + * For GPU runs, all threads will run on the same GPU devices. + */ +PD_API paddle_error paddle_init_thread(); + #ifdef __cplusplus } #endif diff --git a/paddle/cuda/include/hl_cnn.h b/paddle/cuda/include/hl_cnn.h index 89c1f48edacbe0a4432957fe066481412db7e6e1..88418062927cd0f7714e992cc2495109da45d32f 100644 --- a/paddle/cuda/include/hl_cnn.h +++ b/paddle/cuda/include/hl_cnn.h @@ -116,6 +116,7 @@ extern void hl_maxpool_backward(const int frameCnt, * @param[in] paddingW padding width. * @param[out] tgtData output data. * @param[in] tgtStride stride between output data samples. + * @param[in] excludeMode whether to consider paddings for size. * */ extern void hl_avgpool_forward(const int frameCnt, @@ -132,7 +133,8 @@ extern void hl_avgpool_forward(const int frameCnt, const int paddingH, const int paddingW, real* tgtData, - const int tgtStride); + const int tgtStride, + bool excludeMode); /** * @brief Maximum pool backward. @@ -154,6 +156,7 @@ extern void hl_avgpool_forward(const int frameCnt, * @param[in] scaleB scale. * @param[out] backGrad output grad. * @param[in] outStride stride between output data samples. + * @param[in] excludeMode whether to consider paddings for size. * */ extern void hl_avgpool_backward(const int frameCnt, @@ -172,7 +175,8 @@ extern void hl_avgpool_backward(const int frameCnt, real scaleA, real scaleB, real* backGrad, - const int outStride); + const int outStride, + bool excludeMode); extern void hl_maxpool3D_forward(const int frameCnt, const real* inputData, diff --git a/paddle/cuda/include/stub/hl_cnn_stub.h b/paddle/cuda/include/stub/hl_cnn_stub.h index 968ed4840ffb0623b57bd6e6d839973e109394de..706cc59a8e394b109d2b290425f4b5f51d987f28 100644 --- a/paddle/cuda/include/stub/hl_cnn_stub.h +++ b/paddle/cuda/include/stub/hl_cnn_stub.h @@ -68,7 +68,8 @@ inline void hl_avgpool_forward(const int frameCnt, const int paddingH, const int paddingW, real* tgtData, - const int tgtStride) {} + const int tgtStride, + const bool excludeMode) {} inline void hl_avgpool_backward(const int frameCnt, const real* outGrad, @@ -86,7 +87,8 @@ inline void hl_avgpool_backward(const int frameCnt, real scaleA, real scaleB, real* backGrad, - const int outStride) {} + const int outStride, + const bool excludeMode) {} inline void hl_maxpool3D_forward(const int frameCnt, const real* inputData, diff --git a/paddle/cuda/src/hl_cuda_cnn.cu b/paddle/cuda/src/hl_cuda_cnn.cu index 3699b1e8ae9d8f813439eaeaa760c4a9f6e100a0..2d1bc4f6d55fac4b74f4e58d40fe56aa61d19cf9 100644 --- a/paddle/cuda/src/hl_cuda_cnn.cu +++ b/paddle/cuda/src/hl_cuda_cnn.cu @@ -210,7 +210,8 @@ __global__ void KeAvgPoolForward(const int nthreads, const int padH, const int padW, real* tgtData, - const int tgtStride) { + const int tgtStride, + const bool excludeMode) { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < nthreads) { int pw = index % pooledW; @@ -224,7 +225,8 @@ __global__ void KeAvgPoolForward(const int nthreads, int wend = min(wstart + sizeX, width); hstart = max(hstart, 0); wstart = max(wstart, 0); - int pool_size = (hend - hstart) * (wend - wstart); + int poolSize = + excludeMode ? (hend - hstart) * (wend - wstart) : sizeY * sizeX; real aveval = 0; inputData += (frameNum * channels + c) * height * width; @@ -235,7 +237,7 @@ __global__ void KeAvgPoolForward(const int nthreads, } int tgtIndex = index % (pooledW * pooledH * channels) + frameNum * tgtStride; - tgtData[tgtIndex] = aveval / pool_size; + tgtData[tgtIndex] = aveval / poolSize; } } @@ -253,7 +255,8 @@ void hl_avgpool_forward(const int frameCnt, const int paddingH, const int paddingW, real* tgtData, - const int tgtStride) { + const int tgtStride, + const bool excludeMode) { int num_kernels = pooledH * pooledW * channels * frameCnt; int blocks = (num_kernels + 1024 - 1) / 1024; KeAvgPoolForward<<>>(num_kernels, @@ -270,7 +273,8 @@ void hl_avgpool_forward(const int frameCnt, paddingH, paddingW, tgtData, - tgtStride); + tgtStride, + excludeMode); CHECK_SYNC("hl_avgpool_forward failed"); } @@ -290,7 +294,8 @@ __global__ void KeAvgPoolBackward(const int nthreads, real scaleA, real scaleB, real* tgtGrad, - const int outStride) { + const int outStride, + const bool excludeMode) { int index = blockIdx.x * blockDim.x + threadIdx.x; if (index < nthreads) { int offsetW = index % width + padW; @@ -314,8 +319,9 @@ __global__ void KeAvgPoolBackward(const int nthreads, int wstart = pw * strideW - padW; int wend = min(wstart + sizeX, width); wstart = max(wstart, 0); - int poolsize = (hend - hstart) * (wend - wstart); - gradient += outGrad[ph * pooledW + pw] / poolsize; + int poolSize = + excludeMode ? (hend - hstart) * (wend - wstart) : sizeY * sizeX; + gradient += outGrad[ph * pooledW + pw] / poolSize; } } tgtGrad[index] = scaleB * tgtGrad[index] + scaleA * gradient; @@ -338,7 +344,8 @@ void hl_avgpool_backward(const int frameCnt, real scaleA, real scaleB, real* backGrad, - const int outStride) { + const int outStride, + const bool excludeMode) { int num_kernels = height * width * channels * frameCnt; int blocks = (num_kernels + 1024 - 1) / 1024; @@ -358,7 +365,8 @@ void hl_avgpool_backward(const int frameCnt, scaleA, scaleB, backGrad, - outStride); + outStride, + excludeMode); CHECK_SYNC("hl_avgpool_backward failed"); } diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 4b0eff3adb6fff0c9599b8613c5f19daea840674..206e298eb27a2daaec5c674d45cfe4b81a6b522d 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -58,3 +58,6 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry proto_desc) cc_library(selected_rows SRCS selected_rows.cc DEPS tensor) cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows) + +cc_library(init SRCS init.cc DEPS gflags executor place stringpiece) +cc_test(init_test SRCS init_test.cc DEPS init) diff --git a/paddle/framework/attribute.cc b/paddle/framework/attribute.cc index b1e17936417e4ce09bace1d1a5d346d1c9cfa710..b0fd4d2750eb2529706d871947332d39494505cd 100644 --- a/paddle/framework/attribute.cc +++ b/paddle/framework/attribute.cc @@ -19,42 +19,42 @@ limitations under the License. */ namespace paddle { namespace framework { -Attribute GetAttrValue(const OpDesc::Attr& attr_desc) { +Attribute GetAttrValue(const proto::OpDesc::Attr& attr_desc) { switch (attr_desc.type()) { - case framework::AttrType::BOOLEAN: { + case proto::AttrType::BOOLEAN: { return attr_desc.b(); } - case framework::AttrType::INT: { + case proto::AttrType::INT: { return attr_desc.i(); } - case framework::AttrType::FLOAT: { + case proto::AttrType::FLOAT: { return attr_desc.f(); } - case framework::AttrType::STRING: { + case proto::AttrType::STRING: { return attr_desc.s(); } - case framework::AttrType::BOOLEANS: { + case proto::AttrType::BOOLEANS: { std::vector val(attr_desc.bools_size()); for (int i = 0; i < attr_desc.bools_size(); ++i) { val[i] = attr_desc.bools(i); } return val; } - case framework::AttrType::INTS: { + case proto::AttrType::INTS: { std::vector val(attr_desc.ints_size()); for (int i = 0; i < attr_desc.ints_size(); ++i) { val[i] = attr_desc.ints(i); } return val; } - case framework::AttrType::FLOATS: { + case proto::AttrType::FLOATS: { std::vector val(attr_desc.floats_size()); for (int i = 0; i < attr_desc.floats_size(); ++i) { val[i] = attr_desc.floats(i); } return val; } - case framework::AttrType::STRINGS: { + case proto::AttrType::STRINGS: { std::vector val(attr_desc.strings_size()); for (int i = 0; i < attr_desc.strings_size(); ++i) { val[i] = attr_desc.strings(i); diff --git a/paddle/framework/attribute.h b/paddle/framework/attribute.h index 0641907d6ff7546df1601d3b0263ff42f4186968..c1c63d9cb13acb195b3bc3b30088f5fa7daf2a3d 100644 --- a/paddle/framework/attribute.h +++ b/paddle/framework/attribute.h @@ -27,12 +27,12 @@ limitations under the License. */ namespace paddle { namespace framework { template -inline AttrType AttrTypeID() { +inline proto::AttrType AttrTypeID() { Attribute tmp = T(); - return static_cast(tmp.which() - 1); + return static_cast(tmp.which() - 1); } -Attribute GetAttrValue(const OpDesc::Attr& attr_desc); +Attribute GetAttrValue(const proto::OpDesc::Attr& attr_desc); class AttrReader { public: diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index 8fd2906107c490eee129fc10262df28bfa67800b..222aee5974ca82c12a9c3b18f7fac4f96ee251bd 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -27,10 +27,22 @@ namespace paddle { namespace framework { +static std::unordered_set* g_ctrl_flow_ops_ = nullptr; +// Control Flow operators's backward is significantly different from +// computational operators. Hack Code here. +// We should design a better way to backward CtrlFlowOps. +static std::unordered_set& CtrlFlowOps() { + if (g_ctrl_flow_ops_ == nullptr) { + g_ctrl_flow_ops_ = new std::unordered_set{ + "increment", "lod_rank_table", "less_than"}; + } + return *g_ctrl_flow_ops_; +} + static inline std::unique_ptr CreateGradOp( const OperatorBase& op, const std::unordered_set& no_grad_set, std::unordered_map* grad_to_var) { - OpDescBind op_desc; + OpDesc op_desc; op_desc.SetInputMap(op.Inputs()); op_desc.SetOutputMap(op.Outputs()); op_desc.SetType(op.Type()); @@ -41,7 +53,7 @@ static inline std::unique_ptr CreateGradOp( grad_ops.reserve(grad_descs.size()); std::transform(grad_descs.begin(), grad_descs.end(), std::back_inserter(grad_ops), - [](const std::unique_ptr& grad_desc) { + [](const std::unique_ptr& grad_desc) { return OpRegistry::CreateOp(*grad_desc); }); PADDLE_ENFORCE(!grad_ops.empty()); @@ -178,8 +190,9 @@ static std::unique_ptr BackwardRecursive( // collect all the offset for each alias, // insert a sum operator to add all aliases to output insert_position.push_back( - {dup_op.back(), OpRegistry::CreateOp("sum", {{"X", dup_outputs}}, - {{"Out", {name}}}, {})}); + {dup_op.back(), + OpRegistry::CreateOp("sum", {{"X", dup_outputs}}, {{"Out", {name}}}, + AttributeMap{})}); } // make sure the inserted `sum` ops follow the BFS order. @@ -204,7 +217,8 @@ static std::unique_ptr BackwardRecursive( // If part of input gradient of that operator is not calculated, fill // zero variables to that input gradient. net->AppendOp(OpRegistry::CreateOp("fill_zeros_like", {{"X", {prefix}}}, - {{"Y", {grad_input}}}, {})); + {{"Out", {grad_input}}}, + AttributeMap{})); } return false; }); @@ -282,18 +296,30 @@ static std::string FwdName(const std::string& grad_name) { static void CreateGradVarInBlock( size_t grad_op_start_index, const std::unordered_map& param_name_map, - BlockDescBind* block_desc, + BlockDesc* block_desc, std::unordered_map* grad_var_record) { auto ops = block_desc->AllOps(); for (size_t op_index = grad_op_start_index; op_index < ops.size(); ++op_index) { std::unordered_set new_vars; + auto& ctrl_flow_ops = CtrlFlowOps(); ForEachVarName(ops[op_index]->Outputs(), [&](const std::string& grad_var_name) { - if (block_desc->HasVar(grad_var_name)) { + if (ctrl_flow_ops.find(ops[op_index]->Type()) != + ctrl_flow_ops.end()) { + if (block_desc->HasVarRecursive(grad_var_name)) { + return false; + } + } else { + if (block_desc->HasVar(grad_var_name)) { + return false; + } + } + if (grad_var_name == framework::kEmptyVarName) { return false; } auto var = block_desc->Var(grad_var_name); + VLOG(10) << "Creating Variable " << grad_var_name; new_vars.insert(var->Name()); auto it = param_name_map.find(grad_var_name); if (it == param_name_map.end()) { @@ -315,7 +341,7 @@ static void CreateGradVarInBlock( auto* param = block_desc->FindVarRecursive(pname); auto* grad = block_desc->FindVar(arg); if (param == nullptr) { - grad->SetDataType(DataType::FP32); + grad->SetDataType(proto::DataType::FP32); } else { grad->SetDataType(param->GetDataType()); } @@ -324,23 +350,33 @@ static void CreateGradVarInBlock( } } -std::vector> MakeOpGrad( - const OpDescBind* op_desc, std::unordered_set* no_grad_vars, +std::vector> MakeOpGrad( + const OpDesc* op_desc, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var, - const std::vector& grad_block = - std::vector()) { - std::vector> grad_op_descs; + const std::vector& grad_block = std::vector()) { + std::vector> grad_op_descs; // All input gradients of forwarding operator do not need to calculate. const std::vector& inputs = op_desc->InputArgumentNames(); if (AllGradInSet(inputs, *no_grad_vars)) { + VLOG(10) << "Drop operator " << op_desc->Type(); return grad_op_descs; // empty vector } + // All output gradients of forwarding operator do not need to calculate. const std::vector& outputs = op_desc->OutputArgumentNames(); + if (AllGradInSet(outputs, *no_grad_vars)) { - for (const std::string& name : inputs) { - no_grad_vars->insert(GradVarName(name)); + VLOG(10) << "Drop operator " << op_desc->Type(); + // FIXME: Hack code here + auto& ctrl_flow_ops = CtrlFlowOps(); + if (ctrl_flow_ops.find(op_desc->Type()) == ctrl_flow_ops.end()) { + // Only computational op need drop input's gradient. + for (const std::string& name : inputs) { + no_grad_vars->insert(GradVarName(name)); + VLOG(10) << " Also drop " << GradVarName(name); + } } + return grad_op_descs; // empty vector } @@ -349,7 +385,7 @@ std::vector> MakeOpGrad( .Get(op_desc->Type()) .GradOpMaker()(*op_desc, *no_grad_vars, grad_to_var, grad_block); - std::list> pending_fill_zeros_ops; + std::list> pending_fill_zeros_ops; for (auto& desc : grad_op_descs) { for (const std::string& in_name : desc->InputArgumentNames()) { if (no_grad_vars->count(in_name)) { @@ -357,8 +393,9 @@ std::vector> MakeOpGrad( 0, in_name.size() - sizeof(kGradVarSuffix) / sizeof(char) + 1); std::string new_name = prefix + kZeroVarSuffix; desc->Rename(in_name, new_name); - std::unique_ptr fill_zeros_op(new OpDescBind( - "fill_zeros_like", {{"X", {prefix}}}, {{"Y", {new_name}}}, {})); + std::unique_ptr fill_zeros_op( + new OpDesc("fill_zeros_like", {{"X", {prefix}}}, + {{"Out", {new_name}}}, AttributeMap{})); pending_fill_zeros_ops.push_back(std::move(fill_zeros_op)); } } @@ -370,36 +407,35 @@ std::vector> MakeOpGrad( return grad_op_descs; } -static BlockDescBind* CreateStepBlock( - ProgramDescBind& program_desc, - std::unordered_set* no_grad_vars, +static BlockDesc* CreateStepBlock( + ProgramDesc& program_desc, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var, int step_block_idx); -std::vector> MakeBlockBackward( - ProgramDescBind& program_desc, int block_idx, +std::vector> MakeBlockBackward( + ProgramDesc& program_desc, int block_idx, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var) { VLOG(5) << "MakeBlockBackward"; - BlockDescBind* cur_block = program_desc.MutableBlock(block_idx); - std::vector op_descs = cur_block->AllOps(); + BlockDesc* cur_block = program_desc.MutableBlock(block_idx); + std::vector op_descs = cur_block->AllOps(); std::unordered_map> dup_out_ops; size_t grad_desc_idx = 0; - std::vector> backward_descs; + std::vector> backward_descs; for (auto it = op_descs.rbegin(); it != op_descs.rend(); ++it) { VLOG(5) << "Making backward " << (*it)->Type() << " op"; - std::vector> op_grads; + std::vector> op_grads; if ((*it)->Type() == "recurrent" || (*it)->Type() == "while") { - int step_block_idx = (*it)->GetBlockAttr("step_block"); - BlockDescBind* backward_block = CreateStepBlock( - program_desc, no_grad_vars, grad_to_var, step_block_idx); + int step_block_idx = (*it)->GetBlockAttr("sub_block"); + BlockDesc* backward_block = CreateStepBlock(program_desc, no_grad_vars, + grad_to_var, step_block_idx); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); } else if ((*it)->Type() == "conditional_block") { - BlockDescBind* backward_block = + BlockDesc* backward_block = CreateStepBlock(program_desc, no_grad_vars, grad_to_var, - (*it)->GetBlockAttr("block")); + (*it)->GetBlockAttr("sub_block")); op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var, {backward_block}); } else { op_grads = MakeOpGrad(*it, no_grad_vars, grad_to_var); @@ -425,14 +461,14 @@ std::vector> MakeBlockBackward( } ++grad_desc_idx; } - std::transform( - op_grads.begin(), op_grads.end(), std::back_inserter(backward_descs), - [](std::unique_ptr& ptr) { return std::move(ptr); }); + std::transform(op_grads.begin(), op_grads.end(), + std::back_inserter(backward_descs), + [](std::unique_ptr& ptr) { return std::move(ptr); }); } VLOG(5) << "Appending Sums"; // Check whether some variables are written more than once - std::list>> pending_sum_ops; + std::list>> pending_sum_ops; for (const auto& dup : dup_out_ops) { const std::string& out_name = dup.first; const std::vector dup_op = dup.second; @@ -448,17 +484,17 @@ std::vector> MakeBlockBackward( sum_op_inputs.emplace_back(new_name); next_g_name = sum_op_inputs.back(); } - std::unique_ptr sum_op(new OpDescBind( - "sum", {{"X", sum_op_inputs}}, {{"Out", {out_name}}}, {})); + std::unique_ptr sum_op(new OpDesc("sum", {{"X", sum_op_inputs}}, + {{"Out", {out_name}}}, + AttributeMap{})); pending_sum_ops.push_back({dup_op.back(), std::move(sum_op)}); } } - pending_sum_ops.sort( - [](const std::pair>& a, - const std::pair>& b) { - return a.first > b.first; - }); + pending_sum_ops.sort([](const std::pair>& a, + const std::pair>& b) { + return a.first > b.first; + }); for (auto& p : pending_sum_ops) { backward_descs.insert(backward_descs.begin() + p.first + 1, std::move(p.second)); @@ -469,14 +505,13 @@ std::vector> MakeBlockBackward( return backward_descs; } -static BlockDescBind* CreateStepBlock( - ProgramDescBind& program_desc, - std::unordered_set* no_grad_vars, +static BlockDesc* CreateStepBlock( + ProgramDesc& program_desc, std::unordered_set* no_grad_vars, std::unordered_map* grad_to_var, int step_block_idx) { auto backward_block_op_descs = MakeBlockBackward(program_desc, step_block_idx, no_grad_vars, grad_to_var); - BlockDescBind* backward_block = + BlockDesc* backward_block = program_desc.AppendBlock(*program_desc.MutableBlock(step_block_idx)); for (auto& ptr : backward_block_op_descs) { backward_block->AppendAllocatedOp(move(ptr)); @@ -485,7 +520,7 @@ static BlockDescBind* CreateStepBlock( } ParamGradInfoMap AppendBackward( - ProgramDescBind& program_desc, const VarDescBind& target, + ProgramDesc& program_desc, const VarDesc& target, const std::unordered_set& no_grad_vars) { std::unordered_set no_grad_var_names; no_grad_var_names.reserve(no_grad_vars.size() + 1); @@ -502,11 +537,11 @@ ParamGradInfoMap AppendBackward( PADDLE_ENFORCE(is_scalar, "target should be scalar"); VLOG(3) << "backward from loss=" << target.Name() << " data_type=" << target.GetDataType(); - std::unique_ptr fill_one_op( - new OpDescBind("fill_constant", {}, {{"Out", {fill_one_op_out}}}, - {{"shape", std::vector{1}}, - {"value", static_cast(1.0)}, - {"dtype", target.GetDataType()}})); + std::unique_ptr fill_one_op( + new OpDesc("fill_constant", {}, {{"Out", {fill_one_op_out}}}, + {{"shape", std::vector{1}}, + {"value", static_cast(1.0)}, + {"dtype", target.GetDataType()}})); // infer var type of fill_one_op fill_one_op->InferVarType(root_block); diff --git a/paddle/framework/backward.h b/paddle/framework/backward.h index 96154fa82cb7a486aa4762ae633982ed6735220b..2d3b75fe6966cb5dad32dc185a3973e92b23e26e 100644 --- a/paddle/framework/backward.h +++ b/paddle/framework/backward.h @@ -49,7 +49,7 @@ using ParamGradInfoMap = std::unordered_map; ParamGradInfoMap AppendBackward( - ProgramDescBind& program_desc, const VarDescBind& target, + ProgramDesc& program_desc, const VarDesc& target, const std::unordered_set& no_grad_vars); } // namespace framework diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index 2b858f5ea0874d7bf1a9cf38529f5d0d70cca7f2..0957646b5642cd9afce5d88b2c638679cb01f198 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -58,13 +58,13 @@ class RowWiseAddGradMaker : public SingleGradOpDescMaker { using SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto grad_op = new OpDescBind(); + std::unique_ptr Apply() const override { + auto grad_op = new OpDesc(); grad_op->SetInput(GradVarName("Out"), OutputGrad("Out")); grad_op->SetOutput(GradVarName("X"), InputGrad("X")); grad_op->SetOutput(GradVarName("b"), InputGrad("b")); grad_op->SetType("rowwise_add_grad"); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -106,15 +106,15 @@ class FcOp : public operators::NetOp { FcOp(const std::string &type, const VariableNameMap &inputs, const VariableNameMap &outputs, const AttributeMap &attrs) : NetOp(type, inputs, outputs, attrs) { - AppendOp(OpRegistry::CreateOp("mul", - {{"X", {Input("X")}}, {"Y", {Input("W")}}}, - {{"Out", {Output("mul_result")}}}, {})); + AppendOp(OpRegistry::CreateOp( + "mul", {{"X", {Input("X")}}, {"Y", {Input("W")}}}, + {{"Out", {Output("mul_result")}}}, AttributeMap{})); auto input_b = Inputs("b"); std::string before_act = "mul_result"; if (input_b.size() != 0) { AppendOp(OpRegistry::CreateOp( "rowwise_add", {{"X", {Output("mul_result")}}, {"b", {input_b[0]}}}, - {{"Out", {Output("add_result")}}}, {})); + {{"Out", {Output("add_result")}}}, AttributeMap{})); before_act = "add_result"; } else { auto out_varname = Output("add_result"); @@ -124,7 +124,7 @@ class FcOp : public operators::NetOp { } AppendOp(OpRegistry::CreateOp("sigmoid", {{"X", {Output(before_act)}}}, - {{"Out", {Output("Out")}}}, {})); + {{"Out", {Output("Out")}}}, AttributeMap{})); CompleteAddOp(false); } }; @@ -159,14 +159,14 @@ class FillZeroOpMaker : public OpProtoAndCheckerMaker { FillZeroOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "x"); - AddOutput("Y", "out"); + AddOutput("Out", "out"); AddComment(""); } }; class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: - SumOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SumOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "the input tensors of sum operator.").AsDuplicable(); AddOutput("Out", "the output tensor of sum operator."); @@ -190,11 +190,11 @@ class MinusGradOpDescMaker : public GradOpDescMakerBase { public: using GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() const override { - std::vector> retv; + std::vector> operator()() const override { + std::vector> retv; auto x_g = InputGrad("X"); if (!x_g.empty()) { - auto *op_desc = new OpDescBind(); + auto *op_desc = new OpDesc(); op_desc->SetType("scale"); op_desc->SetInput("X", OutputGrad("Out")); op_desc->SetOutput("Out", x_g); @@ -204,7 +204,7 @@ class MinusGradOpDescMaker : public GradOpDescMakerBase { auto y_g = InputGrad("Y"); if (!y_g.empty()) { - auto *op_desc = new OpDescBind(); + auto *op_desc = new OpDesc(); op_desc->SetType("scale"); op_desc->SetInput("X", OutputGrad("Out")); op_desc->SetOutput("Out", y_g); @@ -278,8 +278,9 @@ REGISTER_OPERATOR(scale, f::NoneOp); REGISTER_OP_CPU_KERNEL(scale, f::NoneKernel); TEST(Backward, simple_op_not_need_grad) { - auto fwd = f::OpRegistry::CreateOp( - "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); + auto fwd = + f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, + {{"Out", {"out"}}}, f::AttributeMap{}); ASSERT_NE(fwd, nullptr); auto gop = f::Backward(*fwd, {"x"}); ASSERT_EQ(gop->Output(f::GradVarName("X")), f::kEmptyVarName); @@ -296,9 +297,10 @@ TEST(Backward, net_fc_backward_normal) { {{"mul_result", {"mul_res"}}, {"add_result", {"add_re"}}, {"Out", {"out"}}}, - {}); + f::AttributeMap{}); ASSERT_NE(fwd, nullptr); - std::shared_ptr gop = f::Backward(*fwd, {}); + std::shared_ptr gop = + f::Backward(*fwd, std::unordered_set{}); ASSERT_TRUE(gop->IsNetOp()); auto net = static_cast(gop.get()); @@ -322,9 +324,10 @@ TEST(Backward, net_fc_backward_not_have_b) { {{"mul_result", {"mul_res"}}, {"add_result", {"add_res"}}, {"Out", {"tmp"}}}, - {}); + f::AttributeMap{}); ASSERT_NE(fwd, nullptr); - std::shared_ptr gop = f::Backward(*fwd, {}); + std::shared_ptr gop = + f::Backward(*fwd, std::unordered_set{}); ASSERT_TRUE(gop->IsNetOp()); auto net = static_cast(gop.get()); @@ -346,13 +349,13 @@ TEST(Backward, net_input_of_network_not_need_grad) { {{"mul_result", {"mul_tmp_0"}}, {"add_result", {"add_tmp_0"}}, {"Out", {"hidden0"}}}, - {})); + f::AttributeMap{})); net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"hidden0"}}, {"W", {"W2"}}, {"b", {"b2"}}}, {{"mul_result", {"mul_tmp_1"}}, {"add_result", {"add_tmp_1"}}, {"Out", {"hidden1"}}}, - {})); + f::AttributeMap{})); net.CompleteAddOp(); auto bwd = Backward(net, {"x"}); // x@GRAD is not need. ASSERT_TRUE(bwd->IsNetOp()); @@ -381,12 +384,13 @@ TEST(Backward, net_input_of_network_not_need_grad) { TEST(Backward, net_shared_weight) { ops::NetOp net; net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"x"}}, {"Y", {"w"}}}, - {{"Out", {"out"}}}, {})); + {{"Out", {"out"}}}, f::AttributeMap{})); net.AppendOp(f::OpRegistry::CreateOp("mul", {{"X", {"out"}}, {"Y", {"w"}}}, - {{"Out", {"FinalOut"}}}, {})); + {{"Out", {"FinalOut"}}}, + f::AttributeMap{})); net.CompleteAddOp(); - auto bwd = f::Backward(net, {}); + auto bwd = f::Backward(net, std::unordered_set{}); ASSERT_TRUE(bwd->IsNetOp()); auto bwd_net = static_cast(bwd.get()); ASSERT_EQ(3UL, bwd_net->ops_.size()); @@ -394,8 +398,9 @@ TEST(Backward, net_shared_weight) { } TEST(Backward, op_all_input_are_not_need) { - auto fwd = f::OpRegistry::CreateOp( - "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); + auto fwd = + f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, + {{"Out", {"out"}}}, f::AttributeMap{}); auto backward = f::Backward(*fwd, {"x", "b"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); @@ -403,8 +408,9 @@ TEST(Backward, op_all_input_are_not_need) { } TEST(Backward, op_all_output_are_not_need) { - auto fwd = f::OpRegistry::CreateOp( - "rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, {{"Out", {"out"}}}, {}); + auto fwd = + f::OpRegistry::CreateOp("rowwise_add", {{"X", {"x"}}, {"b", {"b"}}}, + {{"Out", {"out"}}}, f::AttributeMap{}); auto backward = f::Backward(*fwd, {"out"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); @@ -412,8 +418,9 @@ TEST(Backward, op_all_output_are_not_need) { } TEST(Backward, op_part_of_output_are_not_need) { - auto fwd = f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}}, - {{"y", {"Y"}}, {"z", {"Z"}}}, {}); + auto fwd = + f::OpRegistry::CreateOp("many_output_op", {{"x", {"X"}}}, + {{"y", {"Y"}}, {"z", {"Z"}}}, f::AttributeMap{}); auto backward = f::Backward(*fwd, {"Z"}); ASSERT_TRUE(backward->IsNetOp()); auto net = static_cast(backward.get()); @@ -423,8 +430,8 @@ TEST(Backward, op_part_of_output_are_not_need) { ASSERT_EQ("fill_zeros_like", fill_zero.Type()); ASSERT_EQ(1UL, fill_zero.Inputs("X").size()); ASSERT_EQ("Z", fill_zero.Input("X")); - ASSERT_EQ(1UL, fill_zero.Outputs("Y").size()); - ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Y")); + ASSERT_EQ(1UL, fill_zero.Outputs("Out").size()); + ASSERT_EQ(std::string("Z") + f::kZeroVarSuffix, fill_zero.Output("Out")); auto &d_many_out = *net->ops_[1]; ASSERT_EQ("many_output_op_grad", d_many_out.Type()); @@ -437,7 +444,7 @@ TEST(Backward, op_part_of_output_are_not_need) { TEST(Backward, op_part_of_input_are_not_need) { auto fwd = f::OpRegistry::CreateOp("mul", {{"X", {"a"}}, {"Y", {"b"}}}, - {{"Out", {"out"}}}, {}); + {{"Out", {"out"}}}, f::AttributeMap{}); auto backward = f::Backward(*fwd, {"a"}); auto &grad_mul = *backward; ASSERT_EQ(grad_mul.Type(), "mul_grad"); @@ -458,19 +465,19 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { {{"mul_result", {"mul_out1"}}, {"add_result", {"add_out1"}}, {"Out", {"out1"}}}, - {})); + f::AttributeMap{})); net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"out1"}}, {"W", {"w2"}}, {"b", {"b2"}}}, {{"mul_result", {"mul_out2"}}, {"add_result", {"tmp_out2"}}, {"Out", {"out2"}}}, - {})); + f::AttributeMap{})); net.AppendOp(f::OpRegistry::CreateOp( "fc", {{"X", {"out2"}}, {"W", {"w3"}}, {"b", {"b3"}}}, {{"mul_result", {"mul_out3"}}, {"add_result", {"tmp_out3"}}, {"Out", {"out3"}}}, - {})); + f::AttributeMap{})); net.CompleteAddOp(); auto backward = f::Backward(net, {"mul_out2", "tmp_out2", "out2"}); @@ -498,24 +505,25 @@ TEST(Backward, linear_net_intermediate_variable_has_no_grad) { } TEST(Backward, simple_single_op) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - f::OpDescBind *op = block->AppendOp(); + f::OpDesc *op = block->AppendOp(); op->SetType("rowwise_add"); op->SetInput("X", {"x"}); op->SetInput("b", {"b"}); op->SetOutput("Out", {"out"}); - auto target = f::VarDescBind("out"); + auto target = f::VarDesc("out"); target.SetShape({1}); - auto var_to_grad = AppendBackward(program, target, {}); + auto var_to_grad = + AppendBackward(program, target, std::unordered_set{}); ASSERT_EQ(block->AllOps().size(), 3UL); - f::OpDescBind *fill_op = block->AllOps()[1]; + f::OpDesc *fill_op = block->AllOps()[1]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op = block->AllOps()[2]; + f::OpDesc *grad_op = block->AllOps()[2]; EXPECT_EQ(grad_op->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op->InputNames().size(), 1UL); ASSERT_EQ(grad_op->OutputNames().size(), 2UL); @@ -535,63 +543,64 @@ TEST(Backward, simple_single_op) { } TEST(Backward, default_attribute) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op = block->AppendOp(); op->SetType("mul"); op->SetInput("X", {"x"}); op->SetInput("Y", {"y"}); op->SetOutput("Out", {"out"}); op->CheckAttrs(); - auto target = f::VarDescBind("out"); + auto target = f::VarDesc("out"); target.SetShape({1}); - AppendBackward(program, target, {}); + AppendBackward(program, target, std::unordered_set{}); ASSERT_EQ(block->AllOps().size(), 3UL); EXPECT_EQ(boost::get(op->GetAttr("x_num_col_dims")), 1); EXPECT_EQ(boost::get(op->GetAttr("y_num_col_dims")), 1); - f::OpDescBind *fill_op = block->AllOps()[1]; + f::OpDesc *fill_op = block->AllOps()[1]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op = block->AllOps()[2]; + f::OpDesc *grad_op = block->AllOps()[2]; ASSERT_EQ(grad_op->Type(), "mul_grad"); EXPECT_EQ(boost::get(grad_op->GetAttr("x_num_col_dims")), 1); EXPECT_EQ(boost::get(grad_op->GetAttr("y_num_col_dims")), 1); } TEST(Backward, simple_mult_op) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op1 = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op1 = block->AppendOp(); op1->SetType("rowwise_add"); op1->SetInput("X", {"x1"}); op1->SetInput("b", {"b1"}); op1->SetOutput("Out", {"out1"}); - f::OpDescBind *op2 = block->AppendOp(); + f::OpDesc *op2 = block->AppendOp(); op2->SetType("mul"); op2->SetInput("X", {"out1"}); op2->SetInput("Y", {"y2"}); op2->SetOutput("Out", {"out2"}); - f::OpDescBind *op3 = block->AppendOp(); + f::OpDesc *op3 = block->AppendOp(); op3->SetType("rowwise_add"); op3->SetInput("X", {"out2"}); op3->SetInput("b", {"b3"}); op3->SetOutput("Out", {"out3"}); - auto target = f::VarDescBind("out3"); + auto target = f::VarDesc("out3"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); - auto var_to_grad = AppendBackward(program, target, {}); + auto var_to_grad = + AppendBackward(program, target, std::unordered_set{}); ASSERT_EQ(block->AllOps().size(), 6UL + 1); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op1 = block->AllOps()[6]; + f::OpDesc *grad_op1 = block->AllOps()[6]; EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op1->InputNames().size(), 1UL); ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); @@ -602,7 +611,7 @@ TEST(Backward, simple_mult_op) { EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), std::vector({f::GradVarName("b1")})); - f::OpDescBind *grad_op2 = block->AllOps()[5]; + f::OpDesc *grad_op2 = block->AllOps()[5]; EXPECT_EQ(grad_op2->Type(), "mul_grad"); ASSERT_EQ(grad_op2->InputNames().size(), 4UL); ASSERT_EQ(grad_op2->OutputNames().size(), 2UL); @@ -616,7 +625,7 @@ TEST(Backward, simple_mult_op) { EXPECT_EQ(grad_op2->Output(f::GradVarName("Y")), std::vector({f::GradVarName("y2")})); - f::OpDescBind *grad_op3 = block->AllOps()[4]; + f::OpDesc *grad_op3 = block->AllOps()[4]; EXPECT_EQ(grad_op3->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op3->InputNames().size(), 1UL); ASSERT_EQ(grad_op3->OutputNames().size(), 2UL); @@ -646,42 +655,42 @@ TEST(Backward, simple_mult_op) { } TEST(Backward, intermedia_var_no_grad) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op1 = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op1 = block->AppendOp(); op1->SetType("rowwise_add"); op1->SetInput("X", {"x1"}); op1->SetInput("b", {"b1"}); op1->SetOutput("Out", {"out1"}); - f::OpDescBind *op2 = block->AppendOp(); + f::OpDesc *op2 = block->AppendOp(); op2->SetType("mul"); op2->SetInput("X", {"x2"}); op2->SetInput("Y", {"y2"}); op2->SetOutput("Out", {"out2"}); - f::OpDescBind *op3 = block->AppendOp(); + f::OpDesc *op3 = block->AppendOp(); op3->SetType("rowwise_add"); op3->SetInput("X", {"out2"}); op3->SetInput("b", {"b3"}); op3->SetOutput("Out", {"out3"}); - f::OpDescBind *op4 = block->AppendOp(); + f::OpDesc *op4 = block->AppendOp(); op4->SetType("mul"); op4->SetInput("X", {"out1"}); op4->SetInput("Y", {"out3"}); op4->SetOutput("Out", {"out4"}); - auto target = f::VarDescBind("out4"); + auto target = f::VarDesc("out4"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"out3"}); ASSERT_EQ(block->AllOps().size(), 7UL); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op1 = block->AllOps()[6]; + f::OpDesc *grad_op1 = block->AllOps()[6]; EXPECT_EQ(grad_op1->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op1->InputNames().size(), 1UL); ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); @@ -692,7 +701,7 @@ TEST(Backward, intermedia_var_no_grad) { EXPECT_EQ(grad_op1->Output(f::GradVarName("b")), std::vector({f::GradVarName("b1")})); - f::OpDescBind *grad_op4 = block->AllOps()[5]; + f::OpDesc *grad_op4 = block->AllOps()[5]; EXPECT_EQ(grad_op4->Type(), "mul_grad"); ASSERT_EQ(grad_op4->InputNames().size(), 4UL); ASSERT_EQ(grad_op4->OutputNames().size(), 2UL); @@ -717,32 +726,32 @@ TEST(Backward, intermedia_var_no_grad) { } TEST(Backward, var_no_grad) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op1 = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op1 = block->AppendOp(); op1->SetType("mult_in_out"); op1->SetInput("X", {"x1"}); op1->SetInput("H", {"h1"}); op1->SetOutput("Y", {"y1"}); op1->SetOutput("Z", {"z1"}); - f::OpDescBind *op2 = block->AppendOp(); + f::OpDesc *op2 = block->AppendOp(); op2->SetType("mult_in_out"); op2->SetInput("X", {"y1"}); op2->SetInput("H", {"z1"}); op2->SetOutput("Y", {"y2"}); op2->SetOutput("Z", {"z2"}); - auto target = f::VarDescBind("z2"); + auto target = f::VarDesc("z2"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"z1"}); ASSERT_EQ(block->AllOps().size(), 6UL); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op2 = block->AllOps()[3]; + f::OpDesc *grad_op2 = block->AllOps()[3]; ASSERT_EQ(grad_op2->Type(), "mult_in_out_grad"); ASSERT_EQ(grad_op2->InputNames().size(), 6UL); ASSERT_EQ(grad_op2->OutputNames().size(), 2UL); @@ -758,15 +767,15 @@ TEST(Backward, var_no_grad) { std::vector({f::GradVarName("y1")})); EXPECT_EQ(grad_op2->Output(f::GradVarName("H")), std::vector()); - f::OpDescBind *fill_zero_op = block->AllOps()[4]; + f::OpDesc *fill_zero_op = block->AllOps()[4]; ASSERT_EQ(fill_zero_op->Type(), "fill_zeros_like"); ASSERT_EQ(fill_zero_op->InputNames().size(), 1UL); ASSERT_EQ(fill_zero_op->OutputNames().size(), 1UL); EXPECT_EQ(fill_zero_op->Input("X"), std::vector({"z1"})); - EXPECT_EQ(fill_zero_op->Output("Y"), + EXPECT_EQ(fill_zero_op->Output("Out"), std::vector({std::string("z1") + f::kZeroVarSuffix})); - f::OpDescBind *grad_op1 = block->AllOps()[5]; + f::OpDesc *grad_op1 = block->AllOps()[5]; ASSERT_EQ(grad_op1->Type(), "mult_in_out_grad"); ASSERT_EQ(grad_op1->InputNames().size(), 6UL); ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); @@ -794,36 +803,37 @@ TEST(Backward, var_no_grad) { } TEST(Backward, shared_var) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); - f::OpDescBind *op1 = block->AppendOp(); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); + f::OpDesc *op1 = block->AppendOp(); op1->SetType("rowwise_add"); op1->SetInput("X", {"x1"}); op1->SetInput("b", {"b1"}); op1->SetOutput("Out", {"out1"}); - f::OpDescBind *op2 = block->AppendOp(); + f::OpDesc *op2 = block->AppendOp(); op2->SetType("mul"); op2->SetInput("X", {"out1"}); op2->SetInput("Y", {"y2"}); op2->SetOutput("Out", {"out2"}); - f::OpDescBind *op3 = block->AppendOp(); + f::OpDesc *op3 = block->AppendOp(); op3->SetType("rowwise_add"); op3->SetInput("X", {"out1"}); op3->SetInput("b", {"b3"}); op3->SetOutput("Out", {"out3"}); - auto target = f::VarDescBind("out3"); + auto target = f::VarDesc("out3"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); - auto var_to_grad = AppendBackward(program, target, {}); + auto var_to_grad = + AppendBackward(program, target, std::unordered_set{}); ASSERT_EQ(block->AllOps().size(), 8UL); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); - f::OpDescBind *grad_op3 = block->AllOps()[4]; + f::OpDesc *grad_op3 = block->AllOps()[4]; ASSERT_EQ(grad_op3->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op3->InputNames().size(), 1UL); ASSERT_EQ(grad_op3->OutputNames().size(), 2UL); @@ -834,7 +844,7 @@ TEST(Backward, shared_var) { EXPECT_EQ(grad_op3->Output(f::GradVarName("b")), std::vector({f::GradVarName("b3")})); - f::OpDescBind *grad_op4 = block->AllOps()[5]; + f::OpDesc *grad_op4 = block->AllOps()[5]; ASSERT_EQ(grad_op4->Type(), "mul_grad"); ASSERT_EQ(grad_op4->InputNames().size(), 4UL); ASSERT_EQ(grad_op4->OutputNames().size(), 2UL); @@ -848,7 +858,7 @@ TEST(Backward, shared_var) { EXPECT_EQ(grad_op4->Output(f::GradVarName("Y")), std::vector({f::GradVarName("y2")})); - f::OpDescBind *sum_op = block->AllOps()[6]; + f::OpDesc *sum_op = block->AllOps()[6]; ASSERT_EQ(sum_op->Type(), "sum"); ASSERT_EQ(sum_op->InputNames().size(), 1UL); ASSERT_EQ(sum_op->OutputNames().size(), 1UL); @@ -858,7 +868,7 @@ TEST(Backward, shared_var) { EXPECT_EQ(sum_op->Output("Out"), std::vector({f::GradVarName("out1")})); - f::OpDescBind *grad_op1 = block->AllOps()[7]; + f::OpDesc *grad_op1 = block->AllOps()[7]; ASSERT_EQ(grad_op1->Type(), "rowwise_add_grad"); ASSERT_EQ(grad_op1->InputNames().size(), 1UL); ASSERT_EQ(grad_op1->OutputNames().size(), 2UL); @@ -885,19 +895,19 @@ TEST(Backward, shared_var) { } TEST(Backward, half_backward) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); auto *op1 = block->AppendOp(); op1->SetType("minus"); op1->SetInput("X", {"a"}); op1->SetInput("Y", {"b"}); op1->SetOutput("Out", {"out"}); - auto target = f::VarDescBind("out"); + auto target = f::VarDesc("out"); target.SetShape({1}); size_t forward_len = block->AllOps().size(); auto var_to_grad = AppendBackward(program, target, {"b"}); - f::OpDescBind *fill_op = block->AllOps()[forward_len]; + f::OpDesc *fill_op = block->AllOps()[forward_len]; EXPECT_EQ(fill_op->Type(), "fill_constant"); auto ops = block->AllOps(); ASSERT_EQ(3UL, ops.size()); diff --git a/paddle/framework/block_desc.cc b/paddle/framework/block_desc.cc index 11764810e1d40e5e6eb3cd0d8e9b4b63a79855b4..0668b08ff7ab3c8ca4f1e989fc7af45a8ec5f63c 100644 --- a/paddle/framework/block_desc.cc +++ b/paddle/framework/block_desc.cc @@ -13,23 +13,24 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/block_desc.h" +#include "paddle/framework/operator.h" #include "paddle/framework/program_desc.h" namespace paddle { namespace framework { -VarDescBind *BlockDescBind::Var(const std::string &name) { +VarDesc *BlockDesc::Var(const std::string &name) { auto it = vars_.find(name); if (it != vars_.end()) { return it->second.get(); } need_update_ = true; - auto *var = new VarDescBind(name); + auto *var = new VarDesc(name); vars_[name].reset(var); return var; } -VarDescBind *BlockDescBind::FindVar(const std::string &name) const { +VarDesc *BlockDesc::FindVar(const std::string &name) const { auto it = vars_.find(name); if (it == vars_.end()) { return nullptr; @@ -37,11 +38,13 @@ VarDescBind *BlockDescBind::FindVar(const std::string &name) const { return it->second.get(); } -bool BlockDescBind::HasVar(const std::string &name) const { +bool BlockDesc::HasVar(const std::string &name) const { return vars_.find(name) != vars_.end(); } -VarDescBind *BlockDescBind::FindVarRecursive(const std::string &name) const { +VarDesc *BlockDesc::FindVarRecursive(const std::string &name) const { + if (name == kEmptyVarName) return nullptr; + auto it = vars_.find(name); if (it == vars_.end()) { return Parent() == kNoneBlockIndex ? nullptr @@ -50,53 +53,67 @@ VarDescBind *BlockDescBind::FindVarRecursive(const std::string &name) const { return it->second.get(); } -VarDescBind *BlockDescBind::FindRecursiveOrCreateVar( - const std::string &name_bytes) { - VarDescBind *res = FindVarRecursive(name_bytes); +VarDesc *BlockDesc::FindRecursiveOrCreateVar(const std::string &name_bytes) { + VarDesc *res = FindVarRecursive(name_bytes); if (res == nullptr) { res = Var(name_bytes); } return res; } -bool BlockDescBind::HasVarRecursive(const std::string &name) const { +bool BlockDesc::HasVarRecursive(const std::string &name) const { return FindVarRecursive(name) != nullptr; } -std::vector BlockDescBind::AllVars() const { - std::vector res; +std::vector BlockDesc::AllVars() const { + std::vector res; for (const auto &p : vars_) { res.push_back(p.second.get()); } return res; } -OpDescBind *BlockDescBind::AppendOp() { +OpDesc *BlockDesc::AppendOp() { need_update_ = true; - ops_.emplace_back(new OpDescBind()); + ops_.emplace_back(new OpDesc()); return ops_.back().get(); } -void BlockDescBind::AppendAllocatedOp(std::unique_ptr &&op_desc) { +void BlockDesc::AppendAllocatedOp(std::unique_ptr &&op_desc) { need_update_ = true; ops_.emplace_back(std::move(op_desc)); } -OpDescBind *BlockDescBind::PrependOp() { +OpDesc *BlockDesc::PrependOp() { need_update_ = true; - ops_.emplace_front(new OpDescBind()); + ops_.emplace_front(new OpDesc()); return ops_.front().get(); } -std::vector BlockDescBind::AllOps() const { - std::vector res; +void BlockDesc::RemoveOp(size_t s, size_t e) { + if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) { + return; + } + need_update_ = true; + for (auto it = ops_.begin() + s; it != ops_.begin() + e; it++) { + auto names = (*it)->InputArgumentNames(); + for (auto n : names) { + // TODO(typhoonzero): delete vars if no other op use it. + VLOG(3) << "deleting var " << n; + } + } + ops_.erase(ops_.begin() + s, ops_.begin() + e); +} + +std::vector BlockDesc::AllOps() const { + std::vector res; for (const auto &op : ops_) { res.push_back(op.get()); } return res; } -void BlockDescBind::Flush() { +void BlockDesc::Flush() { for (auto &op_desc : ops_) { op_desc->Flush(); } @@ -118,43 +135,43 @@ void BlockDescBind::Flush() { } } -BlockDescBind *BlockDescBind::ParentBlock() const { +BlockDesc *BlockDesc::ParentBlock() const { if (this->desc_->parent_idx() == kNoneBlockIndex) { return nullptr; } return prog_->MutableBlock(static_cast(this->desc_->parent_idx())); } -BlockDesc *BlockDescBind::Proto() { +proto::BlockDesc *BlockDesc::Proto() { Flush(); return desc_; } -BlockDescBind::BlockDescBind(ProgramDescBind *prog, BlockDesc *desc) +BlockDesc::BlockDesc(ProgramDesc *prog, proto::BlockDesc *desc) : prog_(prog), desc_(desc), need_update_(false) { - for (const VarDesc &var_desc : desc_->vars()) { - vars_[var_desc.name()].reset(new VarDescBind(var_desc)); + for (const proto::VarDesc &var_desc : desc_->vars()) { + vars_[var_desc.name()].reset(new VarDesc(var_desc)); } - for (const OpDesc &op_desc : desc_->ops()) { - ops_.emplace_back(new OpDescBind(op_desc, prog)); + for (const proto::OpDesc &op_desc : desc_->ops()) { + ops_.emplace_back(new OpDesc(op_desc, prog)); } } -BlockDescBind::BlockDescBind(const BlockDescBind &other, BlockDesc *desc, - ProgramDescBind *prog) +BlockDesc::BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, + ProgramDesc *prog) : prog_(prog), desc_(desc) { need_update_ = true; for (auto &op : other.ops_) { - ops_.emplace_back(new OpDescBind(*op)); + ops_.emplace_back(new OpDesc(*op)); } for (auto &it : other.vars_) { - auto *var = new VarDescBind(*it.second); + auto *var = new VarDesc(*it.second); vars_[it.first].reset(var); } } -void BlockDescBind::ClearPBOps() { +void BlockDesc::ClearPBOps() { auto ops = this->desc_->mutable_ops(); while (!ops->empty()) { // we do not own the OpDesc, so release the ownership. @@ -162,7 +179,7 @@ void BlockDescBind::ClearPBOps() { } } -void BlockDescBind::ClearPBVars() { +void BlockDesc::ClearPBVars() { auto vars = this->desc_->mutable_vars(); while (!vars->empty()) { // we do not own the VarDesc, so release the ownership. diff --git a/paddle/framework/block_desc.h b/paddle/framework/block_desc.h index 8e967e5378eb47a7869efb59cc96a271f1cbb9a1..6c8c81b332d99e52db41018e117aa837be6745bc 100644 --- a/paddle/framework/block_desc.h +++ b/paddle/framework/block_desc.h @@ -28,20 +28,19 @@ limitations under the License. */ namespace paddle { namespace framework { -class ProgramDescBind; +class ProgramDesc; // Each Protobuf Message, we provide a XXXBind class. In that class, we optimize // read/write speed. Only when we want the protobuf message, the local changes // will be synchronized (by `Sync` method). -class BlockDescBind { +class BlockDesc { public: - BlockDescBind(ProgramDescBind *prog, BlockDesc *desc); + BlockDesc(ProgramDesc *prog, proto::BlockDesc *desc); - BlockDescBind(const BlockDescBind &other, BlockDesc *desc, - ProgramDescBind *prog); + BlockDesc(const BlockDesc &other, proto::BlockDesc *desc, ProgramDesc *prog); - ~BlockDescBind() { + ~BlockDesc() { this->ClearPBVars(); this->ClearPBOps(); } @@ -50,15 +49,15 @@ class BlockDescBind { int32_t Parent() const { return desc_->parent_idx(); } - VarDescBind *Var(const std::string &name_bytes); + VarDesc *Var(const std::string &name_bytes); - VarDescBind *FindVar(const std::string &name_bytes) const; + VarDesc *FindVar(const std::string &name_bytes) const; bool HasVar(const std::string &var_name) const; - VarDescBind *FindVarRecursive(const std::string &name_bytes) const; + VarDesc *FindVarRecursive(const std::string &name_bytes) const; - VarDescBind *FindRecursiveOrCreateVar(const std::string &name_bytes); + VarDesc *FindRecursiveOrCreateVar(const std::string &name_bytes); bool HasVarRecursive(const std::string &var_name) const; @@ -70,41 +69,43 @@ class BlockDescBind { return var_names; } - std::vector AllVars() const; + std::vector AllVars() const; - BlockDescBind *ParentBlock() const; + BlockDesc *ParentBlock() const; - OpDescBind *AppendOp(); + OpDesc *AppendOp(); - void AppendAllocatedOp(std::unique_ptr &&op_desc); + void AppendAllocatedOp(std::unique_ptr &&op_desc); - OpDescBind *PrependOp(); + OpDesc *PrependOp(); - std::vector AllOps() const; + void RemoveOp(size_t s, size_t e); + + std::vector AllOps() const; size_t OpSize() const { return ops_.size(); } - OpDescBind *Op(int idx) { return ops_.at(idx).get(); } + OpDesc *Op(int idx) { return ops_.at(idx).get(); } void Flush(); - BlockDesc *Proto(); + proto::BlockDesc *Proto(); - ProgramDescBind *Program() { return this->prog_; } + ProgramDesc *Program() { return this->prog_; } private: void ClearPBOps(); void ClearPBVars(); private: - ProgramDescBind *prog_; // not_own - BlockDesc *desc_; // not_own + ProgramDesc *prog_; // not_own + proto::BlockDesc *desc_; // not_own bool need_update_; - std::deque> ops_; - std::unordered_map> vars_; + std::deque> ops_; + std::unordered_map> vars_; - DISABLE_COPY_AND_ASSIGN(BlockDescBind); + DISABLE_COPY_AND_ASSIGN(BlockDesc); }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/data_layout.h b/paddle/framework/data_layout.h new file mode 100644 index 0000000000000000000000000000000000000000..7429de7ee39297c26360984809e2451100f7b3ff --- /dev/null +++ b/paddle/framework/data_layout.h @@ -0,0 +1,37 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +namespace paddle { +namespace framework { + +enum DataLayout { + kNHWC = 0, + kNCHW = 1, + kAnyLayout = 2, +}; + +inline DataLayout StringToDataLayout(const std::string& str) { + if (str == "NHWC" || str == "nhwc") { + return DataLayout::kNHWC; + } else if (str == "NCHW" || str == "nchw") { + return DataLayout::kNCHW; + } else { + PADDLE_THROW("Unknown storage order string: %s", str); + } +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/data_type.h b/paddle/framework/data_type.h index c54d2d4ddf09c445fb25c1fbe8a7498f233d8212..e94ee2ed52bc40f52caf783f971dd0b560534e08 100644 --- a/paddle/framework/data_type.h +++ b/paddle/framework/data_type.h @@ -20,7 +20,8 @@ namespace paddle { namespace framework { -inline DataType ToDataType(std::type_index type) { +inline proto::DataType ToDataType(std::type_index type) { + using namespace paddle::framework::proto; if (typeid(float).hash_code() == type.hash_code()) { return DataType::FP32; } else if (typeid(double).hash_code() == type.hash_code()) { @@ -36,7 +37,8 @@ inline DataType ToDataType(std::type_index type) { } } -inline std::type_index ToTypeIndex(DataType type) { +inline std::type_index ToTypeIndex(proto::DataType type) { + using namespace paddle::framework::proto; switch (type) { case DataType::FP32: return typeid(float); @@ -54,7 +56,8 @@ inline std::type_index ToTypeIndex(DataType type) { } template -inline void VisitDataType(DataType type, Visitor visitor) { +inline void VisitDataType(proto::DataType type, Visitor visitor) { + using namespace paddle::framework::proto; switch (type) { case DataType::FP32: visitor.template operator()(); diff --git a/paddle/framework/ddim_test.cc b/paddle/framework/ddim_test.cc index 756232b1b56a49d2c91cc2cac950ca508c54fb3f..bd5ea09d7da700479aa387283d7bde77c64c1293 100644 --- a/paddle/framework/ddim_test.cc +++ b/paddle/framework/ddim_test.cc @@ -1,3 +1,16 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ #include #include diff --git a/paddle/framework/details/op_registry.h b/paddle/framework/details/op_registry.h index f91e0e03410c95f84a65f02beed38b7bbfdcaa86..7f5151c41d6046f21f7a9707e45de85ec50219ad 100644 --- a/paddle/framework/details/op_registry.h +++ b/paddle/framework/details/op_registry.h @@ -90,7 +90,7 @@ struct OpInfoFiller { template struct OpInfoFiller { void operator()(const char* op_type, OpInfo* info) const { - info->proto_ = new OpProto; + info->proto_ = new proto::OpProto; info->checker_ = new OpAttrChecker(); auto maker = T(info->proto_, info->checker_); maker.Validate(); @@ -106,10 +106,10 @@ template struct OpInfoFiller { void operator()(const char* op_type, OpInfo* info) const { info->grad_op_maker_ = []( - const OpDescBind& fwd_op, + const OpDesc& fwd_op, const std::unordered_set& no_grad_set, std::unordered_map* grad_to_var, - const std::vector& grad_block) { + const std::vector& grad_block) { T maker(fwd_op, no_grad_set, grad_to_var, grad_block); return maker(); }; @@ -119,7 +119,7 @@ struct OpInfoFiller { template struct OpInfoFiller { void operator()(const char* op_type, OpInfo* info) const { - info->infer_var_type_ = [](const OpDescBind& fwd_op, BlockDescBind* block) { + info->infer_var_type_ = [](const OpDesc& fwd_op, BlockDesc* block) { T inference; inference(fwd_op, block); }; diff --git a/paddle/framework/executor.cc b/paddle/framework/executor.cc index 2ffb5b7dbb27b561092856eac0de23d0c3788f75..14ae37ec49c12203381e74b3f9174a460e41c18e 100644 --- a/paddle/framework/executor.cc +++ b/paddle/framework/executor.cc @@ -33,48 +33,28 @@ namespace framework { const std::string kFeedOpType = "feed"; const std::string kFetchOpType = "fetch"; -Executor::Executor(const std::vector& places) : own_(true) { - PADDLE_ENFORCE_GT(places.size(), 0); - device_contexts_.resize(places.size()); - for (size_t i = 0; i < places.size(); i++) { - if (platform::is_cpu_place(places[i])) { - device_contexts_[i] = new platform::CPUDeviceContext( - boost::get(places[i])); - } else if (platform::is_gpu_place(places[i])) { -#ifdef PADDLE_WITH_CUDA - device_contexts_[i] = new platform::CUDADeviceContext( - boost::get(places[i])); -#else - PADDLE_THROW( - "'GPUPlace' is not supported, Please re-compile with WITH_GPU " - "option"); -#endif - } - } -} +DeviceContextPool* DeviceContextPool::pool = nullptr; -Executor::~Executor() { - if (own_) { - for (auto& device_context : device_contexts_) { - delete device_context; - } - } +Executor::Executor(const std::vector& places) { + DeviceContextPool& pool = DeviceContextPool::Get(); + auto borrowed_contexts = pool.Borrow(places); + device_contexts_.swap(borrowed_contexts); } -static void CreateTensor(Variable* var, VarDesc::VarType var_type) { - if (var_type == VarDesc::LOD_TENSOR) { +static void CreateTensor(Variable* var, proto::VarDesc::VarType var_type) { + if (var_type == proto::VarDesc::LOD_TENSOR) { var->GetMutable(); - } else if (var_type == VarDesc::SELECTED_ROWS) { + } else if (var_type == proto::VarDesc::SELECTED_ROWS) { var->GetMutable(); - } else if (var_type == VarDesc::FEED_MINIBATCH) { + } else if (var_type == proto::VarDesc::FEED_MINIBATCH) { var->GetMutable(); - } else if (var_type == VarDesc::FETCH_LIST) { + } else if (var_type == proto::VarDesc::FETCH_LIST) { var->GetMutable(); - } else if (var_type == VarDesc::STEP_SCOPES) { + } else if (var_type == proto::VarDesc::STEP_SCOPES) { var->GetMutable>(); - } else if (var_type == VarDesc::LOD_RANK_TABLE) { + } else if (var_type == proto::VarDesc::LOD_RANK_TABLE) { var->GetMutable(); - } else if (var_type == VarDesc::LOD_TENSOR_ARRAY) { + } else if (var_type == proto::VarDesc::LOD_TENSOR_ARRAY) { var->GetMutable(); } else { PADDLE_THROW( @@ -84,8 +64,8 @@ static void CreateTensor(Variable* var, VarDesc::VarType var_type) { } } -void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id, - bool create_local_scope) { +void Executor::Run(const ProgramDesc& pdesc, Scope* scope, int block_id, + bool create_local_scope, bool create_vars) { // TODO(tonyyang-svail): // - only runs on the first device (i.e. no interdevice communication) // - will change to use multiple blocks for RNN op and Cond Op @@ -94,29 +74,35 @@ void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id, auto& device = device_contexts_[0]; Scope* local_scope = scope; - if (create_local_scope) { - local_scope = &scope->NewScope(); - for (auto& var : block.AllVars()) { - if (var->Persistable()) { - auto* ptr = scope->Var(var->Name()); - CreateTensor(ptr, var->GetType()); - VLOG(3) << "Create Variable " << var->Name() - << " global, which pointer is " << ptr; - } else { + if (create_vars) { + if (create_local_scope) { + local_scope = &scope->NewScope(); + for (auto& var : block.AllVars()) { + if (var->Name() == framework::kEmptyVarName) { + continue; + } + + if (var->Persistable()) { + auto* ptr = scope->Var(var->Name()); + CreateTensor(ptr, var->GetType()); + VLOG(3) << "Create Variable " << var->Name() + << " global, which pointer is " << ptr; + } else { + auto* ptr = local_scope->Var(var->Name()); + CreateTensor(ptr, var->GetType()); + VLOG(3) << "Create Variable " << var->Name() + << " locally, which pointer is " << ptr; + } + } + } else { + for (auto& var : block.AllVars()) { auto* ptr = local_scope->Var(var->Name()); CreateTensor(ptr, var->GetType()); - VLOG(3) << "Create Variable " << var->Name() - << " locally, which pointer is " << ptr; + VLOG(3) << "Create variable " << var->Name() << ", which pointer is " + << ptr; } - } - } else { - for (auto& var : block.AllVars()) { - auto* ptr = local_scope->Var(var->Name()); - CreateTensor(ptr, var->GetType()); - VLOG(3) << "Create variable " << var->Name() << ", which pointer is " - << ptr; - } - } + } // if (create_local_scope) + } // if (create_vars) for (auto& op_desc : block.AllOps()) { auto op = paddle::framework::OpRegistry::CreateOp(*op_desc); @@ -128,8 +114,5 @@ void Executor::Run(const ProgramDescBind& pdesc, Scope* scope, int block_id, } } -Executor::Executor(const platform::DeviceContext& device) - : device_contexts_({&device}), own_(false) {} - } // namespace framework } // namespace paddle diff --git a/paddle/framework/executor.h b/paddle/framework/executor.h index b745f4f6474ef688774f4c833a3958942e9aa8cb..a3d1609293a0d687c33447ca7a0df95c6aac3bc5 100644 --- a/paddle/framework/executor.h +++ b/paddle/framework/executor.h @@ -14,19 +14,108 @@ limitations under the License. */ #pragma once +#include +#include + #include "paddle/framework/op_info.h" #include "paddle/framework/program_desc.h" #include "paddle/framework/scope.h" #include "paddle/framework/tensor.h" +#include "paddle/platform/device_context.h" namespace paddle { namespace framework { +class DeviceContextPool { + public: + static DeviceContextPool& Get() { + PADDLE_ENFORCE_NOT_NULL(pool, "Need to Create DeviceContextPool first!"); + return *pool; + } + + static DeviceContextPool& Create(const std::vector& places) { + if (pool == nullptr) { + pool = new DeviceContextPool(places); + } + return *pool; + } + + const platform::DeviceContext* Borrow(const platform::Place& place) { + auto range = device_contexts_.equal_range(place); + if (range.first == range.second) { + PADDLE_THROW( + "'Place' is not supported, Please re-compile with WITH_GPU " + "option"); + } + return range.first->second; + } + + std::vector Borrow( + const std::vector& places) { + PADDLE_ENFORCE_GT(places.size(), 0); + PADDLE_ENFORCE_LE(places.size(), device_contexts_.size()); + std::vector borrowed_contexts; + for (auto& place : places) { + auto range = device_contexts_.equal_range(place); + if (range.first == range.second) { + PADDLE_THROW( + "'Place' is not supported, Please re-compile with WITH_GPU " + "option"); + } + // TODO(dzhwinter) : assign the first found device. Will enhanced later. + // device load balancer maybe useful here. + borrowed_contexts.emplace_back(range.first->second); + } + return borrowed_contexts; + } + + explicit DeviceContextPool(const std::vector& places) { + PADDLE_ENFORCE_GT(places.size(), 0); + for (size_t i = 0; i < places.size(); i++) { + if (platform::is_cpu_place(places[i])) { + device_contexts_.emplace( + places[i], new platform::CPUDeviceContext( + boost::get(places[i]))); + } else if (platform::is_gpu_place(places[i])) { +#ifdef PADDLE_WITH_CUDA + device_contexts_.emplace( + places[i], new platform::CUDADeviceContext( + boost::get(places[i]))); +#else + PADDLE_THROW( + "'GPUPlace' is not supported, Please re-compile with WITH_GPU " + "option"); +#endif + } + } + } + + ~DeviceContextPool() {} + + private: + static DeviceContextPool* pool; + struct Hash { + std::hash hash_; + size_t operator()(const platform::Place& place) const { + return hash_(place.which()); + } + }; + std::unordered_multimap + device_contexts_; + DISABLE_COPY_AND_ASSIGN(DeviceContextPool); +}; + class Executor { public: + // TODO(dzhwinter) : Do not rely on this function, it will be removed + explicit Executor(const platform::DeviceContext& device) + : Executor(std::vector({device.GetPlace()})) {} + + explicit Executor(const platform::Place& place) + : Executor(std::vector({place})) {} + explicit Executor(const std::vector& places); - explicit Executor(const platform::DeviceContext& devices); - ~Executor(); /* @Brief * Runtime evaluation of the given ProgramDesc under certain Scope @@ -35,11 +124,11 @@ class Executor { * ProgramDesc * Scope */ - void Run(const ProgramDescBind&, Scope*, int, bool create_local_scope = true); + void Run(const ProgramDesc&, Scope*, int, bool create_local_scope = true, + bool create_vars = true); private: std::vector device_contexts_; - bool own_; }; } // namespace framework diff --git a/paddle/framework/framework.proto b/paddle/framework/framework.proto index f1fc4529e15502927560eefd74110f6ca7eab4a9..4f2746e4b86ee5fe095897ff6ef9d3f6473e8a14 100644 --- a/paddle/framework/framework.proto +++ b/paddle/framework/framework.proto @@ -14,7 +14,7 @@ limitations under the License. */ syntax = "proto2"; option optimize_for = LITE_RUNTIME; -package paddle.framework; +package paddle.framework.proto; enum AttrType { INT = 0; diff --git a/paddle/framework/grad_op_desc_maker.h b/paddle/framework/grad_op_desc_maker.h index 998186e33915a11f2864eb5387d19ed1bfbab51c..cf411fa710103350713342b43946697a8dd2aa46 100644 --- a/paddle/framework/grad_op_desc_maker.h +++ b/paddle/framework/grad_op_desc_maker.h @@ -22,21 +22,27 @@ namespace paddle { namespace framework { +/* + This functor class is responsible for creating the gradient ops for the given + operator fwd_op. After it is called (through operator()), the pairs of + (gradient variable, corresponding input variable of fwd_op) will be added to + grad_to_var. If an input variable of fwd_op is contained in no_grad_set, its + gradient varialbe will be ignored or kEmptyVarName depending on the template + argument DropEmptyIG in the derived classes. + */ class GradOpDescMakerBase { public: explicit GradOpDescMakerBase( - const OpDescBind& fwd_op, - const std::unordered_set& no_grad_set, + const OpDesc& fwd_op, const std::unordered_set& no_grad_set, std::unordered_map* grad_to_var, - const std::vector& grad_block = - std::vector()) + const std::vector& grad_block = std::vector()) : fwd_op_(fwd_op), no_grad_set_(no_grad_set), grad_to_var_(grad_to_var), grad_block_(grad_block) {} virtual ~GradOpDescMakerBase() = default; - virtual std::vector> operator()() const = 0; + virtual std::vector> operator()() const = 0; protected: std::vector InputGrad(const std::string& name, @@ -58,6 +64,16 @@ class GradOpDescMakerBase { if (!drop_empty_grad) { return ret_val; } + PADDLE_ENFORCE_LE(var_names.size(), 1UL, + "BUG from operator developer:" + " for input argument with a list of variables, " + " drop_empty_grad is not allowed because it makes" + " the correspondence bewteen a variable and its gradient" + " ambiguous. Use REGISTER_OP_EX to register the op" + " or call InputGrad(?,false) in GradOpDescMaker." + " Op type %s", + fwd_op_.Type()); + std::vector dropped_ret_val; dropped_ret_val.reserve(ret_val.size()); std::copy_if(ret_val.begin(), ret_val.end(), @@ -105,26 +121,26 @@ class GradOpDescMakerBase { std::string ForwardOpType() const { return this->fwd_op_.Type(); } private: - const OpDescBind& fwd_op_; + const OpDesc& fwd_op_; const std::unordered_set& no_grad_set_; std::unordered_map* grad_to_var_; protected: - std::vector grad_block_; + std::vector grad_block_; }; class SingleGradOpDescMaker : public GradOpDescMakerBase { public: using GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() const { - std::vector> retv; + std::vector> operator()() const { + std::vector> retv; retv.emplace_back(this->Apply()); return retv; } protected: - virtual std::unique_ptr Apply() const = 0; + virtual std::unique_ptr Apply() const = 0; }; template @@ -133,8 +149,8 @@ class DefaultGradOpDescMaker : public SingleGradOpDescMaker { using SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - virtual std::unique_ptr Apply() const { - auto* grad = new OpDescBind(); + virtual std::unique_ptr Apply() const { + auto* grad = new OpDesc(); grad->SetType(this->GradOpType()); for (auto& input_param : this->InputNames()) { @@ -150,7 +166,7 @@ class DefaultGradOpDescMaker : public SingleGradOpDescMaker { grad->SetAttrMap(this->Attrs()); - return std::unique_ptr(grad); + return std::unique_ptr(grad); } virtual std::string GradOpType() const { @@ -161,7 +177,7 @@ class DefaultGradOpDescMaker : public SingleGradOpDescMaker { class EmptyGradOpMaker : public GradOpDescMakerBase { public: using GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() const override { + std::vector> operator()() const override { return {}; } }; diff --git a/paddle/framework/init.cc b/paddle/framework/init.cc new file mode 100644 index 0000000000000000000000000000000000000000..1c4476f4b30aebf094eb27b45fb435c24a9061c1 --- /dev/null +++ b/paddle/framework/init.cc @@ -0,0 +1,80 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ +#include +#include + +#include "paddle/framework/executor.h" +#include "paddle/framework/init.h" +#include "paddle/platform/place.h" +#include "paddle/string/piece.h" + +namespace paddle { +namespace framework { + +std::once_flag gflags_init_flag; + +// TODO(qijun) move init gflags to init.cc +void InitGflags(std::vector &argv) { + std::call_once(gflags_init_flag, [&]() { + int argc = argv.size(); + char **arr = new char *[argv.size()]; + std::string line; + for (size_t i = 0; i < argv.size(); i++) { + arr[i] = &argv[i][0]; + line += argv[i]; + line += ' '; + } + google::ParseCommandLineFlags(&argc, &arr, true); + VLOG(1) << "Init commandline: " << line; + }); +} + +bool InitDevices(const std::vector &devices) { + // device format + // CPU + // GPU:1 + // TODO(dzhwinter) : add device format annotation for users. + std::vector places; + for (auto &device : devices) { + auto p = string::Piece(device); + if (string::Find(p, ':', 0) == string::Piece::npos) { + places.emplace_back(platform::CPUPlace()); + } else if (string::HasPrefix(p, "GPU")) { +#ifdef PADDLE_WITH_CUDA + auto pos = string::RFind(p, ':', string::Piece::npos); + auto number = device.substr(pos + 1); + places.emplace_back(platform::GPUPlace(std::stoi(number))); +#else + LOG(WARNING) + << "'GPU' is not supported, Please re-compile with WITH_GPU option"; +#endif + } else { + return false; + } + } + + if (std::find_if(places.begin(), places.end(), + [&](const platform::Place &place) { + return platform::is_cpu_place(place); + }) == places.end()) { + places.emplace_back(platform::CPUPlace()); + LOG(WARNING) << "Not specified any device, use CPU by Default."; + } + DeviceContextPool::Create(places); + return true; + return true; +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/init.h b/paddle/framework/init.h new file mode 100644 index 0000000000000000000000000000000000000000..1715cd81e6647158e269e39d4d91fbe065cd0008 --- /dev/null +++ b/paddle/framework/init.h @@ -0,0 +1,28 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ +#pragma once +#include + +#include "gflags/gflags.h" +#include "glog/logging.h" + +namespace paddle { +namespace framework { + +void InitGflags(std::vector &argv); + +bool InitDevices(const std::vector &devices); + +} // namespace framework +} // namespace paddle diff --git a/paddle/framework/init_test.cc b/paddle/framework/init_test.cc new file mode 100644 index 0000000000000000000000000000000000000000..f65e881a761e0a546d595eced26dd5b12475a763 --- /dev/null +++ b/paddle/framework/init_test.cc @@ -0,0 +1,27 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ +#include "gtest/gtest.h" + +#include "paddle/framework/init.h" + +TEST(Init, InitDevices) { + using paddle::framework::InitDevices; + std::vector ds1 = {"CPU"}; + ASSERT_EQ(InitDevices(ds1), true); + +#ifdef PADDLE_WITH_CUDA + std::vector ds2 = {"CPU", "GPU:0", "GPU:1"}; + ASSERT_EQ(InitDevices(ds2), true); +#endif +} diff --git a/paddle/framework/library_type.h b/paddle/framework/library_type.h new file mode 100644 index 0000000000000000000000000000000000000000..68e9cabb667a5b2421fad8333d8e1be7bfa57002 --- /dev/null +++ b/paddle/framework/library_type.h @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +namespace paddle { +namespace framework { + +// For more details about the design of LibraryType, Please refer to +// https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md#library + +enum LibraryType { kPlain = 0; kMKLDNN = 1; kCUDNN = 2; } + +} // namespace +} // framework diff --git a/paddle/framework/lod_rank_table.cc b/paddle/framework/lod_rank_table.cc index 1c2fba70c8ab0827ba6d1563f08cd0820650822e..17d524c09276fc0eb166925bd79bc0bdfcead195 100644 --- a/paddle/framework/lod_rank_table.cc +++ b/paddle/framework/lod_rank_table.cc @@ -46,4 +46,13 @@ void LoDRankTable::Reset(const LoD& lod, size_t level) { } } // namespace framework + +std::ostream& operator<<(std::ostream& out, + const framework::LoDRankTable& table) { + out << "NumOfSequence " << table.items().size() << "\n"; + for (auto& each_item : table.items()) { + out << "\tSeq #" << each_item.index << ", Len=" << each_item.length << "\n"; + } + return out; +} } // namespace paddle diff --git a/paddle/framework/lod_rank_table.h b/paddle/framework/lod_rank_table.h index 9faa3a4d7bdc55ab7b24e31f5e5434dacc0a4b36..d3007d3d7379a59b32465cbd55780c6268e0e4a8 100644 --- a/paddle/framework/lod_rank_table.h +++ b/paddle/framework/lod_rank_table.h @@ -13,6 +13,7 @@ limitations under the License. */ #pragma once +#include #include "paddle/framework/lod_tensor.h" namespace paddle { @@ -52,4 +53,8 @@ class LoDRankTable { }; } // namespace framework + +std::ostream& operator<<(std::ostream& out, + const framework::LoDRankTable& table); + } // namespace paddle diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc index fdf6de4babff3bb3c253aaf516636882237e6faf..465f8c62b5fe2efd549f68bb3a9823d299ba5393 100644 --- a/paddle/framework/lod_tensor.cc +++ b/paddle/framework/lod_tensor.cc @@ -197,7 +197,7 @@ void SerializeToStream(std::ostream &os, const LoDTensor &tensor, { // the 2nd field, tensor description // int32_t size // void* protobuf message - framework::TensorDesc desc; + proto::TensorDesc desc; desc.set_data_type(framework::ToDataType(tensor.type())); auto dims = framework::vectorize(tensor.dims()); auto *pb_dims = desc.mutable_dims(); @@ -262,7 +262,7 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { uint32_t version; is.read(reinterpret_cast(&version), sizeof(version)); PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported"); - framework::TensorDesc desc; + proto::TensorDesc desc; { // int32_t size // proto buffer int32_t size; @@ -281,16 +281,16 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) { void *buf; platform::Place cpu = platform::CPUPlace(); switch (desc.data_type()) { - case framework::FP32: + case proto::FP32: buf = tensor->mutable_data(cpu); break; - case framework::FP64: + case proto::FP64: buf = tensor->mutable_data(cpu); break; - case framework::INT32: + case proto::INT32: buf = tensor->mutable_data(cpu); break; - case framework::INT64: + case proto::INT64: buf = tensor->mutable_data(cpu); break; default: diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h index 9411c96aea4c10ebf921cc3e3b442769c8acbefa..0923c52a0ad2fe10cea760df20c99021984ad39d 100644 --- a/paddle/framework/lod_tensor.h +++ b/paddle/framework/lod_tensor.h @@ -184,6 +184,18 @@ LoDTensor LodExpand(const LoDTensor& source, const LoD& lod, size_t level, return tensor; } +// Get the absolute offset of a lod[start_level][start_idx:end_idx] and +// relative length of details for every levels(i.e., [start_level: ]). +// +// For example, +// lod = [[0, 3, 4, 8], [0, 9, 10, 11, 13, 17, 19, 22, 24]] +// start_level = 0 +// start_idx = 1 +// end_idx = 3 +// +// Returns: +// LoD = [[1, 4], [2, 4, 2, 3, 2]] +// pair = {11, 24} std::pair> GetSubLoDAndAbsoluteOffset( const LoD& lod, size_t start_idx, size_t end_idx, size_t start_level); diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc index 02a825324328fa5cfd3a4d23a8c64488cc88aeec..b361e64438251c1df827667fb825e7f5909fb09e 100644 --- a/paddle/framework/op_desc.cc +++ b/paddle/framework/op_desc.cc @@ -25,12 +25,11 @@ limitations under the License. */ namespace paddle { namespace framework { -class OpDescBind; -class BlockDescBind; +class OpDesc; +class BlockDesc; class CompileTimeInferShapeContext : public InferShapeContext { public: - CompileTimeInferShapeContext(const OpDescBind &op, - const BlockDescBind &block); + CompileTimeInferShapeContext(const OpDesc &op, const BlockDesc &block); bool HasInput(const std::string &name) const override; @@ -58,11 +57,11 @@ class CompileTimeInferShapeContext : public InferShapeContext { PADDLE_ENFORCE_LT(j, Outputs(out).size()); auto *in_var = block_.FindVarRecursive(Inputs(in)[i]); auto *out_var = block_.FindVarRecursive(Outputs(out)[j]); - if (in_var->GetType() != VarDesc::LOD_TENSOR) { - VLOG(3) << "input " << in << "is not LodTensor"; + if (in_var->GetType() != proto::VarDesc::LOD_TENSOR) { + VLOG(3) << "input " << in << " is not LodTensor"; return; } - PADDLE_ENFORCE_EQ(in_var->GetType(), VarDesc::LOD_TENSOR, + PADDLE_ENFORCE_EQ(in_var->GetType(), proto::VarDesc::LOD_TENSOR, "The %d-th output of Output(%s) must be LoDTensor.", j, out); out_var->SetLoDLevel(in_var->GetLodLevel()); @@ -70,19 +69,18 @@ class CompileTimeInferShapeContext : public InferShapeContext { bool IsRuntime() const override; protected: - VarDesc::VarType GetVarType(const std::string &name) const override; + proto::VarDesc::VarType GetVarType(const std::string &name) const override; DDim GetDim(const std::string &name) const override; void SetDim(const std::string &name, const DDim &dim) override; - const OpDescBind &op_; - const BlockDescBind &block_; + const OpDesc &op_; + const BlockDesc &block_; }; -OpDescBind::OpDescBind(const std::string &type, const VariableNameMap &inputs, - const VariableNameMap &outputs, - const AttributeMap &attrs) { +OpDesc::OpDesc(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, const AttributeMap &attrs) { desc_.set_type(type); inputs_ = inputs; outputs_ = outputs; @@ -90,12 +88,12 @@ OpDescBind::OpDescBind(const std::string &type, const VariableNameMap &inputs, need_update_ = true; } -OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog) +OpDesc::OpDesc(const proto::OpDesc &desc, ProgramDesc *prog) : desc_(desc), need_update_(false) { // restore inputs_ int input_size = desc_.inputs_size(); for (int i = 0; i < input_size; ++i) { - const OpDesc::Var &var = desc_.inputs(i); + const proto::OpDesc::Var &var = desc_.inputs(i); std::vector &args = inputs_[var.parameter()]; int argu_size = var.arguments_size(); args.reserve(argu_size); @@ -106,7 +104,7 @@ OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog) // restore outputs_ int output_size = desc_.outputs_size(); for (int i = 0; i < output_size; ++i) { - const OpDesc::Var &var = desc_.outputs(i); + const proto::OpDesc::Var &var = desc_.outputs(i); std::vector &args = outputs_[var.parameter()]; int argu_size = var.arguments_size(); args.reserve(argu_size); @@ -115,9 +113,9 @@ OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog) } } // restore attrs_ - for (const OpDesc::Attr &attr : desc_.attrs()) { + for (const proto::OpDesc::Attr &attr : desc_.attrs()) { std::string attr_name = attr.name(); - if (attr.type() != AttrType::BLOCK) { + if (attr.type() != proto::AttrType::BLOCK) { attrs_[attr_name] = GetAttrValue(attr); } else { auto bid = attr.block_idx(); @@ -126,20 +124,19 @@ OpDescBind::OpDescBind(const OpDesc &desc, ProgramDescBind *prog) } } -OpDesc *OpDescBind::Proto() { +proto::OpDesc *OpDesc::Proto() { Flush(); return &desc_; } -const std::vector &OpDescBind::Input( - const std::string &name) const { +const std::vector &OpDesc::Input(const std::string &name) const { auto it = inputs_.find(name); PADDLE_ENFORCE(it != inputs_.end(), "Input %s cannot be found in Op %s", name, Type()); return it->second; } -std::vector OpDescBind::InputArgumentNames() const { +std::vector OpDesc::InputArgumentNames() const { std::vector retv; for (auto &ipt : this->inputs_) { retv.insert(retv.end(), ipt.second.begin(), ipt.second.end()); @@ -147,21 +144,20 @@ std::vector OpDescBind::InputArgumentNames() const { return retv; } -void OpDescBind::SetInput(const std::string ¶m_name, - const std::vector &args) { +void OpDesc::SetInput(const std::string ¶m_name, + const std::vector &args) { need_update_ = true; inputs_[param_name] = args; } -const std::vector &OpDescBind::Output( - const std::string &name) const { +const std::vector &OpDesc::Output(const std::string &name) const { auto it = outputs_.find(name); PADDLE_ENFORCE(it != outputs_.end(), "Output %s cannot be found in Op %s", name, Type()); return it->second; } -std::vector OpDescBind::OutputArgumentNames() const { +std::vector OpDesc::OutputArgumentNames() const { std::vector retv; for (auto &ipt : this->outputs_) { retv.insert(retv.end(), ipt.second.begin(), ipt.second.end()); @@ -169,19 +165,19 @@ std::vector OpDescBind::OutputArgumentNames() const { return retv; } -void OpDescBind::SetOutput(const std::string ¶m_name, - const std::vector &args) { +void OpDesc::SetOutput(const std::string ¶m_name, + const std::vector &args) { need_update_ = true; this->outputs_[param_name] = args; } -AttrType OpDescBind::GetAttrType(const std::string &name) const { +proto::AttrType OpDesc::GetAttrType(const std::string &name) const { auto it = attrs_.find(name); PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); - return static_cast(it->second.which() - 1); + return static_cast(it->second.which() - 1); } -std::vector OpDescBind::AttrNames() const { +std::vector OpDesc::AttrNames() const { std::vector retv; retv.reserve(attrs_.size()); for (auto &attr : attrs_) { @@ -190,41 +186,39 @@ std::vector OpDescBind::AttrNames() const { return retv; } -void OpDescBind::SetAttr(const std::string &name, const Attribute &v) { +void OpDesc::SetAttr(const std::string &name, const Attribute &v) { this->attrs_[name] = v; need_update_ = true; } -void OpDescBind::SetBlockAttr(const std::string &name, BlockDescBind &block) { +void OpDesc::SetBlockAttr(const std::string &name, BlockDesc &block) { this->attrs_[name] = █ need_update_ = true; } -void OpDescBind::SetAttrMap( +void OpDesc::SetAttrMap( const std::unordered_map &attr_map) { attrs_ = attr_map; need_update_ = true; } -Attribute OpDescBind::GetAttr(const std::string &name) const { +Attribute OpDesc::GetAttr(const std::string &name) const { auto it = attrs_.find(name); PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); return it->second; } -int OpDescBind::GetBlockAttr(const std::string &name) const { +int OpDesc::GetBlockAttr(const std::string &name) const { auto it = attrs_.find(name); PADDLE_ENFORCE(it != attrs_.end(), "Attribute %s is not found", name); - return boost::get(it->second)->ID(); + return boost::get(it->second)->ID(); } -const std::unordered_map &OpDescBind::GetAttrMap() - const { +const std::unordered_map &OpDesc::GetAttrMap() const { return attrs_; } -void OpDescBind::Rename(const std::string &old_name, - const std::string &new_name) { +void OpDesc::Rename(const std::string &old_name, const std::string &new_name) { for (auto &input : inputs_) { std::replace(input.second.begin(), input.second.end(), old_name, new_name); } @@ -235,8 +229,8 @@ void OpDescBind::Rename(const std::string &old_name, need_update_ = true; } -void OpDescBind::RenameOutput(const std::string &old_name, - const std::string &new_name) { +void OpDesc::RenameOutput(const std::string &old_name, + const std::string &new_name) { for (auto &output : outputs_) { std::replace(output.second.begin(), output.second.end(), old_name, new_name); @@ -244,8 +238,8 @@ void OpDescBind::RenameOutput(const std::string &old_name, need_update_ = true; } -void OpDescBind::RenameInput(const std::string &old_name, - const std::string &new_name) { +void OpDesc::RenameInput(const std::string &old_name, + const std::string &new_name) { for (auto &input : inputs_) { std::replace(input.second.begin(), input.second.end(), old_name, new_name); } @@ -253,8 +247,8 @@ void OpDescBind::RenameInput(const std::string &old_name, } struct SetAttrDescVisitor : public boost::static_visitor { - explicit SetAttrDescVisitor(OpDesc::Attr *attr) : attr_(attr) {} - mutable OpDesc::Attr *attr_; + explicit SetAttrDescVisitor(proto::OpDesc::Attr *attr) : attr_(attr) {} + mutable proto::OpDesc::Attr *attr_; void operator()(int v) const { attr_->set_i(v); } void operator()(float v) const { attr_->set_f(v); } void operator()(const std::string &v) const { attr_->set_s(v); } @@ -272,11 +266,13 @@ struct SetAttrDescVisitor : public boost::static_visitor { void operator()(const std::vector &v) const { VectorToRepeated(v, attr_->mutable_bools()); } - void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->idx()); } + void operator()(proto::BlockDesc *desc) const { + attr_->set_block_idx(desc->idx()); + } void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); } }; -void OpDescBind::Flush() { +void OpDesc::Flush() { if (need_update_) { this->desc_.mutable_inputs()->Clear(); for (auto &ipt : inputs_) { @@ -297,7 +293,7 @@ void OpDescBind::Flush() { auto *attr_desc = desc_.add_attrs(); attr_desc->set_name(attr.first); attr_desc->set_type( - static_cast(attr.second.which() - 1)); + static_cast(attr.second.which() - 1)); SetAttrDescVisitor visitor(attr_desc); boost::apply_visitor(visitor, attr.second); } @@ -316,8 +312,8 @@ static void InitInferShapeFuncs() { for (auto &kern_pair : OperatorWithKernel::AllOpKernels()) { auto op_type = kern_pair.first; auto &op_info = info_map.at(op_type); - auto op = - static_cast(op_info.Creator()("", {}, {}, {})); + auto op = static_cast(op_info.Creator()( + "", VariableNameMap{}, VariableNameMap{}, AttributeMap{})); if (op_info.infer_shape_) { // infer_shape has been registered. continue; } @@ -328,7 +324,7 @@ static void InitInferShapeFuncs() { }); } -void OpDescBind::CheckAttrs() { +void OpDesc::CheckAttrs() { PADDLE_ENFORCE(!Type().empty(), "CheckAttr() can not be called before type is setted."); auto *checker = OpInfoMap::Instance().Get(Type()).Checker(); @@ -340,7 +336,7 @@ void OpDescBind::CheckAttrs() { checker->Check(attrs_); } -void OpDescBind::InferShape(const BlockDescBind &block) const { +void OpDesc::InferShape(const BlockDesc &block) const { VLOG(3) << "CompileTime infer shape on " << Type(); InitInferShapeFuncs(); auto &infer_shape = OpInfoMap::Instance().Get(this->Type()).infer_shape_; @@ -363,7 +359,7 @@ void OpDescBind::InferShape(const BlockDescBind &block) const { infer_shape(&ctx); } -void OpDescBind::InferVarType(BlockDescBind *block) const { +void OpDesc::InferVarType(BlockDesc *block) const { auto &info = OpInfoMap::Instance().Get(this->Type()); if (info.infer_var_type_) { info.infer_var_type_(*this, block); @@ -375,14 +371,14 @@ void OpDescBind::InferVarType(BlockDescBind *block) const { for (auto &out_pair : this->outputs_) { for (auto &out_var_name : out_pair.second) { block->FindRecursiveOrCreateVar(out_var_name) - ->SetType(VarDesc::LOD_TENSOR); + ->SetType(proto::VarDesc::LOD_TENSOR); } } } } CompileTimeInferShapeContext::CompileTimeInferShapeContext( - const OpDescBind &op, const BlockDescBind &block) + const OpDesc &op, const BlockDesc &block) : op_(op), block_(block) {} bool CompileTimeInferShapeContext::HasInput(const std::string &name) const { @@ -466,7 +462,12 @@ DDim CompileTimeInferShapeContext::GetDim(const std::string &name) const { auto var = block_.FindVarRecursive(name); PADDLE_ENFORCE(var != nullptr, "Cannot find variable %s", name); try { - return framework::make_ddim(var->Shape()); + auto shape = var->Shape(); + if (shape.empty()) { + return framework::make_ddim({0UL}); + } else { + return framework::make_ddim(var->Shape()); + } } catch (...) { VLOG(5) << "GetDim of variable " << name << " error"; std::rethrow_exception(std::current_exception()); @@ -479,7 +480,7 @@ void CompileTimeInferShapeContext::SetDim(const std::string &name, } bool CompileTimeInferShapeContext::IsRuntime() const { return false; } -VarDesc::VarType CompileTimeInferShapeContext::GetVarType( +proto::VarDesc::VarType CompileTimeInferShapeContext::GetVarType( const std::string &name) const { return block_.FindVarRecursive(name)->GetType(); } diff --git a/paddle/framework/op_desc.h b/paddle/framework/op_desc.h index da032319afa775571d3942bf6ae415db7d233735..93d4a88f3c390551ab41e42ec2f6f30f52e306db 100644 --- a/paddle/framework/op_desc.h +++ b/paddle/framework/op_desc.h @@ -23,19 +23,19 @@ limitations under the License. */ namespace paddle { namespace framework { -class BlockDescBind; -class ProgramDescBind; +class BlockDesc; +class ProgramDesc; -class OpDescBind { +class OpDesc { public: - OpDescBind() {} + OpDesc() {} - OpDescBind(const std::string &type, const VariableNameMap &inputs, - const VariableNameMap &outputs, const AttributeMap &attrs); + OpDesc(const std::string &type, const VariableNameMap &inputs, + const VariableNameMap &outputs, const AttributeMap &attrs); - OpDescBind(const OpDesc &desc, ProgramDescBind *prog); + OpDesc(const proto::OpDesc &desc, ProgramDesc *prog); - OpDesc *Proto(); + proto::OpDesc *Proto(); std::string Type() const { return desc_.type(); } @@ -59,13 +59,13 @@ class OpDescBind { return attrs_.find(name) != attrs_.end(); } - AttrType GetAttrType(const std::string &name) const; + proto::AttrType GetAttrType(const std::string &name) const; std::vector AttrNames() const; void SetAttr(const std::string &name, const Attribute &v); - void SetBlockAttr(const std::string &name, BlockDescBind &block); + void SetBlockAttr(const std::string &name, BlockDesc &block); Attribute GetAttr(const std::string &name) const; @@ -107,9 +107,9 @@ class OpDescBind { void CheckAttrs(); - void InferShape(const BlockDescBind &block) const; + void InferShape(const BlockDesc &block) const; - void InferVarType(BlockDescBind *block) const; + void InferVarType(BlockDesc *block) const; void MarkAsTarget() { desc_.set_is_target(true); } @@ -126,8 +126,10 @@ class OpDescBind { return ret_val; } - OpDesc desc_; + proto::OpDesc desc_; + // input arg name => output variable names VariableNameMap inputs_; + // output arg name => output variable names VariableNameMap outputs_; AttributeMap attrs_; diff --git a/paddle/framework/op_info.h b/paddle/framework/op_info.h index d3b1a3b5fa2cf8f6a9571e92a319f3757666657e..7772d6e745c2207024863d3dd5cbef052358272e 100644 --- a/paddle/framework/op_info.h +++ b/paddle/framework/op_info.h @@ -34,7 +34,7 @@ class InferShapeBase { struct OpInfo { OpCreator creator_; GradOpMakerFN grad_op_maker_; - OpProto* proto_{nullptr}; + proto::OpProto* proto_{nullptr}; OpAttrChecker* checker_{nullptr}; InferVarTypeFN infer_var_type_; InferShapeFN infer_shape_; @@ -43,7 +43,7 @@ struct OpInfo { return proto_ != nullptr && checker_ != nullptr; } - const OpProto& Proto() const { + const proto::OpProto& Proto() const { PADDLE_ENFORCE_NOT_NULL(proto_, "Operator Proto has not been registered"); PADDLE_ENFORCE(proto_->IsInitialized(), "Operator Proto must be initialized in op info"); diff --git a/paddle/framework/op_proto_maker.h b/paddle/framework/op_proto_maker.h index 44e8ab16895cc604f85bb83e240eab55739f8ba0..efd3a5ca535403d8d46a73adc899d914623b53e4 100644 --- a/paddle/framework/op_proto_maker.h +++ b/paddle/framework/op_proto_maker.h @@ -22,6 +22,8 @@ namespace framework { // this class not only make proto but also init attribute checkers. class OpProtoAndCheckerMaker { public: + using OpProto = proto::OpProto; + using OpAttrChecker = framework::OpAttrChecker; OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : proto_(proto), op_checker_(op_checker) {} @@ -80,7 +82,7 @@ class OpProtoAndCheckerMaker { class NOPMaker : public OpProtoAndCheckerMaker { public: - NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + NOPMaker(OpProto* proto, framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) {} }; diff --git a/paddle/framework/op_proto_maker_test.cc b/paddle/framework/op_proto_maker_test.cc index 988a14cf4de8fdf052ca7e8c41bff0c05ba2daaa..f16cb6fa3aa095a6d9737d84c7ce58f385a7072b 100644 --- a/paddle/framework/op_proto_maker_test.cc +++ b/paddle/framework/op_proto_maker_test.cc @@ -18,7 +18,7 @@ limitations under the License. */ class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { public: - TestAttrProtoMaker(paddle::framework::OpProto* proto, + TestAttrProtoMaker(paddle::framework::proto::OpProto* proto, paddle::framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("scale", "scale of test op"); @@ -27,7 +27,7 @@ class TestAttrProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { }; TEST(ProtoMaker, DuplicatedAttr) { - paddle::framework::OpProto op_proto; + paddle::framework::proto::OpProto op_proto; paddle::framework::OpAttrChecker op_checker; auto proto_maker = TestAttrProtoMaker(&op_proto, &op_checker); ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); @@ -35,7 +35,7 @@ TEST(ProtoMaker, DuplicatedAttr) { class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { public: - TestInOutProtoMaker(paddle::framework::OpProto* proto, + TestInOutProtoMaker(paddle::framework::proto::OpProto* proto, paddle::framework::OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("input", "input of test op"); @@ -44,7 +44,7 @@ class TestInOutProtoMaker : public paddle::framework::OpProtoAndCheckerMaker { }; TEST(ProtoMaker, DuplicatedInOut) { - paddle::framework::OpProto op_proto; + paddle::framework::proto::OpProto op_proto; paddle::framework::OpAttrChecker op_checker; auto proto_maker = TestInOutProtoMaker(&op_proto, &op_checker); ASSERT_THROW(proto_maker.Validate(), paddle::platform::EnforceNotMet); diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index 8dedd873aad648174b770b84e5232cd17b577e72..dfa151316daeccfe92e26818165a694b78b5df62 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -31,7 +31,8 @@ std::unique_ptr OpRegistry::CreateOp( } static VariableNameMap ConvertOpDescVarsToVarNameMap( - const google::protobuf::RepeatedPtrField& op_desc_vars) { + const google::protobuf::RepeatedPtrField& + op_desc_vars) { VariableNameMap ret_val; for (auto& var : op_desc_vars) { auto& var_names = ret_val[var.parameter()]; @@ -43,9 +44,10 @@ static VariableNameMap ConvertOpDescVarsToVarNameMap( return ret_val; } -std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { +std::unique_ptr OpRegistry::CreateOp( + const proto::OpDesc& op_desc) { VLOG(1) << "CreateOp directly from OpDesc is deprecated. It should only be" - "used in unit tests. Use CreateOp(const OpDescBind& op_desc) " + "used in unit tests. Use CreateOp(const OpDesc& op_desc) " "instead."; VariableNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); VariableNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); @@ -57,7 +59,7 @@ std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { return CreateOp(op_desc.type(), inputs, outputs, attrs); } -std::unique_ptr OpRegistry::CreateOp(const OpDescBind& op_desc) { +std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { return CreateOp(op_desc.Type(), op_desc.Inputs(), op_desc.Outputs(), op_desc.GetAttrMap()); } diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index daade439e5232f06be72bc5bb1e2285124f2c3a4..7f0155b61f44b676825b84667d5bebb798cae8a3 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -77,9 +77,9 @@ class OpRegistry { const VariableNameMap& outputs, AttributeMap attrs); - static std::unique_ptr CreateOp(const OpDesc& op_desc); + static std::unique_ptr CreateOp(const proto::OpDesc& op_desc); - static std::unique_ptr CreateOp(const OpDescBind& op_desc); + static std::unique_ptr CreateOp(const OpDesc& op_desc); }; template @@ -126,6 +126,14 @@ class OpKernelRegistrar : public Registrar { __test_global_namespace_##uniq_name##__>::value, \ msg) +/* + The variadic arguments should be class types derived from one of the + following classes: + OpProtoAndCheckerMaker + GradOpDescMakerBase + VarTypeInference + InferShapeBase +*/ #define REGISTER_OPERATOR(op_type, op_class, ...) \ STATIC_ASSERT_GLOBAL_NAMESPACE( \ __reg_op__##op_type, \ @@ -144,20 +152,29 @@ class OpKernelRegistrar : public Registrar { } /** - * Macro to register Operator. + * Macro to register Operator. When the input is duplicable, you should + * use REGISTER_OP_EX with deop_empty_grad=false instead. */ -#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \ - grad_op_class) \ - REGISTER_OPERATOR(grad_op_type, grad_op_class); \ - class _GradOpDescMaker_##grad_op_type##_ \ - : public ::paddle::framework::DefaultGradOpDescMaker { \ - using ::paddle::framework::DefaultGradOpDescMaker< \ - true>::DefaultGradOpDescMaker; \ - \ - protected: \ - virtual std::string GradOpType() const { return #grad_op_type; } \ - }; \ - REGISTER_OPERATOR(op_type, op_class, _GradOpDescMaker_##grad_op_type##_, \ +#define REGISTER_OP(op_type, op_class, op_maker_class, grad_op_type, \ + grad_op_class) \ + REGISTER_OP_EX(op_type, op_class, op_maker_class, grad_op_type, \ + grad_op_class, true) + +// When an argument is duplicable, we need to use this version. +// Perhaps we can omit DropEmptyIG template parameter and +// only have one version of REGISTER_OP. +#define REGISTER_OP_EX(op_type, op_class, op_maker_class, grad_op_type, \ + grad_op_class, drop_empty_grad) \ + REGISTER_OPERATOR(grad_op_type, grad_op_class); \ + class _GradOpDescMaker_##grad_op_type##_ \ + : public ::paddle::framework::DefaultGradOpDescMaker { \ + using ::paddle::framework::DefaultGradOpDescMaker< \ + drop_empty_grad>::DefaultGradOpDescMaker; \ + \ + protected: \ + virtual std::string GradOpType() const { return #grad_op_type; } \ + }; \ + REGISTER_OPERATOR(op_type, op_class, _GradOpDescMaker_##grad_op_type##_, \ op_maker_class); #define REGISTER_OP_WITH_KERNEL(op_type, ...) \ @@ -181,8 +198,8 @@ class OpKernelRegistrar : public Registrar { return 0; \ } -#define REGISTER_OP_GPU_KERNEL(op_type, ...) \ - REGISTER_OP_KERNEL(op_type, GPU, ::paddle::platform::GPUPlace, __VA_ARGS__) +#define REGISTER_OP_CUDA_KERNEL(op_type, ...) \ + REGISTER_OP_KERNEL(op_type, CUDA, ::paddle::platform::GPUPlace, __VA_ARGS__) #define REGISTER_OP_CPU_KERNEL(op_type, ...) \ REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__) @@ -217,7 +234,7 @@ class OpKernelRegistrar : public Registrar { #else #define USE_OP_KERNEL(op_type) \ USE_OP_DEVICE_KERNEL(op_type, CPU); \ - USE_OP_DEVICE_KERNEL(op_type, GPU) + USE_OP_DEVICE_KERNEL(op_type, CUDA) #endif #define USE_NO_KERNEL_OP(op_type) USE_OP_ITSELF(op_type); @@ -226,9 +243,9 @@ class OpKernelRegistrar : public Registrar { USE_OP_ITSELF(op_type); \ USE_OP_DEVICE_KERNEL(op_type, CPU); -#define USE_GPU_ONLY_OP(op_type) \ - USE_OP_ITSELF(op_type); \ - USE_OP_DEVICE_KERNEL(op_type, GPU) +#define USE_CUDA_ONLY_OP(op_type) \ + USE_OP_ITSELF(op_type); \ + USE_OP_DEVICE_KERNEL(op_type, CUDA) #define USE_OP(op_type) \ USE_OP_ITSELF(op_type); \ diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index b860fe6cac773d1e85adecc43f5dfec42b6c7661..27713e5cbffe95e0ae31ac94a70c64deb53c4ffb 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -51,7 +51,7 @@ class MyTestOpProtoAndCheckerMaker : public OpProtoAndCheckerMaker { static void BuildVar(const std::string& param_name, std::initializer_list arguments, - paddle::framework::OpDesc::Var* var) { + paddle::framework::proto::OpDesc::Var* var) { var->set_parameter(param_name); for (auto& arg_name : arguments) { var->add_arguments(arg_name); @@ -63,7 +63,7 @@ REGISTER_OP_WITHOUT_GRADIENT(my_test_op, paddle::framework::MyTestOp, paddle::framework::MyTestOpProtoAndCheckerMaker); TEST(OpRegistry, CreateOp) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("cos_sim"); BuildVar("input", {"aa"}, op_desc.add_inputs()); BuildVar("output", {"bb"}, op_desc.add_outputs()); @@ -71,7 +71,7 @@ TEST(OpRegistry, CreateOp) { float scale = 3.3; auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(scale); auto op = paddle::framework::OpRegistry::CreateOp(op_desc); @@ -83,14 +83,14 @@ TEST(OpRegistry, CreateOp) { } TEST(OpRegistry, IllegalAttr) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("cos_sim"); BuildVar("input", {"aa"}, op_desc.add_inputs()); BuildVar("output", {"bb"}, op_desc.add_outputs()); auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(-2.0); bool caught = false; @@ -108,7 +108,7 @@ TEST(OpRegistry, IllegalAttr) { } TEST(OpRegistry, DefaultValue) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("cos_sim"); BuildVar("input", {"aa"}, op_desc.add_inputs()); BuildVar("output", {"bb"}, op_desc.add_outputs()); @@ -123,7 +123,7 @@ TEST(OpRegistry, DefaultValue) { } TEST(OpRegistry, CustomChecker) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("my_test_op"); BuildVar("input", {"ii"}, op_desc.add_inputs()); BuildVar("output", {"oo"}, op_desc.add_outputs()); @@ -145,7 +145,7 @@ TEST(OpRegistry, CustomChecker) { // set 'test_attr' set to an illegal value auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("test_attr"); - attr->set_type(paddle::framework::AttrType::INT); + attr->set_type(paddle::framework::proto::AttrType::INT); attr->set_i(3); caught = false; try { @@ -164,7 +164,7 @@ TEST(OpRegistry, CustomChecker) { op_desc.mutable_attrs()->Clear(); attr = op_desc.mutable_attrs()->Add(); attr->set_name("test_attr"); - attr->set_type(paddle::framework::AttrType::INT); + attr->set_type(paddle::framework::proto::AttrType::INT); attr->set_i(4); auto op = paddle::framework::OpRegistry::CreateOp(op_desc); paddle::platform::CPUDeviceContext dev_ctx; diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 93467ab8ac796277b47a861a427de2837fb2d3d4..0e58c0b5707516bd1274181df568d08ff504c152 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -22,20 +22,6 @@ limitations under the License. */ namespace paddle { namespace framework { -template <> -Eigen::DefaultDevice& ExecutionContext::GetEigenDevice< - platform::CPUPlace, Eigen::DefaultDevice>() const { - return *device_context_.GetEigenDevice(); -} - -#ifdef PADDLE_WITH_CUDA -template <> -Eigen::GpuDevice& -ExecutionContext::GetEigenDevice() const { - return *device_context_.GetEigenDevice(); -} -#endif - std::string OperatorBase::Input(const std::string& name) const { auto& ins = Inputs(name); PADDLE_ENFORCE_LE(ins.size(), 1UL, @@ -391,7 +377,7 @@ class RuntimeInferShapeContext : public InferShapeContext { } } - VarDesc::VarType GetVarType(const std::string& name) const override { + proto::VarDesc::VarType GetVarType(const std::string& name) const override { auto* var = scope_.FindVar(name); return ToVarType(var->Type()); } @@ -426,15 +412,12 @@ void OperatorWithKernel::Run(const Scope& scope, } kernel_iter->second->Compute(ctx); - - // throws errors if have. - dev_ctx.Finish(); } OpKernelType OperatorWithKernel::GetKernelType( const ExecutionContext& ctx) const { - return OpKernelType(IndicateDataType(ctx), ctx.device_context()); + return OpKernelType(IndicateDataType(ctx), ctx.GetPlace()); } -DataType OperatorWithKernel::IndicateDataType( +proto::DataType OperatorWithKernel::IndicateDataType( const ExecutionContext& ctx) const { auto& scope = ctx.scope(); int data_type = -1; @@ -460,7 +443,7 @@ DataType OperatorWithKernel::IndicateDataType( } } PADDLE_ENFORCE(data_type != -1, "DataType should be indicated by input"); - return static_cast(data_type); + return static_cast(data_type); } } // namespace framework diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 60861d92933dd100f877bec8d43f9b924f951e60..3207360cbaca4e3b96dfe933c67aaa70c59a6044 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -276,17 +276,25 @@ class ExecutionContext { out_tensor->set_lod(in_tensor.lod()); } - template ::EigenDeviceType> - DeviceType& GetEigenDevice() const; - platform::Place GetPlace() const { return device_context_.GetPlace(); } + template + const DeviceContextType& device_context() const { + return *reinterpret_cast(&device_context_); + } + const platform::DeviceContext& device_context() const { return device_context_; } +#ifdef PADDLE_WITH_CUDA + const inline platform::CUDADeviceContext& cuda_device_context() const { + PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace())); + return *reinterpret_cast( + &device_context_); + } +#endif + //! Get actual name vector for this input. const std::vector& Inputs(const std::string& name) const { return op_.Inputs(name); @@ -297,14 +305,6 @@ class ExecutionContext { return op_.Outputs(name); } -#ifdef PADDLE_WITH_CUDA - const inline platform::CUDADeviceContext& cuda_device_context() const { - PADDLE_ENFORCE(platform::is_gpu_place(device_context_.GetPlace())); - return *reinterpret_cast( - &device_context_); - } -#endif - private: const OperatorBase& op_; const Scope& scope_; @@ -358,12 +358,13 @@ struct OpKernelType { }; platform::Place place_; - DataType data_type_; + proto::DataType data_type_; - OpKernelType(DataType data_type, platform::Place place) + OpKernelType(proto::DataType data_type, platform::Place place) : place_(place), data_type_(data_type) {} - OpKernelType(DataType data_type, const platform::DeviceContext& dev_ctx) + OpKernelType(proto::DataType data_type, + const platform::DeviceContext& dev_ctx) : place_(dev_ctx.GetPlace()), data_type_(data_type) {} bool operator==(const OpKernelType& o) const { @@ -409,7 +410,7 @@ class OperatorWithKernel : public OperatorBase { private: // indicate kernel DataType by input data. Defaultly all input data must be // same. - DataType IndicateDataType(const ExecutionContext& ctx) const; + proto::DataType IndicateDataType(const ExecutionContext& ctx) const; }; std::ostream& operator<<(std::ostream& os, const OpKernelType& kernel_key); diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 1e19f82b341768142258ba4a5dfa246d87ba4c43..05a465152204c8e9f9dbd75d0bfb21ea44d25cf1 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -58,7 +58,7 @@ class OpeWithoutKernelTestProtoAndCheckerMaker : public OpProtoAndCheckerMaker { static void BuildVar(const std::string& param_name, std::initializer_list arguments, - paddle::framework::OpDesc::Var* var) { + paddle::framework::proto::OpDesc::Var* var) { var->set_parameter(param_name); for (auto& arg_name : arguments) { *var->mutable_arguments()->Add() = arg_name; @@ -70,14 +70,14 @@ REGISTER_OP_WITHOUT_GRADIENT( paddle::framework::OpeWithoutKernelTestProtoAndCheckerMaker); TEST(OperatorBase, all) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("test_operator"); BuildVar("input", {"IN1"}, op_desc.add_inputs()); BuildVar("output", {"OUT1"}, op_desc.add_outputs()); auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(3.14); paddle::platform::CPUDeviceContext device_context; @@ -115,7 +115,7 @@ class OpWithKernelTest : public OperatorWithKernel { protected: void InferShape(framework::InferShapeContext* ctx) const override {} OpKernelType GetKernelType(const ExecutionContext& ctx) const override { - return OpKernelType(DataType::FP32, ctx.device_context()); + return OpKernelType(proto::DataType::FP32, ctx.GetPlace()); } }; @@ -195,14 +195,14 @@ REGISTER_OP_CPU_KERNEL(op_with_kernel, // test with single input TEST(OpKernel, all) { - paddle::framework::OpDesc op_desc; + paddle::framework::proto::OpDesc op_desc; op_desc.set_type("op_with_kernel"); BuildVar("x", {"IN1"}, op_desc.add_inputs()); BuildVar("y", {"OUT1"}, op_desc.add_outputs()); auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(3.14); paddle::platform::CPUDeviceContext cpu_device_context; @@ -224,7 +224,7 @@ REGISTER_OP_CPU_KERNEL(op_multi_inputs_with_kernel, TEST(OpKernel, multi_inputs) { using namespace paddle::framework; - OpDesc op_desc; + proto::OpDesc op_desc; op_desc.set_type("op_multi_inputs_with_kernel"); BuildVar("xs", {"x0", "x1", "x2"}, op_desc.add_inputs()); BuildVar("k", {"k0"}, op_desc.add_inputs()); @@ -232,7 +232,7 @@ TEST(OpKernel, multi_inputs) { auto attr = op_desc.mutable_attrs()->Add(); attr->set_name("scale"); - attr->set_type(paddle::framework::AttrType::FLOAT); + attr->set_type(paddle::framework::proto::AttrType::FLOAT); attr->set_f(3.14); paddle::platform::CPUDeviceContext cpu_device_context; @@ -261,7 +261,9 @@ class OperatorClone : public paddle::framework::OperatorBase { }; TEST(Operator, Clone) { - OperatorClone a("ABC", {}, {}, {}); + OperatorClone a("ABC", paddle::framework::VariableNameMap{}, + paddle::framework::VariableNameMap{}, + paddle::framework::AttributeMap{}); auto b = a.Clone(); ASSERT_EQ(a.Type(), b->Type()); } diff --git a/paddle/framework/program_desc.cc b/paddle/framework/program_desc.cc index 4af8d94563ad0ecf6fcc6fe0575b0f69006a9a2d..b5d9e5e385c1ba57169ef885824fc23b0f130692 100644 --- a/paddle/framework/program_desc.cc +++ b/paddle/framework/program_desc.cc @@ -18,49 +18,49 @@ limitations under the License. */ namespace paddle { namespace framework { -BlockDescBind *ProgramDescBind::AppendBlock(const BlockDescBind &parent) { +BlockDesc *ProgramDesc::AppendBlock(const BlockDesc &parent) { auto *b = desc_.add_blocks(); b->set_parent_idx(parent.ID()); b->set_idx(desc_.blocks_size() - 1); - blocks_.emplace_back(new BlockDescBind(this, b)); + blocks_.emplace_back(new BlockDesc(this, b)); return blocks_.back().get(); } -ProgramDesc *ProgramDescBind::Proto() { +proto::ProgramDesc *ProgramDesc::Proto() { for (auto &block : blocks_) { block->Flush(); } return &desc_; } -ProgramDescBind::ProgramDescBind() { +ProgramDesc::ProgramDesc() { auto *block = desc_.mutable_blocks()->Add(); block->set_idx(kRootBlockIndex); block->set_parent_idx(kNoneBlockIndex); - blocks_.emplace_back(new BlockDescBind(this, block)); + blocks_.emplace_back(new BlockDesc(this, block)); } -ProgramDescBind::ProgramDescBind(const ProgramDescBind &o) { +ProgramDesc::ProgramDesc(const ProgramDesc &o) { desc_ = o.desc_; for (int i = 0; i < desc_.blocks_size(); ++i) { auto *block = desc_.mutable_blocks(i); - blocks_.emplace_back(new BlockDescBind(*o.blocks_[i], block, this)); + blocks_.emplace_back(new BlockDesc(*o.blocks_[i], block, this)); } } -ProgramDescBind::ProgramDescBind(const ProgramDesc &desc) { +ProgramDesc::ProgramDesc(const proto::ProgramDesc &desc) { desc_ = desc; for (auto &block_desc : *desc_.mutable_blocks()) { - blocks_.emplace_back(new BlockDescBind(this, &block_desc)); + blocks_.emplace_back(new BlockDesc(this, &block_desc)); } } -ProgramDescBind::ProgramDescBind(const std::string &binary_str) { +ProgramDesc::ProgramDesc(const std::string &binary_str) { PADDLE_ENFORCE(desc_.ParseFromString(binary_str), "Fail to parse program_desc from binary string."); for (auto &block_desc : *desc_.mutable_blocks()) { - blocks_.emplace_back(new BlockDescBind(this, &block_desc)); + blocks_.emplace_back(new BlockDesc(this, &block_desc)); } } diff --git a/paddle/framework/program_desc.h b/paddle/framework/program_desc.h index b1cb086de4345902482d8254b8aeec041ecf81bc..15a962bb696d6172acd1a83cf9bb1ffd0846d449 100644 --- a/paddle/framework/program_desc.h +++ b/paddle/framework/program_desc.h @@ -23,32 +23,32 @@ limitations under the License. */ namespace paddle { namespace framework { -class BlockDescBind; +class BlockDesc; -class ProgramDescBind { +class ProgramDesc { public: - ProgramDescBind(); + ProgramDesc(); - explicit ProgramDescBind(const ProgramDesc &desc); + explicit ProgramDesc(const proto::ProgramDesc &desc); - ProgramDescBind(const ProgramDescBind &o); + ProgramDesc(const ProgramDesc &o); - explicit ProgramDescBind(const std::string &binary_str); + explicit ProgramDesc(const std::string &binary_str); - BlockDescBind *AppendBlock(const BlockDescBind &parent); + BlockDesc *AppendBlock(const BlockDesc &parent); - BlockDescBind *MutableBlock(size_t idx) { return blocks_[idx].get(); } + BlockDesc *MutableBlock(size_t idx) { return blocks_[idx].get(); } - const BlockDescBind &Block(size_t idx) const { return *blocks_[idx]; } + const BlockDesc &Block(size_t idx) const { return *blocks_[idx]; } size_t Size() const { return blocks_.size(); } - ProgramDesc *Proto(); + proto::ProgramDesc *Proto(); private: - ProgramDesc desc_; + proto::ProgramDesc desc_; - std::vector> blocks_; + std::vector> blocks_; }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/program_desc_test.cc b/paddle/framework/program_desc_test.cc index 83e7286e0ec3639fa589b0958922543a3ba16a00..a49886f7ea56bc57459202dba65e3f76a902cd70 100644 --- a/paddle/framework/program_desc_test.cc +++ b/paddle/framework/program_desc_test.cc @@ -19,18 +19,18 @@ namespace paddle { namespace framework { TEST(ProgramDesc, copy_ctor) { - ProgramDescBind program; + ProgramDesc program; auto* global_block = program.MutableBlock(0); auto* x = global_block->Var("X"); - x->SetType(VarDesc_VarType_LOD_TENSOR); + x->SetType(proto::VarDesc_VarType_LOD_TENSOR); x->SetLoDLevel(0); - x->SetDataType(FP32); + x->SetDataType(proto::FP32); x->SetShape({1000, 784}); auto* y = global_block->Var("Y"); - y->SetType(VarDesc_VarType_LOD_TENSOR); + y->SetType(proto::VarDesc_VarType_LOD_TENSOR); y->SetLoDLevel(0); - y->SetDataType(FP32); + y->SetDataType(proto::FP32); y->SetShape({784, 100}); auto* op = global_block->AppendOp(); @@ -39,15 +39,15 @@ TEST(ProgramDesc, copy_ctor) { op->SetInput("Y", {y->Name()}); auto* out = global_block->Var("Out"); - out->SetType(VarDesc_VarType_LOD_TENSOR); + out->SetType(proto::VarDesc_VarType_LOD_TENSOR); op->SetOutput("Y", {out->Name()}); - ProgramDescBind program_copy(program); + ProgramDesc program_copy(program); auto* global_block_copy = program_copy.MutableBlock(0); ASSERT_NE(global_block, global_block_copy); - auto assert_same_var = [&](const std::string& name, VarDescBind* var_before) { + auto assert_same_var = [&](const std::string& name, VarDesc* var_before) { ASSERT_TRUE(global_block_copy->HasVar(name)); auto* copy = global_block_copy->Var(name); ASSERT_NE(copy, var_before); @@ -81,18 +81,18 @@ TEST(ProgramDesc, copy_ctor) { } TEST(ProgramDescBind, serialize_and_deserialize) { - ProgramDescBind program_origin; + ProgramDesc program_origin; auto* global_block = program_origin.MutableBlock(0); auto* x = global_block->Var("X"); - x->SetType(VarDesc_VarType_LOD_TENSOR); + x->SetType(proto::VarDesc_VarType_LOD_TENSOR); x->SetLoDLevel(0); - x->SetDataType(FP32); + x->SetDataType(proto::FP32); x->SetShape({1000, 784}); auto* y = global_block->Var("Y"); - y->SetType(VarDesc_VarType_LOD_TENSOR); + y->SetType(proto::VarDesc_VarType_LOD_TENSOR); y->SetLoDLevel(0); - y->SetDataType(FP32); + y->SetDataType(proto::FP32); y->SetShape({784, 100}); auto* op = global_block->AppendOp(); @@ -101,17 +101,17 @@ TEST(ProgramDescBind, serialize_and_deserialize) { op->SetInput("Y", {y->Name()}); auto* out = global_block->Var("Out"); - out->SetType(VarDesc_VarType_LOD_TENSOR); + out->SetType(proto::VarDesc_VarType_LOD_TENSOR); op->SetOutput("Y", {out->Name()}); std::string binary_str; program_origin.Proto()->SerializeToString(&binary_str); - ProgramDescBind program_restored(binary_str); + ProgramDesc program_restored(binary_str); auto* global_block_restored = program_restored.MutableBlock(0); ASSERT_NE(global_block, global_block_restored); - auto assert_same_var = [&](const std::string& name, VarDescBind* var_before) { + auto assert_same_var = [&](const std::string& name, VarDesc* var_before) { ASSERT_TRUE(global_block_restored->HasVar(name)); auto* restored = global_block_restored->Var(name); ASSERT_NE(restored, var_before); diff --git a/paddle/framework/prune.cc b/paddle/framework/prune.cc index da76052eb4d3067214841af72a35cebb26477e7f..25eb813ffb96e9b1e13299421ead9f85c02da59f 100644 --- a/paddle/framework/prune.cc +++ b/paddle/framework/prune.cc @@ -29,7 +29,7 @@ const std::string kFetchOpType = "fetch"; const std::string kDropOutOpType = "dropout"; const std::string kBatchNormOpType = "batch_norm"; -bool HasDependentVar(const OpDesc& op_desc, +bool HasDependentVar(const proto::OpDesc& op_desc, const std::set& dependent_vars) { for (auto& var : op_desc.outputs()) { for (auto& argu : var.arguments()) { @@ -41,14 +41,15 @@ bool HasDependentVar(const OpDesc& op_desc, return false; } -bool IsTarget(const OpDesc& op_desc) { +bool IsTarget(const proto::OpDesc& op_desc) { if (op_desc.has_is_target()) { return op_desc.is_target(); } return false; } -void prune_impl(const ProgramDesc& input, ProgramDesc* output, int block_id) { +void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output, + int block_id) { // TODO(tonyyang-svail): // - will change to use multiple blocks for RNN op and Cond Op @@ -104,12 +105,12 @@ void prune_impl(const ProgramDesc& input, ProgramDesc* output, int block_id) { } // TODO(fengjiayi): Prune() could be inplaced to avoid unnecessary copies -void Prune(const ProgramDesc& input, ProgramDesc* output) { +void Prune(const proto::ProgramDesc& input, proto::ProgramDesc* output) { prune_impl(input, output, 0); } -void inference_optimize_impl(const ProgramDesc& input, ProgramDesc* output, - int block_id) { +void inference_optimize_impl(const proto::ProgramDesc& input, + proto::ProgramDesc* output, int block_id) { *output = input; auto* op_field = output->mutable_blocks(block_id)->mutable_ops(); for (auto& op_desc : *op_field) { @@ -125,7 +126,8 @@ void inference_optimize_impl(const ProgramDesc& input, ProgramDesc* output, } } -void InferenceOptimize(const ProgramDesc& input, ProgramDesc* output) { +void InferenceOptimize(const proto::ProgramDesc& input, + proto::ProgramDesc* output) { inference_optimize_impl(input, output, 0); } diff --git a/paddle/framework/prune.h b/paddle/framework/prune.h index 23db014894348094a98e043aa744c6f0d27b2640..593292523d0c14136791bb804a4721a0740b47ba 100644 --- a/paddle/framework/prune.h +++ b/paddle/framework/prune.h @@ -20,9 +20,10 @@ limitations under the License. */ namespace paddle { namespace framework { -void Prune(const ProgramDesc& input, ProgramDesc* output); +void Prune(const proto::ProgramDesc& input, proto::ProgramDesc* output); -void InferenceOptimize(const ProgramDesc& input, ProgramDesc* output); +void InferenceOptimize(const proto::ProgramDesc& input, + proto::ProgramDesc* output); } // namespace framework } // namespace paddle diff --git a/paddle/framework/prune_test.cc b/paddle/framework/prune_test.cc index 5988874809f51c09b3d3d279be6c1e8d43d7a782..bdd57659432ea4f9bdd05425a802110b0c202fb8 100644 --- a/paddle/framework/prune_test.cc +++ b/paddle/framework/prune_test.cc @@ -29,12 +29,12 @@ namespace ops = paddle::operators; void AddOp(const std::string &type, const f::VariableNameMap &inputs, const f::VariableNameMap &outputs, f::AttributeMap attrs, - paddle::framework::BlockDescBind *block) { + paddle::framework::BlockDesc *block) { // insert output for (auto kv : outputs) { for (auto v : kv.second) { auto var = block->Var(v); - var->SetDataType(paddle::framework::DataType::FP32); + var->SetDataType(paddle::framework::proto::DataType::FP32); } } @@ -51,88 +51,102 @@ void AddOp(const std::string &type, const f::VariableNameMap &inputs, } TEST(Prune, one_operator) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block); + AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, f::AttributeMap{}, + block); - f::ProgramDesc *pdesc = program.Proto(); - f::ProgramDesc pruned; + f::proto::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc pruned; - Prune(*pdesc, &pruned); + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 0); pdesc->mutable_blocks(0)->mutable_ops(0)->set_is_target(true); - Prune(*pdesc, &pruned); + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 1); } TEST(Prune, forward) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, {}, block); - AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, {}, block); - AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, {}, block); - AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, {}, block); + AddOp("one_one", {{"input", {"a"}}}, {{"output", {"b"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"c"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"d"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"d"}}}, {{"output", {"e"}}}, f::AttributeMap{}, + block); - f::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc *pdesc = program.Proto(); for (int i = 0; i < pdesc->blocks(0).ops_size(); ++i) { - f::ProgramDesc pruned; + f::proto::ProgramDesc pruned; pdesc->mutable_blocks(0)->mutable_ops(i)->set_is_target(true); - Prune(*pdesc, &pruned); + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), i + 1); } } TEST(Prune, multi_input_op) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, {}, block); - AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, {}, block); - AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, {}, block); - AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}}, {}, + AddOp("one_one", {{"input", {"a0"}}}, {{"output", {"b0"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"a1"}}}, {{"output", {"b1"}}}, f::AttributeMap{}, block); + AddOp("one_one", {{"input", {"a2"}}}, {{"output", {"b2"}}}, f::AttributeMap{}, + block); + AddOp("three_one", {{"input", {"b0", "b1", "b2"}}}, {{"output", {"c"}}}, + f::AttributeMap{}, block); - f::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc *pdesc = program.Proto(); pdesc->mutable_blocks(0)->mutable_ops(3)->set_is_target(true); - f::ProgramDesc pruned; - Prune(*pdesc, &pruned); + f::proto::ProgramDesc pruned; + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 4); } TEST(Prune, multi_output_op) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block); - AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block); - AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block); + AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, + f::AttributeMap{}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, f::AttributeMap{}, + block); - f::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc *pdesc = program.Proto(); pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true); - f::ProgramDesc pruned; - Prune(*pdesc, &pruned); + f::proto::ProgramDesc pruned; + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 2); } TEST(Prune, multi_target) { - f::ProgramDescBind program; - f::BlockDescBind *block = program.MutableBlock(0); + f::ProgramDesc program; + f::BlockDesc *block = program.MutableBlock(0); - AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, {}, block); - AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, {}, block); - AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, {}, block); + AddOp("one_two", {{"input", {"a"}}}, {{"output", {"b", "c"}}}, + f::AttributeMap{}, block); + AddOp("one_one", {{"input", {"b"}}}, {{"output", {"b1"}}}, f::AttributeMap{}, + block); + AddOp("one_one", {{"input", {"c"}}}, {{"output", {"c1"}}}, f::AttributeMap{}, + block); - f::ProgramDesc *pdesc = program.Proto(); + f::proto::ProgramDesc *pdesc = program.Proto(); pdesc->mutable_blocks(0)->mutable_ops(1)->set_is_target(true); pdesc->mutable_blocks(0)->mutable_ops(2)->set_is_target(true); - f::ProgramDesc pruned; - Prune(*pdesc, &pruned); + f::proto::ProgramDesc pruned; + f::Prune(*pdesc, &pruned); PADDLE_ENFORCE_EQ(pruned.blocks(0).ops_size(), 3); } diff --git a/paddle/framework/scope.cc b/paddle/framework/scope.cc index 9ad6272c99dd6a85520ae44c1331ac232bc6a9a2..656736e23846c8de50553a608c54a0bdd3272cb1 100644 --- a/paddle/framework/scope.cc +++ b/paddle/framework/scope.cc @@ -36,12 +36,9 @@ Scope& Scope::NewScope() const { } Variable* Scope::Var(const std::string& name) { - auto iter = vars_.find(name); - if (iter != vars_.end()) { - VLOG(3) << "Get existing variable " << name; - return iter->second; - } - Variable* v = new Variable(); + auto* v = FindVarLocally(name); + if (v != nullptr) return v; + v = new Variable(); vars_[name] = v; VLOG(3) << "Create variable " << name; v->name_ = &(vars_.find(name)->first); @@ -57,8 +54,10 @@ Variable* Scope::Var(std::string* name) { } Variable* Scope::FindVar(const std::string& name) const { - auto it = vars_.find(name); - if (it != vars_.end()) return it->second; + auto var = FindVarLocally(name); + if (var != nullptr) { + return var; + } return (parent_ == nullptr) ? nullptr : parent_->FindVar(name); } @@ -116,6 +115,11 @@ std::string Scope::Rename(const std::string& origin_name) const { Rename(origin_name, var_name); return var_name; } +Variable* Scope::FindVarLocally(const std::string& name) const { + auto it = vars_.find(name); + if (it != vars_.end()) return it->second; + return nullptr; +} } // namespace framework } // namespace paddle diff --git a/paddle/framework/scope.h b/paddle/framework/scope.h index c2aafb6ad825f9bd9ffef754923a15afdeaa8e5c..56e815db54b6385c4e4d87f456ed5d59113ca77b 100644 --- a/paddle/framework/scope.h +++ b/paddle/framework/scope.h @@ -76,6 +76,8 @@ class Scope { std::string Rename(const std::string& origin_name) const; private: + Variable* FindVarLocally(const std::string& name) const; + // Call Scope::NewScope for a sub-scope. explicit Scope(Scope const* parent) : parent_(parent) {} diff --git a/paddle/framework/shape_inference.cc b/paddle/framework/shape_inference.cc index 2298507471c54c5b7751beff900466737eea36d4..86dc01665bda5e7f988e60780c0600b049d737ef 100644 --- a/paddle/framework/shape_inference.cc +++ b/paddle/framework/shape_inference.cc @@ -12,6 +12,8 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/framework/shape_inference.h" +#include "grad_op_desc_maker.h" +#include "paddle/framework/operator.h" namespace paddle { namespace framework { @@ -49,20 +51,23 @@ void InferShapeContext::SetDims(const std::vector &names, size_t length = names.size(); PADDLE_ENFORCE_EQ(length, dims.size()); for (size_t i = 0; i < length; ++i) { + if (names[i] == framework::kEmptyVarName) { + continue; + } SetDim(names[i], dims[i]); } } -std::vector InferShapeContext::GetInputsVarType( +std::vector InferShapeContext::GetInputsVarType( const std::string &name) const { return GetVarTypes(Inputs(name)); } -std::vector InferShapeContext::GetOutputsVarType( +std::vector InferShapeContext::GetOutputsVarType( const std::string &name) const { return GetVarTypes(Outputs(name)); } -std::vector InferShapeContext::GetVarTypes( +std::vector InferShapeContext::GetVarTypes( const std::vector &names) const { - std::vector retv; + std::vector retv; retv.resize(names.size()); std::transform(names.begin(), names.end(), retv.begin(), std::bind(std::mem_fn(&InferShapeContext::GetVarType), this, diff --git a/paddle/framework/shape_inference.h b/paddle/framework/shape_inference.h index 46f2ea84b4b64292cc9026ef9864621efba79c7a..f93319d8f2fd4c5d388bd57fd595a6a5edd51775 100644 --- a/paddle/framework/shape_inference.h +++ b/paddle/framework/shape_inference.h @@ -27,8 +27,9 @@ class InferShapeContext { virtual bool HasInput(const std::string &name) const = 0; virtual bool HasOutput(const std::string &name) const = 0; - std::vector GetInputsVarType(const std::string &name) const; - std::vector GetOutputsVarType( + std::vector GetInputsVarType( + const std::string &name) const; + std::vector GetOutputsVarType( const std::string &name) const; virtual bool HasInputs(const std::string &name) const = 0; @@ -65,10 +66,10 @@ class InferShapeContext { std::vector GetDims( const std::vector &names) const; - std::vector GetVarTypes( + std::vector GetVarTypes( const std::vector &names) const; - virtual VarDesc::VarType GetVarType(const std::string &name) const = 0; + virtual proto::VarDesc::VarType GetVarType(const std::string &name) const = 0; }; } // namespace framework diff --git a/paddle/framework/type_defs.h b/paddle/framework/type_defs.h index baeb98c9bd49ec65da5931bcbe33ab788f86f3e8..da152e8b9d23490e2e69c2dd215c45355e1c1e44 100644 --- a/paddle/framework/type_defs.h +++ b/paddle/framework/type_defs.h @@ -25,11 +25,9 @@ namespace paddle { namespace framework { class OperatorBase; -class OpDescBind; -class BlockDescBind; -class BlockDesc; +class OpDesc; class InferShapeContext; -class BlockDescBind; +class BlockDesc; using VariableNameMap = std::map>; @@ -37,7 +35,7 @@ using VariableNameMap = std::map>; using Attribute = boost::variant, std::vector, std::vector, bool, - std::vector, BlockDescBind*>; + std::vector, BlockDesc*>; using AttributeMap = std::unordered_map; @@ -45,13 +43,13 @@ using OpCreator = std::function; -using GradOpMakerFN = std::function>( - const OpDescBind&, const std::unordered_set& /*no_grad_set*/, +using GradOpMakerFN = std::function>( + const OpDesc&, const std::unordered_set& /*no_grad_set*/, std::unordered_map* /*grad_to_var*/, - const std::vector& grad_block)>; + const std::vector& grad_block)>; -using InferVarTypeFN = std::function; +using InferVarTypeFN = + std::function; using InferShapeFN = std::function; diff --git a/paddle/framework/var_desc.cc b/paddle/framework/var_desc.cc index 0babec29f6f4412ed29deeafe24470e86b30a636..bd8973eeb369aabd2c52d4fccf799657c564ee78 100644 --- a/paddle/framework/var_desc.cc +++ b/paddle/framework/var_desc.cc @@ -18,30 +18,32 @@ limitations under the License. */ namespace paddle { namespace framework { -VarDesc::VarType VarDescBind::GetType() const { return desc_.type(); } +proto::VarDesc::VarType VarDesc::GetType() const { return desc_.type(); } -void VarDescBind::SetType(VarDesc::VarType type) { desc_.set_type(type); } +void VarDesc::SetType(proto::VarDesc::VarType type) { desc_.set_type(type); } -void VarDescBind::SetShape(const std::vector &dims) { +void VarDesc::SetShape(const std::vector &dims) { VectorToRepeated(dims, mutable_tensor_desc()->mutable_dims()); } -void VarDescBind::SetDataType(DataType data_type) { +void VarDesc::SetDataType(proto::DataType data_type) { mutable_tensor_desc()->set_data_type(data_type); } -std::vector VarDescBind::Shape() const { +std::vector VarDesc::Shape() const { return RepeatedToVector(tensor_desc().dims()); } -DataType VarDescBind::GetDataType() const { return tensor_desc().data_type(); } +proto::DataType VarDesc::GetDataType() const { + return tensor_desc().data_type(); +} -void VarDescBind::SetLoDLevel(int32_t lod_level) { +void VarDesc::SetLoDLevel(int32_t lod_level) { switch (desc_.type()) { - case VarDesc::LOD_TENSOR: + case proto::VarDesc::LOD_TENSOR: desc_.mutable_lod_tensor()->set_lod_level(lod_level); break; - case VarDesc::LOD_TENSOR_ARRAY: + case proto::VarDesc::LOD_TENSOR_ARRAY: desc_.mutable_tensor_array()->set_lod_level(lod_level); break; default: @@ -50,11 +52,11 @@ void VarDescBind::SetLoDLevel(int32_t lod_level) { } } -int32_t VarDescBind::GetLodLevel() const { +int32_t VarDesc::GetLodLevel() const { switch (desc_.type()) { - case VarDesc::LOD_TENSOR: + case proto::VarDesc::LOD_TENSOR: return desc_.lod_tensor().lod_level(); - case VarDesc::LOD_TENSOR_ARRAY: + case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.tensor_array().lod_level(); default: PADDLE_THROW("Tensor type=%d does not support LoDLevel", @@ -62,29 +64,29 @@ int32_t VarDescBind::GetLodLevel() const { } } -const TensorDesc &VarDescBind::tensor_desc() const { +const proto::TensorDesc &VarDesc::tensor_desc() const { PADDLE_ENFORCE(desc_.has_type(), "invoke TensorDesc must after set type"); switch (desc_.type()) { - case VarDesc::SELECTED_ROWS: + case proto::VarDesc::SELECTED_ROWS: return desc_.selected_rows(); - case VarDesc::LOD_TENSOR: + case proto::VarDesc::LOD_TENSOR: return desc_.lod_tensor().tensor(); - case VarDesc::LOD_TENSOR_ARRAY: + case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.tensor_array().tensor(); default: PADDLE_THROW("Unexpected branch."); } } -TensorDesc *VarDescBind::mutable_tensor_desc() { +proto::TensorDesc *VarDesc::mutable_tensor_desc() { PADDLE_ENFORCE(desc_.has_type(), "invoke MutableTensorDesc must after set type"); switch (desc_.type()) { - case VarDesc::SELECTED_ROWS: + case proto::VarDesc::SELECTED_ROWS: return desc_.mutable_selected_rows(); - case VarDesc::LOD_TENSOR: + case proto::VarDesc::LOD_TENSOR: return desc_.mutable_lod_tensor()->mutable_tensor(); - case VarDesc::LOD_TENSOR_ARRAY: + case proto::VarDesc::LOD_TENSOR_ARRAY: return desc_.mutable_tensor_array()->mutable_tensor(); default: PADDLE_THROW("Unexpected branch."); diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h index 5cf4608944c5011d798fbde060002a57be8f6102..4fd2abe7fb215c3ac454de3e30754685111eb570 100644 --- a/paddle/framework/var_desc.h +++ b/paddle/framework/var_desc.h @@ -53,44 +53,44 @@ inline void VectorToRepeated(const std::vector &vec, } } -class VarDescBind { +class VarDesc { public: - explicit VarDescBind(const std::string &name) { + explicit VarDesc(const std::string &name) { desc_.set_name(name); - desc_.set_type(VarDesc::LOD_TENSOR); + desc_.set_type(proto::VarDesc::LOD_TENSOR); } - explicit VarDescBind(const VarDesc &desc) : desc_(desc) {} + explicit VarDesc(const proto::VarDesc &desc) : desc_(desc) {} - VarDesc *Proto() { return &desc_; } + proto::VarDesc *Proto() { return &desc_; } std::string Name() const { return desc_.name(); } void SetShape(const std::vector &dims); - void SetDataType(DataType data_type); + void SetDataType(proto::DataType data_type); std::vector Shape() const; - DataType GetDataType() const; + proto::DataType GetDataType() const; void SetLoDLevel(int32_t lod_level); int32_t GetLodLevel() const; - VarDesc::VarType GetType() const; + proto::VarDesc::VarType GetType() const; - void SetType(VarDesc::VarType type); + void SetType(proto::VarDesc::VarType type); bool Persistable() const { return desc_.persistable(); } void SetPersistable(bool persistable) { desc_.set_persistable(persistable); } private: - const TensorDesc &tensor_desc() const; - TensorDesc *mutable_tensor_desc(); + const proto::TensorDesc &tensor_desc() const; + proto::TensorDesc *mutable_tensor_desc(); - VarDesc desc_; + proto::VarDesc desc_; }; } // namespace framework } // namespace paddle diff --git a/paddle/framework/var_type.h b/paddle/framework/var_type.h index 0f19870bec3e69d07278507cc556a86bbd25d12d..43a72276408bdefc329e8ddcd901ba346aba35f3 100644 --- a/paddle/framework/var_type.h +++ b/paddle/framework/var_type.h @@ -20,15 +20,15 @@ namespace paddle { namespace framework { -inline VarDesc::VarType ToVarType(std::type_index type) { +inline proto::VarDesc::VarType ToVarType(std::type_index type) { if (type.hash_code() == typeid(LoDTensor).hash_code()) { - return VarDesc_VarType_LOD_TENSOR; + return proto::VarDesc_VarType_LOD_TENSOR; } else if (type.hash_code() == typeid(LoDRankTable).hash_code()) { - return VarDesc_VarType_LOD_RANK_TABLE; + return proto::VarDesc_VarType_LOD_RANK_TABLE; } else if (type.hash_code() == typeid(LoDTensorArray).hash_code()) { - return VarDesc_VarType_LOD_TENSOR_ARRAY; + return proto::VarDesc_VarType_LOD_TENSOR_ARRAY; } else if (type.hash_code() == typeid(SelectedRows).hash_code()) { - return VarDesc_VarType_SELECTED_ROWS; + return proto::VarDesc_VarType_SELECTED_ROWS; } else { PADDLE_THROW("ToVarType:Unsupported type %s", type.name()); } @@ -37,16 +37,16 @@ inline VarDesc::VarType ToVarType(std::type_index type) { template inline void VisitVarType(const Variable& var, Visitor visitor) { switch (ToVarType(var.Type())) { - case VarDesc_VarType_LOD_TENSOR: + case proto::VarDesc_VarType_LOD_TENSOR: visitor(var.Get()); return; - case VarDesc_VarType_LOD_RANK_TABLE: + case proto::VarDesc_VarType_LOD_RANK_TABLE: visitor(var.Get()); return; - case VarDesc_VarType_LOD_TENSOR_ARRAY: + case proto::VarDesc_VarType_LOD_TENSOR_ARRAY: visitor(var.Get()); return; - case VarDesc_VarType_SELECTED_ROWS: + case proto::VarDesc_VarType_SELECTED_ROWS: visitor(var.Get()); return; default: diff --git a/paddle/framework/var_type_inference.h b/paddle/framework/var_type_inference.h index 32abbeb33479444c5e7a9889f4211f59af07f98f..1a4dca05f741f33d58eeccda9d1f800aadb8c01f 100644 --- a/paddle/framework/var_type_inference.h +++ b/paddle/framework/var_type_inference.h @@ -21,8 +21,7 @@ namespace framework { class VarTypeInference { public: virtual ~VarTypeInference() {} - virtual void operator()(const OpDescBind& op_desc, - BlockDescBind* block) const = 0; + virtual void operator()(const OpDesc& op_desc, BlockDesc* block) const = 0; }; } // namespace framework diff --git a/paddle/framework/var_type_inference_test.cc b/paddle/framework/var_type_inference_test.cc index 9035e63fa48ffdf7c72061b0a4248538d7a357e4..92f333c558413ac3253c0fb8a20d6f0cfa33f99c 100644 --- a/paddle/framework/var_type_inference_test.cc +++ b/paddle/framework/var_type_inference_test.cc @@ -33,17 +33,16 @@ class SumOpMaker : public OpProtoAndCheckerMaker { class SumOpVarTypeInference : public VarTypeInference { public: - void operator()(const OpDescBind &op_desc, - BlockDescBind *block) const override { + void operator()(const OpDesc &op_desc, BlockDesc *block) const override { auto &inputs = op_desc.Input("X"); - auto default_var_type = VarDesc::SELECTED_ROWS; + auto default_var_type = proto::VarDesc::SELECTED_ROWS; bool any_input_is_lod_tensor = std::any_of( inputs.begin(), inputs.end(), [block](const std::string &name) { - return block->Var(name)->GetType() == VarDesc::LOD_TENSOR; + return block->Var(name)->GetType() == proto::VarDesc::LOD_TENSOR; }); if (any_input_is_lod_tensor) { - default_var_type = VarDesc::LOD_TENSOR; + default_var_type = proto::VarDesc::LOD_TENSOR; } auto out_var_name = op_desc.Output("Out").front(); @@ -62,43 +61,43 @@ namespace paddle { namespace framework { TEST(InferVarType, sum_op) { - ProgramDescBind prog; + ProgramDesc prog; auto *op = prog.MutableBlock(0)->AppendOp(); op->SetType("sum"); op->SetInput("X", {"test_a", "test_b", "test_c"}); op->SetOutput("Out", {"test_out"}); - prog.MutableBlock(0)->Var("test_a")->SetType(VarDesc::SELECTED_ROWS); - prog.MutableBlock(0)->Var("test_b")->SetType(VarDesc::SELECTED_ROWS); - prog.MutableBlock(0)->Var("test_c")->SetType(VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test_a")->SetType(proto::VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test_c")->SetType(proto::VarDesc::SELECTED_ROWS); prog.MutableBlock(0)->Var("test_out"); op->InferVarType(prog.MutableBlock(0)); - ASSERT_EQ(VarDesc::SELECTED_ROWS, + ASSERT_EQ(proto::VarDesc::SELECTED_ROWS, prog.MutableBlock(0)->Var("test_out")->GetType()); - prog.MutableBlock(0)->Var("test_b")->SetType(VarDesc::LOD_TENSOR); + prog.MutableBlock(0)->Var("test_b")->SetType(proto::VarDesc::LOD_TENSOR); op->InferVarType(prog.MutableBlock(0)); - ASSERT_EQ(VarDesc::LOD_TENSOR, + ASSERT_EQ(proto::VarDesc::LOD_TENSOR, prog.MutableBlock(0)->Var("test_out")->GetType()); } TEST(InferVarType, sum_op_without_infer_var_type) { - ProgramDescBind prog; + ProgramDesc prog; auto *op = prog.MutableBlock(0)->AppendOp(); op->SetType("sum_without_infer_var_type"); op->SetInput("X", {"test2_a", "test2_b", "test2_c"}); op->SetOutput("Out", {"test2_out"}); - prog.MutableBlock(0)->Var("test2_a")->SetType(VarDesc::SELECTED_ROWS); - prog.MutableBlock(0)->Var("test2_b")->SetType(VarDesc::SELECTED_ROWS); - prog.MutableBlock(0)->Var("test2_c")->SetType(VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test2_a")->SetType(proto::VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test2_b")->SetType(proto::VarDesc::SELECTED_ROWS); + prog.MutableBlock(0)->Var("test2_c")->SetType(proto::VarDesc::SELECTED_ROWS); prog.MutableBlock(0)->Var("test2_out"); op->InferVarType(prog.MutableBlock(0)); - ASSERT_EQ(VarDesc_VarType_LOD_TENSOR, + ASSERT_EQ(proto::VarDesc_VarType_LOD_TENSOR, prog.MutableBlock(0)->Var("test2_out")->GetType()); } diff --git a/paddle/function/GemmConvOp.cpp b/paddle/function/GemmConvOp.cpp index 8d34eee886a6202691e5dec2ab62e7c5b0ac7fb1..de7b70e271b38ebe3a4c38704d0cced47d010788 100644 --- a/paddle/function/GemmConvOp.cpp +++ b/paddle/function/GemmConvOp.cpp @@ -126,6 +126,11 @@ public: inputData += inputChannels * inputHeight * inputWidth; outputData += outputChannels * outputHeight * outputWidth; } +#ifdef PADDLE_MOBILE_INFERENCE + if (Device == DEVICE_TYPE_CPU) { + memory_.reset(); + } +#endif } }; diff --git a/paddle/gserver/activations/ActivationFunction.cpp b/paddle/gserver/activations/ActivationFunction.cpp index f5a41b66bf09a4abc5ae7b64f227ca52461408f5..57c890e4884da38e2087d89dc199e20af51495ea 100644 --- a/paddle/gserver/activations/ActivationFunction.cpp +++ b/paddle/gserver/activations/ActivationFunction.cpp @@ -24,7 +24,7 @@ limitations under the License. */ #include "paddle/utils/ClassRegistrar.h" #include "paddle/utils/Logging.h" -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN #include "MKLDNNActivation.h" #endif @@ -490,7 +490,7 @@ Error __must_check backward(Argument& act) { END_DEFINE_ACTIVATION(log) ActivationFunction* ActivationFunction::create(const std::string& type) { -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN if (!type.empty() && type.compare(0, 7, "mkldnn_") == 0) { return MKLDNNActivation::create(type); } diff --git a/paddle/gserver/gradientmachines/NeuralNetwork.cpp b/paddle/gserver/gradientmachines/NeuralNetwork.cpp index be112b41239cace3fa9b9ee97923f8c3c7a9a98f..68bf37d59db65ddc8096e2db3391be25c37b57e6 100644 --- a/paddle/gserver/gradientmachines/NeuralNetwork.cpp +++ b/paddle/gserver/gradientmachines/NeuralNetwork.cpp @@ -20,7 +20,7 @@ limitations under the License. */ #include "paddle/utils/Logging.h" #include "paddle/utils/Stat.h" -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN #include "paddle/gserver/layers/MKLDNNLayer.h" #endif @@ -307,7 +307,7 @@ void NeuralNetwork::backward(const UpdateCallback& callback) { } void NeuralNetwork::finish() { -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN FOR_EACH_R(layer, layers_) { MKLDNNLayerPtr dnnLayer = std::dynamic_pointer_cast(*layer); if (dnnLayer) { diff --git a/paddle/gserver/layers/ConvTransProjection.cpp b/paddle/gserver/layers/ConvTransProjection.cpp index 48132a3ce4cc4b50fea6d755d84d7254d2055bec..e7f081c0232d185c223fc2f48ca79dc84c7f721d 100644 --- a/paddle/gserver/layers/ConvTransProjection.cpp +++ b/paddle/gserver/layers/ConvTransProjection.cpp @@ -24,13 +24,13 @@ size_t ConvTransProjection::calOutputSize() { if (outputH_ == 0) outputH_ = configOutH_; if (outputW_ == 0) outputW_ = configOutW_; imageH_ = imageSize(outputH_, - filterH_, + (filterH_ - 1) * dilationH_ + 1, paddingH_, strideH_, /* caffeMode */ true); imageW_ = imageSize(outputW_, - filterW_, + (filterW_ - 1) * dilationW_ + 1, paddingW_, strideW_, /* caffeMode */ true); diff --git a/paddle/gserver/layers/MKLDNNLRNLayer.cpp b/paddle/gserver/layers/MKLDNNLRNLayer.cpp new file mode 100644 index 0000000000000000000000000000000000000000..741984bb68d3881f6ac26eaca7790190ed6e572a --- /dev/null +++ b/paddle/gserver/layers/MKLDNNLRNLayer.cpp @@ -0,0 +1,163 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "MKLDNNLRNLayer.h" +#include "paddle/utils/Logging.h" + +using namespace mkldnn; // NOLINT +typedef memory::format format; + +namespace paddle { + +REGISTER_LAYER(mkldnn_lrn, MKLDNNLRNLayer); + +bool MKLDNNLRNLayer::init(const LayerMap& layerMap, + const ParameterMap& parameterMap) { + if (!MKLDNNLayer::init(layerMap, parameterMap)) { + return false; + } + + /* the size of inputs for norm-layer is 1 */ + CHECK_EQ(config_.inputs_size(), 1UL); + const NormConfig& conf = config_.inputs(0).norm_conf(); + localSize_ = conf.size(); + alpha_ = conf.scale(); + beta_ = conf.pow(); + + ic_ = conf.channels(); + oc_ = ic_; + iw_ = conf.img_size(); + ow_ = conf.output_x(); + ih_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size(); + oh_ = conf.has_output_y() ? conf.output_y() : conf.output_x(); + CHECK_EQ(iw_, ow_); + CHECK_EQ(ih_, oh_); + return true; +} + +void MKLDNNLRNLayer::reshape( + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) { + CHECK_EQ(inputLayers_.size(), 1UL); + reshapeInput(bs, ih, iw); + // ic_ and oc can not be changed + CHECK_EQ((size_t)ic, + inputLayers_[0]->getOutputValue()->getElementCnt() / bs / ih / iw) + << "Input channel can not be changed"; + oh = ih; + ow = iw; + reshapeOutput(oh, ow); + resizeOutput(bs, oc * oh * ow); +} + +void MKLDNNLRNLayer::resetFwd(std::vector& pipeline, + std::vector& inputs, + MKLDNNMatrixPtr& out) { + resetFwdBuffers(inputs[0], out); + + resetFwdPD(fwdPD_, inputs[0], out); + + resetFwdPipeline(pipeline, fwdPD_, inputs[0], out); +} + +void MKLDNNLRNLayer::resetBwd(std::vector& pipeline, + std::vector& inputs, + MKLDNNMatrixPtr& out) { + std::shared_ptr pd; + + resetBwdBuffers(inputs[0], out); + + resetBwdPD(pd, inputs[0], out); + + resetBwdPipeline(pipeline, pd, inputs[0], out); +} + +void MKLDNNLRNLayer::resetFwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + resetInValue(in); + CHECK(in); + resetOutValue(out, in->getPrimitiveDesc()); +} + +void MKLDNNLRNLayer::resetFwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr in, + MKLDNNMatrixPtr out) { + prop_kind pk = passType_ == PASS_TEST ? prop_kind::forward_scoring + : prop_kind::forward_training; + auto fwdDesc = lrn_fwd::desc(pk, + algorithm::lrn_across_channels, + in->getMemoryDesc(), + localSize_, + alpha_, + beta_, + 1.0f); + pd.reset(new lrn_fwd::primitive_desc(fwdDesc, engine_)); + // prepare workspace if necessary + workspace_ = + passType_ != PASS_TEST + ? std::make_shared(memory(pd->workspace_primitive_desc())) + : nullptr; +} + +void MKLDNNLRNLayer::resetFwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + fwd_ = workspace_ + ? std::make_shared(lrn_fwd(*pd, *in, *workspace_, *out)) + : std::make_shared(lrn_fwd(*pd, *in, *out)); + pipeline.push_back(*fwd_); +} + +void MKLDNNLRNLayer::resetBwdBuffers(MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + CHECK(inVals_[0] && outVal_); + resetOutGrad(out, outVal_->getPrimitiveDesc()); + resetInGrad(in, inVals_[0]->getPrimitiveDesc()); +} + +void MKLDNNLRNLayer::resetBwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + pd = nullptr; + if (in == nullptr) { + return; + } + CHECK(out); + auto bwdDesc = lrn_bwd::desc(algorithm::lrn_across_channels, + in->getMemoryDesc(), + out->getMemoryDesc(), + localSize_, + alpha_, + beta_, + 1.0f); + pd.reset(new lrn_bwd::primitive_desc(bwdDesc, engine_, *fwdPD_)); +} + +void MKLDNNLRNLayer::resetBwdPipeline( + std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out) { + if (pd == nullptr) { + return; + } + CHECK(inVals_[0]); + CHECK(workspace_); + bwdData_ = std::make_shared( + lrn_bwd(*pd, *inVals_[0], *out, *workspace_, *in)); + pipeline.push_back(*bwdData_); +} + +} // namespace paddle diff --git a/paddle/gserver/layers/MKLDNNLRNLayer.h b/paddle/gserver/layers/MKLDNNLRNLayer.h new file mode 100644 index 0000000000000000000000000000000000000000..cfe5621252c71a1de9a0a42a2a88e221e3e56972 --- /dev/null +++ b/paddle/gserver/layers/MKLDNNLRNLayer.h @@ -0,0 +1,78 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include "MKLDNNLayer.h" +#include "mkldnn.hpp" + +namespace paddle { +typedef mkldnn::lrn_forward lrn_fwd; +typedef mkldnn::lrn_backward lrn_bwd; + +/** + * @brief A subclass of MKLDNNLayer LRN(Local Response Norm) layer. + * + * The config file api is mkldnn_lrn + */ +class MKLDNNLRNLayer : public MKLDNNLayer { +protected: + // save forward primitive_desc, which can be used in backward + std::shared_ptr fwdPD_; + // according to https://github.com/01org/mkl-dnn/blob/master/tests/gtests/ + // test_lrn_backward.cpp, lrn need workspace for backward + std::shared_ptr workspace_; + + int localSize_; + float alpha_, beta_; // scale and pow in paddle + +public: + explicit MKLDNNLRNLayer(const LayerConfig& config) : MKLDNNLayer(config) {} + + ~MKLDNNLRNLayer() {} + + bool init(const LayerMap& layerMap, + const ParameterMap& parameterMap) override; + + void reshape( + int& bs, int& ic, int& ih, int& iw, int& oc, int& oh, int& ow) override; + + void resetFwd(std::vector& pipeline, + std::vector& inputs, + MKLDNNMatrixPtr& out) override; + + void resetBwd(std::vector& pipeline, + std::vector& inputs, + MKLDNNMatrixPtr& out) override; + +protected: + void resetFwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); + void resetFwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr in, + MKLDNNMatrixPtr out); + void resetFwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out); + void resetBwdBuffers(MKLDNNMatrixPtr& in, MKLDNNMatrixPtr& out); + void resetBwdPD(std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out); + void resetBwdPipeline(std::vector& pipeline, + std::shared_ptr& pd, + MKLDNNMatrixPtr& in, + MKLDNNMatrixPtr& out); +}; + +} // namespace paddle diff --git a/paddle/gserver/layers/PoolLayer.cpp b/paddle/gserver/layers/PoolLayer.cpp index 87613a96c5b3c2da212f63e9e678bcd22308b08e..fceb389d06d8d2cb0357186bf83edda9957c6c19 100644 --- a/paddle/gserver/layers/PoolLayer.cpp +++ b/paddle/gserver/layers/PoolLayer.cpp @@ -45,6 +45,8 @@ bool PoolLayer::init(const LayerMap& layerMap, strideY_ = conf.has_stride_y() ? conf.stride_y() : conf.stride(); confPaddingY_ = conf.has_padding_y() ? conf.padding_y() : conf.padding(); outputY_ = conf.has_output_y() ? conf.output_y() : conf.output_x(); + + excludeMode_ = conf.has_exclude_mode() ? conf.exclude_mode() : true; return true; } diff --git a/paddle/gserver/layers/PoolLayer.h b/paddle/gserver/layers/PoolLayer.h index d43292ad2d4bbe1229ca59ca21bee92c9ec006a3..9df672a935868e9c61f4dd1fd47a9c309b214f12 100644 --- a/paddle/gserver/layers/PoolLayer.h +++ b/paddle/gserver/layers/PoolLayer.h @@ -38,6 +38,8 @@ protected: std::string poolType_; + bool excludeMode_; + public: explicit PoolLayer(const LayerConfig& config) : Layer(config) {} diff --git a/paddle/gserver/layers/PoolProjection.cpp b/paddle/gserver/layers/PoolProjection.cpp index d90b438448eb72e72e22e9a91a3cbcd84ac7e6cb..6a9de394cee3769784a38f5512b15f52b1ed6fa1 100644 --- a/paddle/gserver/layers/PoolProjection.cpp +++ b/paddle/gserver/layers/PoolProjection.cpp @@ -36,6 +36,8 @@ PoolProjection::PoolProjection(const ProjectionConfig& config, strideY_ = conf.has_stride_y() ? conf.stride_y() : conf.stride(); confPaddingY_ = conf.has_padding_y() ? conf.padding_y() : conf.padding(); outputY_ = conf.has_output_y() ? conf.output_y() : conf.output_x(); + + excludeMode_ = conf.has_exclude_mode() ? conf.exclude_mode() : true; } size_t PoolProjection::getSize() { @@ -141,7 +143,8 @@ void AvgPoolProjection::forward() { outputY_, outputX_, confPaddingY_, - confPadding_); + confPadding_, + excludeMode_); } void AvgPoolProjection::backward(const UpdateCallback& callback) { @@ -166,6 +169,7 @@ void AvgPoolProjection::backward(const UpdateCallback& callback) { 1, 1, confPaddingY_, - confPadding_); + confPadding_, + excludeMode_); } } // namespace paddle diff --git a/paddle/gserver/layers/PoolProjection.h b/paddle/gserver/layers/PoolProjection.h index 9a75f465f6fbb2f2a928b0e36fcfbe0e510d7b3a..a0412714bca7a273e999e4d6bd552e833d20d69c 100644 --- a/paddle/gserver/layers/PoolProjection.h +++ b/paddle/gserver/layers/PoolProjection.h @@ -28,6 +28,7 @@ protected: int confPaddingY_, confPadding_; size_t channels_; std::string poolType_; + bool excludeMode_; public: PoolProjection(const ProjectionConfig& config, diff --git a/paddle/gserver/layers/ROIPoolLayer.cpp b/paddle/gserver/layers/ROIPoolLayer.cpp index 2c8256b91c97b513ce7237b8174c522430094926..7d7c30b4d89e2dd137e7fc7de3159c07bbab9fb4 100644 --- a/paddle/gserver/layers/ROIPoolLayer.cpp +++ b/paddle/gserver/layers/ROIPoolLayer.cpp @@ -84,12 +84,15 @@ void ROIPoolLayer::forward(PassType passType) { size_t poolChannelOffset = pooledHeight_ * pooledWidth_; real* outputData = outputValue->getData(); - Matrix::resizeOrCreate(maxIdxs_, - numROIs, - channels_ * pooledHeight_ * pooledWidth_, - false, - false); - real* argmaxData = maxIdxs_->getData(); + real* argmaxData = nullptr; + if (passType != PASS_TEST) { + Matrix::resizeOrCreate(maxIdxs_, + numROIs, + channels_ * pooledHeight_ * pooledWidth_, + false, + false); + argmaxData = maxIdxs_->getData(); + } for (size_t n = 0; n < numROIs; ++n) { // the first five elememts of each RoI should be: @@ -128,14 +131,18 @@ void ROIPoolLayer::forward(PassType passType) { bool isEmpty = (hend <= hstart) || (wend <= wstart); size_t poolIndex = ph * pooledWidth_ + pw; outputData[poolIndex] = isEmpty ? 0 : -FLT_MAX; - argmaxData[poolIndex] = -1; + if (argmaxData) { + argmaxData[poolIndex] = -1; + } for (size_t h = hstart; h < hend; ++h) { for (size_t w = wstart; w < wend; ++w) { size_t index = h * width_ + w; if (batchData[index] > outputData[poolIndex]) { outputData[poolIndex] = batchData[index]; - argmaxData[poolIndex] = index; + if (argmaxData) { + argmaxData[poolIndex] = index; + } } } } @@ -143,7 +150,9 @@ void ROIPoolLayer::forward(PassType passType) { } batchData += channelOffset; outputData += poolChannelOffset; - argmaxData += poolChannelOffset; + if (argmaxData) { + argmaxData += poolChannelOffset; + } } bottomROIs += roiOffset; } diff --git a/paddle/gserver/layers/SequenceToBatch.cpp b/paddle/gserver/layers/SequenceToBatch.cpp index 5fa7b6f4881b9582b540a5b1bfe849220cc2a4ea..6b769378d24838364701d0f128a7308c6195cc41 100644 --- a/paddle/gserver/layers/SequenceToBatch.cpp +++ b/paddle/gserver/layers/SequenceToBatch.cpp @@ -171,12 +171,31 @@ void SequenceToBatch::sequence2BatchCopy(Matrix &batch, hl_sequence2batch_copy( batchData, seqData, idxData, seqWidth, batchCount, seq2batch); } else { - for (int i = 0; i < batchCount; ++i) { - if (seq2batch) { + if (seq2batch) { +#ifdef PADDLE_USE_MKLML + const int blockMemSize = 8 * 1024; + const int blockSize = blockMemSize / sizeof(real); +#pragma omp parallel for collapse(2) + for (int i = 0; i < batchCount; ++i) { + for (int j = 0; j < seqWidth; j += blockSize) { + memcpy(batch.rowBuf(i) + j, + sequence.rowBuf(idxData[i]) + j, + (j + blockSize > seqWidth) ? (seqWidth - j) * sizeof(real) + : blockMemSize); + } + } +#else + for (int i = 0; i < batchCount; ++i) { memcpy(batch.rowBuf(i), sequence.rowBuf(idxData[i]), seqWidth * sizeof(real)); - } else { + } +#endif + } else { +#ifdef PADDLE_USE_MKLML +#pragma omp parallel for +#endif + for (int i = 0; i < batchCount; ++i) { memcpy(sequence.rowBuf(idxData[i]), batch.rowBuf(i), seqWidth * sizeof(real)); diff --git a/paddle/gserver/tests/CMakeLists.txt b/paddle/gserver/tests/CMakeLists.txt index 24e6cae8e69557c42ed5d437edce101709ca3983..b578a906c2027a1169a0098b93f8d0742920f99d 100644 --- a/paddle/gserver/tests/CMakeLists.txt +++ b/paddle/gserver/tests/CMakeLists.txt @@ -1,5 +1,4 @@ # gserver pacakge unittests - add_simple_unittest(test_LinearChainCRF) add_simple_unittest(test_RecurrentLayer) @@ -29,6 +28,26 @@ gserver_test(test_KmaxSeqScore) gserver_test(test_Expand) gserver_test(test_MaxPoolingWithMaskOutput) +set(PYTHON_PATH + ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d + ${PADDLE_SOURCE_DIR}/python/:${PADDLE_SOURCE_DIR}/paddle/gserver/tests) +function(gserver_test_with_python TARGET) + add_unittest_without_exec(${TARGET} ${TARGET}.cpp) + add_test(NAME ${TARGET} + COMMAND ${PYTHON_PATH} ${CMAKE_CURRENT_BINARY_DIR}/${TARGET} + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) +endfunction() + +gserver_test_with_python(test_PyDataProvider2) +if(WITH_PYTHON) + gserver_test_with_python(test_PyDataProvider) +endif() +if(NOT MOBILE_INFERENCE) + gserver_test_with_python(test_CompareTwoNets) + # TODO(yuyang18): There is some bug in test_RecurrentGradientMachine, I will fix it. + gserver_test_with_python(test_RecurrentGradientMachine) +endif() + ########## test_MKLDNN layers and activations ########## if(WITH_MKLDNN) add_unittest_without_exec(test_MKLDNN @@ -36,86 +55,43 @@ if(WITH_MKLDNN) MKLDNNTester.cpp LayerGradUtil.cpp) add_test(NAME test_MKLDNN - COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python - ${CMAKE_CURRENT_BINARY_DIR}/test_MKLDNN + COMMAND ${PYTHON_PATH} ${CMAKE_CURRENT_BINARY_DIR}/test_MKLDNN WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) endif() -############## test_PyDataProvider ######################## -if(WITH_PYTHON) - add_unittest_without_exec(test_PyDataProvider - test_PyDataProvider.cpp) - - add_test(NAME test_PyDataProvider - COMMAND .set_python_path.sh -d ./gserver/tests:${PADDLE_SOURCE_DIR}/python/ ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) -endif() - ############### test_WarpCTCLayer ####################### if(NOT WITH_DOUBLE AND NOT MOBILE_INFERENCE) add_unittest_without_exec(test_WarpCTCLayer test_WarpCTCLayer.cpp) - add_test(NAME test_WarpCTCLayer COMMAND ${CMAKE_CURRENT_BINARY_DIR}/test_WarpCTCLayer --warpctc_dir=${WARPCTC_LIB_DIR} WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) endif() if(NOT MOBILE_INFERENCE) - ################## test_Evaluator ####################### + ################## test_Evaluator ############# add_unittest(test_Evaluator test_Evaluator.cpp) - ############### test_RecurrentGradientMachine ############### - # TODO(yuyang18): There is some bug in test_RecurrentGradientMachine - # I will fix it. - add_unittest_without_exec(test_RecurrentGradientMachine - test_RecurrentGradientMachine.cpp) - add_test(NAME test_RecurrentGradientMachine - COMMAND .set_python_path.sh -d - ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests - ${CMAKE_CURRENT_BINARY_DIR}/test_RecurrentGradientMachine - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) - - ############### test_NetworkCompare ############### + ########### test_NetworkCompare ############### add_unittest_without_exec(test_NetworkCompare test_NetworkCompare.cpp) if(WITH_GPU) - add_test(NAME test_NetworkCompare - COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=true - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) + set(use_gpu true) else() - add_test(NAME test_NetworkCompare - COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=false - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) + set(use_gpu false) endif() + add_test(NAME test_NetworkCompare + COMMAND ${PYTHON_PATH} ${CMAKE_CURRENT_BINARY_DIR}/test_NetworkCompare --use_gpu=${use_gpu} + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle) - ################# test_CompareSparse ################## + ############ test_CompareSparse ################ add_unittest_without_exec(test_CompareSparse test_CompareSparse.cpp) if(NOT ON_TRAVIS) add_test(NAME test_CompareSparse - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d - ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests - ./.set_port.sh -p port -n 6 - ${CMAKE_CURRENT_BINARY_DIR}/test_CompareSparse + COMMAND ${PYTHON_PATH} ./.set_port.sh -p port -n 6 + ${CMAKE_CURRENT_BINARY_DIR}/test_CompareSparse WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) endif() - - ################ test_CompareTwoNets ###################### - add_unittest_without_exec(test_CompareTwoNets - test_CompareTwoNets.cpp) - add_test(NAME test_CompareTwoNets - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d - ${PADDLE_SOURCE_DIR}/python:${PADDLE_SOURCE_DIR}/paddle/gserver/tests - ${CMAKE_CURRENT_BINARY_DIR}/test_CompareTwoNets - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) endif() - -################ test_PyDataProvider2 ###################### -add_unittest_without_exec(test_PyDataProvider2 - test_PyDataProvider2.cpp) -add_test(NAME test_PyDataProvider2 - COMMAND .set_python_path.sh -d ${PADDLE_SOURCE_DIR}/paddle/gserver/tests:${PADDLE_SOURCE_DIR}/python ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProvider2 - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle -) diff --git a/paddle/gserver/tests/mkldnn_simple_net.conf b/paddle/gserver/tests/mkldnn_simple_net.conf index 8bbe91e56d0ba6da06475ad16f3162ee1103ee02..0e9d6b31fa8776136b4eee29311383ae6bb21644 100644 --- a/paddle/gserver/tests/mkldnn_simple_net.conf +++ b/paddle/gserver/tests/mkldnn_simple_net.conf @@ -51,6 +51,8 @@ tmp = img_pool_layer(input=tmp, padding=1, pool_type=MaxPooling()) +tmp = img_cmrnorm_layer(input=tmp, size=5, scale=0.0001, power=0.75) + tmp = fc_layer(input=tmp, size=channels, bias_attr=False, diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp index c5359f272b4bed4d4d2483bf19d7ae482b0d33dd..a2f07937b8834e3f3fa7a6bf2ae10f29a8d84f29 100644 --- a/paddle/gserver/tests/test_LayerGrad.cpp +++ b/paddle/gserver/tests/test_LayerGrad.cpp @@ -238,9 +238,24 @@ void testProjectionConv(size_t groups, bool isDeconv) { /* caffeMode */ true); conv->set_output_x(output_x); conv->set_output_y(output_y); + LOG(INFO) << "DILATION:" << DILATION << "; output_x: " << output_x + << "; output_y: " << output_y; if (isDeconv) { + int deconv_image_x = imageSize(output_x, + (conv->filter_size() - 1) * DILATION + 1, + conv->padding(), + conv->stride(), + /* caffeMode */ true); + int deconv_image_y = imageSize(output_y, + (conv->filter_size_y() - 1) * DILATION + 1, + conv->padding_y(), + conv->stride_y(), + /* caffeMode */ true); + + LOG(INFO) << " deconv_image_x: " << deconv_image_x + << "; deconv_image_y: " << deconv_image_y; conf.set_input_size(output_x * output_y * CHANNELS); - conf.set_output_size(IMAGE_SIZE * IMAGE_SIZE * NUM_FILTERS); + conf.set_output_size(deconv_image_x * deconv_image_y * NUM_FILTERS); } else { conf.set_input_size(IMAGE_SIZE * IMAGE_SIZE * CHANNELS); conf.set_output_size(output_x * output_y * NUM_FILTERS); @@ -1211,7 +1226,10 @@ void setPoolConfig(TestConfig* config, pool->set_output_y(oh); } -void testPoolLayer(const string& poolType, bool trans, bool useGpu) { +void testPoolLayer(const string& poolType, + bool trans, + bool useGpu, + bool excludeMode = true) { TestConfig config; config.inputDefs.push_back({INPUT_DATA, "layer_0", 3136, 0}); LayerInputConfig* input = config.layerConfig.add_inputs(); @@ -1219,6 +1237,7 @@ void testPoolLayer(const string& poolType, bool trans, bool useGpu) { pool->set_img_size(14); pool->set_img_size_y(14); + pool->set_exclude_mode(excludeMode); setPoolConfig(&config, pool, poolType); config.layerConfig.set_size(pool->output_x() * pool->output_y() * pool->channels()); @@ -1250,16 +1269,26 @@ void testPoolLayer2(const string& poolType, bool trans, bool useGpu) { TEST(Layer, PoolLayer) { testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ false); + testPoolLayer("avg-projection", + /* trans= */ false, + /* useGpu= */ false, + /* excludeMode= */ false); testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ false); testPoolLayer("max-pool-with-mask", /* trans= */ false, /* useGpu= */ false); #ifdef PADDLE_WITH_CUDA testPoolLayer("avg-projection", /* trans= */ false, /* useGpu= */ true); + testPoolLayer("avg-projection", + /* trans= */ false, + /* useGpu= */ true, + /* excludeMode= */ false); testPoolLayer("max-projection", /* trans= */ false, /* useGpu= */ true); testPoolLayer("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer2("cudnn-max-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer2("cudnn-avg-pool", /* trans= */ false, /* useGpu= */ true); + testPoolLayer2( + "cudnn-avg-incl-pad-pool", /* trans= */ false, /* useGpu= */ true); testPoolLayer("max-pool-with-mask", /* trans= */ false, /* useGpu= */ true); #endif } diff --git a/paddle/gserver/tests/test_MKLDNN.cpp b/paddle/gserver/tests/test_MKLDNN.cpp index 56b523f220c2a405851b89db5f63e9aa50bfaaf7..ad1dbc3ee2bfd00a94de06f1e1b2ffe64f19b417 100644 --- a/paddle/gserver/tests/test_MKLDNN.cpp +++ b/paddle/gserver/tests/test_MKLDNN.cpp @@ -272,6 +272,51 @@ TEST(MKLDNNLayer, BatchNormLayer) { testBatchNormLayer({4, 16, 8, 10}); } +struct testLRNDesc { + int bs, ic, ih, iw; + float scale, pow; + int localSize; +}; + +void getMKLDNNLRNConfig(TestConfig& cfg, const testLRNDesc& pm) { + cfg.layerConfig.set_type("mkldnn_lrn"); + cfg.layerConfig.set_active_type("relu"); + size_t layerSize = pm.ic * pm.ih * pm.iw; + cfg.inputDefs.push_back({INPUT_DATA, "layer_0", layerSize, 0}); + LayerInputConfig* input = cfg.layerConfig.add_inputs(); + NormConfig* norm = input->mutable_norm_conf(); + norm->set_channels(pm.ic); + norm->set_size(pm.localSize); + norm->set_scale(pm.scale); + norm->set_pow(pm.pow); + norm->set_blocked(0); + norm->set_img_size(pm.iw); + norm->set_img_size_y(pm.ih); + norm->set_output_x(norm->img_size()); + norm->set_output_y(norm->img_size_y()); + cfg.layerConfig.set_size(layerSize); + cfg.biasSize = 0; +} + +void testLRNLayer(const testLRNDesc& pm) { + TestConfig dnnConfig; + getMKLDNNLRNConfig(dnnConfig, pm); + // mkldnn_lrn <==> norm with cmrnorm-projection type + TestConfig refConfig = dnnConfig; + refConfig.layerConfig.set_type("norm"); + LayerInputConfig* input = refConfig.layerConfig.mutable_inputs(0); + NormConfig* norm = input->mutable_norm_conf(); + norm->set_norm_type("cmrnorm-projection"); + norm->set_scale(norm->scale() / norm->size()); + RUN_MKLDNN_TEST(dnnConfig, refConfig, pm) +} + +TEST(MKLDNNLayer, LRNLayer) { + testLRNLayer({4, 10, 12, 12, 0.001f, 0.75f, 5}); + testLRNLayer({2, 32, 6, 6, 0.001f, 0.75f, 5}); + testLRNLayer({4, 16, 8, 10, 0.01f, 0.5f, 5}); +} + struct testImageDesc { int bs, ic, ih, iw; }; diff --git a/paddle/math/Allocator.h b/paddle/math/Allocator.h index 94ef561f066a127496e2849a419835e175c526d7..17563bf5e1649361b83b896bf864b922296a5487 100644 --- a/paddle/math/Allocator.h +++ b/paddle/math/Allocator.h @@ -48,7 +48,7 @@ public: */ virtual void* alloc(size_t size) { void* ptr; -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN // refer to https://github.com/01org/mkl-dnn/blob/master/include/mkldnn.hpp // memory alignment CHECK_EQ(posix_memalign(&ptr, 4096ul, size), 0); diff --git a/paddle/math/MathFunctions.cpp b/paddle/math/MathFunctions.cpp index ba86eacbb5d53ee43a60d2cd1dd922333a5d48f0..28ab54b450c96b4bdefdf36813595766162b1434 100644 --- a/paddle/math/MathFunctions.cpp +++ b/paddle/math/MathFunctions.cpp @@ -206,7 +206,7 @@ double dotProduct(const int n, const double* x, const double* y) { } #endif -#if defined(PADDLE_USE_MKLML) +#if defined(PADDLE_WITH_MKLML) template <> void vExp(const int n, const float* a, float* r) { diff --git a/paddle/math/MathFunctions.h b/paddle/math/MathFunctions.h index f6e77029bdd75a602f88b688ca810f47ba4ee615..29fe36e3a4bd5e5d372480950a03142822262d41 100644 --- a/paddle/math/MathFunctions.h +++ b/paddle/math/MathFunctions.h @@ -15,7 +15,7 @@ limitations under the License. */ #ifndef MATHFUNCTIONS_H_ #define MATHFUNCTIONS_H_ -#ifdef PADDLE_USE_MKLML +#ifdef PADDLE_WITH_MKLML #include #include #include diff --git a/paddle/math/Matrix.cpp b/paddle/math/Matrix.cpp index 88e9180690606c92cf46c5b295d80f14e5d64567..1ec4336cabbc7d3073b7638b7484bf61e83a2dc5 100644 --- a/paddle/math/Matrix.cpp +++ b/paddle/math/Matrix.cpp @@ -28,6 +28,7 @@ limitations under the License. */ #include "hl_top_k.h" #include "paddle/utils/Logging.h" +#include "NEONFunctions.h" #include "paddle/function/GemmFunctor.h" #include "paddle/utils/ThreadLocal.h" @@ -1130,7 +1131,8 @@ void GpuMatrix::avgPoolForward(Matrix& inputMat, size_t outputH, size_t outputW, size_t paddingH, - size_t paddingW) { + size_t paddingW, + bool excludeMode) { CHECK(inputMat.useGpu_ == true) << "Matrix type are not equal"; real* inputData = inputMat.getData(); @@ -1153,7 +1155,8 @@ void GpuMatrix::avgPoolForward(Matrix& inputMat, paddingH, paddingW, data_, - getStride()); + getStride(), + excludeMode); } void GpuMatrix::avgPoolBackward(Matrix& outGrad, @@ -1168,7 +1171,8 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad, real scaleTargets, real scaleOutput, size_t paddingH, - size_t paddingW) { + size_t paddingW, + bool excludeMode) { CHECK(outGrad.useGpu_ == true) << "Matrix type are not equal"; real* outDiff = outGrad.getData(); @@ -1194,7 +1198,8 @@ void GpuMatrix::avgPoolBackward(Matrix& outGrad, scaleTargets, scaleOutput, data_, - outGrad.getStride()); + outGrad.getStride(), + excludeMode); } void GpuMatrix::maxPool3DForward(Matrix& inputMat, @@ -2136,7 +2141,8 @@ void CpuMatrix::avgPoolForward(Matrix& input, size_t outputH, size_t outputW, size_t paddingH, - size_t paddingW) { + size_t paddingW, + bool excludeMode) { // The main loop size_t num = input.getHeight(); size_t inLength = imgSizeH * imgSizeW; @@ -2165,7 +2171,8 @@ void CpuMatrix::avgPoolForward(Matrix& input, tgtData[ph * outputW + pw] += inData[h * imgSizeW + w]; } } - int poolSize = (hend - hstart) * (wend - wstart); + int poolSize = + excludeMode ? (hend - hstart) * (wend - wstart) : sizeY * sizeX; CHECK(poolSize); tgtData[ph * outputW + pw] /= poolSize; } @@ -2189,7 +2196,8 @@ void CpuMatrix::avgPoolBackward(Matrix& input, real scaleTargets, real scaleOutput, size_t paddingH, - size_t paddingW) { + size_t paddingW, + bool excludeMode) { size_t num = input.getHeight(); size_t channels = input.getWidth() / outputH / outputW; size_t inLength = imgSizeH * imgSizeW; @@ -2211,7 +2219,8 @@ void CpuMatrix::avgPoolBackward(Matrix& input, int wstart = pw * strideW - paddingW; int wend = std::min(wstart + sizeX, imgSizeW); wstart = std::max(wstart, 0); - int poolSize = (hend - hstart) * (wend - wstart); + int poolSize = + excludeMode ? (hend - hstart) * (wend - wstart) : sizeY * sizeX; CHECK(poolSize); for (int h = hstart; h < hend; ++h) { @@ -4157,16 +4166,36 @@ void CpuMatrix::print(std::ostream& os) const { void CpuMatrix::paramReluForward(Matrix& data, Matrix& W) { real* input = data.getData(); real* w = W.getData(); + real* output = data_; size_t numElements = data.getWidth(); size_t numSamples = data.getHeight(); size_t paraSize = W.getHeight() * W.getWidth(); CHECK(!(numElements % paraSize)); // this check from ParameterReluLayer::init + size_t partial_sum = numElements / paraSize; + if (paraSize == numElements) { + for (size_t n = 0; n < numSamples * numElements; ++n) { + output[n] = input[n] > 0 ? input[n] : input[n] * w[n % numElements]; + } + return; + } + +#if defined(__ARM_NEON__) || defined(__ARM_NEON) + for (size_t n = 0; n < numSamples; ++n) { + for (size_t i = 0; i < paraSize; i++) { + neon::prelu( + input + i * partial_sum, w[i], output + i * partial_sum, partial_sum); + } + input = input + numElements; + output = output + numElements; + } +#else for (size_t n = 0, k = 0; n < numSamples; ++n) { for (size_t i = 0; i < numElements; ++i, ++k) { - data_[k] = input[k] > 0 ? input[k] : input[k] * w[i / partial_sum]; + output[k] = input[k] > 0 ? input[k] : input[k] * w[i / partial_sum]; } } +#endif } void CpuMatrix::paramReluBackwardW(Matrix& oGrad, Matrix& data) { diff --git a/paddle/math/Matrix.h b/paddle/math/Matrix.h index e273f1123690e31984c97185c5a8bc5e7b92c38c..c8e690e6421668bdade4e50a61882c915b2ddc7c 100644 --- a/paddle/math/Matrix.h +++ b/paddle/math/Matrix.h @@ -911,7 +911,8 @@ public: size_t outputH, size_t outputW, size_t paddingH, - size_t paddingW) { + size_t paddingW, + bool excludeMode = true) { LOG(FATAL) << "Not implemeted"; } @@ -927,9 +928,11 @@ public: real scaleTargets, real scaleOutput, size_t paddingH, - size_t paddingW) { + size_t paddingW, + bool excludeMode = true) { LOG(FATAL) << "Not implemeted"; } + /** * Pooling 3D forward operation, pick out the largest element * in the sizeX of value @@ -1458,7 +1461,8 @@ public: size_t outputH, size_t outputW, size_t paddingH, - size_t paddingW); + size_t paddingW, + bool excludeMode = true); void avgPoolBackward(Matrix& input, size_t imgSizeH, @@ -1472,7 +1476,8 @@ public: real scaleTargets, real scaleOutput, size_t paddingH, - size_t paddingW); + size_t paddingW, + bool excludeMode = true); void maxPool3DForward(Matrix& inputMat, Matrix& maxPoolIdx, @@ -1730,7 +1735,8 @@ public: size_t outputH, size_t outputW, size_t paddingH, - size_t paddingW); + size_t paddingW, + bool excludeMode = true); void avgPoolBackward(Matrix& input, size_t imgSizeH, @@ -1744,7 +1750,8 @@ public: real scaleTargets, real scaleOutput, size_t paddingH, - size_t paddingW); + size_t paddingW, + bool excludeMode = true); void maxPool3DForward(Matrix& inputMat, Matrix& maxPoolIdx, diff --git a/paddle/math/NEONFunctions.cpp b/paddle/math/NEONFunctions.cpp index 3bf47901f1069ac228fa1b877e29848d8cc130e8..0f8314942290a71dd327437b8a6da2d64fe48444 100644 --- a/paddle/math/NEONFunctions.cpp +++ b/paddle/math/NEONFunctions.cpp @@ -49,6 +49,46 @@ void relu(const float* a, float* b, int len) { } } +// b[i] = a[i] > 0.0f ? a[i] : a[i] * w +void prelu(const float* a, float w, float* b, int len) { + int offset = len % 16; + float32x4_t ma0, ma1, ma2, ma3; + + float32x4_t zero = vdupq_n_f32(0.f); + float32x4_t vw = vdupq_n_f32(w); + + for (int k = 0; k < len / 16; k++, a += 16, b += 16) { + ma0 = vld1q_f32(a); + ma1 = vld1q_f32(a + 4); + ma2 = vld1q_f32(a + 8); + ma3 = vld1q_f32(a + 12); + + uint32x4_t flag0 = vcgtq_f32(ma0, zero); + uint32x4_t flag1 = vcgtq_f32(ma1, zero); + uint32x4_t flag2 = vcgtq_f32(ma2, zero); + uint32x4_t flag3 = vcgtq_f32(ma3, zero); + + float32x4_t mul0 = vmulq_f32(ma0, vw); + float32x4_t mul1 = vmulq_f32(ma1, vw); + float32x4_t mul2 = vmulq_f32(ma2, vw); + float32x4_t mul3 = vmulq_f32(ma3, vw); + + ma0 = vbslq_f32(flag0, ma0, mul0); + ma1 = vbslq_f32(flag1, ma1, mul1); + ma2 = vbslq_f32(flag2, ma2, mul2); + ma3 = vbslq_f32(flag3, ma3, mul3); + + vst1q_f32(b, ma0); + vst1q_f32(b + 4, ma1); + vst1q_f32(b + 8, ma2); + vst1q_f32(b + 12, ma3); + } + + for (int i = 0; i < offset; i++) { + b[i] = a[i] > 0.0f ? a[i] : a[i] * w; + } +} + } // namespace neon } // namespace paddle diff --git a/paddle/math/NEONFunctions.h b/paddle/math/NEONFunctions.h index 69085e333547a31a341fbfde247f1e30adb957ee..d67b2f47a85a963949d23415e4f6881658203bb7 100644 --- a/paddle/math/NEONFunctions.h +++ b/paddle/math/NEONFunctions.h @@ -18,6 +18,7 @@ namespace paddle { namespace neon { void relu(const float* a, float* b, int len); +void prelu(const float* a, float w, float* b, int len); } // namespace neon } // namespace paddle diff --git a/paddle/math/float16.h b/paddle/math/float16.h new file mode 100644 index 0000000000000000000000000000000000000000..efebbce50405018c6b7ce2049f8d55c33680469f --- /dev/null +++ b/paddle/math/float16.h @@ -0,0 +1,739 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include + +#ifdef PADDLE_WITH_CUDA +#include +#endif // PADDLE_WITH_CUDA + +#include "unsupported/Eigen/CXX11/Tensor" + +#include "paddle/platform/hostdevice.h" + +#ifdef __GNUC__ +#define PADDLE_GNUC_VER (__GNUC__ * 10 + __GNUC_MINOR__) +#else +#define PADDLE_GNUC_VER 0 +#endif // __GNUC__ + +#ifdef __clang__ +#define PADDLE_CLANG_VER (__clang_major__ * 10 + __clang_minor__) +#else +#define PADDLE_CLANG_VER 0 +#endif // __clang__ + +#if defined(__CUDACC__) && CUDA_VERSION >= 7050 +#define PADDLE_CUDA_FP16 +#include +#endif + +#if defined(__arm__) || defined(__aarch64__) +#define PADDLE_ARM +#endif + +#if defined(__ARM_NEON) || defined(__ARM_NEON__) +#define PADDLE_NEON +#include +#endif + +#if defined(PADDLE_NEON) && defined(PADDLE_ARM_FP16) && \ + (PADDLE_GNUC_VER >= 62 || PADDLE_CLANG_VER >= 37) +#define PADDLE_WITH_NATIVE_FP16 +#endif + +#ifndef PADDLE_ARM +#include +#endif // PADDLE_ARM + +#define PADDLE_ALIGN(x) __attribute__((aligned(x))) + +namespace paddle { + +// Use PADDLE_ALIGNED(2) to ensure that each float16 will be allocated +// and aligned at least on a 2-byte boundary, which leads to efficient +// memory access of float16 struct and also makes float16 compatible +// with CUDA half, ARM float16_t, and Eigen::half data types. +struct PADDLE_ALIGN(2) float16 { +public: + uint16_t x; + + // Constructors + HOSTDEVICE inline float16() : x(0) {} + + HOSTDEVICE inline float16(const float16& h) : x(h.x) {} + +#ifdef PADDLE_CUDA_FP16 + HOSTDEVICE inline explicit float16(const half& h) { +#if CUDA_VERSION >= 9000 + x = reinterpret_cast<__half_raw*>(const_cast(&h))->x; +#else + x = h.x; +#endif // CUDA_VERSION >= 9000 + } +#endif // PADDLE_CUDA_FP16 + + HOSTDEVICE inline explicit float16(const Eigen::half& h) : x(h.x) {} + +#ifdef PADDLE_WITH_NATIVE_FP16 + // __fp16 is a native half precision data type for arm cpu, + // float16_t is an alias for __fp16 + HOSTDEVICE inline explicit float16(const float16_t& h) { + x = *reinterpret_cast(&h); + } +#endif + + HOSTDEVICE inline explicit float16(float val) { +#if defined(PADDLE_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 + half tmp = __float2half(val); + x = *reinterpret_cast(&tmp); + +#elif defined(PADDLE_WITH_NATIVE_FP16) + float32x4_t tmp = vld1q_dup_f32(&val); + float16_t res = vget_lane_f16(vcvt_f16_f32(tmp), 0); + x = *reinterpret_cast(&res); + +#elif defined(__F16C__) + x = _cvtss_sh(val, 0); + +#else + // Conversion routine adapted from + // http://stackoverflow.com/questions/1659440/32-bit-to-16-bit-floating-point-conversion + Bits v, s; + v.f = val; + uint32_t sign = v.si & sigN; + v.si ^= sign; + sign >>= shiftSign; // logical shift + s.si = mulN; + s.si = s.f * v.f; // correct subnormals + v.si ^= (s.si ^ v.si) & -(minN > v.si); + v.si ^= (infN ^ v.si) & -((infN > v.si) & (v.si > maxN)); + v.si ^= (nanN ^ v.si) & -((nanN > v.si) & (v.si > infN)); + v.ui >>= shift; // logical shift + v.si ^= ((v.si - maxD) ^ v.si) & -(v.si > maxC); + v.si ^= ((v.si - minD) ^ v.si) & -(v.si > subC); + x = v.ui | sign; + +#endif + } + + HOSTDEVICE inline explicit float16(bool b) : x(b ? 0x3c00 : 0) {} + + template + HOSTDEVICE inline explicit float16(const T& val) + : x(float16(static_cast(val)).x) {} + + HOSTDEVICE inline float16& operator=(const float16& rhs) { + x = rhs.x; + return *this; + } + +// Assignment operators +#ifdef PADDLE_CUDA_FP16 + HOSTDEVICE inline float16& operator=(const half& rhs) { +#if CUDA_VERSION >= 9000 + x = reinterpret_cast<__half_raw*>(const_cast(&rhs))->x; +#else + x = rhs.x; +#endif + return *this; + } +#endif + + HOSTDEVICE inline float16& operator=(const Eigen::half& rhs) { + x = rhs.x; + return *this; + } + +#ifdef PADDLE_WITH_NATIVE_FP16 + HOSTDEVICE inline float16& operator=(const float16_t& rhs) { + x = *reinterpret_cast(&rhs); + return *this; + } +#endif + + HOSTDEVICE inline float16& operator=(bool b) { + x = b ? 0x3c00 : 0; + return *this; + } + + HOSTDEVICE inline float16& operator=(int8_t val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(uint8_t val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(int16_t val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(uint16_t val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(int32_t val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(uint32_t val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(int64_t val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(uint64_t val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(float val) { + x = float16(val).x; + return *this; + } + + HOSTDEVICE inline float16& operator=(double val) { + x = float16(val).x; + return *this; + } + +// Conversion opertors +#ifdef PADDLE_CUDA_FP16 + HOSTDEVICE inline explicit operator half() const { +#if CUDA_VERSION >= 9000 + __half_raw h; + h.x = x; + return half(h); +#else + half h; + h.x = x; + return h; +#endif // CUDA_VERSION >= 9000 + } +#endif // PADDLE_CUDA_FP16 + + HOSTDEVICE inline explicit operator Eigen::half() const { + Eigen::half h; + h.x = x; + return h; + } + +#ifdef PADDLE_WITH_NATIVE_FP16 + HOSTDEVICE inline explicit operator float16_t() const { + return *reinterpret_cast(this); + } +#endif + + HOSTDEVICE inline explicit operator float() const { +#if defined(PADDLE_CUDA_FP16) && defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 + half tmp = *reinterpret_cast(this); + return __half2float(tmp); + +#elif defined(PADDLE_WITH_NATIVE_FP16) + float16x4_t res = vld1_dup_f16(reinterpret_cast(this)); + return vgetq_lane_f32(vcvt_f32_f16(res), 0); + +#elif defined(__F16C__) + return _cvtsh_ss(this->x); + +#else + // Conversion routine adapted from + // http://stackoverflow.com/questions/1659440/32-bit-to-16-bit-floating-point-conversion + Bits v; + v.ui = this->x; + int32_t sign = v.si & sigC; + v.si ^= sign; + sign <<= shiftSign; + v.si ^= ((v.si + minD) ^ v.si) & -(v.si > subC); + v.si ^= ((v.si + maxD) ^ v.si) & -(v.si > maxC); + Bits s; + s.si = mulC; + s.f *= v.si; + int32_t mask = -(norC > v.si); + v.si <<= shift; + v.si ^= (s.si ^ v.si) & mask; + v.si |= sign; + return v.f; + +#endif + } + + HOSTDEVICE inline explicit operator bool() const { return (x & 0x7fff) != 0; } + + HOSTDEVICE inline explicit operator int8_t() const { + return static_cast(float(*this)); + } + + HOSTDEVICE inline explicit operator uint8_t() const { + return static_cast(float(*this)); + } + + HOSTDEVICE inline explicit operator int16_t() const { + return static_cast(float(*this)); + } + + HOSTDEVICE inline explicit operator uint16_t() const { + return static_cast(float(*this)); + } + + HOSTDEVICE inline explicit operator int32_t() const { + return static_cast(float(*this)); + } + + HOSTDEVICE inline explicit operator uint32_t() const { + return static_cast(float(*this)); + } + + HOSTDEVICE inline explicit operator int64_t() const { + return static_cast(float(*this)); + } + + HOSTDEVICE inline explicit operator uint64_t() const { + return static_cast(float(*this)); + } + + HOSTDEVICE inline explicit operator double() const { + return static_cast(float(*this)); + } + +private: + union Bits { + float f; + int32_t si; + uint32_t ui; + }; + + static const int shift = 13; + static const int shiftSign = 16; + + static const int32_t infN = 0x7F800000; + static const int32_t maxN = 0x477FE000; // max flt16 as flt32 + static const int32_t minN = 0x38800000; // min flt16 normal as flt32 + static const int32_t sigN = 0x80000000; // sign bit + + static constexpr int32_t infC = infN >> shift; + static constexpr int32_t nanN = (infC + 1) + << shift; // minimum flt16 nan as float32 + static constexpr int32_t maxC = maxN >> shift; + static constexpr int32_t minC = minN >> shift; + static constexpr int32_t sigC = sigN >> shiftSign; + + static const int32_t mulN = 0x52000000; // (1 << 23) / minN + static const int32_t mulC = 0x33800000; // minN / (1 << (23 - shift)) + static const int32_t subC = 0x003FF; // max flt32 subnormal downshifted + static const int32_t norC = 0x00400; // min flt32 normal downshifted + + static constexpr int32_t maxD = infC - maxC - 1; + static constexpr int32_t minD = minC - subC - 1; +}; + +// Arithmetic operators on GPU +// CUDA 9.0 provides built-in arithmetic operators for half while +// CUDA 7.5 and 8.0 do not. The arithmetic operators defined here are +// for users to write similar CUDA code in CUDA 7.5 and 8.0 as in +// CUDA 9.0 regarding the half data type. +#if defined(PADDLE_CUDA_FP16) && CUDA_VERSION < 9000 + +DEVICE inline half operator+(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hadd(a, b); +#else + float res = float(float16(a)) + float(float16(b)); + return half(float16(res)); +#endif +} + +DEVICE inline half operator-(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hsub(a, b); +#else + float res = float(float16(a)) - float(float16(b)); + return half(float16(res)); +#endif +} + +DEVICE inline half operator*(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hmul(a, b); +#else + float res = float(float16(a)) * float(float16(b)); + return half(float16(res)); +#endif +} + +DEVICE inline half operator/(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 300 + float num = __half2float(a); + float denom = __half2float(b); + return __float2half(num / denom); +#else + float res = float(float16(a)) / float(float16(b)); + return half(float16(res)); +#endif +} + +DEVICE inline half operator-(const half& a) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hneg(a); +#else + float res = -float(float16(a)); + return half(float16(res)); +#endif +} + +DEVICE inline half& operator+=(half& a, const half& b) { + a = a + b; + return a; +} + +DEVICE inline half& operator-=(half& a, const half& b) { + a = a - b; + return a; +} + +DEVICE inline half& operator*=(half& a, const half& b) { + a = a * b; + return a; +} + +DEVICE inline half& operator/=(half& a, const half& b) { + a = a / b; + return a; +} + +DEVICE inline bool operator==(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __heq(a, b); +#else + return float(float16(a)) == float(float16(b)); +#endif +} + +DEVICE inline bool operator!=(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hne(a, b); +#else + return float(float16(a)) != float(float16(b)); +#endif +} + +DEVICE inline bool operator<(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hlt(a, b); +#else + return float(float16(a)) < float(float16(b)); +#endif +} + +DEVICE inline bool operator<=(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hle(a, b); +#else + return float(float16(a)) <= float(float16(b)); +#endif +} + +DEVICE inline bool operator>(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hgt(a, b); +#else + return float(float16(a)) > float(float16(b)); +#endif +} + +DEVICE inline bool operator>=(const half& a, const half& b) { +#if defined(__CUDA_ARCH__) && __CUDA_ARCH__ >= 530 + return __hge(a, b); +#else + return float(float16(a)) >= float(float16(b)); +#endif +} + +#endif // PADDLE_CUDA_FP16 + +// Arithmetic operators on ARMv8.2-A CPU +#if defined(PADDLE_WITH_NATIVE_FP16) +HOST inline float16 operator+(const float16& a, const float16& b) { + float16 res; + asm volatile( + "ld1 {v0.h}[0], [%[a_ptr]]\n" + "ld1 {v1.h}[0], [%[b_ptr]]\n" + "fadd h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&(res.x)) + : // clobbers + "memory", "v0", "v1"); + return res; +} + +HOST inline float16 operator-(const float16& a, const float16& b) { + float16 res; + asm volatile( + "ld1 {v0.h}[0], [%[a_ptr]]\n" + "ld1 {v1.h}[0], [%[b_ptr]]\n" + "fsub h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&(res.x)) + : // clobbers + "memory", "v0", "v1"); + return res; +} + +HOST inline float16 operator*(const float16& a, const float16& b) { + float16 res; + asm volatile( + "ld1 {v0.h}[0], [%[a_ptr]]\n" + "ld1 {v1.h}[0], [%[b_ptr]]\n" + "fmul h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&(res.x)) + : // clobbers + "memory", "v0", "v1"); + return res; +} + +HOST inline float16 operator/(const float16& a, const float16& b) { + float16 res; + asm volatile( + "ld1 {v0.h}[0], [%[a_ptr]]\n" + "ld1 {v1.h}[0], [%[b_ptr]]\n" + "fdiv h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&(res.x)) + : // clobbers + "memory", "v0", "v1"); + return res; +} + +HOST inline float16 operator-(const float16& a) { + float16 res; + asm volatile( + "ld1 {v0.h}[0], [%[a_ptr]]\n" + "fneg h0, h0\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [res_ptr] "r"(&(res.x)) + : // clobbers + "memory", "v0"); + return res; +} + +HOST inline float16& operator+=(float16& a, const float16& b) { + a = a + b; + return a; +} + +HOST inline float16& operator-=(float16& a, const float16& b) { + a = a - b; + return a; +} + +HOST inline float16& operator*=(float16& a, const float16& b) { + a = a * b; + return a; +} + +HOST inline float16& operator/=(float16& a, const float16& b) { + a = a / b; + return a; +} + +HOST inline bool operator==(const float16& a, const float16& b) { + uint16_t res; + asm volatile( + "ld1 {v0.h}[0], [%[a_ptr]]\n" + "ld1 {v1.h}[0], [%[b_ptr]]\n" + "fcmeq h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&res) + : // clobbers + "memory", "v0", "v1"); + return (res & 0xffff) != 0; +} + +HOST inline bool operator!=(const float16& a, const float16& b) { + return !(a == b); +} + +HOST inline bool operator<(const float16& a, const float16& b) { + uint16_t res; + asm volatile( + "ld1 {v1.h}[0], [%[a_ptr]]\n" + "ld1 {v0.h}[0], [%[b_ptr]]\n" + "fcmgt h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&res) + : // clobbers + "memory", "v0", "v1"); + return (res & 0xffff) != 0; +} + +HOST inline bool operator<=(const float16& a, const float16& b) { + uint16_t res; + asm volatile( + "ld1 {v1.h}[0], [%[a_ptr]]\n" + "ld1 {v0.h}[0], [%[b_ptr]]\n" + "fcmge h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&res) + : // clobbers + "memory", "v0", "v1"); + return (res & 0xffff) != 0; +} + +HOST inline bool operator>(const float16& a, const float16& b) { + uint16_t res; + asm volatile( + "ld1 {v0.h}[0], [%[a_ptr]]\n" + "ld1 {v1.h}[0], [%[b_ptr]]\n" + "fcmgt h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&res) + : // clobbers + "memory", "v0", "v1"); + return (res & 0xffff) != 0; +} + +HOST inline bool operator>=(const float16& a, const float16& b) { + uint16_t res; + asm volatile( + "ld1 {v0.h}[0], [%[a_ptr]]\n" + "ld1 {v1.h}[0], [%[b_ptr]]\n" + "fcmge h0, h0, h1\n" + "st1 {v0.h}[0], [%[res_ptr]]\n" + : // outputs + : // inputs + [a_ptr] "r"(&(a.x)), + [b_ptr] "r"(&(b.x)), + [res_ptr] "r"(&res) + : // clobbers + "memory", "v0", "v1"); + return (res & 0xffff) != 0; +} + +// Arithmetic operators, software emulated on other CPU +#else +HOSTDEVICE inline float16 operator+(const float16& a, const float16& b) { + return float16(float(a) + float(b)); +} + +HOSTDEVICE inline float16 operator-(const float16& a, const float16& b) { + return float16(float(a) - float(b)); +} + +HOSTDEVICE inline float16 operator*(const float16& a, const float16& b) { + return float16(float(a) * float(b)); +} + +HOSTDEVICE inline float16 operator/(const float16& a, const float16& b) { + return float16(float(a) / float(b)); +} + +HOSTDEVICE inline float16 operator-(const float16& a) { + float16 res; + res.x = a.x ^ 0x8000; + return res; +} + +HOSTDEVICE inline float16& operator+=(float16& a, const float16& b) { + a = float16(float(a) + float(b)); + return a; +} + +HOSTDEVICE inline float16& operator-=(float16& a, const float16& b) { + a = float16(float(a) - float(b)); + return a; +} + +HOSTDEVICE inline float16& operator*=(float16& a, const float16& b) { + a = float16(float(a) * float(b)); + return a; +} + +HOSTDEVICE inline float16& operator/=(float16& a, const float16& b) { + a = float16(float(a) / float(b)); + return a; +} + +HOSTDEVICE inline bool operator==(const float16& a, const float16& b) { + return float(a) == float(b); +} + +HOSTDEVICE inline bool operator!=(const float16& a, const float16& b) { + return float(a) != float(b); +} + +HOSTDEVICE inline bool operator<(const float16& a, const float16& b) { + return float(a) < float(b); +} + +HOSTDEVICE inline bool operator<=(const float16& a, const float16& b) { + return float(a) <= float(b); +} + +HOSTDEVICE inline bool operator>(const float16& a, const float16& b) { + return float(a) > float(b); +} + +HOSTDEVICE inline bool operator>=(const float16& a, const float16& b) { + return float(a) >= float(b); +} +#endif +} // namespace paddle diff --git a/paddle/math/tests/CMakeLists.txt b/paddle/math/tests/CMakeLists.txt index d8b7f9e3fc74040189ade83049e4a1c3348e08de..dcd2a34583417993a4bf2976f7a3bc5a10d496ac 100644 --- a/paddle/math/tests/CMakeLists.txt +++ b/paddle/math/tests/CMakeLists.txt @@ -22,6 +22,7 @@ if(WITH_GPU) link_paddle_test(test_Tensor) CUDA_ADD_EXECUTABLE(test_lazyAssign test_lazyAssign.cu) link_paddle_test(test_lazyAssign) + nv_test(test_float16_gpu SRCS test_float16.cu) else() compile_cu_as_cpp(test_Tensor.cu) add_unittest(test_Tensor test_Tensor.cu) @@ -33,3 +34,4 @@ add_simple_unittest(test_FPException) add_simple_unittest(test_GpuProfiler) add_simple_unittest(test_BaseMatrix) add_simple_unittest(test_Matrix) +add_simple_unittest(test_float16) diff --git a/paddle/math/tests/test_float16.cpp b/paddle/math/tests/test_float16.cpp new file mode 100644 index 0000000000000000000000000000000000000000..74cc55aa3792f5e9f86b4f56f28dad97f35996a0 --- /dev/null +++ b/paddle/math/tests/test_float16.cpp @@ -0,0 +1,119 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/math/float16.h" + +#include + +namespace paddle { + +TEST(float16, conversion_cpu) { + // Explicit conversion from Eigen::half + EXPECT_EQ(float16(Eigen::half(1.0f)).x, 0x3c00); + EXPECT_EQ(float16(Eigen::half(0.5f)).x, 0x3800); + EXPECT_EQ(float16(Eigen::half(0.33333f)).x, 0x3555); + EXPECT_EQ(float16(Eigen::half(0.0f)).x, 0x0000); + EXPECT_EQ(float16(Eigen::half(-0.0f)).x, 0x8000); + EXPECT_EQ(float16(Eigen::half(65504.0f)).x, 0x7bff); + EXPECT_EQ(float16(Eigen::half(65536.0f)).x, 0x7c00); + + // Conversion from float + EXPECT_EQ(float16(1.0f).x, 0x3c00); + EXPECT_EQ(float16(0.5f).x, 0x3800); + EXPECT_EQ(float16(0.33333f).x, 0x3555); + EXPECT_EQ(float16(0.0f).x, 0x0000); + EXPECT_EQ(float16(-0.0f).x, 0x8000); + EXPECT_EQ(float16(65504.0f).x, 0x7bff); + EXPECT_EQ(float16(65536.0f).x, 0x7c00); + + // Conversion from double + EXPECT_EQ(float16(1.0).x, 0x3c00); + EXPECT_EQ(float16(0.5).x, 0x3800); + EXPECT_EQ(float16(0.33333).x, 0x3555); + EXPECT_EQ(float16(0.0).x, 0x0000); + EXPECT_EQ(float16(-0.0).x, 0x8000); + EXPECT_EQ(float16(65504.0).x, 0x7bff); + EXPECT_EQ(float16(65536.0).x, 0x7c00); + + // Conversion from int + EXPECT_EQ(float16(-1).x, 0xbc00); + EXPECT_EQ(float16(0).x, 0x0000); + EXPECT_EQ(float16(1).x, 0x3c00); + EXPECT_EQ(float16(2).x, 0x4000); + EXPECT_EQ(float16(3).x, 0x4200); + + // Conversion from bool + EXPECT_EQ(float16(true).x, 0x3c00); + EXPECT_EQ(float16(false).x, 0x0000); + + // Default constructor + float16 v_def; + EXPECT_EQ(v_def.x, 0x0000); + + // Assignment operator + float16 v_assign; + v_assign = v_def; + EXPECT_EQ(v_assign.x, 0x0000); + v_assign = Eigen::half(1.0f); + EXPECT_EQ(v_assign.x, 0x3c00); + v_assign = 0.5f; + EXPECT_EQ(v_assign.x, 0x3800); + v_assign = 0.33333; + EXPECT_EQ(v_assign.x, 0x3555); + v_assign = -1; + EXPECT_EQ(v_assign.x, 0xbc00); + v_assign = true; + EXPECT_EQ(v_assign.x, 0x3c00); + + // Conversion operator + EXPECT_EQ(Eigen::half(float16(1.0f)).x, 0x3c00); + EXPECT_EQ(float(float16(0.5f)), 0.5f); + EXPECT_NEAR(double(float16(0.33333)), 0.33333, 0.0001); + EXPECT_EQ(int(float16(-1)), -1); + EXPECT_EQ(bool(float16(true)), true); +} + +TEST(float16, arithmetic_cpu) { + EXPECT_EQ(float(float16(1) + float16(1)), 2); + EXPECT_EQ(float(float16(5) + float16(-5)), 0); + EXPECT_NEAR(float(float16(0.33333f) + float16(0.66667f)), 1.0f, 0.001); + EXPECT_EQ(float(float16(3) - float16(5)), -2); + EXPECT_NEAR(float(float16(0.66667f) - float16(0.33333f)), 0.33334f, 0.001); + EXPECT_NEAR(float(float16(3.3f) * float16(2.0f)), 6.6f, 0.01); + EXPECT_NEAR(float(float16(-2.1f) * float16(-3.0f)), 6.3f, 0.01); + EXPECT_NEAR(float(float16(2.0f) / float16(3.0f)), 0.66667f, 0.001); + EXPECT_EQ(float(float16(1.0f) / float16(2.0f)), 0.5f); + EXPECT_EQ(float(-float16(512.0f)), -512.0f); + EXPECT_EQ(float(-float16(-512.0f)), 512.0f); +} + +TEST(float16, comparison_cpu) { + EXPECT_TRUE(float16(1.0f) == float16(1.0f)); + EXPECT_FALSE(float16(-1.0f) == float16(-0.5f)); + EXPECT_TRUE(float16(1.0f) != float16(0.5f)); + EXPECT_FALSE(float16(-1.0f) != float16(-1.0f)); + EXPECT_TRUE(float16(1.0f) < float16(2.0f)); + EXPECT_FALSE(float16(-1.0f) < float16(-1.0f)); + EXPECT_TRUE(float16(1.0f) <= float16(1.0f)); + EXPECT_TRUE(float16(2.0f) > float16(1.0f)); + EXPECT_FALSE(float16(-2.0f) > float16(-2.0f)); + EXPECT_TRUE(float16(2.0f) >= float16(2.0f)); + + EXPECT_TRUE(float16(0.0f) == float16(-0.0f)); + EXPECT_TRUE(float16(0.0f) <= float16(-0.0f)); + EXPECT_TRUE(float16(0.0f) >= float16(-0.0f)); + EXPECT_FALSE(float16(0.0f) < float16(-0.0f)); + EXPECT_FALSE(float16(-0.0f) < float16(0.0f)); + EXPECT_FALSE(float16(0.0f) > float16(-0.0f)); + EXPECT_FALSE(float16(-0.0f) > float16(0.0f)); +} + +} // namespace paddle diff --git a/paddle/math/tests/test_float16.cu b/paddle/math/tests/test_float16.cu new file mode 100644 index 0000000000000000000000000000000000000000..4b520feaaf552302a969d8caee8aa28cc143304b --- /dev/null +++ b/paddle/math/tests/test_float16.cu @@ -0,0 +1,213 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + http://www.apache.org/licenses/LICENSE-2.0 +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/math/float16.h" + +#include + +#include "paddle/utils/Logging.h" + +#define ARITHMETIC_KERNEL(op_type, sign) \ + __global__ void op_type(const half* in1, const half* in2, half* out) { \ + out[0] = in1[0] sign in2[0]; \ + } + +#define COMPOUND_KERNEL(op_type, sign) \ + __global__ void op_type(half* in1, const half* in2) { in1[0] sign in2[0]; } + +#define COMPARISON_KERNEL(op_type, sign) \ + __global__ void op_type(const half* in1, const half* in2, bool* out) { \ + out[0] = in1[0] sign in2[0]; \ + } + +#define ARITHMETIC_KERNEL_LAUNCH(op_type) \ + void Test##op_type(float v_in1, float v_in2, float v_out) { \ + LOG(INFO) << "Test " << #op_type << " on GPU!"; \ + half *in1, *in2, *out; \ + half *d_in1, *d_in2, *d_out; \ + int size = sizeof(half); \ + cudaMalloc((void**)&d_in1, size); \ + cudaMalloc((void**)&d_in2, size); \ + cudaMalloc((void**)&d_out, size); \ + in1 = (half*)malloc(size); \ + in2 = (half*)malloc(size); \ + out = (half*)malloc(size); \ + in1[0] = half(float16(v_in1)); \ + in2[0] = half(float16(v_in2)); \ + cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ + cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \ + op_type<<<1, 1>>>(d_in1, d_in2, d_out); \ + cudaMemcpy(out, d_out, size, cudaMemcpyDeviceToHost); \ + EXPECT_EQ(float(float16(out[0])), v_out); \ + free(in1); \ + free(in2); \ + free(out); \ + cudaFree(d_in1); \ + cudaFree(d_in2); \ + cudaFree(d_out); \ + } + +#define COMPOUND_KERNEL_LAUNCH(op_type) \ + void Test##op_type(float v_in1, float v_in2, float v_out) { \ + LOG(INFO) << "Test " << #op_type << " on GPU!"; \ + half *in1, *in2; \ + half *d_in1, *d_in2; \ + int size = sizeof(half); \ + cudaMalloc((void**)&d_in1, size); \ + cudaMalloc((void**)&d_in2, size); \ + in1 = (half*)malloc(size); \ + in2 = (half*)malloc(size); \ + in1[0] = half(float16(v_in1)); \ + in2[0] = half(float16(v_in2)); \ + cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ + cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \ + op_type<<<1, 1>>>(d_in1, d_in2); \ + cudaMemcpy(in1, d_in1, size, cudaMemcpyDeviceToHost); \ + EXPECT_EQ(float(float16(in1[0])), v_out); \ + free(in1); \ + free(in2); \ + cudaFree(d_in1); \ + cudaFree(d_in2); \ + } + +#define COMPARISON_KERNEL_LAUNCH(op_type) \ + void Test##op_type(float v_in1, float v_in2, bool v_out) { \ + LOG(INFO) << "Test " << #op_type << " on GPU!"; \ + half *in1, *in2; \ + half *d_in1, *d_in2; \ + bool *out, *d_out; \ + int size = sizeof(half); \ + cudaMalloc((void**)&d_in1, size); \ + cudaMalloc((void**)&d_in2, size); \ + cudaMalloc((void**)&d_out, 1); \ + in1 = (half*)malloc(size); \ + in2 = (half*)malloc(size); \ + out = (bool*)malloc(1); \ + in1[0] = half(float16(v_in1)); \ + in2[0] = half(float16(v_in2)); \ + cudaMemcpy(d_in1, in1, size, cudaMemcpyHostToDevice); \ + cudaMemcpy(d_in2, in2, size, cudaMemcpyHostToDevice); \ + op_type<<<1, 1>>>(d_in1, d_in2, d_out); \ + cudaMemcpy(out, d_out, 1, cudaMemcpyDeviceToHost); \ + EXPECT_EQ(out[0], v_out); \ + free(in1); \ + free(in2); \ + free(out); \ + cudaFree(d_in1); \ + cudaFree(d_in2); \ + cudaFree(d_out); \ + } + +#ifdef PADDLE_CUDA_FP16 +namespace paddle { + +#if CUDA_VERSION < 9000 +ARITHMETIC_KERNEL(Add, +) +ARITHMETIC_KERNEL(Sub, -) +ARITHMETIC_KERNEL(Mul, *) +ARITHMETIC_KERNEL(Div, /) + +ARITHMETIC_KERNEL_LAUNCH(Add) +ARITHMETIC_KERNEL_LAUNCH(Sub) +ARITHMETIC_KERNEL_LAUNCH(Mul) +ARITHMETIC_KERNEL_LAUNCH(Div) + +// Negative sign kernel +__global__ void Neg(half* in) { in[0] = -in[0]; } + +void TestNeg(float v_in, float v_out) { + LOG(INFO) << "Test Neg on GPU!"; + half *in, *d_in; + int size = sizeof(half); + cudaMalloc((void**)&d_in, size); + in = (half*)malloc(size); + in[0] = half(float16(v_in)); + cudaMemcpy(d_in, in, size, cudaMemcpyHostToDevice); + Neg<<<1, 1>>>(d_in); + cudaMemcpy(in, d_in, size, cudaMemcpyDeviceToHost); + EXPECT_EQ(float(float16(in[0])), v_out); + free(in); + cudaFree(d_in); +} + +COMPOUND_KERNEL(AddAssign, +=) +COMPOUND_KERNEL(SubAssign, -=) +COMPOUND_KERNEL(MulAssign, *=) +COMPOUND_KERNEL(DivAssign, /=) + +COMPOUND_KERNEL_LAUNCH(AddAssign) +COMPOUND_KERNEL_LAUNCH(SubAssign) +COMPOUND_KERNEL_LAUNCH(MulAssign) +COMPOUND_KERNEL_LAUNCH(DivAssign) + +COMPARISON_KERNEL(Equal, ==) +COMPARISON_KERNEL(NotEqual, !=) +COMPARISON_KERNEL(Less, <) +COMPARISON_KERNEL(LessEqual, <=) +COMPARISON_KERNEL(Greater, >) +COMPARISON_KERNEL(GreaterEqual, >=) + +COMPARISON_KERNEL_LAUNCH(Equal) +COMPARISON_KERNEL_LAUNCH(NotEqual) +COMPARISON_KERNEL_LAUNCH(Less) +COMPARISON_KERNEL_LAUNCH(LessEqual) +COMPARISON_KERNEL_LAUNCH(Greater) +COMPARISON_KERNEL_LAUNCH(GreaterEqual) + +TEST(float16, arithmetic_on_gpu) { + TestAdd(1, 2, 3); + TestSub(2, 1, 1); + TestMul(2, 3, 6); + TestDiv(6, 2, 3); + TestNeg(1, -1); +} + +TEST(float16, compound_on_gpu) { + TestAddAssign(1, 2, 3); + TestSubAssign(2, 1, 1); + TestMulAssign(2, 3, 6); + TestDivAssign(6, 2, 3); +} + +TEST(float16, comparision_on_gpu) { + TestEqual(1, 1, true); + TestEqual(1, 2, false); + TestNotEqual(2, 3, true); + TestNotEqual(2, 2, false); + TestLess(3, 4, true); + TestLess(3, 3, false); + TestLessEqual(3, 3, true); + TestLessEqual(3, 2, false); + TestGreater(4, 3, true); + TestGreater(4, 4, false); + TestGreaterEqual(4, 4, true); + TestGreaterEqual(4, 5, false); +} +#endif // CUDA_VERSION + +TEST(float16, conversion_on_gpu) { + // Explicit conversion to and from cuda half + EXPECT_EQ(float16(half(float16(1.0f))).x, 0x3c00); + EXPECT_EQ(float16(half(float16(0.5f))).x, 0x3800); + EXPECT_EQ(float16(half(float16(0.33333f))).x, 0x3555); + EXPECT_EQ(float16(half(float16(0.0f))).x, 0x0000); + EXPECT_EQ(float16(half(float16(-0.0f))).x, 0x8000); + EXPECT_EQ(float16(half(float16(65504.0f))).x, 0x7bff); + EXPECT_EQ(float16(half(float16(65536.0f))).x, 0x7c00); + + // Assignment operator + float16 v_assign; + v_assign = half(float16(1.0f)); + EXPECT_EQ(v_assign.x, 0x3c00); +} + +} // namespace paddle +#endif // PADDLE_CUDA_FP16 diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp index 7e5a1db44a5302e3b4e5d2768755824666e880ba..afb8d9d599b15a0b6d19b7ecca5e91b623695dea 100644 --- a/paddle/math/tests/test_matrixCompare.cpp +++ b/paddle/math/tests/test_matrixCompare.cpp @@ -244,7 +244,7 @@ TEST(Matrix, unary) { LOG(WARNING) << "This version of PaddlePaddle was not built with LAPACK" << "support so we cannot test matrix inverse. To test " << "matrix inverse, please install LAPACKE " - << "and MKL/Openblas/ATLAS, and re-build PaddlePaddle."; + << "and MKL/Openblas, and re-build PaddlePaddle."; #endif } } diff --git a/paddle/memory/detail/system_allocator.cc b/paddle/memory/detail/system_allocator.cc index 6b4e46f56a0c9c9836c5b353ec9c554454ab0491..509250debc2b2fd2e87078ab5f233ae2db6fd898 100644 --- a/paddle/memory/detail/system_allocator.cc +++ b/paddle/memory/detail/system_allocator.cc @@ -19,6 +19,7 @@ limitations under the License. */ #include // for malloc and free #include // for mlock and munlock +#include // for std::max #include "gflags/gflags.h" @@ -28,7 +29,7 @@ limitations under the License. */ // of memory available to the system for paging. So, by default, we // should set false to use_pinned_memory. DEFINE_bool(use_pinned_memory, true, "If set, allocate cpu pinned memory."); - +DECLARE_double(fraction_of_gpu_memory_to_use); namespace paddle { namespace memory { namespace detail { @@ -43,7 +44,7 @@ void* CPUAllocator::Alloc(size_t& index, size_t size) { void* p; -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN // refer to https://github.com/01org/mkl-dnn/blob/master/include/mkldnn.hpp // memory alignment PADDLE_ENFORCE_EQ(posix_memalign(&p, 4096ul, size), 0); @@ -77,45 +78,20 @@ void* GPUAllocator::Alloc(size_t& index, size_t size) { // CUDA documentation doesn't explain if cudaMalloc returns nullptr // if size is 0. We just make sure it does. if (size <= 0) return nullptr; - - size_t available = 0; - size_t capacity = 0; - paddle::platform::GpuMemoryUsage(available, capacity); - - // Reserve memory for page tables, etc. - size_t reserving = capacity - paddle::platform::GpuMaxAllocSize(); - size_t usable = available > reserving ? available - reserving : 0; - - // If remaining size no less than expected size, using general - // cudaMalloc to allocate GPU memory. - void* p = 0; - if (size <= usable) { - cudaError_t result = cudaMalloc(&p, size); - if (result == cudaSuccess) { - index = 0; - gpu_alloc_size_ += size; - return p; - } - } - - // If remaining size less than expected size or cudaMalloc failed, - // cudaMallocHost will be considered as a fallback allocator. - // - // NOTE: here, we use GpuMaxAllocSize() as the maximum memory size - // of host fallback allocation. Allocates too much would reduce - // the amount of memory available to the underlying system for paging. - usable = paddle::platform::GpuMaxAllocSize() - fallback_alloc_size_; - - if (size > usable) return nullptr; - - cudaError_t result = cudaMallocHost(&p, size); + void* p; + cudaError_t result = cudaMalloc(&p, size); if (result == cudaSuccess) { - index = 1; - fallback_alloc_size_ += size; + index = 0; + gpu_alloc_size_ += size; return p; + } else { + LOG(WARNING) + << "Cannot malloc " << size / 1024.0 / 1024.0 + << " MB GPU memory. Please shrink FLAGS_fraction_of_gpu_memory_to_use " + "environment variable to a lower value. Current value is " + << FLAGS_fraction_of_gpu_memory_to_use; + return nullptr; } - - return nullptr; } void GPUAllocator::Free(void* p, size_t size, size_t index) { diff --git a/paddle/memory/memcpy.cc b/paddle/memory/memcpy.cc index 1df88a6da9fb0c50d0d7ecd083c0533d8a886a67..5c629dc3d2aca2705e439df836214c1284b31c8f 100644 --- a/paddle/memory/memcpy.cc +++ b/paddle/memory/memcpy.cc @@ -62,33 +62,6 @@ void Copy(platform::GPUPlace dst_place, } } -template <> -void Copy(platform::CPUPlace dst_place, - void* dst, - platform::GPUPlace src_place, - const void* src, size_t num) { - platform::SetDeviceId(src_place.device); - platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToHost); -} - -template <> -void Copy(platform::GPUPlace dst_place, - void* dst, - platform::CPUPlace src_place, - const void* src, size_t num) { - platform::SetDeviceId(dst_place.device); - platform::GpuMemcpySync(dst, src, num, cudaMemcpyHostToDevice); -} - -template <> -void Copy(platform::GPUPlace dst_place, - void* dst, - platform::GPUPlace src_place, - const void* src, size_t num) { - platform::SetDeviceId(dst_place.device); - platform::GpuMemcpySync(dst, src, num, cudaMemcpyDeviceToDevice); -} - #endif } // namespace memory diff --git a/paddle/memory/memory.cc b/paddle/memory/memory.cc index 95cfe2525e3e7c128d8652c5c6a0bb3d80a475b9..9cafdfda75d0511227ef648d50a8635320a81d32 100644 --- a/paddle/memory/memory.cc +++ b/paddle/memory/memory.cc @@ -64,19 +64,21 @@ BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { int gpu_num = platform::GetCUDADeviceCount(); as = new BuddyAllocator*[gpu_num]; for (int gpu = 0; gpu < gpu_num; gpu++) { - platform::SetDeviceId(gpu); - as[gpu] = new BuddyAllocator(new detail::GPUAllocator, - platform::GpuMinChunkSize(), - platform::GpuMaxChunkSize()); + as[gpu] = nullptr; } + } + platform::SetDeviceId(gpu_id); + if (!as[gpu_id]) { + as[gpu_id] = new BuddyAllocator(new detail::GPUAllocator, + platform::GpuMinChunkSize(), + platform::GpuMaxChunkSize()); VLOG(10) << "\n\nNOTE: each GPU device use " << FLAGS_fraction_of_gpu_memory_to_use * 100 << "% of GPU memory.\n" - << "You can set environment variable '" - << platform::kEnvFractionGpuMemoryToUse + << "You can set GFlags environment variable '" + << "FLAGS_fraction_of_gpu_memory_to_use" << "' to change the fraction of GPU usage.\n\n"; } - platform::SetDeviceId(gpu_id); return as[gpu_id]; } diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt index b3c217518b5414ba86bc07b17e6539c3a89fc85b..0e9b3ba8dc57b005eeca5e708e7c74322cd15e9c 100644 --- a/paddle/operators/CMakeLists.txt +++ b/paddle/operators/CMakeLists.txt @@ -138,7 +138,7 @@ function(op_library TARGET) if ("${TARGET}" STREQUAL "nccl_op") set(pybind_flag 1) # It's enough to just adding one operator to pybind - file(APPEND ${pybind_file} "USE_GPU_ONLY_OP(ncclAllReduce);\n") + file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(ncclAllReduce);\n") endif() # reduce_op contains several operators diff --git a/paddle/operators/accuracy_op.cc b/paddle/operators/accuracy_op.cc index 2785a8c6fb62527db4d203788be88ebead068a19..b8ed93f4eb549fbd76bf360d4b843c1fa9635b40 100644 --- a/paddle/operators/accuracy_op.cc +++ b/paddle/operators/accuracy_op.cc @@ -57,14 +57,13 @@ class AccuracyOp : public framework::OperatorWithKernel { const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Out")->type()), - ctx.device_context()); + ctx.GetPlace()); } }; class AccuracyOpMaker : public framework::OpProtoAndCheckerMaker { public: - AccuracyOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + AccuracyOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { // TODO(typhoonzero): support both inference value and indices. AddInput("Out", "The network output of topk (inferences)"); diff --git a/paddle/operators/accuracy_op.cu b/paddle/operators/accuracy_op.cu index d2dcab4e548b99c6beecfaa570ac31804fd07d82..dd51aad105fecf4e3118f03e2f1868abb5523bc8 100644 --- a/paddle/operators/accuracy_op.cu +++ b/paddle/operators/accuracy_op.cu @@ -26,7 +26,7 @@ template __global__ void AccuracyCudaKernel(const int N, const int D, const int64_t* Xdata, const int64_t* labeldata, int* correct_data, - float* accuracy) { + float* accuracy, int* total_data) { int count = 0; __shared__ int total[BlockSize]; @@ -47,6 +47,7 @@ __global__ void AccuracyCudaKernel(const int N, const int D, if (threadIdx.x == 0) { *correct_data = result; *accuracy = static_cast(result) / static_cast(N); + *total_data = N; } } @@ -80,22 +81,11 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { if (num_samples == 0) { return; } - platform::GpuMemcpyAsync(total_data, &num_samples, sizeof(int), - cudaMemcpyHostToDevice, stream); AccuracyCudaKernel< PADDLE_CUDA_NUM_THREADS><<<1, PADDLE_CUDA_NUM_THREADS, 0, stream>>>( num_samples, infer_width, indices_data, label_data, correct_data, - accuracy_data); - - int d_num_samples, d_num_correct; - float d_accuracy; - platform::GpuMemcpyAsync(&d_num_correct, correct_data, sizeof(int), - cudaMemcpyDeviceToHost, stream); - platform::GpuMemcpyAsync(&d_num_samples, total_data, sizeof(int), - cudaMemcpyDeviceToHost, stream); - platform::GpuMemcpyAsync(&d_accuracy, accuracy_data, sizeof(float), - cudaMemcpyDeviceToHost, stream); + accuracy_data, total_data); } }; @@ -104,5 +94,6 @@ class AccuracyOpCUDAKernel : public framework::OpKernel { // FIXME(typhoonzero): types of T is for inference data. // label data is always int64 -REGISTER_OP_GPU_KERNEL(accuracy, paddle::operators::AccuracyOpCUDAKernel, - paddle::operators::AccuracyOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(accuracy, + paddle::operators::AccuracyOpCUDAKernel, + paddle::operators::AccuracyOpCUDAKernel); diff --git a/paddle/operators/accuracy_op.h b/paddle/operators/accuracy_op.h index d060e6edddb31ecc1a4d27836f80b8ac5fa7d36d..04104a695fac6a967ad94780e31ba3fdd2ca2eda 100644 --- a/paddle/operators/accuracy_op.h +++ b/paddle/operators/accuracy_op.h @@ -21,7 +21,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class AccuracyKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/activation_op.cc b/paddle/operators/activation_op.cc index 154c618e8e7c4650b7f22684d3357de9c52a416c..2b4c7e5f0de8347d4789136a3a45408ada439f02 100644 --- a/paddle/operators/activation_op.cc +++ b/paddle/operators/activation_op.cc @@ -38,15 +38,14 @@ class ActivationOpGrad : public framework::OperatorWithKernel { class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker { public: - SigmoidOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Sigmoid operator"); AddOutput("Y", "Output of Sigmoid operator"); AddComment(R"DOC( -Sigmoid Activation Operator. +Sigmoid Activation Operator -$y = 1 / (1 + e^{-x})$ +$$y = \frac{1}{1 + e^{-x}}$$ )DOC"); } @@ -54,15 +53,14 @@ $y = 1 / (1 + e^{-x})$ class LogSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { public: - LogSigmoidOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + LogSigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of LogSigmoid operator"); AddOutput("Y", "Output of LogSigmoid operator"); AddComment(R"DOC( -Logsigmoid Activation Operator. +Logsigmoid Activation Operator -$y = \log(1 / (1 + e^{-x}))$ +$$y = \log \frac{1}{1 + e^{-x}}$$ )DOC"); } @@ -70,8 +68,8 @@ $y = \log(1 / (1 + e^{-x}))$ class ExpOpMaker : public framework::OpProtoAndCheckerMaker { public: - ExpOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ExpOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Exp operator"); AddOutput("Y", "Output of Exp operator"); AddComment(R"DOC( @@ -85,8 +83,8 @@ $y = e^x$ class ReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - ReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Relu operator"); AddOutput("Y", "Output of Relu operator"); AddComment(R"DOC( @@ -100,9 +98,8 @@ $y = \max(x, 0)$ class LeakyReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - LeakyReluOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + LeakyReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of LeakyRelu operator"); AddOutput("Y", "Output of LeakyRelu operator"); AddAttr("alpha", "The small negative slope").SetDefault(0.02f); @@ -117,9 +114,8 @@ $y = \max(x, \alpha * x)$ class SoftShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftShrinkOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SoftShrinkOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Softshrink operator"); AddOutput("Y", "Output of Softshrink operator"); AddAttr("lambda", "non-negative offset").SetDefault(0.5f); @@ -140,8 +136,8 @@ $$ class TanhOpMaker : public framework::OpProtoAndCheckerMaker { public: - TanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + TanhOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Tanh operator"); AddOutput("Y", "Output of Tanh operator"); AddComment(R"DOC( @@ -155,9 +151,8 @@ $$y = \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ class TanhShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: - TanhShrinkOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + TanhShrinkOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of TanhShrink operator"); AddOutput("Y", "Output of TanhShrink operator"); AddComment(R"DOC( @@ -171,9 +166,8 @@ $$y = x - \frac{e^{x} - e^{-x}}{e^{x} + e^{-x}}$$ class HardShrinkOpMaker : public framework::OpProtoAndCheckerMaker { public: - HardShrinkOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + HardShrinkOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of HardShrink operator"); AddOutput("Y", "Output of HardShrink operator"); AddAttr("threshold", "The value of threshold for HardShrink") @@ -195,8 +189,8 @@ $$ class SqrtOpMaker : public framework::OpProtoAndCheckerMaker { public: - SqrtOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SqrtOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Sqrt operator"); AddOutput("Y", "Output of Sqrt operator"); AddComment(R"DOC( @@ -210,8 +204,8 @@ $y = \sqrt{x}$ class AbsOpMaker : public framework::OpProtoAndCheckerMaker { public: - AbsOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + AbsOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Abs operator"); AddOutput("Y", "Output of Abs operator"); AddComment(R"DOC( @@ -225,8 +219,8 @@ $y = |x|$ class CeilOpMaker : public framework::OpProtoAndCheckerMaker { public: - CeilOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + CeilOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Ceil operator"); AddOutput("Y", "Output of Ceil operator"); AddComment(R"DOC( @@ -240,8 +234,8 @@ $y = ceil(x)$ class FloorOpMaker : public framework::OpProtoAndCheckerMaker { public: - FloorOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + FloorOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Floor operator"); AddOutput("Y", "Output of Floor operator"); AddComment(R"DOC( @@ -255,8 +249,8 @@ $y = floor(x)$ class RoundOpMaker : public framework::OpProtoAndCheckerMaker { public: - RoundOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + RoundOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Round operator"); AddOutput("Y", "Output of Round operator"); AddComment(R"DOC( @@ -270,9 +264,8 @@ $y = [x]$ class ReciprocalOpMaker : public framework::OpProtoAndCheckerMaker { public: - ReciprocalOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ReciprocalOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Reciprocal operator"); AddOutput("Y", "Output of Reciprocal operator"); AddComment(R"DOC( @@ -286,8 +279,8 @@ $$y = \frac{1}{x}$$ class LogOpMaker : public framework::OpProtoAndCheckerMaker { public: - LogOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + LogOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Log operator"); AddOutput("Y", "Output of Log operator"); AddComment(R"DOC( @@ -303,8 +296,8 @@ Natural logarithm of x. class SquareOpMaker : public framework::OpProtoAndCheckerMaker { public: - SquareOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SquareOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Square operator"); AddOutput("Y", "Output of Square operator"); AddComment(R"DOC( @@ -318,9 +311,8 @@ $y = x^2$ class SoftplusOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftplusOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SoftplusOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Softplus operator"); AddOutput("Y", "Output of Softplus operator"); AddComment(R"DOC( @@ -334,9 +326,8 @@ $y = \ln(1 + e^{x})$ class SoftsignOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftsignOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SoftsignOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Softsign operator"); AddOutput("Y", "Output of Softsign operator"); AddComment(R"DOC( @@ -350,8 +341,8 @@ $$y = \frac{x}{1 + |x|}$$ class BReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - BReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + BReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of BRelu operator"); AddOutput("Y", "Output of BRelu operator"); AddAttr("t_min", "The min marginal value of BRelu") @@ -369,9 +360,8 @@ $y = \max(\min(x, t_{min}), t_{max})$ class SoftReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftReluOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + SoftReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of SoftRelu operator"); AddOutput("Y", "Output of SoftRelu operator"); AddAttr("threshold", "The threshold value of SoftRelu") @@ -387,8 +377,8 @@ $y = \ln(1 + \exp(\max(\min(x, threshold), threshold))$ class ELUOpMaker : public framework::OpProtoAndCheckerMaker { public: - ELUOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ELUOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of ELU operator"); AddOutput("Y", "Output of ELU operator"); AddAttr("alpha", "The alpha value of ELU").SetDefault(1.0f); @@ -406,8 +396,8 @@ $y = \max(0, x) + \min(0, \alpha * (e^x - 1))$ class Relu6OpMaker : public framework::OpProtoAndCheckerMaker { public: - Relu6OpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + Relu6OpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Relu6 operator"); AddOutput("Y", "Output of Relu6 operator"); AddAttr("threshold", "The threshold value of Relu6") @@ -423,8 +413,8 @@ $y = \min(\max(0, x), 6)$ class PowOpMaker : public framework::OpProtoAndCheckerMaker { public: - PowOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + PowOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of Pow operator"); AddOutput("Y", "Output of Pow operator"); AddAttr("factor", "The exponential factor of Pow").SetDefault(1.0f); @@ -439,8 +429,8 @@ $y = x^{factor}$ class STanhOpMaker : public framework::OpProtoAndCheckerMaker { public: - STanhOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + STanhOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of STanh operator"); AddOutput("Y", "Output of STanh operator"); AddAttr("scale_a", "The scale parameter of a for the input") @@ -458,9 +448,8 @@ $$y = b * \frac{e^{a * x} - e^{-a * x}}{e^{a * x} + e^{-a * x}}$$ class ThresholdedReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - ThresholdedReluOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + ThresholdedReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of ThresholdedRelu operator"); AddOutput("Y", "Output of ThresholdedRelu operator"); AddAttr("threshold", "The threshold location of activation") @@ -481,9 +470,8 @@ $$ class HardSigmoidOpMaker : public framework::OpProtoAndCheckerMaker { public: - HardSigmoidOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + HardSigmoidOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input of HardSigmoid operator"); AddOutput("Y", "Output of HardSigmoid operator"); AddAttr("slope", "Slope for linear approximation of sigmoid") @@ -506,6 +494,22 @@ It is recommended to use the defaults for this activation. } }; +class SwishOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SwishOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Swish operator"); + AddOutput("Y", "Output of Swish operator"); + AddAttr("beta", "Constant beta of swish operator").SetDefault(1.0f); + AddComment(R"DOC( +Swish Activation Operator. + +$$y = \frac{x}{1 + e^{- \beta x}}$$ + +)DOC"); + } +}; + } // namespace operators } // namespace paddle @@ -592,16 +596,20 @@ REGISTER_OP(thresholded_relu, ops::ActivationOp, ops::ThresholdedReluOpMaker, REGISTER_OP(hard_sigmoid, ops::ActivationOp, ops::HardSigmoidOpMaker, hard_sigmoid_grad, ops::ActivationOpGrad); -#define REGISTER_ACTIVATION_CPU_KERNEL(act_type, functor, grad_functor) \ - REGISTER_OP_CPU_KERNEL( \ - act_type, \ - ops::ActivationKernel>, \ - ops::ActivationKernel>); \ - REGISTER_OP_CPU_KERNEL( \ - act_type##_grad, ops::ActivationGradKernel>, \ - ops::ActivationGradKernel>, \ + ops::ActivationKernel>); \ + REGISTER_OP_CPU_KERNEL( \ + act_type##_grad, \ + ops::ActivationGradKernel>, \ + ops::ActivationGradKernel>); FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CPU_KERNEL); diff --git a/paddle/operators/activation_op.cu b/paddle/operators/activation_op.cu index 97737857ab25dfa92163b64a750fd7a7d9ea0ac3..856d3fc35dafe6b22c25c55dfda2dc4973072615 100644 --- a/paddle/operators/activation_op.cu +++ b/paddle/operators/activation_op.cu @@ -17,16 +17,17 @@ namespace ops = paddle::operators; -#define REGISTER_ACTIVATION_GPU_KERNEL(act_type, functor, grad_functor) \ - REGISTER_OP_GPU_KERNEL( \ - act_type, \ - ops::ActivationKernel>, \ - ops::ActivationKernel>); \ - REGISTER_OP_GPU_KERNEL( \ - act_type##_grad, ops::ActivationGradKernel>, \ - ops::ActivationGradKernel>, \ + ops::ActivationKernel>); \ + REGISTER_OP_CUDA_KERNEL( \ + act_type##_grad, \ + ops::ActivationGradKernel>, \ + ops::ActivationGradKernel>); -FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_GPU_KERNEL); +FOR_EACH_KERNEL_FUNCTOR(REGISTER_ACTIVATION_CUDA_KERNEL); diff --git a/paddle/operators/activation_op.h b/paddle/operators/activation_op.h index 8cd3bfbbd3f8f3210f94aef3a1586c8295730c1d..75eefca8b8c7ba8831a2f90c83718d00b83fba30 100644 --- a/paddle/operators/activation_op.h +++ b/paddle/operators/activation_op.h @@ -19,7 +19,7 @@ namespace paddle { namespace operators { -template +template class ActivationKernel : public framework::OpKernel { public: @@ -32,18 +32,19 @@ class ActivationKernel auto x = framework::EigenVector::Flatten(*X); auto y = framework::EigenVector::Flatten(*Y); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); Functor functor; auto attrs = functor.GetAttrs(); for (auto& attr : attrs) { *attr.second = context.Attr(attr.first); } - functor(place, x, y); + functor(*place, x, y); } }; -template +template class ActivationGradKernel : public framework::OpKernel { public: @@ -59,13 +60,14 @@ class ActivationGradKernel auto x = framework::EigenVector::Flatten(*X); auto y = framework::EigenVector::Flatten(*Y); auto dx = framework::EigenVector::Flatten(*dX); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); Functor functor; auto attrs = functor.GetAttrs(); for (auto& attr : attrs) { *attr.second = context.Attr(attr.first); } - functor(place, x, y, dy, dx); + functor(*place, x, y, dy, dx); } }; @@ -700,6 +702,35 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor { } }; +template +struct SwishFunctor : public BaseActivationFunctor { + float beta; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"beta", &beta}}; + } + + template + void operator()(Device d, X x, Y y) const { + y.device(d) = x / (static_cast(1) + (static_cast(-beta) * x).exp()); + } +}; + +template +struct SwishGradFunctor : public BaseActivationFunctor { + float beta; + typename BaseActivationFunctor::AttrPair GetAttrs() { + return {{"beta", &beta}}; + } + + template + void operator()(Device d, X x, Y y, dY dy, dX dx) const { + auto temp1 = static_cast(1) / + (static_cast(1) + (static_cast(-beta) * x).exp()); + auto temp2 = temp1 * (static_cast(1) - (beta * y)); + dx.device(d) = dy * ((beta * y) + temp2); + } +}; + } // namespace operators } // namespace paddle @@ -730,4 +761,5 @@ struct HardSigmoidGradFunctor : public BaseActivationFunctor { __macro(elu, ELUFunctor, ELUGradFunctor); \ __macro(hard_shrink, HardShrinkFunctor, HardShrinkGradFunctor); \ __macro(hard_sigmoid, HardSigmoidFunctor, HardSigmoidGradFunctor); \ + __macro(swish, SwishFunctor, SwishGradFunctor); \ __macro(thresholded_relu, ThresholdedReluFunctor, ThresholdedReluGradFunctor); diff --git a/paddle/operators/adadelta_op.cc b/paddle/operators/adadelta_op.cc index 16a7794d5b7bf1d56cd9f5874454c41cab43b41f..d8a9491c8247ac463e01606dac248780d5284236 100644 --- a/paddle/operators/adadelta_op.cc +++ b/paddle/operators/adadelta_op.cc @@ -59,8 +59,7 @@ class AdadeltaOp : public framework::OperatorWithKernel { class AdadeltaOpMaker : public framework::OpProtoAndCheckerMaker { public: - AdadeltaOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + AdadeltaOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -92,12 +91,12 @@ for gradient descent. Adadelta updates are as follows: -$$avgSquaredGradOut = \rho * avgSquaredGrad + (1 - \rho) * grad * grad \break -paramUpdate = - $\sqrt{((avgSquaredUpdate + \epsilon) / - (avgSquaredGrad_out + \epsilon))}$ * grad \break -avgSquaredUpdateOut = \rho * avgSquaredUpdate + (1 - \rho) * - {(paramUpdate)}^2 \break -paramOut = param + paramUpdate$$ +$$ +avg\_squared\_grad\_out = \rho * avg\_squared\_grad + (1 - \rho) * grad * grad \\ +param\_update = - \sqrt{\frac{avg\_squared\_update + \epsilon}{avg\_squared\_grad\_out + \epsilon}} * grad \\ +avg\_squared\_update\_out = \rho * avg\_squared\_update + (1 - \rho) * {param\_update}^2 \\ +param\_out = param + param\_update +$$ )DOC"); } @@ -109,5 +108,5 @@ paramOut = param + paramUpdate$$ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adadelta, ops::AdadeltaOp, ops::AdadeltaOpMaker); REGISTER_OP_CPU_KERNEL( - adadelta, ops::AdadeltaOpKernel, - ops::AdadeltaOpKernel); + adadelta, ops::AdadeltaOpKernel, + ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.cu b/paddle/operators/adadelta_op.cu index 9fb61852071f11670b8bc51321bb0881de196777..eee2d0a2f55f877bc5c87c72bca07bfd9485e517 100644 --- a/paddle/operators/adadelta_op.cu +++ b/paddle/operators/adadelta_op.cu @@ -16,6 +16,6 @@ #include "paddle/operators/adadelta_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - adadelta, ops::AdadeltaOpKernel, - ops::AdadeltaOpKernel); +REGISTER_OP_CUDA_KERNEL( + adadelta, ops::AdadeltaOpKernel, + ops::AdadeltaOpKernel); diff --git a/paddle/operators/adadelta_op.h b/paddle/operators/adadelta_op.h index a8c5f0c8aa20ce506f5279fa696079ba64034bd5..819d0845dbdafab95d993a455013300fa71495e2 100644 --- a/paddle/operators/adadelta_op.h +++ b/paddle/operators/adadelta_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class AdadeltaOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -51,7 +51,7 @@ class AdadeltaOpKernel : public framework::OpKernel { framework::EigenVector::Flatten(*avg_squared_grad_out_tensor); auto avg_squared_update_out = framework::EigenVector::Flatten(*avg_squared_update_out_tensor); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); avg_squared_grad_out.device(place) = rho * avg_squared_grad + (1 - rho) * grad.square(); diff --git a/paddle/operators/adagrad_op.cc b/paddle/operators/adagrad_op.cc index d6686e3ef3165976cf4c077a7a0f213082aa7716..052c793a01907abdc7784d1290f43543ae81bdb1 100644 --- a/paddle/operators/adagrad_op.cc +++ b/paddle/operators/adagrad_op.cc @@ -59,8 +59,7 @@ class AdagradOp : public framework::OperatorWithKernel { class AdagradOpMaker : public framework::OpProtoAndCheckerMaker { public: - AdagradOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + AdagradOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -80,8 +79,8 @@ Adaptive Gradient Algorithm (Adagrad). The update is done as follows: -$$momentOut = moment + grad * grad \break -paramOut = param - learningRate * grad / ($\sqrt{momentOut}$ + \epsilon) \break +$$moment\_out = moment + grad * grad \\ +param\_out = param - \frac{learning\_rate * grad}{\sqrt{moment\_out} + \epsilon} $$ The original paper(http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf) @@ -100,8 +99,8 @@ size_t FindPos(const std::vector& rows, int64_t value) { } // namespace template -struct SparseAdagradFunctor { - void operator()(const platform::DeviceContext& context, +struct SparseAdagradFunctor { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& grad, const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param) { @@ -120,7 +119,7 @@ struct SparseAdagradFunctor { {static_cast(merge_rows.size()), grad_width}), context.GetPlace()); - math::SetConstant constant_functor; + math::SetConstant constant_functor; constant_functor(context, grad_merge->mutable_value(), 0.0); auto* grad_merge_data = grad_merge->mutable_value()->data(); @@ -144,9 +143,9 @@ struct SparseAdagradFunctor { auto gs = framework::EigenVector::Flatten(*(grad_square->mutable_value())); auto gm = framework::EigenVector::Flatten(grad_merge->value()); - gs.device(*context.GetEigenDevice()) = gm * gm; + gs.device(*context.eigen_device()) = gm * gm; - math::SelectedRowsAddToTensor functor; + math::SelectedRowsAddToTensor functor; functor(context, *grad_square, moment); // 3. update parameter @@ -164,13 +163,13 @@ struct SparseAdagradFunctor { } }; -template struct SparseAdagradFunctor; -template struct SparseAdagradFunctor; +template struct SparseAdagradFunctor; +template struct SparseAdagradFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adagrad, ops::AdagradOp, ops::AdagradOpMaker); REGISTER_OP_CPU_KERNEL( - adagrad, ops::AdagradOpKernel, - ops::AdagradOpKernel); + adagrad, ops::AdagradOpKernel, + ops::AdagradOpKernel); diff --git a/paddle/operators/adagrad_op.cu b/paddle/operators/adagrad_op.cu index 1c870214b29dbfcabb7414317b1214d6bef369cb..585b2d92894af65b8ed15a596f0377fdcf564cfa 100644 --- a/paddle/operators/adagrad_op.cu +++ b/paddle/operators/adagrad_op.cu @@ -72,8 +72,8 @@ __global__ void SparseAdagradFunctorKernel(const T* grad, const int64_t* rows, } // namespace template -struct SparseAdagradFunctor { - void operator()(const platform::DeviceContext& context, +struct SparseAdagradFunctor { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& grad, const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param) { @@ -92,7 +92,7 @@ struct SparseAdagradFunctor { {static_cast(merge_rows.size()), grad_width}), context.GetPlace()); - math::SetConstant constant_functor; + math::SetConstant constant_functor; constant_functor(context, grad_merge->mutable_value(), 0.0); auto* grad_merge_data = grad_merge->mutable_value()->data(); @@ -119,9 +119,9 @@ struct SparseAdagradFunctor { auto gs = framework::EigenVector::Flatten(*(grad_square->mutable_value())); auto gm = framework::EigenVector::Flatten(grad_merge->value()); - gs.device(*context.GetEigenDevice()) = gm * gm; + gs.device(*context.eigen_device()) = gm * gm; - math::SelectedRowsAddToTensor functor; + math::SelectedRowsAddToTensor functor; functor(context, *grad_square, moment); // 3. update parameter @@ -139,13 +139,13 @@ struct SparseAdagradFunctor { } }; -template struct SparseAdagradFunctor; -template struct SparseAdagradFunctor; +template struct SparseAdagradFunctor; +template struct SparseAdagradFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - adagrad, ops::AdagradOpKernel, - ops::AdagradOpKernel); +REGISTER_OP_CUDA_KERNEL( + adagrad, ops::AdagradOpKernel, + ops::AdagradOpKernel); diff --git a/paddle/operators/adagrad_op.h b/paddle/operators/adagrad_op.h index 4d4a6434c7c472d8ceb01edfc4050fbb009d6c9f..0d77dbcbacd4efb6c1900e57b5c4ea9e9b136771 100644 --- a/paddle/operators/adagrad_op.h +++ b/paddle/operators/adagrad_op.h @@ -19,15 +19,15 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template struct SparseAdagradFunctor { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& grad, const framework::Tensor& learning_rate, T epsilon, framework::Tensor* moment, framework::Tensor* param); }; -template +template class AdagradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -52,11 +52,11 @@ class AdagradOpKernel : public framework::OpKernel { auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); - auto place = ctx.GetEigenDevice(); + auto* place = ctx.template device_context().eigen_device(); - moment_out.device(place) = moment + grad * grad; + moment_out.device(*place) = moment + grad * grad; Eigen::DSizes m_dsize(moment_out_tensor->numel()); - param_out.device(place) = + param_out.device(*place) = param - lr.broadcast(m_dsize) * grad / (moment_out.sqrt() + epsilon); } else if (grad_var->IsType()) { auto* param_tensor = ctx.Input("Param"); @@ -65,8 +65,9 @@ class AdagradOpKernel : public framework::OpKernel { auto* moment_tensor = ctx.Input("Moment"); PADDLE_ENFORCE_EQ(moment_tensor, moment_out_tensor); - SparseAdagradFunctor functor; - functor(ctx.device_context(), *ctx.Input("Grad"), + SparseAdagradFunctor functor; + functor(ctx.template device_context(), + *ctx.Input("Grad"), *ctx.Input("LearningRate"), epsilon, moment_out_tensor, param_out_tensor); } else { diff --git a/paddle/operators/adam_op.cc b/paddle/operators/adam_op.cc index 03faa2a7c5a486cb0d2b6f2f10d140eeb4c6c04e..03527de936bf736d572fb0140033bde4db990981 100644 --- a/paddle/operators/adam_op.cc +++ b/paddle/operators/adam_op.cc @@ -73,7 +73,7 @@ class AdamOp : public framework::OperatorWithKernel { class AdamOpMaker : public framework::OpProtoAndCheckerMaker { public: - AdamOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + AdamOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -112,11 +112,13 @@ adaptive estimates of lower-order moments. Adam updates: -$$moment_1_{out} = \beta_1 * moment_1 + (1 - \beta_1) * grad \break -moment_2_{out} = \beta_2 * moment_2 + (1 - \beta_2) * grad * grad \break -learningRate = learningRate * - $\sqrt{(1 - \beta_2_{pow})}$ / (1 - \beta_1_{pow}) \break -paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$ +$$ +moment\_1\_out = \beta_1 * moment\_1 + (1 - \beta_1) * grad \\ +moment\_2_\out = \beta_2 * moment\_2 + (1 - \beta_2) * grad * grad \\ +learning\_rate = learning\_rate * + \frac{\sqrt{1 - \beta_{2\_pow}}}{1 - \beta_{1\_pow}} \\ +param\_out = param - learning\_rate * \frac{moment\_1}{\sqrt{moment\_2} + \epsilon} +$$ )DOC"); } @@ -126,6 +128,6 @@ paramOut = param - learningRate * moment_1/ ($\sqrt{(moment_2)} + \epsilon)$$ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adam, ops::AdamOp, ops::AdamOpMaker); -REGISTER_OP_CPU_KERNEL(adam, - ops::AdamOpKernel, - ops::AdamOpKernel); +REGISTER_OP_CPU_KERNEL( + adam, ops::AdamOpKernel, + ops::AdamOpKernel); diff --git a/paddle/operators/adam_op.cu b/paddle/operators/adam_op.cu index 6e34f7818ce20c75692fe21776721ce200b7a147..c135b3737899a1ae92041b4759698ddc30c20e12 100644 --- a/paddle/operators/adam_op.cu +++ b/paddle/operators/adam_op.cu @@ -16,6 +16,6 @@ #include "paddle/operators/adam_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(adam, - ops::AdamOpKernel, - ops::AdamOpKernel); +REGISTER_OP_CUDA_KERNEL( + adam, ops::AdamOpKernel, + ops::AdamOpKernel); diff --git a/paddle/operators/adam_op.h b/paddle/operators/adam_op.h index 7f7fa1da1c0d8d81d1bcb18a1bf542838eddccf7..45157842a6f92348909498f83d304d53b36c7d47 100644 --- a/paddle/operators/adam_op.h +++ b/paddle/operators/adam_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class AdamOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -52,17 +52,17 @@ class AdamOpKernel : public framework::OpKernel { auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment1_out = framework::EigenVector::Flatten(*moment1_out_tensor); auto moment2_out = framework::EigenVector::Flatten(*moment2_out_tensor); - auto place = ctx.GetEigenDevice(); + auto* place = ctx.template device_context().eigen_device(); - moment1_out.device(place) = beta1 * moment1 + (1 - beta1) * grad; - moment2_out.device(place) = beta2 * moment2 + (1 - beta2) * grad.square(); + moment1_out.device(*place) = beta1 * moment1 + (1 - beta1) * grad; + moment2_out.device(*place) = beta2 * moment2 + (1 - beta2) * grad.square(); // All of these are tensors of 1 element auto lr_t = lr * (1 - beta2_pow).sqrt() / (1 - beta1_pow); // Eigen does not support automatic broadcast // Get dimensions of moment vector to broadcast lr_t Eigen::DSizes m_dsize(moment1_out_tensor->numel()); - param_out.device(place) = + param_out.device(*place) = param - lr_t.broadcast(m_dsize) * (moment1_out / (moment2_out.sqrt() + epsilon)); diff --git a/paddle/operators/adamax_op.cc b/paddle/operators/adamax_op.cc index d5bbc672e18f392d6a91383b919fefc4b2d8ff0e..3b0b71418477ea128dbb31a8d7cd44cf6bf023a1 100644 --- a/paddle/operators/adamax_op.cc +++ b/paddle/operators/adamax_op.cc @@ -67,7 +67,7 @@ class AdamaxOp : public framework::OperatorWithKernel { class AdamaxOpMaker : public framework::OpProtoAndCheckerMaker { public: - AdamaxOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + AdamaxOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -107,10 +107,12 @@ Adam algorithm based on the infinity norm. Adamax updates: -$$momentOut = \beta_1 * moment + (1 - \beta_1) * grad \break -infNormOut = max(\beta_2 * infNorm + \epsilon, |grad|) \break -learningRate = learningRate /(1 - \beta_1_{pow}) \break -paramOut = param - learningRate * momentPut / infNormOut$$ +$$ +moment\_out = \beta_1 * moment + (1 - \beta_1) * grad \\ +inf\_norm\_out = max(\beta_2 * inf\_norm + \epsilon, |grad|) \\ +learning\_rate = \frac{learning\_rate}{1 - \beta_{1\_pow}} \\ +param\_out = param - learning\_rate * \frac{moment\_out}{inf\_norm\_out} +$$ The original paper does not have an epsilon attribute. However, it is added here for numerical stability to prevent the @@ -125,6 +127,6 @@ division by 0 error. namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(adamax, ops::AdamaxOp, ops::AdamaxOpMaker); -REGISTER_OP_CPU_KERNEL(adamax, - ops::AdamaxOpKernel, - ops::AdamaxOpKernel); +REGISTER_OP_CPU_KERNEL( + adamax, ops::AdamaxOpKernel, + ops::AdamaxOpKernel); diff --git a/paddle/operators/adamax_op.cu b/paddle/operators/adamax_op.cu index 057ef39025aa23704457ef7bbe54934d06cdc87f..2d143905c4819dbf5f94391bdcf093971849e7a3 100644 --- a/paddle/operators/adamax_op.cu +++ b/paddle/operators/adamax_op.cu @@ -16,6 +16,6 @@ #include "paddle/operators/adamax_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(adamax, - ops::AdamaxOpKernel, - ops::AdamaxOpKernel); +REGISTER_OP_CUDA_KERNEL( + adamax, ops::AdamaxOpKernel, + ops::AdamaxOpKernel); diff --git a/paddle/operators/adamax_op.h b/paddle/operators/adamax_op.h index bf36ed78604dd88c537db51fbeb38f43d0c46173..172c179c5fabf5ca106bf11479aff2d94a4e21d2 100644 --- a/paddle/operators/adamax_op.h +++ b/paddle/operators/adamax_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class AdamaxOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -51,14 +51,14 @@ class AdamaxOpKernel : public framework::OpKernel { auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); auto inf_norm_out = framework::EigenVector::Flatten(*inf_norm_out_tensor); - auto place = ctx.GetEigenDevice(); + auto* place = ctx.template device_context().eigen_device(); - moment_out.device(place) = beta1 * moment + (1 - beta1) * grad; - inf_norm_out.device(place) = + moment_out.device(*place) = beta1 * moment + (1 - beta1) * grad; + inf_norm_out.device(*place) = grad.abs().cwiseMax((beta2 * inf_norm) + epsilon); auto lr_t = lr / (1 - beta1_pow); Eigen::DSizes m_dsize(moment_out_tensor->numel()); - param_out.device(place) = + param_out.device(*place) = param - lr_t.broadcast(m_dsize) * (moment_out / inf_norm_out); } }; diff --git a/paddle/operators/array_to_lod_tensor_op.cc b/paddle/operators/array_to_lod_tensor_op.cc index faeba7f3ed26d05de16775a1de4d42f802111207..b6ca3cad94425207629160a4c7d715f685b23a09 100644 --- a/paddle/operators/array_to_lod_tensor_op.cc +++ b/paddle/operators/array_to_lod_tensor_op.cc @@ -114,8 +114,7 @@ class ArrayToLoDTensorOp : public framework::OperatorBase { class ArrayToLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - ArrayToLoDTensorOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ArrayToLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(std::vector) A vector of tensors that is going to " @@ -150,14 +149,14 @@ class ArrayToLoDTensorGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("lod_tensor_to_array"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetInput("RankTable", Input("RankTable")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/assign_op.cc b/paddle/operators/assign_op.cc index 0a37f18729a93b15623c0a17e3689e518c38b844..a914ff4ba92318c75326bd7945bb73bcb93b6fc3 100644 --- a/paddle/operators/assign_op.cc +++ b/paddle/operators/assign_op.cc @@ -86,8 +86,7 @@ class AssignOp : public framework::OperatorBase { class AssignOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - AssignOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + AssignOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor, SelectedRows or LoDTensorArray) The input variable " @@ -109,8 +108,8 @@ class AssignInferShape : public framework::InferShapeBase { void operator()(framework::InferShapeContext *context) const override { if (context->HasInput("X")) { auto type = context->GetInputsVarType("X")[0]; - if (type == framework::VarDesc_VarType_SELECTED_ROWS || - type == framework::VarDesc_VarType_LOD_TENSOR) { + if (type == framework::proto::VarDesc_VarType_SELECTED_ROWS || + type == framework::proto::VarDesc_VarType_LOD_TENSOR) { context->SetOutputDim("Out", context->GetInputDim("X")); } } @@ -122,12 +121,12 @@ class AssignGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *op = new framework::OpDesc(); op->SetType("assign"); op->SetInput("X", OutputGrad("Out")); op->SetOutput("Out", InputGrad("X")); - return std::unique_ptr(op); + return std::unique_ptr(op); } }; diff --git a/paddle/operators/auc_op.cc b/paddle/operators/auc_op.cc index 6c3f67ec32fb1b942241997e87a1e9c4752e707d..811c487089fcf4044f129ad6bf95b46535d4fcd6 100644 --- a/paddle/operators/auc_op.cc +++ b/paddle/operators/auc_op.cc @@ -49,7 +49,7 @@ class AucOp : public framework::OperatorWithKernel { class AucOpMaker : public framework::OpProtoAndCheckerMaker { public: - AucOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + AucOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Out", "A floating point 2D tensor, values are in the range [0, 1]." diff --git a/paddle/operators/auc_op.h b/paddle/operators/auc_op.h index e5ac57b038ac32ed35bce35e477ede0cdb5da813..b80509e2a99a2a255dff2a98d950257588a21d29 100644 --- a/paddle/operators/auc_op.h +++ b/paddle/operators/auc_op.h @@ -25,7 +25,7 @@ template using EigenVector = framework::EigenVector; -template +template class AucKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/batch_norm_op.cc b/paddle/operators/batch_norm_op.cc index ac97bd83ab7e7838871586cfe5acb832084b6cec..1c14acbe11fbad9654bd0309f5674176ebdb5e6f 100644 --- a/paddle/operators/batch_norm_op.cc +++ b/paddle/operators/batch_norm_op.cc @@ -13,12 +13,14 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/batch_norm_op.h" +#include "paddle/framework/data_layout.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; +using DataLayout = framework::DataLayout; template using EigenArrayMap = @@ -60,15 +62,15 @@ class BatchNormOp : public framework::OperatorWithKernel { "Variance and VarianceOut should share the same memory"); const auto x_dims = ctx->GetInputDim("X"); - const TensorFormat tensor_format = - StringToTensorFormat(ctx->Attrs().Get("tensor_format")); + const DataLayout data_layout = framework::StringToDataLayout( + ctx->Attrs().Get("data_layout")); PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "Input X must have 2 to 5 dimensions."); const int C = - (tensor_format == TensorFormat::NCHW ? x_dims[1] - : x_dims[x_dims.size() - 1]); + (data_layout == DataLayout::kNCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale").size(), 1UL); PADDLE_ENFORCE_EQ(ctx->GetInputDim("Scale")[0], C); @@ -85,13 +87,12 @@ class BatchNormOp : public framework::OperatorWithKernel { class BatchNormOpMaker : public framework::OpProtoAndCheckerMaker { public: - BatchNormOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + BatchNormOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("is_test", "").SetDefault(false); AddAttr("momentum", "").SetDefault(0.9); AddAttr("epsilon", "").SetDefault(1e-5); - AddAttr("tensor_format", "").SetDefault("NCHW"); + AddAttr("data_layout", "").SetDefault("NCHW"); AddInput("X", "The input tensor"); AddInput("Scale", "Scale is a 1-dimensional tensor of size C " @@ -135,15 +136,16 @@ The required data format for this layer is one of the following: }; template -class BatchNormKernel : public framework::OpKernel { +class BatchNormKernel + : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { const float epsilon = ctx.Attr("epsilon"); const float momentum = ctx.Attr("momentum"); const bool is_test = ctx.Attr("is_test"); - const std::string tensor_format_str = - ctx.Attr("tensor_format"); - const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const std::string data_layout_str = ctx.Attr("data_layout"); + const DataLayout data_layout = + framework::StringToDataLayout(data_layout_str); const auto *x = ctx.Input("X"); const auto &x_dims = x->dims(); @@ -151,8 +153,8 @@ class BatchNormKernel : public framework::OpKernel { "The Input dim size should be between 2 and 5"); const int N = x_dims[0]; const int C = - (tensor_format == TensorFormat::NCHW ? x_dims[1] - : x_dims[x_dims.size() - 1]); + (data_layout == DataLayout::kNCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); const int sample_size = x->numel() / N / C; auto *y = ctx.Output("Y"); @@ -177,8 +179,8 @@ class BatchNormKernel : public framework::OpKernel { saved_mean_e.setZero(); saved_variance_e.setZero(); - switch (tensor_format) { - case TensorFormat::NCHW: { + switch (data_layout) { + case DataLayout::kNCHW: { ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); for (int nc = 0; nc < N * C; ++nc) { saved_mean_e(nc % C) += x_arr.col(nc).sum(); @@ -191,7 +193,7 @@ class BatchNormKernel : public framework::OpKernel { saved_variance_e /= N * sample_size; break; } - case TensorFormat::NHWC: { + case DataLayout::kNHWC: { ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); for (int i = 0; i < N * sample_size; ++i) { saved_mean_e += x_arr.col(i); @@ -205,7 +207,7 @@ class BatchNormKernel : public framework::OpKernel { break; } default: - PADDLE_THROW("Unknown storage order: %s", tensor_format_str); + PADDLE_THROW("Unknown storage order: %s", data_layout_str); } EigenVectorArrayMap running_mean_arr( @@ -247,8 +249,8 @@ class BatchNormKernel : public framework::OpKernel { Eigen::Array new_bias = bias_arr - mean_arr * inv_std * scale_arr; - switch (tensor_format) { - case TensorFormat::NCHW: { + switch (data_layout) { + case DataLayout::kNCHW: { EigenArrayMap y_arr(y->mutable_data(ctx.GetPlace()), sample_size, N * C); ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); @@ -257,7 +259,7 @@ class BatchNormKernel : public framework::OpKernel { } break; } - case TensorFormat::NHWC: { + case DataLayout::kNHWC: { EigenArrayMap(y->mutable_data(ctx.GetPlace()), C, N * sample_size) = (ConstEigenArrayMap(x->data(), C, N * sample_size).colwise() * @@ -267,7 +269,7 @@ class BatchNormKernel : public framework::OpKernel { break; } default: - PADDLE_THROW("Unknown storage order: %d", tensor_format); + PADDLE_THROW("Unknown storage order: %d", data_layout); } } }; @@ -290,11 +292,11 @@ class BatchNormGradOp : public framework::OperatorWithKernel { PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Bias")), ""); const auto x_dims = ctx->GetInputDim("X"); - const TensorFormat tensor_format = - StringToTensorFormat(ctx->Attrs().Get("tensor_format")); + const DataLayout data_layout = framework::StringToDataLayout( + ctx->Attrs().Get("data_layout")); const int C = - (tensor_format == TensorFormat::NCHW ? x_dims[1] - : x_dims[x_dims.size() - 1]); + (data_layout == DataLayout::kNCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); ctx->SetOutputDim(framework::GradVarName("X"), x_dims); ctx->SetOutputDim(framework::GradVarName("Scale"), {C}); @@ -318,12 +320,12 @@ class BatchNormGradOp : public framework::OperatorWithKernel { PADDLE_THROW("can't find Y@GRAD"); } return framework::OpKernelType(framework::ToDataType(t->type()), - ctx.device_context()); + ctx.GetPlace()); } }; template -class BatchNormGradKernel +class BatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { @@ -333,9 +335,9 @@ class BatchNormGradKernel const auto *saved_mean = ctx.Input("SavedMean"); // SavedVariance have been reverted in forward operator const auto *saved_inv_variance = ctx.Input("SavedVariance"); - const std::string tensor_format_str = - ctx.Attr("tensor_format"); - const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const std::string data_layout_str = ctx.Attr("data_layout"); + const DataLayout data_layout = + framework::StringToDataLayout(data_layout_str); // Get the size for each dimension. // NCHW [batch_size, in_channels, in_height, in_width] @@ -344,8 +346,8 @@ class BatchNormGradKernel "The Input dim size should be between 2 and 5"); const int N = x_dims[0]; const int C = - (tensor_format == TensorFormat::NCHW ? x_dims[1] - : x_dims[x_dims.size() - 1]); + (data_layout == DataLayout::kNCHW ? x_dims[1] + : x_dims[x_dims.size() - 1]); const int sample_size = x->numel() / N / C; ConstEigenVectorArrayMap scale_arr(scale->data(), C); @@ -376,8 +378,8 @@ class BatchNormGradKernel const auto scale_inv_var_nhw = scale_arr * inv_var_arr / (N * sample_size); - switch (tensor_format) { - case TensorFormat::NCHW: { + switch (data_layout) { + case DataLayout::kNCHW: { ConstEigenArrayMap x_arr(x->data(), sample_size, N * C); ConstEigenArrayMap d_y_arr(d_y->data(), sample_size, N * C); EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), @@ -400,7 +402,7 @@ class BatchNormGradKernel } break; } - case TensorFormat::NHWC: { + case DataLayout::kNHWC: { ConstEigenArrayMap x_arr(x->data(), C, N * sample_size); ConstEigenArrayMap d_y_arr(d_y->data(), C, N * sample_size); EigenArrayMap d_x_arr(d_x->mutable_data(ctx.GetPlace()), C, @@ -425,7 +427,7 @@ class BatchNormGradKernel break; } default: - PADDLE_THROW("Unknown storage order: %s", tensor_format_str); + PADDLE_THROW("Unknown storage order: %s", data_layout_str); } } }; @@ -436,8 +438,9 @@ class BatchNormGradKernel namespace ops = paddle::operators; REGISTER_OP(batch_norm, ops::BatchNormOp, ops::BatchNormOpMaker, batch_norm_grad, ops::BatchNormGradOp); -REGISTER_OP_CPU_KERNEL(batch_norm, - ops::BatchNormKernel); +REGISTER_OP_CPU_KERNEL( + batch_norm, + ops::BatchNormKernel); REGISTER_OP_CPU_KERNEL( batch_norm_grad, - ops::BatchNormGradKernel); + ops::BatchNormGradKernel); diff --git a/paddle/operators/batch_norm_op.cu.cc b/paddle/operators/batch_norm_op.cu.cc index 7b2f3187007fa2491afa75de1cde1910c6ce9bb8..55d0736a4c8e09eea637e5ab7e49af9a618e7fd8 100644 --- a/paddle/operators/batch_norm_op.cu.cc +++ b/paddle/operators/batch_norm_op.cu.cc @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/batch_norm_op.h" +#include "paddle/framework/data_layout.h" #include #include "paddle/operators/math/math_function.h" @@ -22,12 +23,12 @@ namespace paddle { namespace operators { using Tensor = framework::Tensor; +using DataLayout = framework::DataLayout; template using CudnnDataType = platform::CudnnDataType; -void ExtractNCWHD(const framework::DDim &dims, - const TensorFormat &tensor_format, int *N, int *C, int *H, - int *W, int *D) { +void ExtractNCWHD(const framework::DDim &dims, const DataLayout &data_layout, + int *N, int *C, int *H, int *W, int *D) { *N = dims[0]; if (dims.size() == 2) { *C = dims[1]; @@ -35,19 +36,20 @@ void ExtractNCWHD(const framework::DDim &dims, *W = 1; *D = 1; } else { - *C = tensor_format == TensorFormat::NCHW ? dims[1] : dims[dims.size() - 1]; - *H = tensor_format == TensorFormat::NCHW ? dims[2] : dims[1]; + *C = data_layout == DataLayout::kNCHW ? dims[1] : dims[dims.size() - 1]; + *H = data_layout == DataLayout::kNCHW ? dims[2] : dims[1]; *W = dims.size() > 3 - ? (tensor_format == TensorFormat::NCHW ? dims[3] : dims[2]) + ? (data_layout == DataLayout::kNCHW ? dims[3] : dims[2]) : 1; *D = dims.size() > 4 - ? (tensor_format == TensorFormat::NCHW ? dims[4] : dims[3]) + ? (data_layout == DataLayout::kNCHW ? dims[4] : dims[3]) : 1; } } template -class BatchNormKernel : public framework::OpKernel { +class BatchNormKernel + : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), @@ -55,9 +57,9 @@ class BatchNormKernel : public framework::OpKernel { double epsilon = static_cast(ctx.Attr("epsilon")); const float momentum = ctx.Attr("momentum"); const bool is_test = ctx.Attr("is_test"); - const std::string tensor_format_str = - ctx.Attr("tensor_format"); - const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const std::string data_layout_str = ctx.Attr("data_layout"); + const DataLayout data_layout = + framework::StringToDataLayout(data_layout_str); // Get the size for each dimension. // NCHW [batch_size, in_channels, in_height, in_width] @@ -66,7 +68,7 @@ class BatchNormKernel : public framework::OpKernel { PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "The Input dim size should be between 2 and 5"); int N, C, H, W, D; - ExtractNCWHD(x_dims, tensor_format, &N, &C, &H, &W, &D); + ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D); // ------------------- cudnn descriptors --------------------- cudnnTensorDescriptor_t data_desc_; @@ -92,7 +94,7 @@ class BatchNormKernel : public framework::OpKernel { VLOG(1) << "Setting descriptors."; std::vector dims; std::vector strides; - if (tensor_format == TensorFormat::NCHW) { + if (data_layout == DataLayout::kNCHW) { dims = {N, C, H, W, D}; strides = {C * H * W * D, H * W * D, W * D, D, 1}; } else { @@ -121,11 +123,12 @@ class BatchNormKernel : public framework::OpKernel { saved_mean->mutable_data(ctx.GetPlace()); saved_variance->mutable_data(ctx.GetPlace()); - math::SetConstant functor; - functor(ctx.device_context(), saved_mean, 0); - functor(ctx.device_context(), saved_variance, 0); + auto &dev_ctx = ctx.template device_context(); + math::SetConstant functor; + functor(dev_ctx, saved_mean, 0); + functor(dev_ctx, saved_variance, 0); - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto handle = dev_ctx.cudnn_handle(); // Now, depending on whether we are running test or not, we have two paths. if (is_test) { @@ -171,16 +174,16 @@ class BatchNormKernel : public framework::OpKernel { }; template -class BatchNormGradKernel +class BatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &ctx) const override { PADDLE_ENFORCE(platform::is_gpu_place(ctx.GetPlace()), "It must use GPUPlace."); double epsilon = static_cast(ctx.Attr("epsilon")); - const std::string tensor_format_str = - ctx.Attr("tensor_format"); - const TensorFormat tensor_format = StringToTensorFormat(tensor_format_str); + const std::string data_layout_str = ctx.Attr("data_layout"); + const DataLayout data_layout = + framework::StringToDataLayout(data_layout_str); const auto *x = ctx.Input("X"); const auto *d_y = ctx.Input(framework::GradVarName("Y")); const auto *scale = ctx.Input("Scale"); @@ -190,7 +193,7 @@ class BatchNormGradKernel PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5, "The Input dim size should be between 2 and 5"); int N, C, H, W, D; - ExtractNCWHD(x_dims, tensor_format, &N, &C, &H, &W, &D); + ExtractNCWHD(x_dims, data_layout, &N, &C, &H, &W, &D); PADDLE_ENFORCE_EQ(scale->dims().size(), 1UL); PADDLE_ENFORCE_EQ(scale->dims()[0], C); @@ -217,7 +220,7 @@ class BatchNormGradKernel std::vector dims; std::vector strides; - if (tensor_format == TensorFormat::NCHW) { + if (data_layout == DataLayout::kNCHW) { dims = {N, C, H, W, D}; strides = {C * H * W * D, H * W * D, W * D, D, 1}; } else { @@ -244,11 +247,12 @@ class BatchNormGradKernel const void *saved_mean_data = saved_mean->template data(); const void *saved_var_data = saved_var->template data(); + auto &dev_ctx = ctx.template device_context(); CUDNN_ENFORCE(platform::dynload::cudnnBatchNormalizationBackward( - ctx.cuda_device_context().cudnn_handle(), mode_, - CudnnDataType::kOne(), CudnnDataType::kZero(), - CudnnDataType::kOne(), CudnnDataType::kZero(), data_desc_, - x->template data(), data_desc_, d_y->template data(), data_desc_, + dev_ctx.cudnn_handle(), mode_, CudnnDataType::kOne(), + CudnnDataType::kZero(), CudnnDataType::kOne(), + CudnnDataType::kZero(), data_desc_, x->template data(), + data_desc_, d_y->template data(), data_desc_, d_x->template mutable_data(ctx.GetPlace()), bn_param_desc_, scale->template data(), d_scale->template mutable_data(ctx.GetPlace()), @@ -266,8 +270,9 @@ class BatchNormGradKernel } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(batch_norm, - ops::BatchNormKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + batch_norm, + ops::BatchNormKernel); +REGISTER_OP_CUDA_KERNEL( batch_norm_grad, - ops::BatchNormGradKernel); + ops::BatchNormGradKernel); diff --git a/paddle/operators/batch_norm_op.h b/paddle/operators/batch_norm_op.h index 4e80134a1acf3b4d66154453dd0ed709133d1c7c..a817ef41fc87da33ad87923c99a75ee7c3c7bbfe 100644 --- a/paddle/operators/batch_norm_op.h +++ b/paddle/operators/batch_norm_op.h @@ -19,28 +19,13 @@ limitations under the License. */ namespace paddle { namespace operators { -enum TensorFormat { - NHWC = 0, - NCHW = 1, -}; - -inline TensorFormat StringToTensorFormat(const std::string& str) { - if (str == "NHWC" || str == "nhwc") { - return TensorFormat::NHWC; - } else if (str == "NCHW" || str == "nchw") { - return TensorFormat::NCHW; - } else { - PADDLE_THROW("Unknown storage order string: %s", str); - } -} - -template +template class BatchNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override; }; -template +template class BatchNormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override; diff --git a/paddle/operators/beam_search_decode_op.cc b/paddle/operators/beam_search_decode_op.cc index c796a0c5d089499e7858c7a427825fdbeb05cb7f..32756faac5324cfb3b5366857d2c8176665fb3ec 100644 --- a/paddle/operators/beam_search_decode_op.cc +++ b/paddle/operators/beam_search_decode_op.cc @@ -83,9 +83,8 @@ class BeamSearchDecodeOp : public framework::OperatorBase { class BeamSearchDecodeOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - BeamSearchDecodeOpProtoMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) { + BeamSearchDecodeOpProtoMaker(OpProto* proto, OpAttrChecker* op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Ids", "(LodTensorArray)" "score of the candidate words in each step"); @@ -120,13 +119,13 @@ class BeamSearchDecodeInferShape : public framework::InferShapeBase { class BeamSearchDecodeInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind& op_desc, - framework::BlockDescBind* block) const override { + void operator()(const framework::OpDesc& op_desc, + framework::BlockDesc* block) const override { for (auto& o : op_desc.Output("SentenceIds")) { - block->Var(o)->SetType(framework::VarDesc::LOD_TENSOR); + block->Var(o)->SetType(framework::proto::VarDesc::LOD_TENSOR); } for (auto& o : op_desc.Output("SentenceScores")) { - block->Var(o)->SetType(framework::VarDesc::LOD_TENSOR); + block->Var(o)->SetType(framework::proto::VarDesc::LOD_TENSOR); } } }; diff --git a/paddle/operators/beam_search_op.cc b/paddle/operators/beam_search_op.cc index 8c3e2a303fb8f12a8886c11cf112b859a6db7bcf..69ddc52035ae78dd2d1926b66fcbbe36737e87aa 100644 --- a/paddle/operators/beam_search_op.cc +++ b/paddle/operators/beam_search_op.cc @@ -153,8 +153,7 @@ bool BeamSearch::NextItemSet(std::vector *items) { class BeamSearchProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker { public: - BeamSearchProtoAndCheckerMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + BeamSearchProtoAndCheckerMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { // inputs and outputs stored in proto AddInput("pre_ids", "ids in previous step"); diff --git a/paddle/operators/bilinear_tensor_product_op.cc b/paddle/operators/bilinear_tensor_product_op.cc index c88b2c9beb4497b617078c8ac5582d2f246f43fd..7640147a12d66a924f16eaf168227b6ce6a96040 100644 --- a/paddle/operators/bilinear_tensor_product_op.cc +++ b/paddle/operators/bilinear_tensor_product_op.cc @@ -65,8 +65,7 @@ class BilinearTensorProductOp : public framework::OperatorWithKernel { class BilinearTensorProductOpMaker : public framework::OpProtoAndCheckerMaker { public: - BilinearTensorProductOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + BilinearTensorProductOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The first input of bilinear_tensor_product operator."); AddInput("Y", "The second input of bilinear_tensor_product operator."); @@ -159,9 +158,12 @@ REGISTER_OP(bilinear_tensor_product, ops::BilinearTensorProductOp, ops::BilinearTensorProductOpGrad); REGISTER_OP_CPU_KERNEL( bilinear_tensor_product, - ops::BilinearTensorProductKernel, - ops::BilinearTensorProductKernel); + ops::BilinearTensorProductKernel, + ops::BilinearTensorProductKernel); REGISTER_OP_CPU_KERNEL( bilinear_tensor_product_grad, - ops::BilinearTensorProductGradKernel, - ops::BilinearTensorProductGradKernel); + ops::BilinearTensorProductGradKernel, + ops::BilinearTensorProductGradKernel); diff --git a/paddle/operators/bilinear_tensor_product_op.cu b/paddle/operators/bilinear_tensor_product_op.cu index 858d2668d01379afe8082cd1eda32a2a5d09bd18..0f48010716f086a64c0b6a35b76e06a42430ab84 100644 --- a/paddle/operators/bilinear_tensor_product_op.cu +++ b/paddle/operators/bilinear_tensor_product_op.cu @@ -16,11 +16,15 @@ limitations under the License. */ #include "paddle/operators/bilinear_tensor_product_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( bilinear_tensor_product, - ops::BilinearTensorProductKernel, - ops::BilinearTensorProductKernel); -REGISTER_OP_GPU_KERNEL( + ops::BilinearTensorProductKernel, + ops::BilinearTensorProductKernel); +REGISTER_OP_CUDA_KERNEL( bilinear_tensor_product_grad, - ops::BilinearTensorProductGradKernel, - ops::BilinearTensorProductGradKernel); + ops::BilinearTensorProductGradKernel, + ops::BilinearTensorProductGradKernel); diff --git a/paddle/operators/bilinear_tensor_product_op.h b/paddle/operators/bilinear_tensor_product_op.h index 1113a4c6f357edb4f6b14b73c6eec9c6cca24ce5..ba9a2c5ce3c024a82e864a399ad90281d8dcdb20 100644 --- a/paddle/operators/bilinear_tensor_product_op.h +++ b/paddle/operators/bilinear_tensor_product_op.h @@ -27,7 +27,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class BilinearTensorProductKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -46,7 +46,8 @@ class BilinearTensorProductKernel : public framework::OpKernel { int out_dim = weight_dims[0]; auto x_dim = weight_dims[1]; auto y_dim = weight_dims[2]; - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); + auto& dev_ctx = ctx.template device_context(); // Create the intermediate variable to caculate the result of // Input(X) multiplied by Input(Weight_i), the formula is: @@ -60,9 +61,9 @@ class BilinearTensorProductKernel : public framework::OpKernel { auto output_col_vec = output_mat.chip(i, 1); Tensor weight_mat = weight->Slice(i, i + 1).Resize(framework::make_ddim({x_dim, y_dim})); - math::gemm(ctx.device_context(), CblasNoTrans, CblasNoTrans, - batch_size, y_dim, x_dim, 1, x->data(), - weight_mat.data(), 0, left_mul.data()); + math::gemm(dev_ctx, CblasNoTrans, CblasNoTrans, + batch_size, y_dim, x_dim, 1, x->data(), + weight_mat.data(), 0, left_mul.data()); output_col_vec.device(place) = (left_mul_mat * y_mat).sum(Eigen::DSizes(1)); } @@ -74,7 +75,7 @@ class BilinearTensorProductKernel : public framework::OpKernel { } }; -template +template class BilinearTensorProductGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -96,8 +97,8 @@ class BilinearTensorProductGradKernel : public framework::OpKernel { auto x_mat = EigenMatrix::From(*x); auto y_mat = EigenMatrix::From(*y); auto d_out_mat = EigenMatrix::From(*d_out); - auto place = ctx.GetEigenDevice(); - + auto& place = *ctx.template device_context().eigen_device(); + auto& dev_ctx = ctx.template device_context(); // Create the intermediate variable to caculate the Output(Y@Grad). Tensor x_scale; x_scale.mutable_data(framework::make_ddim({batch_size, x_dim}), @@ -110,18 +111,18 @@ class BilinearTensorProductGradKernel : public framework::OpKernel { ctx.GetPlace()); auto y_scale_mat = EigenMatrix::From(y_scale); - math::SetConstant set_zero; + math::SetConstant set_zero; // Set Output(X@Grad) be zero. if (d_x) { d_x->mutable_data(ctx.GetPlace()); - set_zero(ctx.device_context(), d_x, static_cast(0)); + set_zero(dev_ctx, d_x, static_cast(0)); } // Set Output(Y@Grad) be zero. if (d_y) { d_y->mutable_data(ctx.GetPlace()); - set_zero(ctx.device_context(), d_y, static_cast(0)); + set_zero(dev_ctx, d_y, static_cast(0)); } // Caculate the Output(X@Grad) and Output(Y@Grad). @@ -137,18 +138,18 @@ class BilinearTensorProductGradKernel : public framework::OpKernel { output_vec.reshape(Eigen::DSizes(batch_size, 1)) .broadcast(bcast_for_x) * y_mat; - math::gemm(ctx.device_context(), CblasNoTrans, CblasTrans, - batch_size, x_dim, y_dim, 1, y_scale.data(), - weight_i.data(), 1, d_x->data()); + math::gemm( + dev_ctx, CblasNoTrans, CblasTrans, batch_size, x_dim, y_dim, 1, + y_scale.data(), weight_i.data(), 1, d_x->data()); } if (d_y) { x_scale_mat.device(place) = output_vec.reshape(Eigen::DSizes(batch_size, 1)) .broadcast(bcast_for_y) * x_mat; - math::gemm(ctx.device_context(), CblasNoTrans, CblasNoTrans, - batch_size, y_dim, x_dim, 1, x_scale.data(), - weight_i.data(), 1, d_y->data()); + math::gemm( + dev_ctx, CblasNoTrans, CblasNoTrans, batch_size, y_dim, x_dim, 1, + x_scale.data(), weight_i.data(), 1, d_y->data()); } } } @@ -165,9 +166,9 @@ class BilinearTensorProductGradKernel : public framework::OpKernel { output_vec.reshape(Eigen::DSizes(batch_size, 1)) .broadcast(bcast_for_weight) * x_mat; - math::gemm(ctx.device_context(), CblasTrans, CblasNoTrans, - x_dim, y_dim, batch_size, 1, x_scale.data(), - y->data(), 0, d_weight_i.data()); + math::gemm(dev_ctx, CblasTrans, CblasNoTrans, x_dim, + y_dim, batch_size, 1, x_scale.data(), + y->data(), 0, d_weight_i.data()); } } diff --git a/paddle/operators/cast_op.cc b/paddle/operators/cast_op.cc index 3082a53ccfbe4f8666cfdfc2efed6b46ffdfede9..fc6da064904610f5c9c140a6328858d697dd954e 100644 --- a/paddle/operators/cast_op.cc +++ b/paddle/operators/cast_op.cc @@ -20,8 +20,7 @@ namespace operators { class CastOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - CastOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + CastOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of cast op"); AddOutput("Out", "The output tensor of cast op"); @@ -53,14 +52,14 @@ class CastOpGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto grad = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto grad = new framework::OpDesc(); grad->SetType("cast"); grad->SetInput("X", OutputGrad("Out")); grad->SetOutput("Out", InputGrad("X")); grad->SetAttr("out_dtype", GetAttr("in_dtype")); grad->SetAttr("in_dtype", GetAttr("out_dtype")); - return std::unique_ptr(grad); + return std::unique_ptr(grad); } }; @@ -68,10 +67,11 @@ class CastOpGradMaker : public framework::SingleGradOpDescMaker { } // namespace paddle namespace ops = paddle::operators; -using CPU = paddle::platform::CPUPlace; +using CPU = paddle::platform::CPUDeviceContext; REGISTER_OP_WITH_KERNEL(cast, ops::CastOpGradMaker, ops::CastOpInferShape, ops::CastOpProtoMaker); REGISTER_OP_CPU_KERNEL(cast, ops::CastOpKernel, ops::CastOpKernel, ops::CastOpKernel, - ops::CastOpKernel); + ops::CastOpKernel, + ops::CastOpKernel); diff --git a/paddle/operators/cast_op.cu b/paddle/operators/cast_op.cu index fb75ddbabfefd8d00420d8c96f958abcb8fdce62..91e6fb391c637cc0d70a401d8d834451059ef6df 100644 --- a/paddle/operators/cast_op.cu +++ b/paddle/operators/cast_op.cu @@ -16,7 +16,8 @@ template using CastOpKernel = - paddle::operators::CastOpKernel; + paddle::operators::CastOpKernel; -REGISTER_OP_GPU_KERNEL(cast, CastOpKernel, CastOpKernel, - CastOpKernel, CastOpKernel); +REGISTER_OP_CUDA_KERNEL(cast, CastOpKernel, CastOpKernel, + CastOpKernel, CastOpKernel, + CastOpKernel); diff --git a/paddle/operators/cast_op.h b/paddle/operators/cast_op.h index 850dc8e3498351e54d41fcd2b6596c6fe668df14..0c72d809e67e8f3f25be5643041d89da3d04d95e 100644 --- a/paddle/operators/cast_op.h +++ b/paddle/operators/cast_op.h @@ -27,13 +27,13 @@ struct CastOpTransformFunctor { HOSTDEVICE OutT operator()(InT in) const { return static_cast(in); } }; -template +template struct CastOpFunctor { const framework::Tensor* in_; framework::Tensor* out_; - const platform::DeviceContext& ctx_; + const DeviceContext& ctx_; CastOpFunctor(const framework::Tensor* in, framework::Tensor* out, - const platform::DeviceContext& ctx) + const DeviceContext& ctx) : in_(in), out_(out), ctx_(ctx) {} template @@ -42,21 +42,22 @@ struct CastOpFunctor { auto numel = in_->numel(); auto* in_end = in_begin + numel; auto* out_begin = out_->mutable_data(ctx_.GetPlace()); - platform::Transform trans; + platform::Transform trans; trans(ctx_, in_begin, in_end, out_begin, CastOpTransformFunctor()); } }; -template +template class CastOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* in = context.Input("X"); auto* out = context.Output("Out"); framework::VisitDataType( - static_cast(context.Attr("out_dtype")), - CastOpFunctor(in, out, context.device_context())); + static_cast(context.Attr("out_dtype")), + CastOpFunctor( + in, out, context.template device_context())); } }; diff --git a/paddle/operators/chunk_eval_op.cc b/paddle/operators/chunk_eval_op.cc index 309660b01fe7052de2f9300acdf00779d0228221..f1f274a7af079d68c7c1bcd8ec07962e18b0ea60 100644 --- a/paddle/operators/chunk_eval_op.cc +++ b/paddle/operators/chunk_eval_op.cc @@ -32,6 +32,13 @@ class ChunkEvalOp : public framework::OperatorWithKernel { "Output(Recall) of ChunkEvalOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("F1-Score"), "Output(F1-Score) of ChunkEvalOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("NumInferChunks"), + "Output(NumInferChunks) of ChunkEvalOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("NumLabelChunks"), + "Output(NumLabelChunks) of ChunkEvalOp should not be null."); + PADDLE_ENFORCE( + ctx->HasOutput("NumCorrectChunks"), + "Output(NumCorrectChunks) of ChunkEvalOp should not be null."); auto inference_dim = ctx->GetInputDim("Inference"); auto label_dim = ctx->GetInputDim("Label"); @@ -42,25 +49,28 @@ class ChunkEvalOp : public framework::OperatorWithKernel { ctx->SetOutputDim("Precision", {1}); ctx->SetOutputDim("Recall", {1}); ctx->SetOutputDim("F1-Score", {1}); + ctx->SetOutputDim("NumInferChunks", {1}); + ctx->SetOutputDim("NumLabelChunks", {1}); + ctx->SetOutputDim("NumCorrectChunks", {1}); } protected: framework::OpKernelType GetKernelType( const framework::ExecutionContext &ctx) const override { - return framework::OpKernelType(framework::DataType::FP32, + return framework::OpKernelType(framework::proto::DataType::FP32, ctx.device_context()); } }; class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker { public: - ChunkEvalOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ChunkEvalOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Inference", - "(Tensor, default: Tensor). Predictions from the network."); + "(Tensor, default: Tensor). " + "Predictions from the network."); AddInput("Label", - "(Tensor, default: Tensor). The true tag sequences."); + "(Tensor, default: Tensor). The true tag sequences."); AddOutput("Precision", "(float). The evaluated precision (called positive predictive " "value) of chunks on the given mini-batch."); @@ -69,6 +79,16 @@ class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker { "sensitivity) of chunks on the given mini-batch."); AddOutput("F1-Score", "(float). The evaluated F1-Score on the given mini-batch."); + AddOutput("NumInferChunks", + "(int64_t). The number of chunks in Inference on the given " + "mini-batch."); + AddOutput( + "NumLabelChunks", + "(int64_t). The number of chunks in Label on the given mini-batch."); + AddOutput( + "NumCorrectChunks", + "(int64_t). The number of chunks both in Inference and Label on the " + "given mini-batch."); AddAttr("num_chunk_types", "(int). The number of chunk type. See below for details."); AddAttr( @@ -84,7 +104,7 @@ class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker { .SetDefault(std::vector{}); AddComment(R"DOC( For some basics of chunking, please refer to -‘Chunking with Support Vector Mechines ’. +‘Chunking with Support Vector Machines ’. CheckEvalOp computes the precision, recall, and F1-score of chunk detection, @@ -97,7 +117,7 @@ Here is a NER example of labeling for these tagging schemes: IOE: I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC IOBES: B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC -There are three chunk types(named entity types) including PER(person), ORG(orgnazation) +There are three chunk types(named entity types) including PER(person), ORG(organization) and LOC(LOCATION), and we can see that the labels have the form -. Since the calculations actually use label ids rather than labels, extra attention diff --git a/paddle/operators/chunk_eval_op.h b/paddle/operators/chunk_eval_op.h index 81aa07817b673b2ff85a35a51cc43742b7ad7fed..74ab435c860b22b2ee3f485743540976a7a31b96 100644 --- a/paddle/operators/chunk_eval_op.h +++ b/paddle/operators/chunk_eval_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template +template class ChunkEvalKernel : public framework::OpKernel { public: struct Segment { @@ -35,10 +35,10 @@ class ChunkEvalKernel : public framework::OpKernel { } }; - void GetSegments(const int* label, int length, std::vector& segments, - int num_chunk_types, int num_tag_types, int other_chunk_type, - int tag_begin, int tag_inside, int tag_end, - int tag_single) const { + void GetSegments(const int64_t* label, int length, + std::vector& segments, int num_chunk_types, + int num_tag_types, int other_chunk_type, int tag_begin, + int tag_inside, int tag_end, int tag_single) const { segments.clear(); segments.reserve(length); int chunk_start = 0; @@ -111,9 +111,7 @@ class ChunkEvalKernel : public framework::OpKernel { std::vector label_segments; std::vector output_segments; std::set excluded_chunk_types; - int64_t num_output_segments = 0; - int64_t num_label_segments = 0; - int64_t num_correct = 0; + if (context.Attr("chunk_scheme") == "IOB") { num_tag_types = 2; tag_begin = 0; @@ -151,12 +149,24 @@ class ChunkEvalKernel : public framework::OpKernel { auto* precision = context.Output("Precision"); auto* recall = context.Output("Recall"); auto* f1 = context.Output("F1-Score"); + auto* num_infer_chunks = context.Output("NumInferChunks"); + auto* num_label_chunks = context.Output("NumLabelChunks"); + auto* num_correct_chunks = context.Output("NumCorrectChunks"); - const int* inference_data = inference->data(); - const int* label_data = label->data(); + const int64_t* inference_data = inference->data(); + const int64_t* label_data = label->data(); T* precision_data = precision->mutable_data(context.GetPlace()); T* racall_data = recall->mutable_data(context.GetPlace()); T* f1_data = f1->mutable_data(context.GetPlace()); + int64_t* num_infer_chunks_data = + num_infer_chunks->mutable_data(context.GetPlace()); + int64_t* num_label_chunks_data = + num_label_chunks->mutable_data(context.GetPlace()); + int64_t* num_correct_chunks_data = + num_correct_chunks->mutable_data(context.GetPlace()); + *num_infer_chunks_data = 0; + *num_label_chunks_data = 0; + *num_correct_chunks_data = 0; auto lod = label->lod(); PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); @@ -166,20 +176,26 @@ class ChunkEvalKernel : public framework::OpKernel { for (int i = 0; i < num_sequences; ++i) { int seq_length = lod[0][i + 1] - lod[0][i]; EvalOneSeq(inference_data + lod[0][i], label_data + lod[0][i], seq_length, - output_segments, label_segments, num_output_segments, - num_label_segments, num_correct, num_chunk_types, - num_tag_types, other_chunk_type, tag_begin, tag_inside, - tag_end, tag_single, excluded_chunk_types); + output_segments, label_segments, *num_infer_chunks_data, + *num_label_chunks_data, *num_correct_chunks_data, + num_chunk_types, num_tag_types, other_chunk_type, tag_begin, + tag_inside, tag_end, tag_single, excluded_chunk_types); } - *precision_data = !num_output_segments ? 0 : static_cast(num_correct) / - num_output_segments; - *racall_data = !num_label_segments ? 0 : static_cast(num_correct) / - num_label_segments; - *f1_data = !num_correct ? 0 : 2 * (*precision_data) * (*racall_data) / - ((*precision_data) + (*racall_data)); + *precision_data = !(*num_infer_chunks_data) + ? 0 + : static_cast(*num_correct_chunks_data) / + (*num_infer_chunks_data); + *racall_data = !(*num_label_chunks_data) + ? 0 + : static_cast(*num_correct_chunks_data) / + (*num_label_chunks_data); + *f1_data = !(*num_correct_chunks_data) + ? 0 + : 2 * (*precision_data) * (*racall_data) / + ((*precision_data) + (*racall_data)); } - void EvalOneSeq(const int* output, const int* label, int length, + void EvalOneSeq(const int64_t* output, const int64_t* label, int length, std::vector& output_segments, std::vector& label_segments, int64_t& num_output_segments, int64_t& num_label_segments, diff --git a/paddle/operators/clip_by_norm_op.cc b/paddle/operators/clip_by_norm_op.cc index d9fc532e39500fa397be80396b075e866bad9362..05c79d0e25deea84463f0b67ac4dc9a8dd43f2cb 100644 --- a/paddle/operators/clip_by_norm_op.cc +++ b/paddle/operators/clip_by_norm_op.cc @@ -37,8 +37,7 @@ class ClipByNormOp : public framework::OperatorWithKernel { class ClipByNormOpMaker : public framework::OpProtoAndCheckerMaker { public: - ClipByNormOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ClipByNormOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of clip_by_norm op." @@ -47,15 +46,19 @@ class ClipByNormOpMaker : public framework::OpProtoAndCheckerMaker { "(Tensor) The output of clip_by_norm op with shape as input(X)"); AddAttr("max_norm", "(float) The maximum norm value."); AddComment(R"DOC( -ClipByNorm operator limits the L2 norm of the input 'X' within 'max_norm'. -If the L2 norm of 'X' is less than or equal to 'max_norm', 'Out' will be -the same as 'X'. If the L2 norm of 'X' is greater than 'max_norm', 'X' will -be linearly scaled to make the L2 norm of 'Out' equal to 'max_norm', as -shown in the following formula: +ClipByNorm Operator. -'Out' = 'max_norm' * 'X' / norm('X'), +This operator limits the L2 norm of the input $X$ within $max\_norm$. +If the L2 norm of $X$ is less than or equal to $max\_norm$, $Out$ will be +the same as $X$. If the L2 norm of $X$ is greater than $max\_norm$, $X$ will +be linearly scaled to make the L2 norm of $Out$ equal to $max\_norm$, as +shown in the following formula: -where norm('X') represents the L2 norm of 'X'. +$$ +Out = \frac{max\_norm * X}{norm(X)}, +$$ + +where $norm(X)$ represents the L2 norm of $X$. )DOC"); } }; @@ -67,4 +70,5 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(clip_by_norm, ops::ClipByNormOp, ops::ClipByNormOpMaker); REGISTER_OP_CPU_KERNEL( - clip_by_norm, ops::ClipByNormKernel); + clip_by_norm, + ops::ClipByNormKernel); diff --git a/paddle/operators/clip_by_norm_op.cu b/paddle/operators/clip_by_norm_op.cu index 2593a24ebbf56ecd286a726e527d2414247576e8..acd75438230715420470b81f7a5e5953bd8b8abe 100644 --- a/paddle/operators/clip_by_norm_op.cu +++ b/paddle/operators/clip_by_norm_op.cu @@ -15,5 +15,6 @@ #include "paddle/operators/clip_by_norm_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - clip_by_norm, ops::ClipByNormKernel); +REGISTER_OP_CUDA_KERNEL( + clip_by_norm, + ops::ClipByNormKernel); diff --git a/paddle/operators/clip_by_norm_op.h b/paddle/operators/clip_by_norm_op.h index b26476cae9b5b2fa290bc9186b9a64c48ba703d6..d8db1566b0e8c9c351d3b6d6aca1d22d991fe76e 100644 --- a/paddle/operators/clip_by_norm_op.h +++ b/paddle/operators/clip_by_norm_op.h @@ -26,7 +26,7 @@ template using EigenVector = framework::EigenVector; -template +template class ClipByNormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -38,7 +38,8 @@ class ClipByNormKernel : public framework::OpKernel { auto x = EigenVector::Flatten(*input); auto out = EigenVector::Flatten(*output); auto x_norm = x.square().sum().sqrt(); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto temp = (x_norm <= max_norm).template cast().eval(); auto scaling = temp + (static_cast(1) - temp) * max_norm / x_norm; diff --git a/paddle/operators/clip_op.cc b/paddle/operators/clip_op.cc index 3e9066ceb2a4a4dc19fdf5ef02bb7fadaab4bfff..e34ba0a8f4757e45db58270dfd6191157f6e226a 100644 --- a/paddle/operators/clip_op.cc +++ b/paddle/operators/clip_op.cc @@ -38,7 +38,7 @@ class ClipOp : public framework::OperatorWithKernel { template class ClipOpMaker : public framework::OpProtoAndCheckerMaker { public: - ClipOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + ClipOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor)The input of clip op." @@ -52,7 +52,11 @@ class ClipOpMaker : public framework::OpProtoAndCheckerMaker { Clip Operator. The clip operator limits the value of given input within an interval. The interval is -specified with arguments 'min' and 'max'. +specified with arguments 'min' and 'max': + +$$ +Out = \min(\max(X, min), max) +$$ )DOC"); } @@ -79,7 +83,7 @@ class ClipOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(clip, ops::ClipOp, ops::ClipOpMaker, clip_grad, ops::ClipOpGrad); -REGISTER_OP_CPU_KERNEL(clip, - ops::ClipKernel); -REGISTER_OP_CPU_KERNEL(clip_grad, - ops::ClipGradKernel); +REGISTER_OP_CPU_KERNEL( + clip, ops::ClipKernel); +REGISTER_OP_CPU_KERNEL( + clip_grad, ops::ClipGradKernel); diff --git a/paddle/operators/clip_op.cu b/paddle/operators/clip_op.cu index ca9701298fdae3fabe234925edaf9e4d775cc66e..bb7dcc671a46758a6bd09e8035cf8d3f5e464b3b 100644 --- a/paddle/operators/clip_op.cu +++ b/paddle/operators/clip_op.cu @@ -15,7 +15,7 @@ #include "paddle/operators/clip_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(clip, - ops::ClipKernel); -REGISTER_OP_GPU_KERNEL(clip_grad, - ops::ClipGradKernel); +REGISTER_OP_CUDA_KERNEL( + clip, ops::ClipKernel); +REGISTER_OP_CUDA_KERNEL( + clip_grad, ops::ClipGradKernel); diff --git a/paddle/operators/clip_op.h b/paddle/operators/clip_op.h index ac702e9935201ba5263a80ebeb1ab22fa0bd1340..0c40797410950641d3d509a4980d5c4bdbd75cff 100644 --- a/paddle/operators/clip_op.h +++ b/paddle/operators/clip_op.h @@ -55,7 +55,7 @@ class ClipGradFunctor { T max_; }; -template +template class ClipKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -66,13 +66,13 @@ class ClipKernel : public framework::OpKernel { T* out_data = out->mutable_data(context.GetPlace()); const T* x_data = x->data(); int64_t numel = x->numel(); - Transform trans; - trans(context.device_context(), x_data, x_data + numel, out_data, - ClipFunctor(min, max)); + Transform trans; + trans(context.template device_context(), x_data, + x_data + numel, out_data, ClipFunctor(min, max)); } }; -template +template class ClipGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -86,9 +86,9 @@ class ClipGradKernel : public framework::OpKernel { auto* d_x_data = d_x->mutable_data(context.GetPlace()); const T* d_out_data = d_out->data(); const T* x_data = x->data(); - Transform trans; - trans(context.device_context(), d_out_data, d_out_data + numel, x_data, - d_x_data, ClipGradFunctor(min, max)); + Transform trans; + trans(context.template device_context(), d_out_data, + d_out_data + numel, x_data, d_x_data, ClipGradFunctor(min, max)); } } }; diff --git a/paddle/operators/compare_op.cc b/paddle/operators/compare_op.cc index bf7e88368157d29e627c3c06384f28b6e5e4ecc1..1148172f3a2cc9b3f849ee04cefc19f16742d3eb 100644 --- a/paddle/operators/compare_op.cc +++ b/paddle/operators/compare_op.cc @@ -20,8 +20,7 @@ namespace operators { template class CompareOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - CompareOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + CompareOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { OpComment comment; AddInput("X", diff --git a/paddle/operators/compare_op.cu b/paddle/operators/compare_op.cu index 6ac8c124b9b2e7c808808ecc8802a2e5aeaa5b5d..596a878bcf9f5b81c87c3bd419a2f46c0a450635 100644 --- a/paddle/operators/compare_op.cu +++ b/paddle/operators/compare_op.cu @@ -14,10 +14,10 @@ #include "paddle/operators/compare_op.h" -REGISTER_LOGICAL_KERNEL(less_than, GPU, paddle::operators::LessThanFunctor); -REGISTER_LOGICAL_KERNEL(less_equal, GPU, paddle::operators::LessEqualFunctor); -REGISTER_LOGICAL_KERNEL(greater_than, GPU, +REGISTER_LOGICAL_KERNEL(less_than, CUDA, paddle::operators::LessThanFunctor); +REGISTER_LOGICAL_KERNEL(less_equal, CUDA, paddle::operators::LessEqualFunctor); +REGISTER_LOGICAL_KERNEL(greater_than, CUDA, paddle::operators::GreaterThanFunctor); -REGISTER_LOGICAL_KERNEL(greater_equal, GPU, +REGISTER_LOGICAL_KERNEL(greater_equal, CUDA, paddle::operators::GreaterEqualFunctor); -REGISTER_LOGICAL_KERNEL(equal, GPU, paddle::operators::EqualFunctor); +REGISTER_LOGICAL_KERNEL(equal, CUDA, paddle::operators::EqualFunctor); diff --git a/paddle/operators/compare_op.h b/paddle/operators/compare_op.h index afdf3ab3e098b4e7f4c996471617d97ec49264b1..a56536e155531ac9ea3d17256210bdb9f4212181 100644 --- a/paddle/operators/compare_op.h +++ b/paddle/operators/compare_op.h @@ -59,7 +59,7 @@ struct EqualFunctor { } }; -template +template class CompareOpKernel : public framework::OpKernel { public: @@ -69,24 +69,23 @@ class CompareOpKernel auto* y = context.Input("Y"); auto* out = context.Output("Out"); Functor binary_func; - platform::Transform trans; - trans(context.device_context(), x->data(), x->data() + x->numel(), - y->data(), out->mutable_data(context.GetPlace()), - binary_func); + platform::Transform trans; + trans(context.template device_context(), x->data(), + x->data() + x->numel(), y->data(), + out->mutable_data(context.GetPlace()), binary_func); } }; } // namespace operators } // namespace paddle -#define REGISTER_LOGICAL_KERNEL(op_type, dev, functor) \ - REGISTER_OP_##dev##_KERNEL( \ - op_type, \ - ::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \ - functor>, \ - ::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \ - functor>, \ - ::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \ - functor>, \ - ::paddle::operators::CompareOpKernel<::paddle::platform::dev##Place, \ - functor>); +#define REGISTER_LOGICAL_KERNEL(op_type, dev, functor) \ + REGISTER_OP_##dev##_KERNEL( \ + op_type, ::paddle::operators::CompareOpKernel< \ + ::paddle::platform::dev##DeviceContext, functor>, \ + ::paddle::operators::CompareOpKernel< \ + ::paddle::platform::dev##DeviceContext, functor>, \ + ::paddle::operators::CompareOpKernel< \ + ::paddle::platform::dev##DeviceContext, functor>, \ + ::paddle::operators::CompareOpKernel< \ + ::paddle::platform::dev##DeviceContext, functor>); diff --git a/paddle/operators/concat_op.cc b/paddle/operators/concat_op.cc index 6134ac78b145e0c9db0146a38f525204d9f11fed..32b61edfd0dd163e5ef8f3d1de133c55314458b5 100644 --- a/paddle/operators/concat_op.cc +++ b/paddle/operators/concat_op.cc @@ -41,20 +41,24 @@ class ConcatOp : public framework::OperatorWithKernel { for (size_t j = 0; j < in_zero_dims_size; j++) { if (j == axis) { out_dims[axis] += ins[i][j]; - continue; + } else { + PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], + "Input tensors should have the same " + "elements except the specify axis."); } - PADDLE_ENFORCE_EQ(out_dims[j], ins[i][j], - "Input tensors should have the same " - "elements except the specify axis."); } } + if (out_dims[axis] < 0) { + out_dims[axis] = -1; + } ctx->SetOutputDim("Out", out_dims); + ctx->ShareLoD("X", /*->*/ "Out"); } }; class ConcatOpMaker : public framework::OpProtoAndCheckerMaker { public: - ConcatOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ConcatOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "Input tensors of concat operator.").AsDuplicable(); AddOutput("Out", "Output tensor of concat operator."); @@ -94,8 +98,8 @@ class ConcatOpGrad : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(concat, ops::ConcatOp, ops::ConcatOpMaker, concat_grad, - ops::ConcatOpGrad) +REGISTER_OP_EX(concat, ops::ConcatOp, ops::ConcatOpMaker, concat_grad, + ops::ConcatOpGrad, false) REGISTER_OP_CPU_KERNEL(concat, ops::ConcatKernel) REGISTER_OP_CPU_KERNEL(concat_grad, diff --git a/paddle/operators/concat_op.cu.cc b/paddle/operators/concat_op.cu.cc index ede832ddcd486729db56bba016683b33875f8837..7b46452d3d5db58799923a3dc76bb9df3471d9e7 100644 --- a/paddle/operators/concat_op.cu.cc +++ b/paddle/operators/concat_op.cu.cc @@ -14,7 +14,8 @@ limitations under the License. */ #include "paddle/operators/concat_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(concat, - ops::ConcatKernel); -REGISTER_OP_GPU_KERNEL( - concat_grad, ops::ConcatGradKernel); +REGISTER_OP_CUDA_KERNEL( + concat, ops::ConcatKernel); +REGISTER_OP_CUDA_KERNEL( + concat_grad, + ops::ConcatGradKernel); diff --git a/paddle/operators/concat_op.h b/paddle/operators/concat_op.h index c113f19fb5cf806709bff845ee0f1078b34014bb..de4011585af81363368a096a5c361ff3f7aeecdb 100644 --- a/paddle/operators/concat_op.h +++ b/paddle/operators/concat_op.h @@ -21,7 +21,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class ConcatKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -43,7 +43,7 @@ class ConcatKernel : public framework::OpKernel { } }; -template +template class ConcatGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { diff --git a/paddle/operators/cond_op.cc b/paddle/operators/cond_op.cc index b809bdc3a0fea727f2fb6ea0a55672ee9b0bbd04..8c860676e06de5dac9570d2a6f7271ff451eebee 100644 --- a/paddle/operators/cond_op.cc +++ b/paddle/operators/cond_op.cc @@ -205,8 +205,7 @@ void CondOp::Run(const Scope& scope, class CondOpProtoAndCheckerMaker : public framework::OpProtoAndCheckerMaker { public: - CondOpProtoAndCheckerMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CondOpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Cond", "The condition, which is a bool vector"); AddInput("Xs", "Inputs of Subnets").AsDuplicable(); diff --git a/paddle/operators/conditional_block_op.cc b/paddle/operators/conditional_block_op.cc index d5b124682d755ffb39f32c9f001a3cf113a01a2c..204be7d1e5385b7fdab54914bec216543e360cd3 100644 --- a/paddle/operators/conditional_block_op.cc +++ b/paddle/operators/conditional_block_op.cc @@ -65,7 +65,7 @@ class ConditionalBlockOp : public ConditionalOp { scopes->front() = &scope.NewScope(); auto &cur_scope = *scopes->front(); - auto *block = Attr("block"); + auto *block = Attr("sub_block"); framework::Executor exec(dev_ctx); exec.Run(*block->Program(), &cur_scope, block->ID(), false); } @@ -74,8 +74,7 @@ class ConditionalBlockOp : public ConditionalOp { class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - ConditionalBlockOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ConditionalBlockOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The conditional variable of this operator. If X is empty, the " @@ -87,8 +86,8 @@ class ConditionalBlockOpProtoMaker : public framework::OpProtoAndCheckerMaker { "(std::vector) The step scope of conditional block. To " "unify the conditional block, rnn and while op, the type of " "scope is std::vector"); - AddAttr( - "block", "The step block of conditional block operator"); + AddAttr( + "sub_block", "The step block of conditional block operator"); AddComment(R"DOC(Conditional block operator Run the sub-block if X is not empty. Params is the other inputs and Out is the @@ -117,7 +116,7 @@ class ConditionalBlockGradOp : public ConditionalOp { auto &scopes = scope_var->Get>(); framework::Scope &cur_scope = *scopes[0]; - auto *block = Attr("block"); + auto *block = Attr("sub_block"); framework::Executor exec(dev_ctx); exec.Run(*block->Program(), &cur_scope, block->ID(), false); @@ -142,9 +141,9 @@ class ConditionalBlockGradOp : public ConditionalOp { continue; } auto new_in_grad_name = cur_scope.Rename(in_grad_name); - auto assign = - framework::OpRegistry::CreateOp("assign", {{"X", {new_in_grad_name}}}, - {{"Out", {out_grad_name}}}, {}); + auto assign = framework::OpRegistry::CreateOp( + "assign", {{"X", {new_in_grad_name}}}, {{"Out", {out_grad_name}}}, + framework::AttributeMap{}); assign->Run(cur_scope, dev_ctx); cur_scope.Rename(new_in_grad_name, in_grad_name); } @@ -171,18 +170,19 @@ class ConditionalBlockGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto grad_op = new framework::OpDesc(); grad_op->SetType("conditional_block_grad"); grad_op->SetInput("X", Input("X")); grad_op->SetInput("Params", Input("Params")); grad_op->SetInput("Out", Output("Out")); grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); grad_op->SetInput("Scope", Output("Scope")); - grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); - grad_op->SetOutput(framework::GradVarName("Params"), InputGrad("Params")); - grad_op->SetBlockAttr("block", *this->grad_block_[0]); - return std::unique_ptr(grad_op); + grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X", false)); + grad_op->SetOutput(framework::GradVarName("Params"), + InputGrad("Params", false)); + grad_op->SetBlockAttr("sub_block", *this->grad_block_[0]); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/conv_cudnn_op.cc b/paddle/operators/conv_cudnn_op.cc index 0dd8c13b2ad6ff206066ccb98a4c009e4c3b4fd0..5b27ada55d737c31f8e65dc9b460a3a2ea11b869 100644 --- a/paddle/operators/conv_cudnn_op.cc +++ b/paddle/operators/conv_cudnn_op.cc @@ -19,8 +19,7 @@ namespace operators { class CudnnConv2DOpMaker : public Conv2DOpMaker { public: - CudnnConv2DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CudnnConv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker) : Conv2DOpMaker(proto, op_checker) { AddAttr("workspace_size_MB", "workspace size for cudnn, in MB, " @@ -34,8 +33,7 @@ class CudnnConv2DOpMaker : public Conv2DOpMaker { class CudnnConv3DOpMaker : public Conv3DOpMaker { public: - CudnnConv3DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CudnnConv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker) : Conv3DOpMaker(proto, op_checker) { AddAttr("workspace_size_MB", "workspace size for cudnn, in MB, " @@ -57,18 +55,20 @@ REGISTER_OP(conv2d_cudnn, ops::ConvOp, ops::CudnnConv2DOpMaker, REGISTER_OP(conv3d_cudnn, ops::ConvOp, ops::CudnnConv3DOpMaker, conv3d_cudnn_grad, ops::ConvOpGrad); -REGISTER_OP_CPU_KERNEL(conv2d_cudnn, - ops::GemmConvKernel, - ops::GemmConvKernel); +REGISTER_OP_CPU_KERNEL( + conv2d_cudnn, + ops::GemmConvKernel, + ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( conv2d_cudnn_grad, - ops::GemmConvGradKernel, - ops::GemmConvGradKernel); + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); -REGISTER_OP_CPU_KERNEL(conv3d_cudnn, - ops::GemmConvKernel, - ops::GemmConvKernel); +REGISTER_OP_CPU_KERNEL( + conv3d_cudnn, + ops::GemmConvKernel, + ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( conv3d_cudnn_grad, - ops::GemmConvGradKernel, - ops::GemmConvGradKernel); + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); diff --git a/paddle/operators/conv_cudnn_op.cu.cc b/paddle/operators/conv_cudnn_op.cu.cc index 3f97dc7ee0a61944a8a57314b5ec7f33df619bf3..3da0a9001aafbb5b2c4b9a91c4527d9437ac38a1 100644 --- a/paddle/operators/conv_cudnn_op.cu.cc +++ b/paddle/operators/conv_cudnn_op.cu.cc @@ -28,7 +28,8 @@ using ScopedFilterDescriptor = platform::ScopedFilterDescriptor; using ScopedConvolutionDescriptor = platform::ScopedConvolutionDescriptor; using DataLayout = platform::DataLayout; -static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = 1024 * 1024 * 1024; +static constexpr size_t kCONV_CUDNN_WORKSPACE_LIMIT_BYTES = + static_cast(1024) * 1024 * 1024; template class CudnnConvOpKernel : public framework::OpKernel { @@ -44,7 +45,8 @@ class CudnnConvOpKernel : public framework::OpKernel { std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); int groups = ctx.Attr("groups"); - int user_workspace_size = ctx.Attr("workspace_size_MB"); + int64_t user_workspace_size = + static_cast(ctx.Attr("workspace_size_MB")); const T* input_data = input->data(); const T* filter_data = filter->data(); @@ -116,7 +118,8 @@ class CudnnConvOpKernel : public framework::OpKernel { } // ------------------- cudnn conv algorithm --------------------- cudnnConvolutionFwdAlgo_t algo; - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm( handle, cudnn_input_desc, cudnn_filter_desc, cudnn_conv_desc, @@ -163,7 +166,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel { std::vector paddings = ctx.Attr>("paddings"); std::vector dilations = ctx.Attr>("dilations"); int groups = ctx.Attr("groups"); - int user_workspace_size = ctx.Attr("workspace_size_MB"); + int64_t user_workspace_size = + static_cast(ctx.Attr("workspace_size_MB")); // ------------------- cudnn descriptors --------------------- ScopedTensorDescriptor input_desc; @@ -235,7 +239,8 @@ class CudnnConvGradOpKernel : public framework::OpKernel { workspace_size_limit = user_workspace_size * 1024 * 1024; } - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); if (input_grad) { PADDLE_ENFORCE( platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm( @@ -310,16 +315,16 @@ class CudnnConvGradOpKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(conv2d_cudnn, - paddle::operators::CudnnConvOpKernel, - paddle::operators::CudnnConvOpKernel); -REGISTER_OP_GPU_KERNEL(conv2d_cudnn_grad, - paddle::operators::CudnnConvGradOpKernel, - paddle::operators::CudnnConvGradOpKernel); - -REGISTER_OP_GPU_KERNEL(conv3d_cudnn, - paddle::operators::CudnnConvOpKernel, - paddle::operators::CudnnConvOpKernel); -REGISTER_OP_GPU_KERNEL(conv3d_cudnn_grad, - paddle::operators::CudnnConvGradOpKernel, - paddle::operators::CudnnConvGradOpKernel); +REGISTER_OP_CUDA_KERNEL(conv2d_cudnn, + paddle::operators::CudnnConvOpKernel, + paddle::operators::CudnnConvOpKernel); +REGISTER_OP_CUDA_KERNEL(conv2d_cudnn_grad, + paddle::operators::CudnnConvGradOpKernel, + paddle::operators::CudnnConvGradOpKernel); + +REGISTER_OP_CUDA_KERNEL(conv3d_cudnn, + paddle::operators::CudnnConvOpKernel, + paddle::operators::CudnnConvOpKernel); +REGISTER_OP_CUDA_KERNEL(conv3d_cudnn_grad, + paddle::operators::CudnnConvGradOpKernel, + paddle::operators::CudnnConvGradOpKernel); diff --git a/paddle/operators/conv_op.cc b/paddle/operators/conv_op.cc index 462e6d9cbcbe61d9911efe8beff4446620e1e932..abe82e124121a6c57d1c3ca7337804f5a4ab3d38 100644 --- a/paddle/operators/conv_op.cc +++ b/paddle/operators/conv_op.cc @@ -66,8 +66,7 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const { ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); } -Conv2DOpMaker::Conv2DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) +Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "Input", @@ -138,8 +137,7 @@ $$ )DOC"); } -Conv3DOpMaker::Conv3DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) +Conv3DOpMaker::Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "Input", @@ -235,16 +233,18 @@ namespace ops = paddle::operators; REGISTER_OP(conv3d, ops::ConvOp, ops::Conv3DOpMaker, conv3d_grad, ops::ConvOpGrad); -REGISTER_OP_CPU_KERNEL(conv2d, - ops::GemmConvKernel, - ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( - conv2d_grad, ops::GemmConvGradKernel, - ops::GemmConvGradKernel); + conv2d, ops::GemmConvKernel, + ops::GemmConvKernel); +REGISTER_OP_CPU_KERNEL( + conv2d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); -REGISTER_OP_CPU_KERNEL(conv3d, - ops::GemmConvKernel, - ops::GemmConvKernel); REGISTER_OP_CPU_KERNEL( - conv3d_grad, ops::GemmConvGradKernel, - ops::GemmConvGradKernel); + conv3d, ops::GemmConvKernel, + ops::GemmConvKernel); +REGISTER_OP_CPU_KERNEL( + conv3d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); diff --git a/paddle/operators/conv_op.cu.cc b/paddle/operators/conv_op.cu.cc index 546451234a1ed1a4d3119cb175c6d37ae3f0aac1..38615a8befab91633423b7cd8536253a0d049ac3 100644 --- a/paddle/operators/conv_op.cu.cc +++ b/paddle/operators/conv_op.cu.cc @@ -16,16 +16,18 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(conv2d, - ops::GemmConvKernel, - ops::GemmConvKernel); -REGISTER_OP_GPU_KERNEL( - conv2d_grad, ops::GemmConvGradKernel, - ops::GemmConvGradKernel); +REGISTER_OP_CUDA_KERNEL( + conv2d, ops::GemmConvKernel, + ops::GemmConvKernel); +REGISTER_OP_CUDA_KERNEL( + conv2d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); -REGISTER_OP_GPU_KERNEL(conv3d, - ops::GemmConvKernel, - ops::GemmConvKernel); -REGISTER_OP_GPU_KERNEL( - conv3d_grad, ops::GemmConvGradKernel, - ops::GemmConvGradKernel); +REGISTER_OP_CUDA_KERNEL( + conv3d, ops::GemmConvKernel, + ops::GemmConvKernel); +REGISTER_OP_CUDA_KERNEL( + conv3d_grad, + ops::GemmConvGradKernel, + ops::GemmConvGradKernel); diff --git a/paddle/operators/conv_op.h b/paddle/operators/conv_op.h index 09bff0a68db82aa723dc08aa83c775910e17c5b8..83786e2329e7ae3c2908fdfdaeb1f79d19a53f47 100644 --- a/paddle/operators/conv_op.h +++ b/paddle/operators/conv_op.h @@ -50,14 +50,12 @@ inline bool IsExpand(std::vector& filter_dim, // operator implementations can reuse the code. class Conv2DOpMaker : public framework::OpProtoAndCheckerMaker { public: - Conv2DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class Conv3DOpMaker : public framework::OpProtoAndCheckerMaker { public: - Conv3DOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Conv3DOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class ConvOp : public framework::OperatorWithKernel { @@ -72,7 +70,7 @@ class ConvOpGrad : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override; }; -template +template class GemmConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -141,9 +139,10 @@ class GemmConvKernel : public framework::OpKernel { int in_step = static_cast(input->dims()[1]) / groups; int out_step = static_cast(output->dims()[1]) / groups; - math::Vol2ColFunctor vol2col; - math::Im2ColFunctor im2col; + math::Vol2ColFunctor vol2col; + math::Im2ColFunctor im2col; + auto& dev_ctx = context.template device_context(); for (int i = 0; i < batch_size; i++) { Tensor in_batch = input->Slice(i, i + 1).Resize(input_shape); Tensor out_batch = output->Slice(i, i + 1).Resize(output_matrix_shape); @@ -157,27 +156,26 @@ class GemmConvKernel : public framework::OpKernel { col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { // im2col - im2col(context.device_context(), in_slice, dilations, strides, + im2col(dev_ctx, in_slice, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); } else if (data_dim == 3U) { // vol2col - vol2col(context.device_context(), in_slice, dilations, strides, - paddings, &col); + vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col); } // gemm Tensor out_slice = out_batch.Slice(g * out_step, (g + 1) * out_step); Tensor filter_slice = filter.Slice(g * out_step, (g + 1) * out_step); - math::matmul(context.device_context(), filter_slice, false, - col_matrix, false, T(1.0), &out_slice, T(0.0)); + math::matmul(dev_ctx, filter_slice, false, col_matrix, + false, T(1.0), &out_slice, T(0.0)); } } } }; -template +template class GemmConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -256,14 +254,19 @@ class GemmConvGradKernel : public framework::OpKernel { col_matrix.Resize(col_matrix_shape); } - math::SetConstant set_zero; + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); if (input_grad) { input_grad->mutable_data(context.GetPlace()); - set_zero(context.device_context(), input_grad, static_cast(0)); - math::Col2VolFunctor col2vol; - math::Col2ImFunctor col2im; + // if is_expand is false, the operation of set_zero is unnecessary, + // because math::matmul will reset input_grad. + if (is_expand) { + set_zero(dev_ctx, input_grad, static_cast(0)); + } + math::Col2VolFunctor col2vol; + math::Col2ImFunctor col2im; for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = @@ -282,18 +285,17 @@ class GemmConvGradKernel : public framework::OpKernel { col_matrix.ShareDataWith(in_grad_slice); col_matrix.Resize(col_matrix_shape); } - math::matmul(context.device_context(), filter_slice, true, - out_grad_slice, false, T(1.0), &col_matrix, - T(0.0)); + math::matmul(dev_ctx, filter_slice, true, + out_grad_slice, false, T(1.0), + &col_matrix, T(0.0)); if (is_expand && data_dim == 2U) { - col2im(context.device_context(), col, dilations, strides, + col2im(dev_ctx, col, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &in_grad_slice); } else if (is_expand && data_dim == 3U) { - col2vol(context.device_context(), col, dilations, strides, paddings, - &in_grad_slice); + col2vol(dev_ctx, col, dilations, strides, paddings, &in_grad_slice); } } } @@ -303,9 +305,9 @@ class GemmConvGradKernel : public framework::OpKernel { filter_grad->mutable_data(context.GetPlace()); Tensor filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); - set_zero(context.device_context(), filter_grad, static_cast(0)); - math::Im2ColFunctor im2col; - math::Vol2ColFunctor vol2col; + set_zero(dev_ctx, filter_grad, static_cast(0)); + math::Im2ColFunctor im2col; + math::Vol2ColFunctor vol2col; for (int i = 0; i < batch_size; i++) { Tensor out_grad_batch = output_grad->Slice(i, i + 1).Resize(output_matrix_shape); @@ -321,21 +323,20 @@ class GemmConvGradKernel : public framework::OpKernel { col_matrix.ShareDataWith(col); col_matrix.Resize(col_matrix_shape); } else if (data_dim == 2U) { - im2col(context.device_context(), in_slice, dilations, strides, + im2col(dev_ctx, in_slice, dilations, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, &col); } else if (data_dim == 3U) { - vol2col(context.device_context(), in_slice, dilations, strides, - paddings, &col); + vol2col(dev_ctx, in_slice, dilations, strides, paddings, &col); } // gemm Tensor filter_grad_slice = filter_grad_.Slice(g * out_step, (g + 1) * out_step); - math::matmul(context.device_context(), out_grad_slice, - false, col_matrix, true, T(1.0), - &filter_grad_slice, T(1.0)); + math::matmul(dev_ctx, out_grad_slice, false, + col_matrix, true, T(1.0), + &filter_grad_slice, T(1.0)); } } } diff --git a/paddle/operators/conv_shift_op.cc b/paddle/operators/conv_shift_op.cc index a4150a5664690e750d2501a1849767c23209186b..ac2f80625935e14189d27bf738e9b9985a7f42c2 100644 --- a/paddle/operators/conv_shift_op.cc +++ b/paddle/operators/conv_shift_op.cc @@ -75,8 +75,7 @@ class ConvShiftGradOp : public framework::OperatorWithKernel { class ConvShiftOpMaker : public framework::OpProtoAndCheckerMaker { public: - ConvShiftOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ConvShiftOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor, default Tensor), a 2-D tensor with shape B x M, " diff --git a/paddle/operators/conv_shift_op.cu b/paddle/operators/conv_shift_op.cu index 95e13c38a8dd234f49393d2d4808607a447b0d4c..f7ca82ce2635f9ef9d7e9a062d148448e61c163c 100644 --- a/paddle/operators/conv_shift_op.cu +++ b/paddle/operators/conv_shift_op.cu @@ -111,7 +111,8 @@ __global__ void ConvShiftDy(const T *x, const T *dout, int x_width, int y_width, } // namespace template -class ConvShiftKernel : public framework::OpKernel { +class ConvShiftKernel + : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { const Tensor *X = context.Input("X"); @@ -132,7 +133,8 @@ class ConvShiftKernel : public framework::OpKernel { dim3 grid_dim(num_x_blocks, batch_size); - auto stream = context.cuda_device_context().stream(); + auto stream = + context.template device_context().stream(); ConvShiftForward<<>>( x_data, y_data, x_width, y_width, y_half_width, batch_size, out_data); @@ -140,7 +142,7 @@ class ConvShiftKernel : public framework::OpKernel { }; template -class ConvShiftGradKernel +class ConvShiftGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -159,8 +161,9 @@ class ConvShiftGradKernel int y_width = Y->dims()[1]; int y_half_width = (y_width - 1) / 2; - auto &device_ctx = context.cuda_device_context(); - math::SetConstant zero; + auto &device_ctx = + context.template device_context(); + math::SetConstant zero; const int x_per_block = 256; int num_x_blocks = DivUp(x_width, x_per_block); @@ -186,8 +189,9 @@ class ConvShiftGradKernel } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(conv_shift, - ops::ConvShiftKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + conv_shift, + ops::ConvShiftKernel); +REGISTER_OP_CUDA_KERNEL( conv_shift_grad, - ops::ConvShiftGradKernel); + ops::ConvShiftGradKernel); diff --git a/paddle/operators/conv_shift_op.h b/paddle/operators/conv_shift_op.h index 5a160b0f1696c70868fc48d219b38cde2018e8a3..1a70b38a0d8cb82ad1f818148306b7ec5f334744 100644 --- a/paddle/operators/conv_shift_op.h +++ b/paddle/operators/conv_shift_op.h @@ -18,13 +18,13 @@ namespace paddle { namespace operators { -template +template class ConvShiftKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override; }; -template +template class ConvShiftGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override; diff --git a/paddle/operators/conv_transpose_cudnn_op.cc b/paddle/operators/conv_transpose_cudnn_op.cc index 0192178ce3a0a47196232f0723baec8324bea60b..8980ff91f5d7c585d9ce0ce62cfb90f47ea86ec6 100644 --- a/paddle/operators/conv_transpose_cudnn_op.cc +++ b/paddle/operators/conv_transpose_cudnn_op.cc @@ -19,11 +19,8 @@ namespace operators { class CudnnConv2DTransposeOpMaker : public Conv2DTransposeOpMaker { public: - CudnnConv2DTransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CudnnConv2DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker) : Conv2DTransposeOpMaker(proto, op_checker) { - AddAttr>("dilations", "dilations of convolution operator.") - .SetDefault({1, 1}); AddAttr("workspace_size_MB", "workspace size for cudnn, in MB, " "workspace is a section of GPU memory which will be " @@ -36,11 +33,8 @@ class CudnnConv2DTransposeOpMaker : public Conv2DTransposeOpMaker { class CudnnConv3DTransposeOpMaker : public Conv3DTransposeOpMaker { public: - CudnnConv3DTransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CudnnConv3DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker) : Conv3DTransposeOpMaker(proto, op_checker) { - AddAttr>("dilations", "dilations of convolution operator.") - .SetDefault({1, 1, 1}); AddAttr("workspace_size_MB", "workspace size for cudnn, in MB, " "workspace is a section of GPU memory which will be " @@ -61,12 +55,13 @@ REGISTER_OP(conv2d_transpose_cudnn, ops::ConvTransposeOp, REGISTER_OP_CPU_KERNEL( conv2d_transpose_cudnn, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv2d_transpose_cudnn_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); REGISTER_OP(conv3d_transpose_cudnn, ops::ConvTransposeOp, ops::CudnnConv3DTransposeOpMaker, conv3d_transpose_cudnn_grad, @@ -74,9 +69,10 @@ REGISTER_OP(conv3d_transpose_cudnn, ops::ConvTransposeOp, REGISTER_OP_CPU_KERNEL( conv3d_transpose_cudnn, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv3d_transpose_cudnn_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv_transpose_cudnn_op.cu.cc b/paddle/operators/conv_transpose_cudnn_op.cu.cc index 494904fe524ae30a5032e489a0c5f20179d8e8ce..f0297f6c40c132c28b50184997d657451f26362b 100644 --- a/paddle/operators/conv_transpose_cudnn_op.cu.cc +++ b/paddle/operators/conv_transpose_cudnn_op.cu.cc @@ -83,7 +83,8 @@ class CudnnConvTransposeOpKernel : public framework::OpKernel { } // ------------------- cudnn conv algorithm --------------------- cudnnConvolutionBwdDataAlgo_t algo; - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); // Get the algorithm PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionBackwardDataAlgorithm( handle, cudnn_filter_desc, cudnn_input_desc, cudnn_conv_desc, @@ -165,7 +166,8 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { workspace_size_limit = user_workspace_size * 1024 * 1024; } - auto handle = ctx.cuda_device_context().cudnn_handle(); + auto& dev_ctx = ctx.template device_context(); + auto handle = dev_ctx.cudnn_handle(); if (input_grad) { // choose backward algorithm for data PADDLE_ENFORCE(platform::dynload::cudnnGetConvolutionForwardAlgorithm( @@ -234,16 +236,16 @@ class CudnnConvTransposeGradOpKernel : public framework::OpKernel { namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn, - ops::CudnnConvTransposeOpKernel, - ops::CudnnConvTransposeOpKernel); -REGISTER_OP_GPU_KERNEL(conv2d_transpose_cudnn_grad, - ops::CudnnConvTransposeGradOpKernel, - ops::CudnnConvTransposeGradOpKernel); - -REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn, - ops::CudnnConvTransposeOpKernel, - ops::CudnnConvTransposeOpKernel); -REGISTER_OP_GPU_KERNEL(conv3d_transpose_cudnn_grad, - ops::CudnnConvTransposeGradOpKernel, - ops::CudnnConvTransposeGradOpKernel); +REGISTER_OP_CUDA_KERNEL(conv2d_transpose_cudnn, + ops::CudnnConvTransposeOpKernel, + ops::CudnnConvTransposeOpKernel); +REGISTER_OP_CUDA_KERNEL(conv2d_transpose_cudnn_grad, + ops::CudnnConvTransposeGradOpKernel, + ops::CudnnConvTransposeGradOpKernel); + +REGISTER_OP_CUDA_KERNEL(conv3d_transpose_cudnn, + ops::CudnnConvTransposeOpKernel, + ops::CudnnConvTransposeOpKernel); +REGISTER_OP_CUDA_KERNEL(conv3d_transpose_cudnn_grad, + ops::CudnnConvTransposeGradOpKernel, + ops::CudnnConvTransposeGradOpKernel); diff --git a/paddle/operators/conv_transpose_op.cc b/paddle/operators/conv_transpose_op.cc index 678b192dea78fc6b4a6b54c4bb09a55dfb8f9c38..5e24fc4b2c8b479caac417c957033f7552e1c3f0 100644 --- a/paddle/operators/conv_transpose_op.cc +++ b/paddle/operators/conv_transpose_op.cc @@ -29,6 +29,7 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { auto filter_dims = ctx->GetInputDim("Filter"); std::vector strides = ctx->Attrs().Get>("strides"); std::vector paddings = ctx->Attrs().Get>("paddings"); + std::vector dilations = ctx->Attrs().Get>("dilations"); PADDLE_ENFORCE(in_dims.size() == 4 || in_dims.size() == 5, "ConvTransposeOp intput should be 4-D or 5-D tensor."); @@ -41,20 +42,24 @@ void ConvTransposeOp::InferShape(framework::InferShapeContext* ctx) const { PADDLE_ENFORCE_EQ(paddings.size(), strides.size(), "ConvTransposeOp paddings dimension and strides " "dimension should be the same."); + PADDLE_ENFORCE_EQ(paddings.size(), dilations.size(), + "ConvTransposeOp paddings dimension and dilations " + "dimension should be the same."); PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[0], "In ConvTransposeOp, The input channel should be the same " "as the number of filters."); std::vector output_shape({in_dims[0], filter_dims[1]}); for (size_t i = 0; i < strides.size(); ++i) { + auto filter_extent = dilations[i] * (filter_dims[i + 2] - 1) + 1; output_shape.push_back((in_dims[i + 2] - 1) * strides[i] - 2 * paddings[i] + - filter_dims[i + 2]); + filter_extent); } ctx->SetOutputDim("Output", framework::make_ddim(output_shape)); } -Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( - framework::OpProto* proto, framework::OpAttrChecker* op_checker) +Conv2DTransposeOpMaker::Conv2DTransposeOpMaker(OpProto* proto, + OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "Input", @@ -73,6 +78,12 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( AddOutput("Output", "(Tensor) The output tensor of convolution transpose operator. " "The format of output tensor is also NCHW."); + + AddAttr>("dilations", + "(vector default:{1, 1}), the " + "dilations(h_dilation, w_dilation) of convolution " + "transpose operator.") + .SetDefault({1, 1}); AddAttr>( "strides", "(vector default:{1, 1}), the strides(h_stride, w_stride) of " @@ -87,7 +98,7 @@ Conv2DTransposeOpMaker::Conv2DTransposeOpMaker( Convolution2D Transpose Operator. The convolution transpose operation calculates the output based on the input, filter -and strides, paddings, groups parameters. The size of each dimension of the +and dilations, strides, paddings, groups parameters. The size of each dimension of the parameters is checked in the infer-shape. Input(Input) and output(Output) are in NCHW format. Where N is batchsize, C is the number of channels, H is the height of the feature, and W is the width of the feature. @@ -112,8 +123,8 @@ Example: )DOC"); } -Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( - framework::OpProto* proto, framework::OpAttrChecker* op_checker) +Conv3DTransposeOpMaker::Conv3DTransposeOpMaker(OpProto* proto, + OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(Tensor) The input tensor of convolution transpose operator." @@ -136,6 +147,13 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( "Where N is batch size, C is " "the number of channels, D is the depth of the feature, H is the " "height of the feature, and W is the width of the feature."); + + AddAttr>( + "dilations", + "(vector default:{1, 1, 1}), the " + "dilations(d_dilation,h_dilation, w_dilation) of convolution " + "transpose operator.") + .SetDefault({1, 1, 1}); AddAttr>("strides", "(vector default:{1, 1, 1}), the " "strides{d_stride, h_stride, w_stride} of " @@ -149,7 +167,7 @@ Conv3DTransposeOpMaker::Conv3DTransposeOpMaker( Convolution3D Transpose Operator. The convolution transpose operation calculates the output based on the input, filter -and strides, paddings, groups parameters. The size of each dimension of the +and dilations, strides, paddings, groups parameters. The size of each dimension of the parameters is checked in the infer-shape. Input(Input) and output(Output) are in NCDHW format. Where N is batch size, C is the number of channels, D is the depth of the feature, H is the height of the feature, @@ -197,21 +215,23 @@ REGISTER_OP(conv2d_transpose, ops::ConvTransposeOp, ops::Conv2DTransposeOpMaker, REGISTER_OP_CPU_KERNEL( conv2d_transpose, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv2d_transpose_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); REGISTER_OP(conv3d_transpose, ops::ConvTransposeOp, ops::Conv3DTransposeOpMaker, conv3d_transpose_grad, ops::ConvTransposeOpGrad); REGISTER_OP_CPU_KERNEL( conv3d_transpose, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); REGISTER_OP_CPU_KERNEL( conv3d_transpose_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv_transpose_op.cu.cc b/paddle/operators/conv_transpose_op.cu.cc index 4165eb0c7b048b83bbd94c57b971530043b66545..b91ebd7922f2e101df8d6ef5892a62ec5a10cf99 100644 --- a/paddle/operators/conv_transpose_op.cu.cc +++ b/paddle/operators/conv_transpose_op.cu.cc @@ -16,20 +16,24 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( conv2d_transpose, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); -REGISTER_OP_GPU_KERNEL( + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); +REGISTER_OP_CUDA_KERNEL( conv2d_transpose_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( conv3d_transpose, - ops::GemmConvTransposeKernel, - ops::GemmConvTransposeKernel); -REGISTER_OP_GPU_KERNEL( + ops::GemmConvTransposeKernel, + ops::GemmConvTransposeKernel); +REGISTER_OP_CUDA_KERNEL( conv3d_transpose_grad, - ops::GemmConvTransposeGradKernel, - ops::GemmConvTransposeGradKernel); + ops::GemmConvTransposeGradKernel, + ops::GemmConvTransposeGradKernel); diff --git a/paddle/operators/conv_transpose_op.h b/paddle/operators/conv_transpose_op.h index 1cacb770e6af3ad3c99ab81c5598ffcd228f59b2..4c8f8a80672788e8b2919e500d3627adec1ad035 100644 --- a/paddle/operators/conv_transpose_op.h +++ b/paddle/operators/conv_transpose_op.h @@ -30,14 +30,12 @@ using DDim = framework::DDim; // operator implementations can reuse the code. class Conv2DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: - Conv2DTransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Conv2DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class Conv3DTransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: - Conv3DTransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Conv3DTransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class ConvTransposeOp : public framework::OperatorWithKernel { @@ -52,7 +50,7 @@ class ConvTransposeOpGrad : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext* ctx) const override; }; -template +template class GemmConvTransposeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -63,6 +61,7 @@ class GemmConvTransposeKernel : public framework::OpKernel { std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); + std::vector dilations = context.Attr>("dilations"); // groups will alway be disabled in conv2dtranspose. const int batch_size = static_cast(input->dims()[0]); @@ -109,12 +108,12 @@ class GemmConvTransposeKernel : public framework::OpKernel { filter.Resize(filter_matrix_shape); output->mutable_data(context.GetPlace()); - math::SetConstant set_zero; - set_zero(context.device_context(), output, static_cast(0)); + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); + set_zero(dev_ctx, output, static_cast(0)); - math::Col2ImFunctor col2im; - math::Col2VolFunctor col2vol; - std::vector dilations({1, 1, 1}); + math::Col2ImFunctor col2im; + math::Col2VolFunctor col2vol; // convolution transpose: gemm + col2im or col2vol (similar to conv-backward // on input) @@ -127,29 +126,27 @@ class GemmConvTransposeKernel : public framework::OpKernel { // col_matrix = filter * input_batch // of shape (c * k_h * k_w, h * w) or (c * k_d * k_h * k_w, d * h * w) - math::matmul(context.device_context(), filter, true, - input_batch, false, static_cast(1.0), - &col_matrix, static_cast(0.0)); + math::matmul(dev_ctx, filter, true, input_batch, false, + static_cast(1.0), &col_matrix, + static_cast(0.0)); if (data_dim == 2U) { // col2im: col_matrix -> dy // from (c * k_h * k_w, h * w) to (c, o_h, o_w) - col2im(context.device_context(), col, - std::vector{dilations[0], dilations[1]}, strides, - std::vector{paddings[0], paddings[1], paddings[0], - paddings[1]}, + col2im(dev_ctx, col, std::vector{dilations[0], dilations[1]}, + strides, std::vector{paddings[0], paddings[1], paddings[0], + paddings[1]}, &output_batch); } else if (data_dim == 3U) { // col2vol: col_matrix -> dy // from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w) - col2vol(context.device_context(), col, dilations, strides, paddings, - &output_batch); + col2vol(dev_ctx, col, dilations, strides, paddings, &output_batch); } } } }; -template +template class GemmConvTransposeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -168,6 +165,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); + std::vector dilations = context.Attr>("dilations"); const int batch_size = static_cast(input->dims()[0]); @@ -206,6 +204,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { // convolution transpose grad on input: // im2col + gemm (similar to conv-forward) // input need to compute gradient + auto& dev_ctx = context.template device_context(); if (input_grad || filter_grad) { Tensor col; col.mutable_data(col_shape, context.GetPlace()); @@ -217,19 +216,17 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { col_matrix.Resize(col_matrix_shape); Tensor filter_grad_; - math::SetConstant set_zero; + math::SetConstant set_zero; - math::Im2ColFunctor im2col; - math::Vol2ColFunctor vol2col; - std::vector dilations({1, 1, 1}); + math::Im2ColFunctor im2col; + math::Vol2ColFunctor vol2col; if (input_grad) { input_grad->mutable_data(context.GetPlace()); - set_zero(context.device_context(), input_grad, static_cast(0)); } if (filter_grad) { // filter size (m, c, k_h, k_w) filter_grad->mutable_data(context.GetPlace()); - set_zero(context.device_context(), filter_grad, static_cast(0)); + set_zero(dev_ctx, filter_grad, static_cast(0)); filter_grad_ = *filter_grad; filter_grad_.Resize(filter_matrix_shape); } @@ -242,7 +239,7 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { if (data_dim == 2U) { // im2col: dy -> col matrix // from (c, o_h, o_w) to (c * k_h * k_w, h * w) - im2col(context.device_context(), output_grad_batch, + im2col(dev_ctx, output_grad_batch, std::vector{dilations[0], dilations[1]}, strides, std::vector{paddings[0], paddings[1], paddings[0], paddings[1]}, @@ -250,8 +247,8 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { } else if (data_dim == 3U) { // vol2col: dy -> col_matrix // from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w) - vol2col(context.device_context(), output_grad_batch, dilations, - strides, paddings, &col); + vol2col(dev_ctx, output_grad_batch, dilations, strides, paddings, + &col); } if (input_grad) { @@ -263,9 +260,9 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { // or // (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m, // d, h, w) - math::matmul(context.device_context(), filter, false, - col_matrix, false, static_cast(1.0), - &input_grad_batch, static_cast(0.0)); + math::matmul( + dev_ctx, filter, false, col_matrix, false, static_cast(1.0), + &input_grad_batch, static_cast(0.0)); } if (filter_grad) { // input batch @@ -275,9 +272,9 @@ class GemmConvTransposeGradKernel : public framework::OpKernel { // or // (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d * // k_h * k_w) - math::matmul(context.device_context(), in_batch, false, - col_matrix, true, static_cast(1.0), - &filter_grad_, static_cast(1.0)); + math::matmul(dev_ctx, in_batch, false, col_matrix, + true, static_cast(1.0), + &filter_grad_, static_cast(1.0)); } } } diff --git a/paddle/operators/cos_sim_op.cc b/paddle/operators/cos_sim_op.cc index 312264ccd48d1405a247a2c864d9f5897c897bea..a4d4a78d3200259403695a73ed9cfabe9baf8876 100644 --- a/paddle/operators/cos_sim_op.cc +++ b/paddle/operators/cos_sim_op.cc @@ -62,7 +62,7 @@ class CosSimOp : public framework::OperatorWithKernel { class CosSimOpMaker : public framework::OpProtoAndCheckerMaker { public: - CosSimOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + CosSimOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The 1st input of cos_sim op."); AddInput("Y", "The 2nd input of cos_sim op."); @@ -155,7 +155,8 @@ class CosSimOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(cos_sim, ops::CosSimOp, ops::CosSimOpMaker, cos_sim_grad, ops::CosSimOpGrad); -REGISTER_OP_CPU_KERNEL(cos_sim, - ops::CosSimKernel); REGISTER_OP_CPU_KERNEL( - cos_sim_grad, ops::CosSimGradKernel); + cos_sim, ops::CosSimKernel); +REGISTER_OP_CPU_KERNEL( + cos_sim_grad, + ops::CosSimGradKernel); diff --git a/paddle/operators/cos_sim_op.cu b/paddle/operators/cos_sim_op.cu index 0cb8fd26de47a4a464db98664263544e3e503d63..1cb01f5945f691747bac609ca4a93e2d15cde5bf 100644 --- a/paddle/operators/cos_sim_op.cu +++ b/paddle/operators/cos_sim_op.cu @@ -16,7 +16,8 @@ #include "paddle/operators/cos_sim_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(cos_sim, - ops::CosSimKernel); -REGISTER_OP_GPU_KERNEL( - cos_sim_grad, ops::CosSimGradKernel); +REGISTER_OP_CUDA_KERNEL( + cos_sim, ops::CosSimKernel); +REGISTER_OP_CUDA_KERNEL( + cos_sim_grad, + ops::CosSimGradKernel); diff --git a/paddle/operators/cos_sim_op.h b/paddle/operators/cos_sim_op.h index 62a4e484eceeabc4cc26e68ac54a50be1ac95df7..fecb5a79b2397dd73d991a1a87efcf84d60ef882 100644 --- a/paddle/operators/cos_sim_op.h +++ b/paddle/operators/cos_sim_op.h @@ -27,7 +27,7 @@ template using EigenVector = framework::EigenVector; -template +template class CosSimKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -51,7 +51,8 @@ class CosSimKernel : public framework::OpKernel { auto y_norm = EigenVector::Flatten(*out_y_norm); // compute - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto row_along = Eigen::array({{1}}); x_norm.device(place) = x.square().sum(row_along).sqrt(); y_norm.device(place) = y.square().sum(row_along).sqrt(); @@ -66,7 +67,7 @@ class CosSimKernel : public framework::OpKernel { } }; -template +template class CosSimGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -96,7 +97,8 @@ class CosSimGradKernel : public framework::OpKernel { auto z_bcast = z.broadcast(bcast_cols); auto dz_bcast = dz.broadcast(bcast_cols); auto x_snorm_bcast = x_norm.square().eval().broadcast(bcast_cols); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); if (rows_x == rows_y) { auto y_snorm_bcast = y_norm.square().eval().broadcast(bcast_cols); auto norm_prod_bcast = (x_norm * y_norm).eval().broadcast(bcast_cols); diff --git a/paddle/operators/crf_decoding_op.cc b/paddle/operators/crf_decoding_op.cc index f418f489c0ff471464a23380598e9f4c8da16ca9..27d0871f82beed4ceb3a4439be097a580631d4c6 100644 --- a/paddle/operators/crf_decoding_op.cc +++ b/paddle/operators/crf_decoding_op.cc @@ -18,8 +18,7 @@ namespace paddle { namespace operators { class CRFDecodingOpMaker : public framework::OpProtoAndCheckerMaker { public: - CRFDecodingOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CRFDecodingOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Emission", "(LoDTensor, default: LoDTensor). A LoDTensor with shape " @@ -36,17 +35,18 @@ class CRFDecodingOpMaker : public framework::OpProtoAndCheckerMaker { "w. See more details in comments of the linear_chain_crf operator."); AddInput( "Label", - "(LoDTensor, LoDTensor). The ground truth with shape " + "(LoDTensor, LoDTensor). The ground truth with shape " "[N x 1]. This input is optional. See more details in the operator's " "comments.") .AsDispensable(); - AddOutput("ViterbiPath", - "(LoDTensor, LoDTensor). The decoding results. What to " - "return changes depending on whether the Input(Label) (the groud " - "truth) is given. See more details in the operator's comment."); + AddOutput( + "ViterbiPath", + "(LoDTensor, LoDTensor). The decoding results. What to " + "return changes depending on whether the Input(Label) (the ground " + "truth) is given. See more details in the operator's comment."); AddComment(R"DOC( The crf_decoding operator reads the emission feature weights and the transition -freature weights learned by the linear_chain_crf operator. It implements the +feature weights learned by the linear_chain_crf operator. It implements the Viterbi algorithm which is a dynamic programming algorithm for finding the most likely sequence of hidden states, called the Viterbi path, that results in a sequence of observed tags. @@ -60,14 +60,14 @@ operator. When Input(Label) is given, the crf_decoding operator returns a row vector with shape [N x 1] whose values are fixed to be 0, indicating an incorrect -prediction, or 1 indicating a tag is correctly predicted. Such an ouput is the +prediction, or 1 indicating a tag is correctly predicted. Such an output is the input to chunk_eval operator. 2. Input(Label) is not given: This is the standard decoding process. -The crf_decoding operator returns a row vecotr with shape [N x 1] whose values +The crf_decoding operator returns a row vector with shape [N x 1] whose values range from 0 to maximum tag number - 1. Each element indicates an index of a predicted tag. )DOC"); @@ -134,5 +134,6 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(crf_decoding, ops::CRFDecodingOp, ops::CRFDecodingOpMaker); REGISTER_OP_CPU_KERNEL( - crf_decoding, ops::CRFDecodingOpKernel, - ops::CRFDecodingOpKernel); + crf_decoding, + ops::CRFDecodingOpKernel, + ops::CRFDecodingOpKernel); diff --git a/paddle/operators/crf_decoding_op.h b/paddle/operators/crf_decoding_op.h index 526e0c5dcb2649b35ee28f5153c8472ca7a0af7b..f6827b7b1128251b2bb7e0a6a032389e5adc1371 100644 --- a/paddle/operators/crf_decoding_op.h +++ b/paddle/operators/crf_decoding_op.h @@ -24,7 +24,7 @@ using framework::LoDTensor; using framework::LoD; using framework::Tensor; -template +template class CRFDecodingOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -43,9 +43,9 @@ class CRFDecodingOpKernel : public framework::OpKernel { const size_t level = 0; const size_t seq_num = lod[level].size() - 1; - int* path = decoded_path->mutable_data(platform::CPUPlace()); - math::SetConstant()(ctx.device_context(), - decoded_path, 0); + int64_t* path = decoded_path->mutable_data(platform::CPUPlace()); + math::SetConstant()( + ctx.template device_context(), decoded_path, 0); for (size_t i = 0; i < seq_num; ++i) { int start_pos = static_cast(lod[level][i]); int end_pos = static_cast(lod[level][i + 1]); @@ -57,7 +57,7 @@ class CRFDecodingOpKernel : public framework::OpKernel { if (label) { PADDLE_ENFORCE_EQ(label->NumLevels(), 1UL, "The Input(Label) should be a sequence."); - const int* label_value = label->data(); + const int64_t* label_value = label->data(); size_t batch_size = emission_weights->dims()[0]; for (size_t i = 0; i < batch_size; ++i) { path[i] = label_value[i] == path[i] ? 1 : 0; @@ -76,7 +76,7 @@ class CRFDecodingOpKernel : public framework::OpKernel { const T* x = emission_weights.data(); const T* w = transition_weights.data(); - int* path = decoded_path->data(); + int64_t* path = decoded_path->data(); // alpha is a memo table. An element alpha(k, v) records the score of the // best sequence of tags from position 1 to position k with v being the end diff --git a/paddle/operators/crop_op.cc b/paddle/operators/crop_op.cc index 6752eb8c1c72150b0b1cf5595211ca1d01ef2bf4..87fcab4cca669a356ced8951fbdc3c3ee3a24f3d 100644 --- a/paddle/operators/crop_op.cc +++ b/paddle/operators/crop_op.cc @@ -52,7 +52,7 @@ class CropOp : public framework::OperatorWithKernel { class CropOpMaker : public framework::OpProtoAndCheckerMaker { public: - CropOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + CropOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of pad op. " @@ -88,7 +88,8 @@ There are two ways to set shape: The input should be a k-D tensor(k > 0 and k < 7). As an example: -Given: +Case 1: +Given X = [[0, 1, 2, 0, 0] [0, 3, 4, 0, 0] @@ -107,6 +108,27 @@ we get: Out = [[1, 2], [3, 4]]. + +Case 2: +Given + + X = [[0, 1, 2, 5, 0] + [0, 3, 4, 6, 0] + [0, 0, 0, 0, 0]], + +and + + offsets = [0, 1], + +and + + Y = [[0, 0, 0] + [0, 0, 0]], + +we get: + + Out = [[1, 2, 5], + [3, 4, 6]]. )DOC"); } }; @@ -133,5 +155,5 @@ class CropOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad); REGISTER_OP_CPU_KERNEL(crop, ops::CropKernel); -REGISTER_OP_CPU_KERNEL(crop_grad, - ops::CropGradKernel); +REGISTER_OP_CPU_KERNEL( + crop_grad, ops::CropGradKernel); diff --git a/paddle/operators/crop_op.cu b/paddle/operators/crop_op.cu index f8ee18a1d6e894cbb2d71dd4b6b459abeb076817..90fd83ca10b750896a9fe144d3c30fabb2f54e0a 100644 --- a/paddle/operators/crop_op.cu +++ b/paddle/operators/crop_op.cu @@ -16,6 +16,6 @@ #include "paddle/operators/crop_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(crop, ops::CropKernel); -REGISTER_OP_GPU_KERNEL(crop_grad, - ops::CropGradKernel); +REGISTER_OP_CUDA_KERNEL(crop, ops::CropKernel); +REGISTER_OP_CUDA_KERNEL( + crop_grad, ops::CropGradKernel); diff --git a/paddle/operators/crop_op.h b/paddle/operators/crop_op.h index 2e72583d68d0acf0e2f5044637dba55de3b57209..d531a19c783d2768d24142bb7b974ccfc2b39350 100644 --- a/paddle/operators/crop_op.h +++ b/paddle/operators/crop_op.h @@ -49,7 +49,7 @@ class CropKernel : public framework::OpKernel { } }; -template +template void CropGradFunction(const framework::ExecutionContext& context) { auto* d_x = context.Output(framework::GradVarName("X")); if (d_x != nullptr) { @@ -63,12 +63,13 @@ void CropGradFunction(const framework::ExecutionContext& context) { } auto d_x_tensor = EigenTensor::From(*d_x); auto d_out_tensor = EigenTensor::From(*d_out); - d_x_tensor.device(context.GetEigenDevice()) = + d_x_tensor.device( + *context.template device_context().eigen_device()) = d_out_tensor.pad(paddings, 0); } } -template +template class CropGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -76,22 +77,22 @@ class CropGradKernel : public framework::OpKernel { context.Input(framework::GradVarName("Out"))->dims().size(); switch (rank) { case 1: - CropGradFunction(context); + CropGradFunction(context); break; case 2: - CropGradFunction(context); + CropGradFunction(context); break; case 3: - CropGradFunction(context); + CropGradFunction(context); break; case 4: - CropGradFunction(context); + CropGradFunction(context); break; case 5: - CropGradFunction(context); + CropGradFunction(context); break; case 6: - CropGradFunction(context); + CropGradFunction(context); break; default: PADDLE_THROW( diff --git a/paddle/operators/cross_entropy_op.cc b/paddle/operators/cross_entropy_op.cc index 1e82742eaf86711fe4f9d02d517ad1853131cf67..1ab7c0a06f85f332b290cb6cac82d0cfbe8f3242 100644 --- a/paddle/operators/cross_entropy_op.cc +++ b/paddle/operators/cross_entropy_op.cc @@ -95,6 +95,7 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { "Input(Label) should be 1."); } ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + ctx->ShareLoD("X", framework::GradVarName("X")); } protected: @@ -110,8 +111,7 @@ class CrossEntropyGradientOp : public framework::OperatorWithKernel { class CrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { public: - CrossEntropyOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + CrossEntropyOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor, default Tensor), a 2-D tensor with shape N x D, " diff --git a/paddle/operators/cross_entropy_op.cu b/paddle/operators/cross_entropy_op.cu index 6212e39dfde33c5943958adbd1a0a052262e119e..05469645880fa466a2a3324ad1b7a8b9d681c440 100644 --- a/paddle/operators/cross_entropy_op.cu +++ b/paddle/operators/cross_entropy_op.cu @@ -53,8 +53,9 @@ class CrossEntropyOpCUDAKernel : public framework::OpKernel { Tensor* y = ctx.Output("Y"); y->mutable_data(ctx.GetPlace()); - math::CrossEntropyFunctor()( - ctx.device_context(), y, x, label, ctx.Attr("soft_label")); + math::CrossEntropyFunctor()( + ctx.template device_context(), y, x, label, + ctx.Attr("soft_label")); } }; @@ -80,15 +81,17 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel { int block = 512; int grid = (batch_size * class_num + block - 1) / block; - auto stream = ctx.cuda_device_context().stream(); + + auto& dev_ctx = ctx.template device_context(); + auto stream = dev_ctx.stream(); if (ctx.Attr("soft_label")) { auto* label_data = label->data(); SoftCrossEntropyGradientKernel<<>>( dx_data, dy_data, x_data, label_data, batch_size, class_num); } else { - math::SetConstant functor; - functor(ctx.device_context(), dx, 0); + math::SetConstant functor; + functor(dev_ctx, dx, 0); auto* label_data = label->data(); grid = (batch_size + block - 1) / block; CrossEntropyGradientKernel<<>>( @@ -101,8 +104,8 @@ class CrossEntropyGradientOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel, - ops::CrossEntropyOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(cross_entropy_grad, - ops::CrossEntropyGradientOpCUDAKernel, - ops::CrossEntropyGradientOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(cross_entropy, ops::CrossEntropyOpCUDAKernel, + ops::CrossEntropyOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(cross_entropy_grad, + ops::CrossEntropyGradientOpCUDAKernel, + ops::CrossEntropyGradientOpCUDAKernel); diff --git a/paddle/operators/cross_entropy_op.h b/paddle/operators/cross_entropy_op.h index 37db0a930a6aea0ba333395ca9c5b9d231c07b32..5623d2ded16daaf51dd26c9d9a8c04a0ae5be5ec 100644 --- a/paddle/operators/cross_entropy_op.h +++ b/paddle/operators/cross_entropy_op.h @@ -37,8 +37,9 @@ class CrossEntropyOpKernel : public framework::OpKernel { Tensor* y = ctx.Output("Y"); y->mutable_data(ctx.GetPlace()); - math::CrossEntropyFunctor()( - ctx.device_context(), y, x, labels, ctx.Attr("soft_label")); + math::CrossEntropyFunctor()( + ctx.template device_context(), y, x, labels, + ctx.Attr("soft_label")); } }; @@ -61,7 +62,8 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel { auto lbl_mat = EigenMatrix::From(*label); auto dx_mat = EigenMatrix::From(*dx); - dx_mat.device(ctx.GetEigenDevice()) = + dx_mat.device(*ctx.template device_context() + .eigen_device()) = -(lbl_mat * dy_mat.broadcast(Eigen::DSizes(1, class_num)) / x_mat); } else { @@ -70,8 +72,8 @@ class CrossEntropyGradientOpKernel : public framework::OpKernel { const T* x_data = x->data(); const int64_t* label_data = label->data(); - math::SetConstant functor; - functor(ctx.device_context(), dx, 0); + math::SetConstant functor; + functor(ctx.template device_context(), dx, 0); for (int64_t i = 0; i < batch_size; ++i) { PADDLE_ASSERT(label_data[i] >= 0 || label_data[i] < class_num); diff --git a/paddle/operators/decayed_adagrad_op.cc b/paddle/operators/decayed_adagrad_op.cc index 640b4e77448d1b64bcf7375f26c07ff1d2bdeaa3..739a8d881c35817756421a3299901c9e5e7d96ba 100644 --- a/paddle/operators/decayed_adagrad_op.cc +++ b/paddle/operators/decayed_adagrad_op.cc @@ -55,8 +55,7 @@ class DecayedAdagradOp : public framework::OperatorWithKernel { class DecayedAdagradOpMaker : public framework::OpProtoAndCheckerMaker { public: - DecayedAdagradOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + DecayedAdagradOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("Grad", "(Tensor) Input gradient"); @@ -99,4 +98,4 @@ REGISTER_OP_WITHOUT_GRADIENT(decayed_adagrad, ops::DecayedAdagradOp, ops::DecayedAdagradOpMaker); REGISTER_OP_CPU_KERNEL( decayed_adagrad, - ops::DecayedAdagradOpKernel); + ops::DecayedAdagradOpKernel); diff --git a/paddle/operators/decayed_adagrad_op.cu b/paddle/operators/decayed_adagrad_op.cu index 6fce77fe4ec6b76cb7b0259aab6a3d55d2edb36c..282b90f275ad1542d5941e001dbf646348fc01b6 100644 --- a/paddle/operators/decayed_adagrad_op.cu +++ b/paddle/operators/decayed_adagrad_op.cu @@ -16,6 +16,6 @@ #include "paddle/operators/decayed_adagrad_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( decayed_adagrad, - ops::DecayedAdagradOpKernel); + ops::DecayedAdagradOpKernel); diff --git a/paddle/operators/decayed_adagrad_op.h b/paddle/operators/decayed_adagrad_op.h index 0fe0fc5acd66c9824a864618b69097c5c063ea3f..fec9705cfc1e14e5423e23d6afb218c6c051f5a1 100644 --- a/paddle/operators/decayed_adagrad_op.h +++ b/paddle/operators/decayed_adagrad_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class DecayedAdagradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -43,7 +43,7 @@ class DecayedAdagradOpKernel : public framework::OpKernel { auto param_out = framework::EigenVector::Flatten(*param_out_tensor); auto moment_out = framework::EigenVector::Flatten(*moment_out_tensor); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); moment_out.device(place) = decay * moment + (1 - decay) * grad * grad; Eigen::DSizes m_dsize(moment_out_tensor->numel()); diff --git a/paddle/operators/detail/recv_impl.cc b/paddle/operators/detail/recv_impl.cc index 89dc5045221156eed7aa9411bc96ad86f91136d2..517a1946a0c25081b20c320f4104c81503a4249e 100644 --- a/paddle/operators/detail/recv_impl.cc +++ b/paddle/operators/detail/recv_impl.cc @@ -20,25 +20,57 @@ namespace detail { Status SendRecvServerImpl::SendVariable(ServerContext *context, const VariableMessage *in_var, - VariableMessage *out_var) { - framework::LoDTensor t; - // TODO(typhoonzero): desirealize in_tensor and run pserver network. + VoidMessage *out_var) { + // TODO(typhoonzero): support different variable types. std::istringstream iss(in_var->serialized()); + framework::LoDTensor t; framework::DeserializeFromStream(iss, &t); - lodtensor_queue_.Push(std::move(t)); - // Block util the sub graph is done. - t = lodtensor_return_queue_.Pop(); + TensorWithName tensor_with_name = + std::make_pair(in_var->varname(), std::move(t)); + + var_recv_queue_.Push(std::move(tensor_with_name)); + return Status::OK; +} + +Status SendRecvServerImpl::GetVariable(ServerContext *context, + const VariableMessage *in_var, + VariableMessage *out_var) { + std::string get_var_name = in_var->varname(); + auto *var = scope_->FindVar(get_var_name); + auto tensor = var->Get(); std::ostringstream oss; - // FIXME(typhoonzero): get context from op. - framework::SerializeToStream(oss, t, platform::CPUDeviceContext()); + framework::SerializeToStream(oss, tensor, platform::CPUDeviceContext()); + std::string *varname = out_var->mutable_varname(); - *varname = in_var->varname(); + *varname = get_var_name; std::string *serialized = out_var->mutable_serialized(); *serialized = oss.str(); + return Status::OK; +} +Status SendRecvServerImpl::Wait(ServerContext *context, + const VoidMessage *in_var, + VoidMessage *out_var) { + { + std::unique_lock lock(this->mutex_); + condition_.wait(lock, [=] { return this->done_ == true; }); + } return Status::OK; } +void SendRecvServerImpl::Reset() { + std::lock_guard lock(this->mutex_); + done_ = false; +} + +void SendRecvServerImpl::Done() { + { + std::lock_guard lock(this->mutex_); + done_ = true; + } + condition_.notify_all(); +} + } // namespace detail } // namespace operators } // namespace paddle diff --git a/paddle/operators/detail/send_impl.cc b/paddle/operators/detail/send_impl.cc index da1ddf75d2afb85670c5ea0c9884376415f28208..d7165e13db961f7719139b1a40211d6a2ca67a9f 100644 --- a/paddle/operators/detail/send_impl.cc +++ b/paddle/operators/detail/send_impl.cc @@ -19,10 +19,10 @@ namespace operators { namespace detail { bool RPCClient::SendVariable(const framework::Scope& scope, - const std::string& inname, - const std::string& outname) { + const std::string& inname) { ClientContext context; - VariableMessage msg, out_msg; + VariableMessage msg; + VoidMessage out_msg; // FIXME(typhoonzero): pass device context to here. auto ctx = platform::CPUDeviceContext(); auto* var = scope.FindVar(inname); @@ -37,9 +37,26 @@ bool RPCClient::SendVariable(const framework::Scope& scope, msg.set_serialized(oss.str()); Status status = stub_->SendVariable(&context, msg, &out_msg); if (!status.ok()) { + LOG(ERROR) << "gRPC error: " << status.error_message(); return false; } - std::istringstream iss(out_msg.serialized()); + return true; +} + +bool RPCClient::GetVariable(const framework::Scope& scope, + const std::string& outname) { + ClientContext context; + VariableMessage call_msg, ret_msg; + call_msg.set_varname(outname); + auto ctx = platform::CPUDeviceContext(); + Status status = stub_->GetVariable(&context, call_msg, &ret_msg); + if (!status.ok()) { + LOG(ERROR) << "gRPC error: " << status.error_message(); + return false; + } + + std::istringstream iss(ret_msg.serialized()); + framework::LoDTensor ret_tensor; framework::DeserializeFromStream(iss, &ret_tensor); auto* outvar = scope.FindVar(outname); @@ -49,6 +66,12 @@ bool RPCClient::SendVariable(const framework::Scope& scope, return true; } +void RPCClient::Wait() { + ClientContext context; + VoidMessage call_msg, ret_msg; + stub_->Wait(&context, call_msg, &ret_msg); +} + } // namespace detail } // namespace operators } // namespace paddle diff --git a/paddle/operators/detail/send_recv.proto b/paddle/operators/detail/send_recv.proto index 07ff9d2c621a2dfb51792821a0d3fc398c315835..ce729908062ad442e66cc00001e14ceb6f268560 100644 --- a/paddle/operators/detail/send_recv.proto +++ b/paddle/operators/detail/send_recv.proto @@ -19,7 +19,12 @@ package sendrecv; service SendRecvService { // For parameter server round-robin like hashing, do not split tensors. // Send and recv only one tensor - rpc SendVariable(VariableMessage) returns (VariableMessage) {} + // TODO(typhoonzero): add streaming API + rpc SendVariable(VariableMessage) returns (VoidMessage) {} + // Argument VariableMessage for GetVariable should only contain varname. + rpc GetVariable(VariableMessage) returns (VariableMessage) {} + // wait for one execution of the program + rpc Wait(VoidMessage) returns (VoidMessage) {} } // VariableMessage is serialized paddle variable message. diff --git a/paddle/operators/detail/send_recv_impl.h b/paddle/operators/detail/send_recv_impl.h index b9a5340a8636db7b5d6ec7b21368632d3916b4aa..eec9dd38d188247cba4da2a377038a28c847e40e 100644 --- a/paddle/operators/detail/send_recv_impl.h +++ b/paddle/operators/detail/send_recv_impl.h @@ -20,10 +20,6 @@ #include "paddle/framework/selected_rows.h" #include "paddle/operators/detail/simple_block_queue.h" -// #include -// #include -// #include -// #include #include "paddle/operators/detail/send_recv.grpc.pb.h" #include "paddle/operators/detail/send_recv.pb.h" @@ -48,24 +44,32 @@ namespace paddle { namespace operators { namespace detail { +typedef std::pair TensorWithName; + class SendRecvServerImpl final : public SendRecvService::Service { public: explicit SendRecvServerImpl() {} Status SendVariable(ServerContext *context, const VariableMessage *in_var, - VariableMessage *out_var) override; - - const framework::LoDTensor Get() { return this->lodtensor_queue_.Pop(); } + VoidMessage *out_var) override; + Status GetVariable(ServerContext *context, const VariableMessage *in_var, + VariableMessage *out_var) override; + Status Wait(ServerContext *context, const VoidMessage *in_var, + VoidMessage *out_var) override; + void Reset(); + void Done(); + void SetScope(framework::Scope *scope) { scope_ = scope; }; - void Push(const framework::LoDTensor &tensor) { - this->lodtensor_return_queue_.Push(tensor); - } + const TensorWithName Get() { return this->var_recv_queue_.Pop(); } private: - SimpleBlockQueue lodtensor_queue_; - SimpleBlockQueue lodtensor_return_queue_; - SimpleBlockQueue selected_rows_queue_; - SimpleBlockQueue selected_rows_return_queue_; + // received variable from RPC, operators fetch variable from this queue. + SimpleBlockQueue var_recv_queue_; + framework::Scope *scope_; + // condition of the sub program + std::mutex mutex_; + bool done_; + std::condition_variable condition_; }; // RPCClient is a class to send tensors to pserver sub-network @@ -75,8 +79,9 @@ class RPCClient { RPCClient(std::shared_ptr channel) : stub_(SendRecvService::NewStub(channel)) {} - bool SendVariable(const framework::Scope &scope, const std::string &inname, - const std::string &outname); + bool SendVariable(const framework::Scope &scope, const std::string &inname); + bool GetVariable(const framework::Scope &scope, const std::string &outname); + void Wait(); private: std::unique_ptr stub_; diff --git a/paddle/operators/dropout_op.cc b/paddle/operators/dropout_op.cc index 932c0bf8fbf6ffdc466516bb7c8578abf0f57209..c4bee44e3e5a16334fb9070165eab5c7cdf0141c 100644 --- a/paddle/operators/dropout_op.cc +++ b/paddle/operators/dropout_op.cc @@ -40,8 +40,7 @@ class DropoutOp : public framework::OperatorWithKernel { template class DropoutOpMaker : public framework::OpProtoAndCheckerMaker { public: - DropoutOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + DropoutOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of dropout op."); AddOutput("Out", "The output of dropout op."); @@ -100,6 +99,8 @@ namespace ops = paddle::operators; REGISTER_OP(dropout, ops::DropoutOp, ops::DropoutOpMaker, dropout_grad, ops::DropoutOpGrad); REGISTER_OP_CPU_KERNEL( - dropout, ops::CPUDropoutKernel); + dropout, + ops::CPUDropoutKernel); REGISTER_OP_CPU_KERNEL( - dropout_grad, ops::DropoutGradKernel); + dropout_grad, + ops::DropoutGradKernel); diff --git a/paddle/operators/dropout_op.cu b/paddle/operators/dropout_op.cu index db3578b9bf4c081e431f202f0828ec6392c924b2..c31d2195e95b116451b0f620f6582f65c0dae706 100644 --- a/paddle/operators/dropout_op.cu +++ b/paddle/operators/dropout_op.cu @@ -58,7 +58,7 @@ class GPUDropoutKernel : public framework::OpKernel { auto X = EigenMatrix::Reshape(*x, 1); auto Y = EigenMatrix::Reshape(*y, 1); - auto place = context.GetEigenDevice(); + auto& place = *context.template device_context().eigen_device(); if (!context.Attr("is_test")) { auto* mask = context.Output("Mask"); auto* mask_data = mask->mutable_data(context.GetPlace()); @@ -71,7 +71,7 @@ class GPUDropoutKernel : public framework::OpKernel { auto M = EigenMatrix::Reshape(*mask, 1); Y.device(place) = X * M; } else { - Y.device(place) = X * dropout_prob; + Y.device(place) = X * (1.0f - dropout_prob); } } }; @@ -80,7 +80,9 @@ class GPUDropoutKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - dropout, ops::GPUDropoutKernel); -REGISTER_OP_GPU_KERNEL( - dropout_grad, ops::DropoutGradKernel); +REGISTER_OP_CUDA_KERNEL( + dropout, + ops::GPUDropoutKernel); +REGISTER_OP_CUDA_KERNEL( + dropout_grad, + ops::DropoutGradKernel); diff --git a/paddle/operators/dropout_op.h b/paddle/operators/dropout_op.h index d9a130fdc040f745b058c39221f0bb9661473388..9f6c4212d4f834bbb2d1c65c836f3d3d0f3e0c96 100644 --- a/paddle/operators/dropout_op.h +++ b/paddle/operators/dropout_op.h @@ -25,7 +25,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class CPUDropoutKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -55,13 +55,14 @@ class CPUDropoutKernel : public framework::OpKernel { } else { auto X = EigenMatrix::Reshape(*x, 1); auto Y = EigenMatrix::Reshape(*y, 1); - auto place = context.GetEigenDevice(); - Y.device(place) = X * dropout_prob; + auto& place = + *context.template device_context().eigen_device(); + Y.device(place) = X * (1.0f - dropout_prob); } } }; -template +template class DropoutGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -77,7 +78,8 @@ class DropoutGradKernel : public framework::OpKernel { auto dX = EigenMatrix::Reshape(*grad_x, 1); auto dY = EigenMatrix::Reshape(*grad_y, 1); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); dX.device(place) = dY * M; } }; diff --git a/paddle/operators/elementwise_add_op.cc b/paddle/operators/elementwise_add_op.cc index 432b9ba6f72f8dd11c666d5473c570bde60de995..b6bd794a74665cef546347015be25ab989e852b2 100644 --- a/paddle/operators/elementwise_add_op.cc +++ b/paddle/operators/elementwise_add_op.cc @@ -19,8 +19,7 @@ namespace paddle { namespace operators { class ElementwiseAddOpMaker : public ElementwiseOpMaker { public: - ElementwiseAddOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseAddOpMaker(OpProto* proto, OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { SetComment("Add", "$Out = X + Y$"); AddComment(comment_); @@ -34,13 +33,13 @@ REGISTER_OP(elementwise_add, ops::ElementwiseOp, ops::ElementwiseAddOpMaker, elementwise_add_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_add, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel); + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel); REGISTER_OP_CPU_KERNEL( elementwise_add_grad, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel); + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel); diff --git a/paddle/operators/elementwise_add_op.cu b/paddle/operators/elementwise_add_op.cu index 7591428ac7c2f74f25f0f7d818eafcf59c8e4a4f..78642bb4246e7328dd3e2d902aca88615d598ddf 100644 --- a/paddle/operators/elementwise_add_op.cu +++ b/paddle/operators/elementwise_add_op.cu @@ -17,15 +17,16 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( elementwise_add, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel, - ops::ElementwiseAddKernel); -REGISTER_OP_GPU_KERNEL( + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel, + ops::ElementwiseAddKernel); +REGISTER_OP_CUDA_KERNEL( elementwise_add_grad, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel, - ops::ElementwiseAddGradKernel); + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel, + ops::ElementwiseAddGradKernel); diff --git a/paddle/operators/elementwise_add_op.h b/paddle/operators/elementwise_add_op.h index f04fe3ec6069ab1bf227be6a3a5c10ee908e4824..069bdaf0ab7469b0a814ca5f68b444b9ce4904f1 100644 --- a/paddle/operators/elementwise_add_op.h +++ b/paddle/operators/elementwise_add_op.h @@ -19,11 +19,48 @@ namespace paddle { namespace operators { -template +template +struct AddFunctor { + inline HOSTDEVICE T operator()(T a, T b) const { return a + b; } +}; + +template class ElementwiseAddKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseCompute(ctx); + using Tensor = framework::Tensor; + + auto* x = ctx.Input("X"); + auto* y = ctx.Input("Y"); + auto* z = ctx.Output("Out"); + z->mutable_data(ctx.GetPlace()); + TransformFunctor, T, DeviceContext> functor( + x, y, z, ctx.template device_context(), AddFunctor()); + + auto x_dims = x->dims(); + auto y_dims = y->dims(); + PADDLE_ENFORCE_GE(x_dims.size(), y_dims.size(), + "Rank of first input must >= rank of second input."); + + if (x_dims == y_dims) { + functor.Run(); + return; + } + + int axis = ctx.Attr("axis"); + axis = (axis == -1 ? x_dims.size() - y_dims.size() : axis); + PADDLE_ENFORCE(axis >= 0 && axis < x_dims.size(), + "Axis should be in range [0, x_dims)"); + + int pre, n, post; + get_mid_dims(x_dims, y_dims, axis, pre, n, post); + if (post == 1) { + functor.RunRowWise(n, pre); + return; + } else { + functor.RunMidWise(n, pre, post); + return; + } } }; @@ -100,11 +137,11 @@ struct ElementwiseAddBroadCast2GradFunctor { } }; -template +template class ElementwiseAddGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseGradCompute, + ElementwiseGradCompute, ElementwiseAddOneGradFunctor, ElementwiseAddBroadCastGradFunctor, ElementwiseAddBroadCast2GradFunctor>(ctx); diff --git a/paddle/operators/elementwise_div_op.cc b/paddle/operators/elementwise_div_op.cc index 7a325199bd07e44042a4e8b3aae0ab93fae1c351..78eae53f53593e5fd3a20daad09098190b4b59f6 100644 --- a/paddle/operators/elementwise_div_op.cc +++ b/paddle/operators/elementwise_div_op.cc @@ -19,8 +19,7 @@ namespace paddle { namespace operators { class ElementwiseDivOpMaker : public ElementwiseOpMaker { public: - ElementwiseDivOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseDivOpMaker(OpProto* proto, OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { SetComment("Div", "$Out = X / Y$"); AddComment(comment_); @@ -35,13 +34,13 @@ REGISTER_OP(elementwise_div, ops::ElementwiseOp, ops::ElementwiseDivOpMaker, elementwise_div_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_div, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel); + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel); REGISTER_OP_CPU_KERNEL( elementwise_div_grad, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel); + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel); diff --git a/paddle/operators/elementwise_div_op.cu b/paddle/operators/elementwise_div_op.cu index de4d0c33442a1fcfe0dd4c16df7ceeec737fbc6d..502c52893667e246a19bb04c8bf3ed3df3265f2d 100644 --- a/paddle/operators/elementwise_div_op.cu +++ b/paddle/operators/elementwise_div_op.cu @@ -17,15 +17,16 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( elementwise_div, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel, - ops::ElementwiseDivKernel); -REGISTER_OP_GPU_KERNEL( + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel, + ops::ElementwiseDivKernel); +REGISTER_OP_CUDA_KERNEL( elementwise_div_grad, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel, - ops::ElementwiseDivGradKernel); + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel, + ops::ElementwiseDivGradKernel); diff --git a/paddle/operators/elementwise_div_op.h b/paddle/operators/elementwise_div_op.h index 8946ff3d25c2aff3dc3aa69368f0083371cd2fef..d91313db4225d8fe051856345367a15867bdf215 100644 --- a/paddle/operators/elementwise_div_op.h +++ b/paddle/operators/elementwise_div_op.h @@ -19,11 +19,11 @@ namespace paddle { namespace operators { -template +template class ElementwiseDivKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseCompute(ctx); + ElementwiseCompute(ctx); } }; @@ -102,11 +102,11 @@ struct ElementwiseDivBroadCast2GradFunctor { } }; -template +template class ElementwiseDivGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseGradCompute, + ElementwiseGradCompute, ElementwiseDivGradFunctor, ElementwiseDivBroadCastGradFunctor, ElementwiseDivBroadCast2GradFunctor>(ctx); diff --git a/paddle/operators/elementwise_mul_op.cc b/paddle/operators/elementwise_mul_op.cc index 8851267a524f51773a9f86ff83943cea4cb042aa..f0a61b8b081f5675b1684022e61876ed4d1d4aca 100644 --- a/paddle/operators/elementwise_mul_op.cc +++ b/paddle/operators/elementwise_mul_op.cc @@ -20,8 +20,7 @@ namespace operators { class ElementwiseMulOpMaker : public ElementwiseOpMaker { public: - ElementwiseMulOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseMulOpMaker(OpProto* proto, OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { SetComment("Mul", "$Out = X \\odot\\ Y$"); AddComment(comment_); @@ -36,13 +35,13 @@ REGISTER_OP(elementwise_mul, ops::ElementwiseOp, ops::ElementwiseMulOpMaker, elementwise_mul_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_mul, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel); + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel); REGISTER_OP_CPU_KERNEL( elementwise_mul_grad, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel); + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel); diff --git a/paddle/operators/elementwise_mul_op.cu b/paddle/operators/elementwise_mul_op.cu index b0dfdee1ccef56c6cda06ae6759017294fa5115c..089451b3e1288b3adc689a3c7d9fea2bc5243407 100644 --- a/paddle/operators/elementwise_mul_op.cu +++ b/paddle/operators/elementwise_mul_op.cu @@ -17,15 +17,16 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( elementwise_mul, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel, - ops::ElementwiseMulKernel); -REGISTER_OP_GPU_KERNEL( + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel, + ops::ElementwiseMulKernel); +REGISTER_OP_CUDA_KERNEL( elementwise_mul_grad, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel, - ops::ElementwiseMulGradKernel); + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel, + ops::ElementwiseMulGradKernel); diff --git a/paddle/operators/elementwise_mul_op.h b/paddle/operators/elementwise_mul_op.h index 4469b07eaa08a3b011a88e58f1d645dd30b10ced..16fa5ec4b3a369805acb401bae5407072101af8d 100644 --- a/paddle/operators/elementwise_mul_op.h +++ b/paddle/operators/elementwise_mul_op.h @@ -18,11 +18,11 @@ namespace paddle { namespace operators { -template +template class ElementwiseMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseCompute(ctx); + ElementwiseCompute(ctx); } }; @@ -101,11 +101,11 @@ struct ElementwiseMulBroadCast2GradFunctor { } }; -template +template class ElementwiseMulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseGradCompute, + ElementwiseGradCompute, ElementwiseMulGradFunctor, ElementwiseMulBroadCastGradFunctor, ElementwiseMulBroadCast2GradFunctor>(ctx); diff --git a/paddle/operators/elementwise_op.h b/paddle/operators/elementwise_op.h index ea533503e4916cae7e1157ed34da9629dcff3513..f308ee05e11210540e41cda4b9a896f9f96c4730 100644 --- a/paddle/operators/elementwise_op.h +++ b/paddle/operators/elementwise_op.h @@ -43,8 +43,7 @@ class ElementwiseOp : public framework::OperatorWithKernel { class ElementwiseOpMaker : public framework::OpProtoAndCheckerMaker { public: - ElementwiseOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The first input tensor of elementwise op"); AddInput("Y", "(Tensor) The second input tensor of elementwise op"); diff --git a/paddle/operators/elementwise_op_function.h b/paddle/operators/elementwise_op_function.h index 8aa35b2c466785c8749739635fcd1c2b19292f3e..9edfacd6dfb506e12a0d82772d8de301bb8506e2 100644 --- a/paddle/operators/elementwise_op_function.h +++ b/paddle/operators/elementwise_op_function.h @@ -16,6 +16,11 @@ #include "paddle/framework/eigen.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" +#include "paddle/platform/transform.h" + +#ifdef __NVCC__ +#include +#endif #include "paddle/operators/math/math_function.h" @@ -54,18 +59,175 @@ inline void get_mid_dims(const framework::DDim& x_dims, } } +template +class RowwiseTransformIterator; +template +class MidWiseTransformIterator; + +template +class RowwiseTransformIterator { + public: + RowwiseTransformIterator(const T* ptr, int n) : ptr_(ptr), i_(0), n_(n) {} + + RowwiseTransformIterator& operator++() { + ++i_; + if (UNLIKELY(i_ == n_)) { + i_ = 0; + } + return *this; + } + + bool operator==(const RowwiseTransformIterator& + rhs) const { + return (ptr_ + i_) == &(*rhs); + } + + bool operator!=(const RowwiseTransformIterator& + rhs) const { + return (ptr_ + i_) != &(*rhs); + } + + const T& operator*() { return ptr_[i_]; } + + private: + const T* ptr_; + int i_; + int64_t n_; +}; + +template +class MidWiseTransformIterator { + public: + MidWiseTransformIterator(const T* ptr, int n, int post) + : ptr_(ptr), i_(0), j_(0), n_(n), post_(post) {} + + MidWiseTransformIterator& operator++() { + ++j_; + if (UNLIKELY(j_ == post_)) { + ++i_; + j_ = 0; + if (UNLIKELY(i_ == n_)) { + i_ = 0; + } + } + return *this; + } + + bool operator==(const MidWiseTransformIterator& + rhs) const { + return (ptr_ + i_) == &(*rhs); + } + + bool operator!=(const MidWiseTransformIterator& + rhs) const { + return (ptr_ + i_) != &(*rhs); + } + + const T& operator*() { return ptr_[i_]; } + + private: + const T* ptr_; + int64_t i_; + int64_t j_; + int64_t n_; + int64_t post_; +}; + +#ifdef __NVCC__ +template +class RowwiseTransformIterator + : public thrust::iterator_adaptor< + RowwiseTransformIterator, const T*> { + public: + typedef thrust::iterator_adaptor< + RowwiseTransformIterator, const T*> + super_t; + HOSTDEVICE RowwiseTransformIterator(const T* x, int n) + : super_t(x), begin_(x), n_(n){}; + friend class thrust::iterator_core_access; + + private: + unsigned int n_; + const T* begin_; + HOSTDEVICE typename super_t::reference dereference() const { + return *(begin_ + (this->base() - begin_) % n_); + } +}; + +template +class MidWiseTransformIterator + : public thrust::iterator_adaptor< + MidWiseTransformIterator, const T*> { + public: + typedef thrust::iterator_adaptor< + MidWiseTransformIterator, const T*> + super_t; + HOSTDEVICE MidWiseTransformIterator(const T* x, int n, int post) + : super_t(x), begin_(x), n_(n), post_(post){}; + friend class thrust::iterator_core_access; + + private: + unsigned int post_; + unsigned int n_; + const T* begin_; + HOSTDEVICE typename super_t::reference dereference() const { + return *(begin_ + (((this->base() - begin_) / post_) % n_)); + } +}; +#endif + +template +class TransformFunctor { + public: + TransformFunctor(const framework::Tensor* x, const framework::Tensor* y, + framework::Tensor* z, const DeviceContext& ctx, Functor func) + : x_(x->data()), + y_(y->data()), + z_(z->mutable_data(ctx.GetPlace())), + nx_(x->numel()), + ctx_(ctx), + func_(func) {} + + inline void Run() const { + platform::Transform trans; + trans(ctx_, x_, x_ + nx_, y_, z_, func_); + } + + inline void RunRowWise(int n, int pre) const { + platform::Transform trans; + trans(ctx_, x_, x_ + nx_, RowwiseTransformIterator(y_, n), + z_, func_); + } + + inline void RunMidWise(int n, int pre, int post) const { + platform::Transform trans; + trans(ctx_, x_, x_ + nx_, + MidWiseTransformIterator(y_, n, post), z_, func_); + } + + private: + const T* x_; + const T* y_; + T* z_; + int64_t nx_; + const DeviceContext& ctx_; + Functor func_; +}; + #define EIGEN_FUNCTOR(name, eigen_op) \ struct Eigen##name##Functor { \ - template \ + template \ inline void Run(const framework::Tensor* x, const framework::Tensor* y, \ framework::Tensor* z, \ const framework::ExecutionContext& ctx) { \ auto x_e = framework::EigenVector::Flatten(*x); \ auto y_e = framework::EigenVector::Flatten(*y); \ auto z_e = framework::EigenVector::Flatten(*z); \ - z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_e); \ + z_e.device( \ + *ctx.template device_context().eigen_device()) = \ + eigen_op(x_e, y_e); \ } \ - template \ + template \ inline void RunBroadCast(const framework::Tensor* x, \ const framework::Tensor* y, framework::Tensor* z, \ const framework::ExecutionContext& ctx, int pre, \ @@ -76,9 +238,11 @@ inline void get_mid_dims(const framework::DDim& x_dims, auto y_bcast = y_e.reshape(Eigen::DSizes(1, n)) \ .broadcast(Eigen::DSizes(pre, 1)) \ .reshape(Eigen::DSizes(x_e.size())); \ - z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_bcast); \ + z_e.device( \ + *ctx.template device_context().eigen_device()) = \ + eigen_op(x_e, y_bcast); \ } \ - template \ + template \ inline void RunBroadCast2(const framework::Tensor* x, \ const framework::Tensor* y, \ framework::Tensor* z, \ @@ -90,11 +254,13 @@ inline void get_mid_dims(const framework::DDim& x_dims, auto y_bcast = y_e.reshape(Eigen::DSizes(1, n, 1)) \ .broadcast(Eigen::DSizes(pre, 1, post)) \ .reshape(Eigen::DSizes(x_e.size())); \ - z_e.device(ctx.GetEigenDevice()) = eigen_op(x_e, y_bcast); \ + z_e.device( \ + *ctx.template device_context().eigen_device()) = \ + eigen_op(x_e, y_bcast); \ } \ } -template +template void ElementwiseCompute(const framework::ExecutionContext& ctx) { using Tensor = framework::Tensor; @@ -110,7 +276,7 @@ void ElementwiseCompute(const framework::ExecutionContext& ctx) { if (x_dims == y_dims) { functor f; - f.template Run(x, y, z, ctx); + f.template Run(x, y, z, ctx); return; } @@ -123,11 +289,11 @@ void ElementwiseCompute(const framework::ExecutionContext& ctx) { get_mid_dims(x_dims, y_dims, axis, pre, n, post); if (post == 1) { functor f; - f.template RunBroadCast(x, y, z, ctx, pre, n); + f.template RunBroadCast(x, y, z, ctx, pre, n); return; } else { functor f; - f.template RunBroadCast2(x, y, z, ctx, pre, n, post); + f.template RunBroadCast2(x, y, z, ctx, pre, n, post); return; } } @@ -144,8 +310,9 @@ EIGEN_FUNCTOR(Mul, EIGEN_MUL); #define EIGEN_DIV(x, y) ((x) / (y)) EIGEN_FUNCTOR(Div, EIGEN_DIV); -template +template void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { using Tensor = framework::Tensor; @@ -154,7 +321,7 @@ void ElementwiseGradCompute(const framework::ExecutionContext& ctx) { auto* out = ctx.Input("Out"); auto* dout = ctx.Input(framework::GradVarName("Out")); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); auto x_dims = x->dims(); auto y_dims = y->dims(); diff --git a/paddle/operators/elementwise_sub_op.cc b/paddle/operators/elementwise_sub_op.cc index 95d7979e39bfe7b484acb7771d1bd078014293a2..1c4168621c343f14d603b18dd6c518052f83ad0d 100644 --- a/paddle/operators/elementwise_sub_op.cc +++ b/paddle/operators/elementwise_sub_op.cc @@ -19,8 +19,7 @@ namespace paddle { namespace operators { class ElementwiseSubOpMaker : public ElementwiseOpMaker { public: - ElementwiseSubOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ElementwiseSubOpMaker(OpProto* proto, OpAttrChecker* op_checker) : ElementwiseOpMaker(proto, op_checker) { SetComment("Sub", "$Out = X - Y$"); AddComment(comment_); @@ -34,13 +33,13 @@ REGISTER_OP(elementwise_sub, ops::ElementwiseOp, ops::ElementwiseSubOpMaker, elementwise_sub_grad, ops::ElementwiseOpGrad); REGISTER_OP_CPU_KERNEL( elementwise_sub, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel); + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel); REGISTER_OP_CPU_KERNEL( elementwise_sub_grad, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel); + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel); diff --git a/paddle/operators/elementwise_sub_op.cu b/paddle/operators/elementwise_sub_op.cu index ec23bec35feae26f5463c575b1ab6f58d417e100..0b2f0f7d4d98f1336087f9fc3fc485ed8d805b5f 100644 --- a/paddle/operators/elementwise_sub_op.cu +++ b/paddle/operators/elementwise_sub_op.cu @@ -17,15 +17,16 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( elementwise_sub, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel, - ops::ElementwiseSubKernel); -REGISTER_OP_GPU_KERNEL( + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel, + ops::ElementwiseSubKernel); +REGISTER_OP_CUDA_KERNEL( elementwise_sub_grad, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel, - ops::ElementwiseSubGradKernel); + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel, + ops::ElementwiseSubGradKernel); diff --git a/paddle/operators/elementwise_sub_op.h b/paddle/operators/elementwise_sub_op.h index 3f40c1c5bcea5e8473765b039de4ee2a16054f0c..731a30c5e30d3f9bbdbabd62e5d9a77559500b06 100644 --- a/paddle/operators/elementwise_sub_op.h +++ b/paddle/operators/elementwise_sub_op.h @@ -18,11 +18,11 @@ namespace paddle { namespace operators { -template +template class ElementwiseSubKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseCompute(ctx); + ElementwiseCompute(ctx); } }; @@ -101,11 +101,11 @@ struct ElementwiseSubBroadCast2GradFunctor { } }; -template +template class ElementwiseSubGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { - ElementwiseGradCompute, + ElementwiseGradCompute, ElementwiseSubOneGradFunctor, ElementwiseSubBroadCastGradFunctor, ElementwiseSubBroadCast2GradFunctor>(ctx); diff --git a/paddle/operators/expand_op.cc b/paddle/operators/expand_op.cc index 282775fcda45fe3bbd72bf04a7ae828f2c840ab7..08fa91ed72aa41ed2f513c090b9085410bb5cc47 100644 --- a/paddle/operators/expand_op.cc +++ b/paddle/operators/expand_op.cc @@ -55,7 +55,7 @@ class ExpandOp : public framework::OperatorWithKernel { class ExpandOpMaker : public framework::OpProtoAndCheckerMaker { public: - ExpandOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + ExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor, default Tensor) A tensor with rank in [1, 6]." @@ -130,7 +130,8 @@ class ExpandGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(expand, ops::ExpandOp, ops::ExpandOpMaker, expand_grad, ops::ExpandGradOp); -REGISTER_OP_CPU_KERNEL(expand, - ops::ExpandKernel); REGISTER_OP_CPU_KERNEL( - expand_grad, ops::ExpandGradKernel); + expand, ops::ExpandKernel); +REGISTER_OP_CPU_KERNEL( + expand_grad, + ops::ExpandGradKernel); diff --git a/paddle/operators/expand_op.cu b/paddle/operators/expand_op.cu index 6744562b6c21dd8bfeb7e4cb6b809dc7913aa3a5..99ee584d0859f9bf688899cc9b346d221415518c 100644 --- a/paddle/operators/expand_op.cu +++ b/paddle/operators/expand_op.cu @@ -17,7 +17,8 @@ #include "paddle/operators/expand_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(expand, - ops::ExpandKernel); -REGISTER_OP_GPU_KERNEL( - expand_grad, ops::ExpandGradKernel); +REGISTER_OP_CUDA_KERNEL( + expand, ops::ExpandKernel); +REGISTER_OP_CUDA_KERNEL( + expand_grad, + ops::ExpandGradKernel); diff --git a/paddle/operators/expand_op.h b/paddle/operators/expand_op.h index 4d7996ad1e744fead1329c35ce6ea43bf0683ce6..14ef8b0912860f7ec39535997c39d6d4c4970650 100644 --- a/paddle/operators/expand_op.h +++ b/paddle/operators/expand_op.h @@ -56,7 +56,7 @@ template using EigenTensor = framework::EigenTensor; -template +template class ExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -83,12 +83,13 @@ class ExpandKernel : public framework::OpKernel { auto x = EigenTensor::From(*in0); out0->mutable_data(context.GetPlace()); auto y = EigenTensor::From(*out0); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); y.device(place) = x.broadcast(bcast_dims); } }; -template +template class ExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -164,7 +165,8 @@ class ExpandGradKernel : public framework::OpKernel { reduce_dims[i] = reduce_dims_vec[i]; } auto out_grad = EigenVector::Flatten(*in0); - x_grad.device(context.GetEigenDevice()) = + x_grad.device( + *context.template device_context().eigen_device()) = out_grad.reshape(reshape_dims).sum(reduce_dims).reshape(x.dimensions()); } }; diff --git a/paddle/operators/feed_op.cc b/paddle/operators/feed_op.cc index ee43c22fb13e203c7de1a7e6d1586423fcbfb25a..66b8080c26192a74cc27bce9a00107de89822717 100644 --- a/paddle/operators/feed_op.cc +++ b/paddle/operators/feed_op.cc @@ -54,8 +54,7 @@ class FeedOp : public framework::OperatorBase { class FeedOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: - FeedOpInfoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FeedOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of feed op"); AddOutput("Out", "The output of feed op"); diff --git a/paddle/operators/fetch_op.cc b/paddle/operators/fetch_op.cc index 1ae07194c235ce6724f59c9c60df80f957787cda..616590f2001be3bea4e50c0c1755a80eb20e9348 100644 --- a/paddle/operators/fetch_op.cc +++ b/paddle/operators/fetch_op.cc @@ -61,8 +61,7 @@ class FetchOp : public framework::OperatorBase { class FetchOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: - FetchOpInfoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FetchOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of fetch op"); AddOutput("Out", "The output of fetch op"); diff --git a/paddle/operators/fill_constant_batch_size_like_op.cc b/paddle/operators/fill_constant_batch_size_like_op.cc index 892922cd3aaec8bf8194320c5c3a0dd0365bb589..7a7e280e78309582a627087bdbdfea358c37b9eb 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.cc +++ b/paddle/operators/fill_constant_batch_size_like_op.cc @@ -52,7 +52,7 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel { framework::OpKernelType GetKernelType( const framework::ExecutionContext &ctx) const override { return framework::OpKernelType( - static_cast(ctx.Attr("dtype")), + static_cast(ctx.Attr("dtype")), ctx.device_context()); } }; @@ -60,13 +60,12 @@ class FillConstantBatchSizeLikeOp : public framework::OperatorWithKernel { class FillConstantBatchSizeLikeOpMaker : public framework::OpProtoAndCheckerMaker { public: - FillConstantBatchSizeLikeOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FillConstantBatchSizeLikeOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddInput("Input", "(Tensor) Tensor " "whose dim_idx th dimension is used to specify the batch_size"); @@ -100,8 +99,11 @@ REGISTER_OPERATOR(fill_constant_batch_size_like, ops::FillConstantBatchSizeLikeOpMaker); REGISTER_OP_CPU_KERNEL( fill_constant_batch_size_like, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel); diff --git a/paddle/operators/fill_constant_batch_size_like_op.cu.cc b/paddle/operators/fill_constant_batch_size_like_op.cu.cc index 9e7a1eeab863c962ca72908e561e12a04d5021c5..2e0e15f36bb2e0ffd33dc6d1d25965d0cbe33186 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.cu.cc +++ b/paddle/operators/fill_constant_batch_size_like_op.cu.cc @@ -16,10 +16,13 @@ #include "paddle/framework/op_registry.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( fill_constant_batch_size_like, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, - ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel, + ops::FillConstantBatchSizeLikeOpKernel); diff --git a/paddle/operators/fill_constant_batch_size_like_op.h b/paddle/operators/fill_constant_batch_size_like_op.h index 339d97a30a5819ab488e83990651ba99212239ec..66da9d0307e36db3726f30518c8c57a923e54388 100644 --- a/paddle/operators/fill_constant_batch_size_like_op.h +++ b/paddle/operators/fill_constant_batch_size_like_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class FillConstantBatchSizeLikeOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -27,8 +27,9 @@ class FillConstantBatchSizeLikeOpKernel : public framework::OpKernel { out->mutable_data(ctx.GetPlace()); auto value = ctx.Attr("value"); - math::SetConstant setter; - setter(ctx.device_context(), out, static_cast(value)); + math::SetConstant setter; + setter(ctx.template device_context(), out, + static_cast(value)); } }; diff --git a/paddle/operators/fill_constant_op.cc b/paddle/operators/fill_constant_op.cc index 3d5f84bc239615797a5cf01a74150fdb7dfc1b80..3489079eaa3e8f04e27941de942ce9e14f8434f9 100644 --- a/paddle/operators/fill_constant_op.cc +++ b/paddle/operators/fill_constant_op.cc @@ -34,7 +34,8 @@ class FillConstantOp : public framework::OperatorBase { using framework::OperatorBase::OperatorBase; void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - auto data_type = static_cast(Attr("dtype")); + auto data_type = + static_cast(Attr("dtype")); auto value = Attr("value"); auto force_cpu = Attr("force_cpu"); auto &out = @@ -52,13 +53,12 @@ class FillConstantOp : public framework::OperatorBase { class FillConstantOpMaker : public framework::OpProtoAndCheckerMaker { public: - FillConstantOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FillConstantOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddAttr>("shape", "(vector) The shape of the output"); AddAttr("value", "(float, default 0) The value to be filled") .SetDefault(0.0f); diff --git a/paddle/operators/fill_op.cc b/paddle/operators/fill_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..f0c6cff8e34c9038c2321c0326bd2ef728d665ba --- /dev/null +++ b/paddle/operators/fill_op.cc @@ -0,0 +1,111 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/framework/data_type.h" +#include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" + +namespace paddle { +namespace operators { + +struct FillOpVisitor { + FillOpVisitor(framework::LoDTensor *tensor, const std::vector &value) + : tensor_(tensor), value_(value) {} + + template + void operator()() const { + platform::CPUPlace cpu; + auto *data = tensor_->mutable_data(cpu); + std::transform(value_.data(), value_.data() + tensor_->numel(), data, + [](float dat) { return static_cast(dat); }); + } + + framework::LoDTensor *tensor_; + const std::vector &value_; +}; + +class FillOp : public framework::OperatorBase { + public: + FillOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void Run(const framework::Scope &scope, + const platform::DeviceContext &dev_ctx) const override { + auto &out = + detail::Ref(detail::Ref(scope.FindVar(Output("Out")), + "Cannot find variable %s", Output("Out")) + .GetMutable()); + out.Resize(framework::make_ddim(Attr>("shape"))); + auto dtype = static_cast(Attr("dtype")); + platform::CPUPlace cpu; + auto force_cpu = Attr("force_cpu"); + out.mutable_data(force_cpu ? cpu : dev_ctx.GetPlace(), + framework::ToTypeIndex(dtype)); + + framework::LoDTensor tensor; + + if (force_cpu || platform::is_cpu_place(dev_ctx.GetPlace())) { + tensor.ShareDataWith(out); + } else { + // Always make tensor in CPU memory. + tensor.Resize(out.dims()); + tensor.mutable_data(cpu, framework::ToTypeIndex(dtype)); + } + + framework::VisitDataType( + dtype, FillOpVisitor(&tensor, Attr>("value"))); + + if (!force_cpu && platform::is_gpu_place(dev_ctx.GetPlace())) { + // Copy tensor to out + framework::CopyFrom(tensor, dev_ctx.GetPlace(), dev_ctx, &out); + } + } +}; + +class FillOpMaker : public framework::OpProtoAndCheckerMaker { + public: + FillOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddComment(R"DOC(Fill operator + +Fill an tensor with `value` and `shape`. The type of the tensor is specify by +`dtype`. +)DOC"); + AddOutput("Out", "(LoDTensor) The output tensor."); + AddAttr>( + "value", "The float values of tensor, which are flatten in row major"); + AddAttr>("shape", "The shape of output tensor"); + AddAttr("dtype", "The data type of output tensor, Default is float") + .SetDefault(framework::proto::DataType::FP32); + AddAttr("force_cpu", + "Whether the output tensor must be at CPU memory or not. " + "Default is false.") + .SetDefault(false); + } +}; + +class FillOpInferShape : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext *context) const override { + context->SetOutputDim( + "Out", + framework::make_ddim(context->Attrs().Get>("shape"))); + } +}; + +} // namespace operators +} // namespace paddle +namespace ops = paddle::operators; +REGISTER_OPERATOR(fill, ops::FillOp, ops::FillOpInferShape, ops::FillOpMaker); diff --git a/paddle/operators/fill_zeros_like_op.cc b/paddle/operators/fill_zeros_like_op.cc index 95fb5932b8b555e1357adc9fdfb7b6e6db7da71d..b4ae1de876010effff6bf577a4e33043f6760a4f 100644 --- a/paddle/operators/fill_zeros_like_op.cc +++ b/paddle/operators/fill_zeros_like_op.cc @@ -24,20 +24,19 @@ class FillZerosLikeOp : public framework::OperatorWithKernel { void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of FillZerosLikeOp should not be null."); - PADDLE_ENFORCE(ctx->HasOutput("Y"), - "Output(Y) of FillZerosLikeOp should not be null."); - ctx->SetOutputDim("Y", ctx->GetInputDim("X")); - ctx->ShareLoD("X", /*->*/ "Y"); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of FillZerosLikeOp should not be null."); + ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", /*->*/ "Out"); } }; class FillZerosLikeOpMaker : public framework::OpProtoAndCheckerMaker { public: - FillZerosLikeOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + FillZerosLikeOpMaker(OpProto *proto, OpAttrChecker *op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of fill-zeros-like op."); - AddOutput("Y", "The variable will be filled up with zeros."); + AddOutput("Out", "The variable will be filled up with zeros."); AddComment(R"DOC( FillZerosLike Operator. @@ -54,8 +53,9 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(fill_zeros_like, ops::FillZerosLikeOp, ops::FillZerosLikeOpMaker); REGISTER_OP_CPU_KERNEL( - fill_zeros_like, ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel); + fill_zeros_like, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel); diff --git a/paddle/operators/fill_zeros_like_op.cu.cc b/paddle/operators/fill_zeros_like_op.cu.cc index 1501a17441072223ba0e8cf5b6c8cdd5e903a467..9f412306bb5f08497990f0e0385f695d838c2400 100644 --- a/paddle/operators/fill_zeros_like_op.cu.cc +++ b/paddle/operators/fill_zeros_like_op.cu.cc @@ -16,9 +16,10 @@ #include "paddle/framework/op_registry.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - fill_zeros_like, ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel, - ops::FillZerosLikeKernel); +REGISTER_OP_CUDA_KERNEL( + fill_zeros_like, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel, + ops::FillZerosLikeKernel); diff --git a/paddle/operators/fill_zeros_like_op.h b/paddle/operators/fill_zeros_like_op.h index 7e7d78eea2bce427d6ad4dfb77bcb4ace35cd287..351ecf8b2f1d945fabdd1d6c5ed56f76f3caae61 100644 --- a/paddle/operators/fill_zeros_like_op.h +++ b/paddle/operators/fill_zeros_like_op.h @@ -19,15 +19,16 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class FillZerosLikeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* out = context.Output("Y"); + auto* out = context.Output("Out"); out->mutable_data(context.GetPlace()); - math::SetConstant setter; - setter(context.device_context(), out, static_cast(0)); + math::SetConstant setter; + setter(context.template device_context(), out, + static_cast(0)); } }; diff --git a/paddle/operators/ftrl_op.cc b/paddle/operators/ftrl_op.cc index cb7ae6919623f10a6c4ec98c0e942c1590ac9a7a..d00700823d48eb2ea4fc64d1fa2989f18c7c5f18 100644 --- a/paddle/operators/ftrl_op.cc +++ b/paddle/operators/ftrl_op.cc @@ -57,7 +57,7 @@ class FTRLOp : public framework::OperatorWithKernel { class FTRLOpMaker : public framework::OpProtoAndCheckerMaker { public: - FTRLOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + FTRLOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -135,5 +135,5 @@ The paper that proposed Follow The Regularized Leader (FTRL): namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(ftrl, ops::FTRLOp, ops::FTRLOpMaker); -REGISTER_OP_CPU_KERNEL(ftrl, - ops::FTRLOpKernel); +REGISTER_OP_CPU_KERNEL( + ftrl, ops::FTRLOpKernel); diff --git a/paddle/operators/ftrl_op.cu b/paddle/operators/ftrl_op.cu index 97b36dade6f531df49615ae2d44d565eadba7154..abbbe7adbe6bd14f55f7f941c5e6740fada24910 100644 --- a/paddle/operators/ftrl_op.cu +++ b/paddle/operators/ftrl_op.cu @@ -15,5 +15,5 @@ specific language governing permissions and limitations under the License. */ #include "paddle/operators/ftrl_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(ftrl, - ops::FTRLOpKernel); +REGISTER_OP_CUDA_KERNEL( + ftrl, ops::FTRLOpKernel); diff --git a/paddle/operators/ftrl_op.h b/paddle/operators/ftrl_op.h index b040162f8d1d8998aa13021c10a25fe57135c1e9..4eea04cd8d61bb34fc612e0ca1765a664e329ca9 100644 --- a/paddle/operators/ftrl_op.h +++ b/paddle/operators/ftrl_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class FTRLOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -53,7 +53,7 @@ class FTRLOpKernel : public framework::OpKernel { auto p_out = EigenVector::Flatten(*param_out); auto s_acc_out = EigenVector::Flatten(*sq_accum_out); auto l_acc_out = EigenVector::Flatten(*lin_accum_out); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); diff --git a/paddle/operators/gather.cu.h b/paddle/operators/gather.cu.h index 8d04ecd284226c7b4c6cdd5531915fee2d94ce61..c806aa5f05ad214abb3484935d82b67880a1db7a 100644 --- a/paddle/operators/gather.cu.h +++ b/paddle/operators/gather.cu.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { using framework::Tensor; -using platform::Place; +using platform::DeviceContext; #define CUDA_1D_KERNEL_LOOP(i, n) \ for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < (n); \ diff --git a/paddle/operators/gather_op.cc b/paddle/operators/gather_op.cc index 8f80fb162519f60fcce897b3c31a3507bbf6ba6d..47af222314c40a2c77ee422ccc70602078b3f1fb 100644 --- a/paddle/operators/gather_op.cc +++ b/paddle/operators/gather_op.cc @@ -67,7 +67,7 @@ class GatherGradOp : public framework::OperatorWithKernel { class GatherOpMaker : public framework::OpProtoAndCheckerMaker { public: - GatherOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + GatherOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The source input of gather op"); AddInput("Index", "The index input of gather op"); diff --git a/paddle/operators/gather_op.cu b/paddle/operators/gather_op.cu index 92219d6a433e6db0bb9886ed8670cbafaa843ff8..b37f0576e276b2aa995f01de635ec153a0db36aa 100644 --- a/paddle/operators/gather_op.cu +++ b/paddle/operators/gather_op.cu @@ -49,7 +49,8 @@ class GatherGradOpCUDAKernel : public framework::OpKernel { dX->mutable_data(ctx.GetPlace()); auto dxt = framework::EigenVector::Flatten(*dX); - auto place = ctx.GetEigenDevice(); + auto &place = *ctx.template device_context() + .eigen_device(); dxt.device(place) = dxt.constant(static_cast(0)); GPUScatterAssign(ctx.device_context(), *dO, *Index, dX); @@ -60,5 +61,5 @@ class GatherGradOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(gather, ops::GatherOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(gather, ops::GatherOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(gather_grad, ops::GatherGradOpCUDAKernel); diff --git a/paddle/operators/gather_op.h b/paddle/operators/gather_op.h index 8276ed0d3d8b676aafab45fae70942e78b72b8e6..1a1ba0c41aef95d3dc8cc929db72770a7bd08b18 100644 --- a/paddle/operators/gather_op.h +++ b/paddle/operators/gather_op.h @@ -53,7 +53,8 @@ class GatherGradientOpKernel : public framework::OpKernel { dX->mutable_data(ctx.GetPlace()); auto dxt = framework::EigenVector::Flatten(*dX); - auto place = ctx.GetEigenDevice(); + auto &place = *ctx.template device_context() + .eigen_device(); dxt.device(place) = dxt.constant(static_cast(0)); ScatterAssign(ctx.device_context(), *dO, *Index, dX); diff --git a/paddle/operators/gaussian_random_op.cc b/paddle/operators/gaussian_random_op.cc index 254c83e1378a121d99c89d9d8705935b5f06edc8..5eab1d5f4ee067db602ab81a9df1854bcfaf78a8 100644 --- a/paddle/operators/gaussian_random_op.cc +++ b/paddle/operators/gaussian_random_op.cc @@ -60,15 +60,14 @@ class GaussianRandomOp : public framework::OperatorWithKernel { framework::OpKernelType GetKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( - static_cast(ctx.Attr("dtype")), + static_cast(ctx.Attr("dtype")), ctx.device_context()); } }; class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker { public: - GaussianRandomOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + GaussianRandomOpMaker(OpProto* proto, OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Out", "Output matrix of gaussian random op"); @@ -91,7 +90,7 @@ class GaussianRandomOpMaker : public framework::OpProtoAndCheckerMaker { AddAttr("dtype", "(int, default 5(FP32)) " "Output data type.") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddComment(R"DOC( GaussianRandom Operator. diff --git a/paddle/operators/gaussian_random_op.cu b/paddle/operators/gaussian_random_op.cu index 315560bf1ba8a66b9a3b7d79510d202885e845d6..ffce6f713816abe7d1f207f141a1b0933574e2ff 100644 --- a/paddle/operators/gaussian_random_op.cu +++ b/paddle/operators/gaussian_random_op.cu @@ -60,5 +60,5 @@ class GPUGaussianRandomKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(gaussian_random, - paddle::operators::GPUGaussianRandomKernel); +REGISTER_OP_CUDA_KERNEL(gaussian_random, + paddle::operators::GPUGaussianRandomKernel); diff --git a/paddle/operators/gru_op.cc b/paddle/operators/gru_op.cc index 5aa03f8916a67222fb0ca5781533766063e52683..8e7000654c62b50a3ca130e2ffed4a0f5880de91 100644 --- a/paddle/operators/gru_op.cc +++ b/paddle/operators/gru_op.cc @@ -67,7 +67,7 @@ class GRUOp : public framework::OperatorWithKernel { class GRUOpMaker : public framework::OpProtoAndCheckerMaker { public: - GRUOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + GRUOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(LoDTensor) The first input is a LodTensor, which supports " @@ -213,8 +213,9 @@ class GRUGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(gru, ops::GRUOp, ops::GRUOpMaker, gru_grad, ops::GRUGradOp); -REGISTER_OP_CPU_KERNEL(gru, ops::GRUKernel, - ops::GRUKernel); -REGISTER_OP_CPU_KERNEL(gru_grad, - ops::GRUGradKernel, - ops::GRUGradKernel); +REGISTER_OP_CPU_KERNEL( + gru, ops::GRUKernel, + ops::GRUKernel); +REGISTER_OP_CPU_KERNEL( + gru_grad, ops::GRUGradKernel, + ops::GRUGradKernel); diff --git a/paddle/operators/gru_op.cu.cc b/paddle/operators/gru_op.cu.cc index 0ceff94ec3ddaadbd5f0ca4f5a4eebe6cb8ee3a9..458630ca6187ec89638046d8eea63c31eca518f2 100644 --- a/paddle/operators/gru_op.cu.cc +++ b/paddle/operators/gru_op.cu.cc @@ -15,8 +15,9 @@ #include "paddle/operators/gru_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(gru, ops::GRUKernel, - ops::GRUKernel); -REGISTER_OP_GPU_KERNEL(gru_grad, - ops::GRUGradKernel, - ops::GRUGradKernel); +REGISTER_OP_CUDA_KERNEL( + gru, ops::GRUKernel, + ops::GRUKernel); +REGISTER_OP_CUDA_KERNEL( + gru_grad, ops::GRUGradKernel, + ops::GRUGradKernel); diff --git a/paddle/operators/gru_op.h b/paddle/operators/gru_op.h index 564489d3a98b59e3e527be5613a73d23d6dbbf31..6d02dff578846904beeb58c5161d27c7c2ed5d70 100644 --- a/paddle/operators/gru_op.h +++ b/paddle/operators/gru_op.h @@ -27,16 +27,16 @@ namespace operators { using LoDTensor = framework::LoDTensor; using Tensor = framework::Tensor; -template -inline void ReorderInitState(const platform::DeviceContext& ctx, +template +inline void ReorderInitState(const DeviceContext& ctx, const framework::Tensor& src, const size_t* index, framework::Tensor* dst, bool indexed_src) { - math::CopyMatrixRowsFunctor row_shuffle; + math::CopyMatrixRowsFunctor row_shuffle; dst->mutable_data(src.dims(), ctx.GetPlace()); row_shuffle(ctx, src, index, *dst, indexed_src); } -template +template class GRUKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { @@ -60,12 +60,12 @@ class GRUKernel : public framework::OpKernel { auto hidden_dims = hidden->dims(); bool is_reverse = context.Attr("is_reverse"); - math::LoDTensor2BatchFunctor to_batch; - auto& dev_ctx = context.device_context(); + math::LoDTensor2BatchFunctor to_batch; + auto& dev_ctx = context.template device_context(); to_batch(dev_ctx, *input, *batch_gate, true, is_reverse); if (bias) { - math::RowwiseAdd add_bias; + math::RowwiseAdd add_bias; add_bias(dev_ctx, *batch_gate, *bias, batch_gate); } @@ -80,8 +80,9 @@ class GRUKernel : public framework::OpKernel { // Since the batch computing for GRU reorders the input sequences // according to their length. The initialized cell state also needs // to reorder. - ReorderInitState(context.device_context(), *h0, order, - &ordered_h0, true); + ReorderInitState( + context.template device_context(), *h0, order, + &ordered_h0, true); gru_value.prev_out_value = ordered_h0.data(); } else { gru_value.prev_out_value = nullptr; @@ -99,14 +100,14 @@ class GRUKernel : public framework::OpKernel { gru_value.output_value = hidden_t.data(); gru_value.gate_value = gate_t.data(); gru_value.reset_output_value = reset_hidden_prev_t.data(); - math::GRUUnitFunctor::compute( + math::GRUUnitFunctor::compute( dev_ctx, gru_value, frame_size, cur_batch_size, math::ActiveType(context.Attr("activation")), math::ActiveType(context.Attr("gate_activation"))); gru_value.prev_out_value = gru_value.output_value; } - math::Batch2LoDTensorFunctor to_seq; + math::Batch2LoDTensorFunctor to_seq; batch_hidden->set_lod(batch_gate->lod()); to_seq(dev_ctx, *batch_hidden, *hidden); } @@ -116,7 +117,7 @@ class GRUKernel : public framework::OpKernel { } }; -template +template class GRUGradKernel : public framework::OpKernel { public: void BatchCompute(const framework::ExecutionContext& context) const { @@ -141,14 +142,14 @@ class GRUGradKernel : public framework::OpKernel { auto hidden_dims = hidden->dims(); int frame_size = hidden_dims[1]; - math::LoDTensor2BatchFunctor to_batch; + math::LoDTensor2BatchFunctor to_batch; LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad; batch_hidden_grad.mutable_data(hidden_dims, context.GetPlace()); batch_gate_grad.mutable_data(gate_dims, context.GetPlace()); batch_reset_hidden_prev_grad.mutable_data(hidden_dims, context.GetPlace()); - math::SetConstant zero; - auto& dev_ctx = context.device_context(); + math::SetConstant zero; + auto& dev_ctx = context.template device_context(); zero(dev_ctx, &batch_hidden_grad, static_cast(0.0)); zero(dev_ctx, &batch_gate_grad, static_cast(0.0)); zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast(0.0)); @@ -156,12 +157,13 @@ class GRUGradKernel : public framework::OpKernel { Tensor ordered_h0, ordered_h0_grad; const size_t* order = batch_gate->lod()[2].data(); if (h0) { - ReorderInitState(context.device_context(), *h0, order, - &ordered_h0, true); + ReorderInitState(dev_ctx, *h0, order, &ordered_h0, + true); } if (h0_grad) { ordered_h0_grad.mutable_data(h0_grad->dims(), context.GetPlace()); - zero(context.device_context(), &ordered_h0_grad, static_cast(0.0)); + zero(context.template device_context(), &ordered_h0_grad, + static_cast(0.0)); } bool is_reverse = context.Attr("is_reverse"); @@ -216,25 +218,25 @@ class GRUGradKernel : public framework::OpKernel { gru_grad.prev_out_grad = hidden_prev_grad_t.data(); } - math::GRUUnitGradFunctor::compute( + math::GRUUnitGradFunctor::compute( dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, math::ActiveType(context.Attr("activation")), math::ActiveType(context.Attr("gate_activation"))); } if (input_grad) { input_grad->mutable_data(context.GetPlace()); - math::Batch2LoDTensorFunctor to_seq; + math::Batch2LoDTensorFunctor to_seq; batch_gate_grad.set_lod(batch_gate->lod()); to_seq(dev_ctx, batch_gate_grad, *input_grad); } if (bias_grad) { bias_grad->mutable_data(context.GetPlace()); - math::ColwiseSum col_sum; + math::ColwiseSum col_sum; col_sum(dev_ctx, batch_gate_grad, bias_grad); } if (h0 && h0_grad) { - ReorderInitState(context.device_context(), ordered_h0_grad, - order, h0_grad, false); + ReorderInitState(dev_ctx, ordered_h0_grad, order, + h0_grad, false); } } diff --git a/paddle/operators/gru_unit_op.cc b/paddle/operators/gru_unit_op.cc index 877c969103cfc17e1b170449d1922d9c7db2a58b..7e5f674a8c020d931fd375ff5994da18052aa8fa 100644 --- a/paddle/operators/gru_unit_op.cc +++ b/paddle/operators/gru_unit_op.cc @@ -71,8 +71,7 @@ class GRUUnitOp : public framework::OperatorWithKernel { class GRUUnitOpMaker : public framework::OpProtoAndCheckerMaker { public: - GRUUnitOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + GRUUnitOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(Tensor) Matrix with shape [batch_size, frame_size * 3] for the " @@ -201,9 +200,10 @@ class GRUUnitGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(gru_unit, ops::GRUUnitOp, ops::GRUUnitOpMaker, gru_unit_grad, ops::GRUUnitGradOp); -REGISTER_OP_CPU_KERNEL(gru_unit, - ops::GRUUnitKernel, - ops::GRUUnitKernel); REGISTER_OP_CPU_KERNEL( - gru_unit_grad, ops::GRUUnitGradKernel, - ops::GRUUnitGradKernel); + gru_unit, ops::GRUUnitKernel, + ops::GRUUnitKernel); +REGISTER_OP_CPU_KERNEL( + gru_unit_grad, + ops::GRUUnitGradKernel, + ops::GRUUnitGradKernel); diff --git a/paddle/operators/gru_unit_op.cu b/paddle/operators/gru_unit_op.cu index 821c8c6421771bd99474b0b2f8aa2acf04697779..7c752db494b59c3ec2af093332777ce6655fb477 100644 --- a/paddle/operators/gru_unit_op.cu +++ b/paddle/operators/gru_unit_op.cu @@ -16,9 +16,10 @@ #include "paddle/operators/gru_unit_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(gru_unit, - ops::GRUUnitKernel, - ops::GRUUnitKernel); -REGISTER_OP_GPU_KERNEL( - gru_unit_grad, ops::GRUUnitGradKernel, - ops::GRUUnitGradKernel); +REGISTER_OP_CUDA_KERNEL( + gru_unit, ops::GRUUnitKernel, + ops::GRUUnitKernel); +REGISTER_OP_CUDA_KERNEL( + gru_unit_grad, + ops::GRUUnitGradKernel, + ops::GRUUnitGradKernel); diff --git a/paddle/operators/gru_unit_op.h b/paddle/operators/gru_unit_op.h index 3398c0934e250cfc292776d08773204bb9b4d87e..8fe60c750da0a42089dc38190d2dda3d08e5ba06 100644 --- a/paddle/operators/gru_unit_op.h +++ b/paddle/operators/gru_unit_op.h @@ -34,7 +34,7 @@ using EigenVector = framework::EigenVector; enum GRUActivationType { identity = 0, sigmoid = 1, tanh = 2, relu = 3 }; -template +template class GRUUnitKernel : public framework::OpKernel { public: template @@ -71,7 +71,8 @@ class GRUUnitKernel : public framework::OpKernel { auto g = EigenMatrix::From(*gate); auto r_h_p = EigenMatrix::From(*reset_hidden_prev); auto h = EigenMatrix::From(*hidden); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); // calculate unactivated gate outputs if (bias) { @@ -86,10 +87,10 @@ class GRUUnitKernel : public framework::OpKernel { const T* weight_data = weight->data(); T* gate_data = gate->data(); T* reset_hidden_prev_data = reset_hidden_prev->data(); - math::gemm(context.device_context(), false, false, batch_size, - 2 * frame_size, frame_size, 1, hidden_prev_data, - frame_size, weight_data, frame_size * 2, 1, gate_data, - frame_size * 3); + math::gemm( + context.template device_context(), false, false, + batch_size, 2 * frame_size, frame_size, 1, hidden_prev_data, frame_size, + weight_data, frame_size * 2, 1, gate_data, frame_size * 3); // calculate activited gate Eigen::array extents({{batch_size, frame_size}}); @@ -102,11 +103,11 @@ class GRUUnitKernel : public framework::OpKernel { g.slice(r_offsets, extents), g.slice(r_offsets, extents)); auto r = g.slice(r_offsets, extents); // reset gate r_h_p.device(place) = r * h_p; // reset previous hidden state - math::gemm(context.device_context(), false, false, batch_size, - frame_size, frame_size, 1, reset_hidden_prev_data, - frame_size, weight_data + frame_size * frame_size * 2, - frame_size, 1, gate_data + frame_size * 2, - frame_size * 3); + math::gemm( + context.template device_context(), false, false, + batch_size, frame_size, frame_size, 1, reset_hidden_prev_data, + frame_size, weight_data + frame_size * frame_size * 2, frame_size, 1, + gate_data + frame_size * 2, frame_size * 3); Eigen::array c_offsets({{0, frame_size * 2}}); ActCompute(context.Attr("activation"), place, @@ -118,7 +119,7 @@ class GRUUnitKernel : public framework::OpKernel { } }; -template +template class GRUUnitGradKernel : public framework::OpKernel { public: template @@ -166,7 +167,8 @@ class GRUUnitGradKernel : public framework::OpKernel { auto d_h = EigenMatrix::From(*hidden_grad); auto d_g = EigenMatrix::From(gate_grad); auto d_r_h_p = EigenMatrix::From(reset_hidden_prev_grad); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); int batch_size = input->dims()[0]; int frame_size = hidden_prev->dims()[1]; @@ -186,11 +188,11 @@ class GRUUnitGradKernel : public framework::OpKernel { ActGradCompute(context.Attr("activation"), place, c, c, d_g.slice(c_offsets, extents), d_h * u); // backward for reset_hidden_prev - math::gemm(context.device_context(), false, true, batch_size, - frame_size, frame_size, 1, - gate_grad_data + frame_size * 2, frame_size * 3, - weight_data + frame_size * frame_size * 2, frame_size, - 0, reset_hidden_prev_grad_data, frame_size); + math::gemm( + context.template device_context(), false, true, + batch_size, frame_size, frame_size, 1, gate_grad_data + frame_size * 2, + frame_size * 3, weight_data + frame_size * frame_size * 2, frame_size, + 0, reset_hidden_prev_grad_data, frame_size); // backward for unactivated reset gate ActGradCompute(context.Attr("gate_activation"), place, r, r, d_g.slice(r_offsets, extents), d_r_h_p * h_p); @@ -198,17 +200,18 @@ class GRUUnitGradKernel : public framework::OpKernel { if (weight_grad) { T* weight_grad_data = weight_grad->mutable_data(context.GetPlace()); // backward for state_weight - math::gemm( - context.device_context(), true, false, frame_size, frame_size, - batch_size, 1, reset_hidden_prev_data, frame_size, - gate_grad_data + frame_size * 2, frame_size * 3, 0, + math::gemm( + context.template device_context(), true, false, + frame_size, frame_size, batch_size, 1, reset_hidden_prev_data, + frame_size, gate_grad_data + frame_size * 2, frame_size * 3, 0, weight_grad_data + frame_size * frame_size * 2, frame_size); // backward for update_gate_weight and reset_gate_weight - math::gemm(context.device_context(), true, false, frame_size, - frame_size * 2, batch_size, 1, hidden_prev_data, - frame_size, gate_grad_data, frame_size * 3, 0, - weight_grad_data, frame_size * 2); + math::gemm( + context.template device_context(), true, false, + frame_size, frame_size * 2, batch_size, 1, hidden_prev_data, + frame_size, gate_grad_data, frame_size * 3, 0, weight_grad_data, + frame_size * 2); } // backward for hidden_prev if (hidden_prev_grad) { @@ -216,10 +219,11 @@ class GRUUnitGradKernel : public framework::OpKernel { hidden_prev_grad->mutable_data(context.GetPlace()); auto d_h_p = EigenMatrix::From(*hidden_prev_grad); d_h_p.device(place) = d_r_h_p * r + d_h * (u.constant(T(1)) - u); - math::gemm(context.device_context(), false, true, batch_size, - frame_size, frame_size * 2, 1, gate_grad_data, - frame_size * 3, weight_data, frame_size * 2, 1, - hidden_prev_grad_data, frame_size); + math::gemm( + context.template device_context(), false, true, + batch_size, frame_size, frame_size * 2, 1, gate_grad_data, + frame_size * 3, weight_data, frame_size * 2, 1, hidden_prev_grad_data, + frame_size); } // backward for input if (input_grad) { diff --git a/paddle/operators/hinge_loss_op.cc b/paddle/operators/hinge_loss_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..19d2e9dc56fe11f9dfb13e8cb271a23e128bf91b --- /dev/null +++ b/paddle/operators/hinge_loss_op.cc @@ -0,0 +1,113 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/hinge_loss_op.h" + +namespace paddle { +namespace operators { + +class HingeLossOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Logits"), + "Input(Logits) must be initialized."); + PADDLE_ENFORCE(ctx->HasInput("Labels"), + "Input(Labels) must be initialized."); + + auto pred_dims = ctx->GetInputDim("Logits"); + auto label_dims = ctx->GetInputDim("Labels"); + + PADDLE_ENFORCE_EQ(pred_dims, label_dims); + PADDLE_ENFORCE_EQ(pred_dims.size(), 2, + "The rank of Input(Logits) must be 2 and the shape is " + "[batch_size, 1]."); + PADDLE_ENFORCE_EQ(pred_dims[1], 1, + "Each row of Input(Logits) contains a real value, " + "so the 2nd dimension of Input(Logits) must be 1."); + + ctx->SetOutputDim("Loss", {pred_dims[0], 1}); + ctx->ShareLoD("Logits", "Loss"); + } +}; + +template +class HingeLossOpMaker : public framework::OpProtoAndCheckerMaker { + public: + HingeLossOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("Logits", + "The input value (Logits) of Hinge loss op." + "Logits is a 2-D tensor with shape [batch_size, 1]."); + AddInput("Labels", + "The target value (Labels) of Hinge loss op." + "Labels is a 2-D tensor with shape [batch_size, 1]."); + AddOutput("Loss", + "The output tensor with shape [batch_size, 1] " + "which represents the hinge loss."); + AddComment(R"DOC( +HingeLoss Operator. + +Let x be a logit (prediction) and y be the actual label. The logit can +take any values from (-inf, inf), but the labels should be either -1 or 1. +Then, the hinge loss is computed as follows: + +$$ +L_(x, y) = max(1 - y.x, 0) +$$ + +Note that the labels passed as input will have values as either 0 or 1. + +)DOC"); + } +}; + +class HingeLossGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("Logits"), + "Input(Logits) should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Labels"), + "Input(Labels) should not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")), + "Input(Loss@GRAD) should not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("Logits")), + "Input(Logits@GRAD) should not be null."); + + auto pred_dims = ctx->GetInputDim("Logits"); + auto lab_dims = ctx->GetInputDim("Labels"); + auto loss_grad_dims = ctx->GetInputDim(framework::GradVarName("Loss")); + + PADDLE_ENFORCE_EQ(loss_grad_dims, pred_dims); + + auto pred_grad_name = framework::GradVarName("Logits"); + ctx->SetOutputDim(pred_grad_name, pred_dims); + } +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(hinge_loss, ops::HingeLossOp, ops::HingeLossOpMaker, + hinge_loss_grad, ops::HingeLossGradOp); +REGISTER_OP_CPU_KERNEL( + hinge_loss, + ops::HingeLossKernel); +REGISTER_OP_CPU_KERNEL( + hinge_loss_grad, + ops::HingeLossGradKernel); diff --git a/paddle/operators/seq_expand_op.cu b/paddle/operators/hinge_loss_op.cu similarity index 70% rename from paddle/operators/seq_expand_op.cu rename to paddle/operators/hinge_loss_op.cu index f1e4b82a76e628c4d9fb83bc93f3dcfd2f98ea5b..31a5bde292ebcab899ad05a813c685963dd5bc25 100644 --- a/paddle/operators/seq_expand_op.cu +++ b/paddle/operators/hinge_loss_op.cu @@ -13,11 +13,12 @@ limitations under the License. */ #define EIGEN_USE_GPU -#include "paddle/operators/seq_expand_op.h" +#include "paddle/operators/hinge_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(seq_expand, - ops::SeqExpandKernel); -REGISTER_OP_GPU_KERNEL( - seq_expand_grad, - ops::SeqExpandGradKernel); +REGISTER_OP_CUDA_KERNEL( + hinge_loss, + ops::HingeLossKernel); +REGISTER_OP_CUDA_KERNEL( + hinge_loss_grad, + ops::HingeLossGradKernel); diff --git a/paddle/operators/hinge_loss_op.h b/paddle/operators/hinge_loss_op.h new file mode 100644 index 0000000000000000000000000000000000000000..91369cfb8a5d4f40be9e6249b50079ba2b550003 --- /dev/null +++ b/paddle/operators/hinge_loss_op.h @@ -0,0 +1,71 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/eigen.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class HingeLossKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* pred = context.Input("Logits"); + auto* label = context.Input("Labels"); + auto* loss = context.Output("Loss"); + auto& place = + *context.template device_context().eigen_device(); + + auto x = framework::EigenVector::Flatten(*pred); + auto y = framework::EigenVector::Flatten(*label); + loss->mutable_data(context.GetPlace()); + auto l = framework::EigenVector::Flatten(*loss); + l.device(place) = + (static_cast(1) - x * (static_cast(2) * y - static_cast(1))) + .cwiseMax(static_cast(0)); + } +}; + +template +class HingeLossGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* pred = context.Input("Logits"); + auto* label = context.Input("Labels"); + auto* dloss = + context.Input(framework::GradVarName("Loss")); + auto* dpred = + context.Output(framework::GradVarName("Logits")); + auto& place = + *context.template device_context().eigen_device(); + + auto x = framework::EigenVector::Flatten(*pred); + auto y = framework::EigenVector::Flatten(*label); + auto dl = framework::EigenVector::Flatten(*dloss); + + if (dpred) { + dpred->mutable_data(context.GetPlace()); + auto dx = framework::EigenVector::Flatten(*dpred); + auto alt_labels = static_cast(2) * y - static_cast(1); + dx.device(place) = + dl * ((x * alt_labels) < static_cast(1)).template cast() * + (-alt_labels); + } + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/huber_loss_op.cc b/paddle/operators/huber_loss_op.cc index 938803d5b36177c782fe40bc34fd92504e5bbf7b..5c92f2c7b2d2f701bcc487716db41a0cce91002f 100644 --- a/paddle/operators/huber_loss_op.cc +++ b/paddle/operators/huber_loss_op.cc @@ -45,8 +45,7 @@ class HuberLossOp : public framework::OperatorWithKernel { template class HuberLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - HuberLossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + HuberLossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input value of huber loss op." @@ -124,8 +123,9 @@ class HuberLossGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(huber_loss, ops::HuberLossOp, ops::HuberLossOpMaker, huber_loss_grad, ops::HuberLossGradOp); -REGISTER_OP_CPU_KERNEL(huber_loss, - ops::HuberLossKernel); +REGISTER_OP_CPU_KERNEL( + huber_loss, + ops::HuberLossKernel); REGISTER_OP_CPU_KERNEL( huber_loss_grad, - ops::HuberLossGradKernel); + ops::HuberLossGradKernel); diff --git a/paddle/operators/huber_loss_op.cu b/paddle/operators/huber_loss_op.cu index 317321dc6c495f6e9a8808d841c71bfa26b754d0..d49a4d9d4236c402f2559c5a0a5de097c2edc61f 100644 --- a/paddle/operators/huber_loss_op.cu +++ b/paddle/operators/huber_loss_op.cu @@ -16,8 +16,9 @@ #include "paddle/operators/huber_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(huber_loss, - ops::HuberLossKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + huber_loss, + ops::HuberLossKernel); +REGISTER_OP_CUDA_KERNEL( huber_loss_grad, - ops::HuberLossGradKernel); + ops::HuberLossGradKernel); diff --git a/paddle/operators/huber_loss_op.h b/paddle/operators/huber_loss_op.h index 4e7bc5543226e19fe0d6190171cdd9c2b3d2d985..4dd20e8b080ab8bd2e61830241d64ee8546a80ec 100644 --- a/paddle/operators/huber_loss_op.h +++ b/paddle/operators/huber_loss_op.h @@ -41,7 +41,7 @@ struct HuberLossForward { T delta; }; -template +template class HuberLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -50,7 +50,8 @@ class HuberLossKernel : public framework::OpKernel { auto* out0 = context.Output("Residual"); auto* out1 = context.Output("Out"); auto delta = static_cast(context.Attr("delta")); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto x = EigenVector::Flatten(*in0); auto y = EigenVector::Flatten(*in1); @@ -85,7 +86,7 @@ struct HuberLossBackward { T delta; }; -template +template class HuberLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -94,7 +95,8 @@ class HuberLossGradKernel : public framework::OpKernel { auto* out0 = context.Output(framework::GradVarName("X")); auto* out1 = context.Output(framework::GradVarName("Y")); auto delta = static_cast(context.op().Attr("delta")); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto residual = EigenVector::Flatten(*in0); auto out_grad = EigenVector::Flatten(*in1); diff --git a/paddle/operators/increment_op.cc b/paddle/operators/increment_op.cc index 35efb12932f1d61fdb511b4ee2cdab3891507c61..789c92102d63355a80c3330f2107c731206397f4 100644 --- a/paddle/operators/increment_op.cc +++ b/paddle/operators/increment_op.cc @@ -61,6 +61,8 @@ class IncrementOp : public framework::OperatorBase { out.Resize(x.dims()); out.mutable_data(x.place(), x.type()); float value = Attr("step"); + VLOG(10) << Output("Out") << " increase " << Input("X") << " with " + << value; framework::VisitDataType(framework::ToDataType(out.type()), IncrementFunctor(x, &out, value)); } @@ -68,8 +70,7 @@ class IncrementOp : public framework::OperatorBase { class IncrementOpMaker : public framework::OpProtoAndCheckerMaker { public: - IncrementOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + IncrementOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor of increment operator"); AddOutput("Out", "(Tensor) The output tensor of increment operator."); @@ -92,13 +93,13 @@ class IncrementGradOpMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("increment"); grad_op->SetInput("X", Output("Out")); grad_op->SetOutput("Out", Input("X")); grad_op->SetAttr("step", -boost::get(GetAttr("step"))); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/is_empty_op.cc b/paddle/operators/is_empty_op.cc index 54fecf44e881b5c283c81580fd161da9808d253e..3616a0414f9e889376f8ba46e7567d7171eff3bf 100644 --- a/paddle/operators/is_empty_op.cc +++ b/paddle/operators/is_empty_op.cc @@ -47,8 +47,7 @@ class IsEmptyOp : public framework::OperatorBase { class IsEmptyOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - IsEmptyOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + IsEmptyOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput(kInput, "(Tensor) Tensor which is to be checked."); AddOutput(kOutput, "(Tensor) a boolean Tensor that indicate empty or not."); diff --git a/paddle/operators/l1_norm_op.cc b/paddle/operators/l1_norm_op.cc index 02ebf022968e95d0b20598d3c935fb51177c8841..3d1da79763102c876de3b45e56438da909b00394 100644 --- a/paddle/operators/l1_norm_op.cc +++ b/paddle/operators/l1_norm_op.cc @@ -48,7 +48,7 @@ class L1NormGradOp : public framework::OperatorWithKernel { class L1NormOpMaker : public framework::OpProtoAndCheckerMaker { public: - L1NormOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + L1NormOpMaker(OpProto* proto, OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of l1_norm op."); AddOutput("Out", "(Scalar) The output of l1_norm op."); @@ -69,7 +69,8 @@ $$Out = \sum{|X|}$$ namespace ops = paddle::operators; REGISTER_OP(l1_norm, ops::L1NormOp, ops::L1NormOpMaker, l1_norm_grad, ops::L1NormGradOp); -REGISTER_OP_CPU_KERNEL(l1_norm, - ops::L1NormKernel); REGISTER_OP_CPU_KERNEL( - l1_norm_grad, ops::L1NormGradKernel); + l1_norm, ops::L1NormKernel); +REGISTER_OP_CPU_KERNEL( + l1_norm_grad, + ops::L1NormGradKernel); diff --git a/paddle/operators/l1_norm_op.cu b/paddle/operators/l1_norm_op.cu index 1c206e04ccbb5f4c2cb9d45aef7bac17c62d55c5..fd725f86f6c98c5aff844546361d8599ea3527ab 100644 --- a/paddle/operators/l1_norm_op.cu +++ b/paddle/operators/l1_norm_op.cu @@ -16,7 +16,8 @@ #include "paddle/operators/l1_norm_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(l1_norm, - ops::L1NormKernel); -REGISTER_OP_GPU_KERNEL( - l1_norm_grad, ops::L1NormGradKernel); +REGISTER_OP_CUDA_KERNEL( + l1_norm, ops::L1NormKernel); +REGISTER_OP_CUDA_KERNEL( + l1_norm_grad, + ops::L1NormGradKernel); diff --git a/paddle/operators/l1_norm_op.h b/paddle/operators/l1_norm_op.h index 3c60dc3dc7415f34ed9d238e6f41b197ec404883..ae3878f2b7b079027a9e9145cefa9eae6b22ffbc 100644 --- a/paddle/operators/l1_norm_op.h +++ b/paddle/operators/l1_norm_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { // Out = sum(abs(X)) -template +template class L1NormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -30,14 +30,15 @@ class L1NormKernel : public framework::OpKernel { auto x = framework::EigenVector::Flatten(*X); auto out = framework::EigenScalar::From(*Out); - auto place = context.GetEigenDevice(); + auto &place = + *context.template device_context().eigen_device(); out.device(place) = x.abs().sum(); } }; // dX = dout * sign(X) -template +template class L1NormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -52,7 +53,8 @@ class L1NormGradKernel : public framework::OpKernel { auto x_eigen = framework::EigenVector::Flatten(*x); auto d_out_eigen = framework::EigenVector::Flatten(*d_out); auto dx_eigen = framework::EigenVector::Flatten(*dx); - auto place = context.GetEigenDevice(); + auto &place = + *context.template device_context().eigen_device(); Eigen::DSizes x_dsize(x->numel()); dx_eigen.device(place) = d_out_eigen.broadcast(x_dsize) * x_eigen.sign(); diff --git a/paddle/operators/linear_chain_crf_op.cc b/paddle/operators/linear_chain_crf_op.cc index 8e079a14e0a15e8ff803b6087e6b0b02083479ef..ad15e8ebd2b323929a4448e98a18c5cad6f5ed12 100644 --- a/paddle/operators/linear_chain_crf_op.cc +++ b/paddle/operators/linear_chain_crf_op.cc @@ -19,8 +19,7 @@ namespace operators { class LinearChainCRFOpMaker : public framework::OpProtoAndCheckerMaker { public: - LinearChainCRFOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + LinearChainCRFOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Emission", "(LoDTensor, default LoDTensor) " @@ -261,9 +260,10 @@ REGISTER_OP(linear_chain_crf, ops::LinearChainCRFOp, ops::LinearChainCRFOpMaker, linear_chain_crf_grad, ops::LinearChainCRFGradOp); REGISTER_OP_CPU_KERNEL( linear_chain_crf, - ops::LinearChainCRFOpKernel, - ops::LinearChainCRFOpKernel); + ops::LinearChainCRFOpKernel, + ops::LinearChainCRFOpKernel); REGISTER_OP_CPU_KERNEL( linear_chain_crf_grad, - ops::LinearChainCRFGradOpKernel, - ops::LinearChainCRFGradOpKernel); + ops::LinearChainCRFGradOpKernel, + ops::LinearChainCRFGradOpKernel); diff --git a/paddle/operators/linear_chain_crf_op.cu b/paddle/operators/linear_chain_crf_op.cu index 6fc8995f4c2ce05f89ffb58129695113f89159fa..3b105ec3414b5d63946331319d0f47a38e7908cc 100644 --- a/paddle/operators/linear_chain_crf_op.cu +++ b/paddle/operators/linear_chain_crf_op.cu @@ -16,11 +16,12 @@ limitations under the License. */ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( linear_chain_crf, - ops::LinearChainCRFOpKernel, - ops::LinearChainCRFOpKernel); -REGISTER_OP_GPU_KERNEL( + ops::LinearChainCRFOpKernel, + ops::LinearChainCRFOpKernel); +REGISTER_OP_CUDA_KERNEL( linear_chain_crf_grad, - ops::LinearChainCRFGradOpKernel, - ops::LinearChainCRFGradOpKernel); + ops::LinearChainCRFGradOpKernel, + ops::LinearChainCRFGradOpKernel); diff --git a/paddle/operators/linear_chain_crf_op.h b/paddle/operators/linear_chain_crf_op.h index 014bbfa7580011e38a2f546e30d1e584965a7815..694584e79c3a1e818814a4a2145f52d8db7cf10a 100644 --- a/paddle/operators/linear_chain_crf_op.h +++ b/paddle/operators/linear_chain_crf_op.h @@ -50,7 +50,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class LinearChainCRFOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -137,7 +137,8 @@ class LinearChainCRFOpKernel : public framework::OpKernel { framework::make_ddim({static_cast(batch_size), 1}), platform::CPUPlace()); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context() + .eigen_device(); auto x = EigenMatrix::From(*emission_weights); auto x_row_max = EigenMatrix::From(emission_row_max); x_row_max.device(place) = @@ -287,7 +288,7 @@ class LinearChainCRFOpKernel : public framework::OpKernel { } }; -template +template class LinearChainCRFGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -359,8 +360,7 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { emission_grad->mutable_data(platform::CPUPlace()); if (transition_grad) { transition_grad->mutable_data(platform::CPUPlace()); - math::SetConstant()(ctx.device_context(), - transition_grad, 0.); + math::set_constant(ctx.device_context(), transition_grad, 0.); } // Now, all the inputs and outputs should be on the CPU memory. @@ -384,10 +384,10 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { Tensor one_seq_beta = beta.Slice(start_pos, end_pos); Tensor one_seq_emission_grad = emission_grad->Slice(start_pos, end_pos); - BackwardOneSequence(ctx.device_context(), ll_grad[i], - one_seq_emission_exps, *transition_exps, - one_seq_alpha, one_seq_label, &one_seq_beta, - transition_grad, &one_seq_emission_grad); + BackwardOneSequence( + ctx.template device_context(), ll_grad[i], + one_seq_emission_exps, *transition_exps, one_seq_alpha, one_seq_label, + &one_seq_beta, transition_grad, &one_seq_emission_grad); } if (platform::is_gpu_place(ctx.GetPlace())) { @@ -441,8 +441,8 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { copyTensor(ctx, transition_grad_src, transition_grad_dst); } - void BackwardOneSequence(const platform::DeviceContext& ctx, const T ll_grad, - const Tensor& emission_exps, + void BackwardOneSequence(const platform::CPUDeviceContext& ctx, + const T ll_grad, const Tensor& emission_exps, const Tensor& transition_exps, const Tensor& alpha, const Tensor& label, Tensor* beta, Tensor* transition_grad, @@ -481,7 +481,7 @@ class LinearChainCRFGradOpKernel : public framework::OpKernel { auto alpha_mat = EigenMatrix::From(alpha); auto beta_mat = EigenMatrix::From(*beta); - auto* place = ctx.GetEigenDevice(); + auto* place = ctx.eigen_device(); auto prob = alpha_mat * beta_mat; auto row_sum = prob.sum(Eigen::DSizes(1)) .reshape(Eigen::DSizes(seq_length, 1)) diff --git a/paddle/operators/load_op.cc b/paddle/operators/load_op.cc index 4e58b84430f2a8697bbbc1acf971fd063120f563..6c51dad27a4d9cd9e48b8591b1f14472c83ceaf1 100644 --- a/paddle/operators/load_op.cc +++ b/paddle/operators/load_op.cc @@ -58,8 +58,7 @@ class LoadOp : public framework::OperatorBase { class LoadOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - LoadOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoadOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Out", "(Tensor) The tensor need to be loaded"); AddAttr("file_path", diff --git a/paddle/operators/lod_array_length_op.cc b/paddle/operators/lod_array_length_op.cc index 80445eb575703be3354595672a4c064b30e0f18c..cc8593810baf83e12368e67ceaeef0631e35c051 100644 --- a/paddle/operators/lod_array_length_op.cc +++ b/paddle/operators/lod_array_length_op.cc @@ -38,17 +38,20 @@ class LoDArrayLengthOp : public framework::OperatorBase { class LoDArrayLengthProtoMaker : public framework::OpProtoAndCheckerMaker { public: - LoDArrayLengthProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoDArrayLengthProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensorArray) The input tensor array."); AddOutput("Out", "(Tensor) 1x1 CPU Tensor of length, int64_t"); - AddComment(R"DOC(Get the length of lod tensor array + AddComment(R"DOC( +LoDArrayLength Operator. -Out = len(X) +This operator obtains the length of lod tensor array: + +$$Out = len(X)$$ NOTE: The output is a CPU Tensor since the control variable should be only in CPU and the length of LoDTensorArray should be used as control variables. + )DOC"); } }; diff --git a/paddle/operators/lod_rank_table_op.cc b/paddle/operators/lod_rank_table_op.cc index f7d4db1947b83fecf57575e17fafe26795c92bdd..2d67046bfee01d8d148da1c8b705d3ad959a4839 100644 --- a/paddle/operators/lod_rank_table_op.cc +++ b/paddle/operators/lod_rank_table_op.cc @@ -30,13 +30,13 @@ class LoDRankTableOp : public framework::OperatorBase { scope.FindVar(Output("Out"))->GetMutable(); VLOG(10) << "Level = " << static_cast(Attr("level")); out->Reset(x.lod(), static_cast(Attr("level"))); + VLOG(10) << Input("X") << "'s lod information is " << *out; } }; class LoDRankTableOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - LoDRankTableOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoDRankTableOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) input lod tensor, must contain lod information."); @@ -63,11 +63,11 @@ class LoDRankTableInferShape : public framework::InferShapeBase { class LoDRankTableInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind &op_desc, - framework::BlockDescBind *block) const override { + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { for (auto &o : op_desc.Output("Out")) { block->FindRecursiveOrCreateVar(o)->SetType( - framework::VarDesc::LOD_RANK_TABLE); + framework::proto::VarDesc::LOD_RANK_TABLE); } } }; diff --git a/paddle/operators/lod_reset_op.cc b/paddle/operators/lod_reset_op.cc index 32831cb1e2cf188a507773ef1e00b22de98d82ab..ccb87258c6b8629cd18d08185bfcc84c247070dd 100644 --- a/paddle/operators/lod_reset_op.cc +++ b/paddle/operators/lod_reset_op.cc @@ -48,8 +48,7 @@ class LoDResetOp : public framework::OperatorWithKernel { class LoDResetOpMaker : public framework::OpProtoAndCheckerMaker { public: - LoDResetOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoDResetOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) The input tensor of lod_reset operator."); AddInput("TargetLoD", diff --git a/paddle/operators/lod_reset_op.cu b/paddle/operators/lod_reset_op.cu index 5244a17c3aad01909e3b8cf5f4d5abf8a44edc7f..f7c235898096ffb3d6ba039cb3f01d5bc9ef5364 100644 --- a/paddle/operators/lod_reset_op.cu +++ b/paddle/operators/lod_reset_op.cu @@ -16,9 +16,10 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lod_reset, - ops::LoDResetKernel, - ops::LoDResetKernel); -REGISTER_OP_GPU_KERNEL( - lod_reset_grad, ops::LoDResetGradKernel, - ops::LoDResetGradKernel); +REGISTER_OP_CUDA_KERNEL( + lod_reset, ops::LoDResetKernel, + ops::LoDResetKernel); +REGISTER_OP_CUDA_KERNEL( + lod_reset_grad, + ops::LoDResetGradKernel, + ops::LoDResetGradKernel); diff --git a/paddle/operators/lod_reset_op.h b/paddle/operators/lod_reset_op.h index cbcbf80adc3cf68f9eb28bbe2a69168cc8798347..b86f8b13135fa809ade3b001434eda5d88375c2c 100644 --- a/paddle/operators/lod_reset_op.h +++ b/paddle/operators/lod_reset_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { -template +template class LoDResetKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -65,7 +65,7 @@ class LoDResetKernel : public framework::OpKernel { } }; -template +template class LoDResetGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { diff --git a/paddle/operators/lod_tensor_to_array_op.cc b/paddle/operators/lod_tensor_to_array_op.cc index 010c79d4e153463d4b2e48e5fd798d3bc4febaf1..643f8859f3d0d44c0b5be922bd786ab04093df94 100644 --- a/paddle/operators/lod_tensor_to_array_op.cc +++ b/paddle/operators/lod_tensor_to_array_op.cc @@ -14,6 +14,7 @@ #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor_array.h" #include "paddle/framework/op_registry.h" +#include "paddle/operators/detail/safe_ref.h" namespace paddle { namespace operators { @@ -32,15 +33,20 @@ class LoDTensorToArrayOp : public framework::OperatorBase { : OperatorBase(type, inputs, outputs, attrs) {} void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - auto &x = scope.FindVar(Input("X"))->Get(); - auto &rank_table = - scope.FindVar(Input("RankTable"))->Get(); - auto &out = - *scope.FindVar(Output("Out"))->GetMutable(); - + auto &x = detail::Ref(scope.FindVar(Input("X")), "Cannot find input %s", + Input("X")) + .Get(); + auto &rank_table = detail::Ref(scope.FindVar(Input("RankTable"))) + .Get(); + auto &out = *detail::Ref(scope.FindVar(Output("Out"))) + .GetMutable(); auto &items = rank_table.items(); auto max_seq_len = items[0].length; auto rank_level = rank_table.level(); + + PADDLE_ENFORCE_LT(rank_level, x.lod().size(), + "Input should be a LOD tensor, and size is at least %d", + rank_level + 1); out.resize(max_seq_len); std::vector> copy_ranges(max_seq_len); @@ -55,16 +61,13 @@ class LoDTensorToArrayOp : public framework::OperatorBase { size_t start_idx = x.lod()[rank_level][item.index] + t; auto lod_and_offset = framework::GetSubLoDAndAbsoluteOffset( x.lod(), start_idx, start_idx + 1, rank_level + 1); - auto &lod_length = lod_and_offset.first; framework::AppendLoD(&lod, lod_length); - size_t start_offset = lod_and_offset.second.first; size_t end_offset = lod_and_offset.second.second; copy_ranges[t].emplace_back(CopyRange{start_offset, end_offset}); } } - for (size_t i = 0; i < max_seq_len; ++i) { auto &ranges = copy_ranges[i]; size_t height = std::accumulate( @@ -94,8 +97,7 @@ class LoDTensorToArrayOp : public framework::OperatorBase { class LoDTensorToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - LoDTensorToArrayOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + LoDTensorToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", ""); AddInput("RankTable", ""); @@ -125,10 +127,10 @@ class LoDTensorToArrayInferShape : public framework::InferShapeBase { class LoDTensorToArrayInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind &op_desc, - framework::BlockDescBind *block) const override { + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { for (auto &out_var : op_desc.Output("Out")) { - block->Var(out_var)->SetType(framework::VarDesc::LOD_TENSOR_ARRAY); + block->Var(out_var)->SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY); } } }; @@ -138,14 +140,14 @@ class LoDTensorToArrayGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("array_to_lod_tensor"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetInput("RankTable", Input("RankTable")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/log_loss_op.cc b/paddle/operators/log_loss_op.cc index 257e5c8a49e935dcbdc33e5060118ef1804fa8d7..f714945354c5668f58e273dc8d6c7c16d51ac17d 100644 --- a/paddle/operators/log_loss_op.cc +++ b/paddle/operators/log_loss_op.cc @@ -46,8 +46,7 @@ class LogLossOp : public framework::OperatorWithKernel { template class LogLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - LogLossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + LogLossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Predicted", "The input value (Predicted) of Log loss op." @@ -109,7 +108,8 @@ class LogLossGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(log_loss, ops::LogLossOp, ops::LogLossOpMaker, log_loss_grad, ops::LogLossGradOp); -REGISTER_OP_CPU_KERNEL(log_loss, - ops::LogLossKernel); REGISTER_OP_CPU_KERNEL( - log_loss_grad, ops::LogLossGradKernel); + log_loss, ops::LogLossKernel); +REGISTER_OP_CPU_KERNEL( + log_loss_grad, + ops::LogLossGradKernel); diff --git a/paddle/operators/log_loss_op.cu b/paddle/operators/log_loss_op.cu index 6c189ef3412d7a56205502c7913e93218a03b929..e87ac7d12a2b730085b4e9a33457612c4eba2655 100644 --- a/paddle/operators/log_loss_op.cu +++ b/paddle/operators/log_loss_op.cu @@ -16,7 +16,8 @@ #include "paddle/operators/log_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(log_loss, - ops::LogLossKernel); -REGISTER_OP_GPU_KERNEL( - log_loss_grad, ops::LogLossGradKernel); +REGISTER_OP_CUDA_KERNEL( + log_loss, ops::LogLossKernel); +REGISTER_OP_CUDA_KERNEL( + log_loss_grad, + ops::LogLossGradKernel); diff --git a/paddle/operators/log_loss_op.h b/paddle/operators/log_loss_op.h index 73404fce9157fa750a51451fa93646bc4059481a..743eddb74004b5e87ed9b8a6ccb1b8496b8548dc 100644 --- a/paddle/operators/log_loss_op.h +++ b/paddle/operators/log_loss_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class LogLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -38,7 +38,7 @@ class LogLossKernel : public framework::OpKernel { auto label = EigenVector::Flatten(*ctx.Input("Labels")); auto loss = EigenVector::Flatten(*loss_out); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); loss.device(place) = (-(label * (prediction + epsilon).log()) - ((static_cast(1) - label) * @@ -46,7 +46,7 @@ class LogLossKernel : public framework::OpKernel { } }; -template +template class LogLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -59,7 +59,7 @@ class LogLossGradKernel : public framework::OpKernel { auto* dpred = ctx.Output(framework::GradVarName("Predicted")); auto dl = EigenVector::Flatten(*dloss); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); if (dpred) { dpred->mutable_data(ctx.GetPlace()); diff --git a/paddle/operators/logical_op.cc b/paddle/operators/logical_op.cc index a37582c1d840ac11f847d8743c824ef1aef0fd66..2bd6c6efae38d6d8d49cc9f3fd97cf316fbbdd0a 100644 --- a/paddle/operators/logical_op.cc +++ b/paddle/operators/logical_op.cc @@ -20,8 +20,7 @@ namespace operators { template class BinaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - BinaryLogicalOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + BinaryLogicalOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { OpComment comment; AddInput("X", @@ -45,8 +44,7 @@ Each element of Out is calculated by %s template class UnaryLogicalOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - UnaryLogicalOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + UnaryLogicalOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { OpComment comment; AddInput("X", string::Sprintf("(LoDTensor) Operand of %s operator", @@ -139,15 +137,16 @@ class LogicalOp : public framework::OperatorWithKernel { ::paddle::operators::UnaryLogicalOpInferShape<_##op_type##Comment>, \ ::paddle::framework::EmptyGradOpMaker); -REGISTER_BINARY_LOGICAL_OP(logical_and, "Out = X && Y"); +REGISTER_BINARY_LOGICAL_OP(logical_and, "$$Out = X \\&\\& Y$$"); REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CPU, paddle::operators::LogicalAndFunctor); -REGISTER_BINARY_LOGICAL_OP(logical_or, "Out = X && Y"); +REGISTER_BINARY_LOGICAL_OP(logical_or, "$$Out = X || Y$$"); REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CPU, paddle::operators::LogicalOrFunctor); -REGISTER_UNARY_LOGICAL_OP(logical_not, "Out = !X"); +REGISTER_UNARY_LOGICAL_OP(logical_not, "$$Out = !X$$"); REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CPU, paddle::operators::LogicalNotFunctor); -REGISTER_BINARY_LOGICAL_OP(logical_xor, "Out = (X || Y) && !(X && Y)"); +REGISTER_BINARY_LOGICAL_OP(logical_xor, + "$$Out = (X || Y) \\, \\&\\& \\, !(X \\&\\& Y)$$"); REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CPU, paddle::operators::LogicalXorFunctor); diff --git a/paddle/operators/logical_op.cu b/paddle/operators/logical_op.cu index d41239b2ca43e7145ea56afcb0af69948838cc48..7fef60e0c9e957f28118e54d23c6043752d2f52f 100644 --- a/paddle/operators/logical_op.cu +++ b/paddle/operators/logical_op.cu @@ -14,11 +14,11 @@ #include "paddle/operators/logical_op.h" -REGISTER_BINARY_LOGICAL_KERNEL(logical_and, GPU, +REGISTER_BINARY_LOGICAL_KERNEL(logical_and, CUDA, paddle::operators::LogicalAndFunctor); -REGISTER_BINARY_LOGICAL_KERNEL(logical_or, GPU, +REGISTER_BINARY_LOGICAL_KERNEL(logical_or, CUDA, paddle::operators::LogicalOrFunctor); -REGISTER_UNARY_LOGICAL_KERNEL(logical_not, GPU, +REGISTER_UNARY_LOGICAL_KERNEL(logical_not, CUDA, paddle::operators::LogicalNotFunctor); -REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, GPU, +REGISTER_BINARY_LOGICAL_KERNEL(logical_xor, CUDA, paddle::operators::LogicalXorFunctor); diff --git a/paddle/operators/logical_op.h b/paddle/operators/logical_op.h index 6e78a7d6ed87ba950886e6bc667f82118ff78904..629388cac81e60c8b84197238018384ffc59a08f 100644 --- a/paddle/operators/logical_op.h +++ b/paddle/operators/logical_op.h @@ -47,7 +47,7 @@ struct LogicalXorFunctor { } }; -template +template class BinaryLogicalOpKernel : public framework::OpKernel { public: @@ -57,14 +57,14 @@ class BinaryLogicalOpKernel auto* y = context.Input("Y"); auto* out = context.Output("Out"); Functor binary_func; - platform::Transform trans; - trans(context.device_context(), x->data(), x->data() + x->numel(), - y->data(), out->mutable_data(context.GetPlace()), - binary_func); + platform::Transform trans; + trans(context.template device_context(), x->data(), + x->data() + x->numel(), y->data(), + out->mutable_data(context.GetPlace()), binary_func); } }; -template +template class UnaryLogicalOpKernel : public framework::OpKernel { public: @@ -73,8 +73,9 @@ class UnaryLogicalOpKernel auto* x = context.Input("X"); auto* out = context.Output("Out"); Functor unary_func; - platform::Transform trans; - trans(context.device_context(), x->data(), x->data() + x->numel(), + platform::Transform trans; + trans(context.template device_context(), x->data(), + x->data() + x->numel(), out->mutable_data(context.GetPlace()), unary_func); } }; @@ -85,9 +86,9 @@ class UnaryLogicalOpKernel #define REGISTER_BINARY_LOGICAL_KERNEL(op_type, dev, functor) \ REGISTER_OP_##dev##_KERNEL( \ op_type, ::paddle::operators::BinaryLogicalOpKernel< \ - ::paddle::platform::dev##Place, functor>); + ::paddle::platform::dev##DeviceContext, functor>); #define REGISTER_UNARY_LOGICAL_KERNEL(op_type, dev, functor) \ REGISTER_OP_##dev##_KERNEL( \ op_type, ::paddle::operators::UnaryLogicalOpKernel< \ - ::paddle::platform::dev##Place, functor>); + ::paddle::platform::dev##DeviceContext, functor>); diff --git a/paddle/operators/lookup_table_op.cc b/paddle/operators/lookup_table_op.cc index 93e812ac5be5aea6bf3ab353d31480322c51ccbc..0a9defa8c50453abf3eefdcb89126b1349d6d756 100644 --- a/paddle/operators/lookup_table_op.cc +++ b/paddle/operators/lookup_table_op.cc @@ -51,8 +51,7 @@ class LookupTableOp : public framework::OperatorWithKernel { class LookupTableOpMaker : public framework::OpProtoAndCheckerMaker { public: - LookupTableOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + LookupTableOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("W", "An input represents embedding tensors, " @@ -109,19 +108,20 @@ class LookupTableOpGrad : public framework::OperatorWithKernel { class LookupTableOpGradVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind& op_desc, - framework::BlockDescBind* block) const override { + void operator()(const framework::OpDesc& op_desc, + framework::BlockDesc* block) const override { auto out_var_name = op_desc.Output(framework::GradVarName("W")).front(); auto attr = op_desc.GetAttr("is_sparse"); bool is_sparse = boost::get(attr); if (is_sparse) { VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W") << " is set to SelectedRows"; - block->Var(out_var_name)->SetType(framework::VarDesc::SELECTED_ROWS); + block->Var(out_var_name) + ->SetType(framework::proto::VarDesc::SELECTED_ROWS); } else { VLOG(3) << "lookup_table_grad op " << framework::GradVarName("W") << " is set to LoDTensor"; - block->Var(out_var_name)->SetType(framework::VarDesc::LOD_TENSOR); + block->Var(out_var_name)->SetType(framework::proto::VarDesc::LOD_TENSOR); } } }; diff --git a/paddle/operators/lookup_table_op.cu b/paddle/operators/lookup_table_op.cu index 84b044184a36a0d3a72a4105d6baf401b4774cf7..9431030a53975acafe9bcb22dc9164492929b07a 100644 --- a/paddle/operators/lookup_table_op.cu +++ b/paddle/operators/lookup_table_op.cu @@ -85,6 +85,8 @@ template class LookupTableGradCUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { + auto& dev_ctx = + context.template device_context(); bool is_sparse = context.Attr("is_sparse"); if (is_sparse) { auto* ids = context.Input("Ids"); @@ -95,7 +97,7 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { auto* ids_data = ids->data(); auto ids_dim = ids->dims(); - auto stream = context.cuda_device_context().stream(); + auto stream = dev_ctx.stream(); // copy GPU memory to CPU pinned memory framework::Vector new_rows; new_rows.resize(ids_dim[0]); @@ -129,14 +131,11 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { T* d_table = d_table_t->mutable_data(context.GetPlace()); auto t = framework::EigenVector::Flatten(*d_table_t); - t.device(context.GetEigenDevice()) = - t.constant(static_cast(0)); + t.device(*dev_ctx.eigen_device()) = t.constant(static_cast(0)); dim3 threads(128, 8); dim3 grids(8, 1); - LookupTableGrad< - T, 128, 8, - 8><<>>( + LookupTableGrad<<>>( d_table, d_output, ids, N, K, D); } } @@ -146,7 +145,8 @@ class LookupTableGradCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lookup_table, ops::LookupTableCUDAKernel, - ops::LookupTableCUDAKernel); -REGISTER_OP_GPU_KERNEL(lookup_table_grad, ops::LookupTableGradCUDAKernel, - ops::LookupTableGradCUDAKernel); +REGISTER_OP_CUDA_KERNEL(lookup_table, ops::LookupTableCUDAKernel, + ops::LookupTableCUDAKernel); +REGISTER_OP_CUDA_KERNEL(lookup_table_grad, + ops::LookupTableGradCUDAKernel, + ops::LookupTableGradCUDAKernel); diff --git a/paddle/operators/lrn_op.cc b/paddle/operators/lrn_op.cc index 00392b7967d020a7951a16a7850a2f08735baeb8..3b77b27b72d7079c10695da43a4fcfed9b4c855c 100644 --- a/paddle/operators/lrn_op.cc +++ b/paddle/operators/lrn_op.cc @@ -19,6 +19,103 @@ namespace operators { using framework::Tensor; +template +struct LRNFunctor { + void operator()(const framework::ExecutionContext& ctx, + const framework::Tensor& input, framework::Tensor* out, + framework::Tensor* mid, int N, int C, int H, int W, int n, + T k, T alpha, T beta) { + auto x_v = framework::EigenVector::Flatten(input); + + const int start = -(n - 1) / 2; + const int end = start + n; + + auto e_mid = framework::EigenTensor::From(*mid); + e_mid = e_mid.constant(k); + + auto e_x = framework::EigenTensor::From(input); + for (int m = 0; m < N; m++) { + for (int i = 0; i < C; i++) { + for (int c = start; c <= end; c++) { + int ch = i + c; + if (ch >= 0 && ch < C) { + auto s = e_mid.slice(Eigen::array({{m, i, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + auto r = e_x.slice(Eigen::array({{m, ch, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + s += alpha * r.square(); + } + } + } + } + + auto out_e = framework::EigenVector::Flatten(*out); + out_e = x_v * e_mid.reshape(Eigen::DSizes(e_mid.size())).pow(-beta); + } +}; +template struct LRNFunctor; +template struct LRNFunctor; + +template +struct LRNGradFunctor { + void operator()(const framework::ExecutionContext& ctx, + const framework::Tensor& x, const framework::Tensor& out, + const framework::Tensor& mid, framework::Tensor* x_g, + const framework::Tensor& out_g, int N, int C, int H, int W, + int n, T alpha, T beta) { + T ratio = -2 * alpha * beta; + auto x_g_e = framework::EigenVector::Flatten(*x_g); + x_g_e = x_g_e.constant(0.0); + + auto e_x = framework::EigenTensor::From(x); + auto e_x_g = framework::EigenTensor::From(*x_g); + auto e_out = framework::EigenTensor::From(out); + auto e_out_g = framework::EigenTensor::From(out_g); + auto e_mid = framework::EigenTensor::From(mid); + + const int start = -(n - 1) / 2; + const int end = start + n; + for (int m = 0; m < N; m++) { + for (int i = 0; i < C; i++) { + auto i_x = e_x.slice(Eigen::array({{m, i, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + auto i_x_g = e_x_g.slice(Eigen::array({{m, i, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + auto i_out_g = e_out_g.slice(Eigen::array({{m, i, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + auto i_mid = e_mid.slice(Eigen::array({{m, i, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + i_x_g = i_mid.pow(-beta) * i_out_g; + for (int c = start; c <= end; c++) { + int ch = i + c; + if (ch < 0 || ch >= C) { + continue; + } + + auto c_out = e_out.slice(Eigen::array({{m, ch, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + auto c_mid = e_mid.slice(Eigen::array({{m, ch, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + auto c_out_g = e_out_g.slice(Eigen::array({{m, ch, 0, 0}}), + Eigen::array({{1, 1, H, W}})); + + i_x_g += ratio * c_out_g * c_out * i_x / c_mid; + } + } + } + } +}; +template struct LRNGradFunctor; +template struct LRNGradFunctor; + class LRNOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; @@ -43,7 +140,7 @@ class LRNOp : public framework::OperatorWithKernel { template class LRNOpMaker : public framework::OpProtoAndCheckerMaker { public: - LRNOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + LRNOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of LRN operator. " @@ -83,8 +180,8 @@ class LRNOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( Local Response Normalization Operator. -This operator comes from the paper -"ImageNet Classification with Deep Convolutional Neural Networks". +This operator comes from the paper: +<>. The original formula is: @@ -107,7 +204,7 @@ Input(i, x, y), Output(i, x, y) represents an element in an image. C is the number of feature maps of one image. n is a hyper-parameter configured when operator is initialized. The sum in the denominator is the sum of the same positions in the neighboring maps. - + )DOC"); } }; @@ -119,8 +216,7 @@ class LRNOpGrad : public framework::OperatorWithKernel { protected: void InferShape(framework::InferShapeContext* ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null"); - PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("MidOut")), - "Input(MidOut@GRAD) should not be null"); + PADDLE_ENFORCE(ctx->HasInput("MidOut"), "Input(MidOut) should not be null"); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null"); @@ -134,6 +230,7 @@ class LRNOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(lrn, ops::LRNOp, ops::LRNOpMaker, lrn_grad, ops::LRNOpGrad); -REGISTER_OP_CPU_KERNEL(lrn, ops::LRNKernel); -REGISTER_OP_CPU_KERNEL(lrn_grad, - ops::LRNGradKernel); +REGISTER_OP_CPU_KERNEL( + lrn, ops::LRNKernel); +REGISTER_OP_CPU_KERNEL( + lrn_grad, ops::LRNGradKernel); diff --git a/paddle/operators/lrn_op.cu b/paddle/operators/lrn_op.cu index 607dc6d86a72b0a0c953f52782955dc530b7478c..c6857c2b6d0a9011ef83d115e6edd81bf2f8a0ca 100644 --- a/paddle/operators/lrn_op.cu +++ b/paddle/operators/lrn_op.cu @@ -12,11 +12,167 @@ See the License for the specific language governing permissions and limitations under the License. */ -#define EIGEN_USE_GPU #include "paddle/operators/lrn_op.h" -namespace ops = paddle::operators; +namespace paddle { +namespace operators { + +template +__global__ void KeCMRNormFillScale(int img_size, const T* in, T* mid, int C, + int H, int W, int size, T k, T alpha) { + const int idx = threadIdx.x + blockIdx.x * blockDim.x; + if (idx < img_size) { + const int w = idx % W; + const int h = (idx / W) % H; + const int n = idx / W / H; + const int offset = (n * C * H + h) * W + w; + + in += offset; + mid += offset; + const int step = H * W; + const int pre_pad = (size - 1) / 2; + const int post_pad = size - pre_pad - 1; + + T accum = 0; + int index = 0; + while (index < C + post_pad) { + if (index < C) { + T val = in[index * step]; + accum += val * val; + } + if (index >= size) { + T val = in[(index - size) * step]; + accum -= val * val; + } + if (index >= post_pad) { + mid[(index - post_pad) * step] = k + accum * alpha; + } + ++index; + } + } +} + +template +__global__ void KeCMRNormOutput(int input_size, const T* in, const T* mid, + T negative_beta, T* out) { + const int index = threadIdx.x + blockIdx.x * blockDim.x; + if (index < input_size) { + out[index] = in[index] * pow(mid[index], negative_beta); + } +} + +template +void CrossMapNormal(const framework::ExecutionContext& ctx, const T* inputs, + T* outputs, T* mid, int N, int C, int H, int W, int n, T k, + T alpha, T beta) { + int img_size = N * H * W; + const int block_size = 1024; + int grid_size = (img_size + block_size - 1) / block_size; + + auto& dev_ctx = ctx.template device_context(); + KeCMRNormFillScale<<>>( + img_size, inputs, mid, C, H, W, n, k, alpha); + + int input_size = N * H * W * C; + grid_size = (input_size + block_size - 1) / block_size; + KeCMRNormOutput<<>>( + input_size, inputs, mid, -beta, outputs); +} + +template +struct LRNFunctor { + void operator()(const framework::ExecutionContext& ctx, + const framework::Tensor& input, framework::Tensor* out, + framework::Tensor* mid, int N, int C, int H, int W, int n, + T k, T alpha, T beta) { + CrossMapNormal( + ctx, input.data(), out->mutable_data(ctx.GetPlace()), + mid->mutable_data(ctx.GetPlace()), N, C, H, W, n, k, alpha, beta); + } +}; + +template struct LRNFunctor; +template struct LRNFunctor; -REGISTER_OP_GPU_KERNEL(lrn, ops::LRNKernel); -REGISTER_OP_GPU_KERNEL(lrn_grad, - ops::LRNGradKernel); +template +__global__ void KeCMRNormDiff(int img_size, const T* x, const T* out, + const T* mid, T* x_g, const T* out_g, int C, + int H, int W, int size, T negative_beta, + T ratio) { + const int idx = threadIdx.x + blockIdx.x * blockDim.x; + if (idx < img_size) { + const int w = idx % W; + const int h = (idx / W) % H; + const int n = idx / W / H; + const int offset = (n * C * H + h) * W + w; + x += offset; + out += offset; + mid += offset; + out_g += offset; + x_g += offset; + + const int step = H * W; + const int pre_pad = size - (size + 1) / 2; + const int post_pad = size - pre_pad - 1; + + int index = 0; + T accum = 0; + // TODO(gongwb): optimize this with thread shared array. + while (index < C + post_pad) { + if (index < C) { + x_g[index * step] = 0.0; + accum += out_g[index * step] * out[index * step] / mid[index * step]; + } + if (index >= size) { + accum -= out_g[(index - size) * step] * out[(index - size) * step] / + mid[(index - size) * step]; + } + if (index >= post_pad) { + x_g[(index - post_pad) * step] += + out_g[(index - post_pad) * step] * + pow(mid[(index - post_pad) * step], negative_beta) - + ratio * x[(index - post_pad) * step] * accum; + } + ++index; + } + } +} + +template +void CrossMapNormalGrad(const framework::ExecutionContext& ctx, const T* x, + const T* out, const T* mid, T* x_g, const T* out_g, + int N, int C, int H, int W, int n, T alpha, T beta) { + int img_size = N * H * W; + + const int block_size = 1024; + int grid_size = (img_size + block_size - 1) / block_size; + + auto& dev_ctx = ctx.template device_context(); + KeCMRNormDiff<<>>( + img_size, x, out, mid, x_g, out_g, C, H, W, n, -beta, + 2.0f * alpha * beta); +} + +template +struct LRNGradFunctor { + void operator()(const framework::ExecutionContext& ctx, + const framework::Tensor& x, const framework::Tensor& out, + const framework::Tensor& mid, framework::Tensor* x_g, + const framework::Tensor& out_g, int N, int C, int H, int W, + int n, T alpha, T beta) { + CrossMapNormalGrad(ctx, x.data(), out.data(), mid.data(), + x_g->mutable_data(ctx.GetPlace()), out_g.data(), + N, C, H, W, n, alpha, beta); + } +}; + +template struct LRNGradFunctor; +template struct LRNGradFunctor; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + lrn, ops::LRNKernel); +REGISTER_OP_CUDA_KERNEL( + lrn_grad, ops::LRNGradKernel); diff --git a/paddle/operators/lrn_op.h b/paddle/operators/lrn_op.h index 606c65744303b53846c9077dfa832bdbeedb410e..44063d3e036809eb236bbe7c46aa0cce06b46df0 100644 --- a/paddle/operators/lrn_op.h +++ b/paddle/operators/lrn_op.h @@ -21,7 +21,15 @@ namespace paddle { namespace operators { -template +template +struct LRNFunctor { + void operator()(const framework::ExecutionContext& ctx, + const framework::Tensor& input, framework::Tensor* out, + framework::Tensor* mid, int N, int C, int H, int W, int n, + T k, T alpha, T beta); +}; + +template class LRNKernel : public framework::OpKernel { public: using Tensor = framework::Tensor; @@ -31,8 +39,8 @@ class LRNKernel : public framework::OpKernel { // f(x) represents outputs void Compute(const framework::ExecutionContext& ctx) const override { // input - const Tensor* x = ctx.Input("X"); - auto x_dims = x->dims(); + const Tensor& x = *ctx.Input("X"); + auto x_dims = x.dims(); // NCHW int N = x_dims[0]; @@ -57,38 +65,20 @@ class LRNKernel : public framework::OpKernel { PADDLE_ENFORCE(beta >= 0.0, "beta should >= 0.0"); PADDLE_ENFORCE(k >= 0.0, "k should >= 0.0"); - auto x_v = framework::EigenVector::Flatten(*x); - - const int start = -(n - 1) / 2; - const int end = start + n; - - auto e_mid = framework::EigenTensor::From(*mid); - e_mid.device(ctx.GetEigenDevice()) = e_mid.constant(k); - - auto e_x = framework::EigenTensor::From(*x); - for (int m = 0; m < N; m++) { - for (int i = 0; i < C; i++) { - for (int c = start; c <= end; c++) { - int ch = i + c; - if (ch >= 0 && ch < C) { - auto s = e_mid.slice(Eigen::array({{m, i, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - auto r = e_x.slice(Eigen::array({{m, ch, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - s.device(ctx.GetEigenDevice()) += alpha * r.square(); - } - } - } - } - - auto out_e = framework::EigenVector::Flatten(*out); - out_e.device(ctx.GetEigenDevice()) = - x_v * e_mid.reshape(Eigen::DSizes(e_mid.size())).pow(-beta); + LRNFunctor f; + f(ctx, x, out, mid, N, C, H, W, n, k, alpha, beta); } }; +template +struct LRNGradFunctor { + void operator()(const framework::ExecutionContext& ctx, + const framework::Tensor& x, const framework::Tensor& out, + const framework::Tensor& mid, framework::Tensor* x_g, + const framework::Tensor& out_g, int N, int C, int H, int W, + int n, T alpha, T beta); +}; + /** * \brief Backward calculation for normalization with across maps. * @@ -97,7 +87,7 @@ class LRNKernel : public framework::OpKernel { * The implementation of this Function is derived from the * CrossMapNormalFunc implementation. * - * InputGrad = OutputGrad * denoms ^ (-beta) + * InputGrad = OutputGrad * MidOut ^ (-beta) * -- upper * + > (OutputGrad * OutputValue * (-2 * alpha * beta) / MidOut) * InputValue * -- lower @@ -108,23 +98,20 @@ class LRNKernel : public framework::OpKernel { * The upper and lower is the same as forward. The logic of the sum * is also the same as forward. */ -template +template class LRNGradKernel : public framework::OpKernel { public: using Tensor = framework::Tensor; void Compute(const framework::ExecutionContext& ctx) const override { - const Tensor* x = ctx.Input("X"); - const Tensor* out = ctx.Input("Out"); - const Tensor* out_g = ctx.Input(framework::GradVarName("Out")); - const Tensor* mid = ctx.Input("MidOut"); + const Tensor& x = *ctx.Input("X"); + const Tensor& out = *ctx.Input("Out"); + const Tensor& out_g = *ctx.Input(framework::GradVarName("Out")); + const Tensor& mid = *ctx.Input("MidOut"); auto x_g = ctx.Output(framework::GradVarName("X")); x_g->mutable_data(ctx.GetPlace()); - auto x_g_e = framework::EigenVector::Flatten(*x_g); - x_g_e.device(ctx.GetEigenDevice()) = x_g_e.constant(0.0); - - auto x_dims = x->dims(); + auto x_dims = x.dims(); int N = x_dims[0]; int C = x_dims[1]; int H = x_dims[2]; @@ -133,51 +120,9 @@ class LRNGradKernel : public framework::OpKernel { int n = ctx.Attr("n"); T alpha = ctx.Attr("alpha"); T beta = ctx.Attr("beta"); - T ratio = -2 * alpha * beta; - - auto e_x = framework::EigenTensor::From(*x); - auto e_x_g = framework::EigenTensor::From(*x_g); - auto e_out = framework::EigenTensor::From(*out); - auto e_out_g = framework::EigenTensor::From(*out_g); - auto e_mid = framework::EigenTensor::From(*mid); - - const int start = -(n - 1) / 2; - const int end = start + n; - for (int m = 0; m < N; m++) { - for (int i = 0; i < C; i++) { - auto i_x = e_x.slice(Eigen::array({{m, i, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - auto i_x_g = e_x_g.slice(Eigen::array({{m, i, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - auto i_out_g = e_out_g.slice(Eigen::array({{m, i, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - auto i_mid = e_mid.slice(Eigen::array({{m, i, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - i_x_g.device(ctx.GetEigenDevice()) = i_mid.pow(-beta) * i_out_g; - for (int c = start; c <= end; c++) { - int ch = i + c; - if (ch < 0 || ch >= C) { - continue; - } - - auto c_out = e_out.slice(Eigen::array({{m, ch, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - auto c_mid = e_mid.slice(Eigen::array({{m, ch, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - auto c_out_g = e_out_g.slice(Eigen::array({{m, ch, 0, 0}}), - Eigen::array({{1, 1, H, W}})); - - i_x_g.device(ctx.GetEigenDevice()) += - ratio * c_out_g * c_out * i_x / c_mid; - } - } - } + + LRNGradFunctor f; + f(ctx, x, out, mid, x_g, out_g, N, C, H, W, n, alpha, beta); } }; diff --git a/paddle/operators/lstm_op.cc b/paddle/operators/lstm_op.cc index 4cbb60f3fdab968e8c36d4fbad55fd3efc7b1d0d..f82156170e672b5e590ddb8e0e6e8a2a24ea6868 100644 --- a/paddle/operators/lstm_op.cc +++ b/paddle/operators/lstm_op.cc @@ -102,7 +102,7 @@ class LSTMOp : public framework::OperatorWithKernel { class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { public: - LSTMOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + LSTMOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(LoDTensor) the first input is a LodTensor, which support " @@ -181,7 +181,7 @@ class LSTMOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( Long-Short Term Memory (LSTM) Operator. -The defalut implementation is diagonal/peephole connection +The defalut implementation is diagonal/peephole connection (https://arxiv.org/pdf/1402.1128.pdf), the formula is as follows: $$ @@ -198,27 +198,27 @@ c_t = f_t \odot c_{t-1} + i_t \odot \tilde{c_t} \\ h_t = o_t \odot act_h(c_t) $$ -where the W terms denote weight matrices (e.g. \f$W_{xi}\f$ is the matrix -of weights from the input gate to the input), \f$W_{ic}, W_{fc}, W_{oc}\f$ +where the W terms denote weight matrices (e.g. $W_{xi}$ is the matrix +of weights from the input gate to the input), $W_{ic}, W_{fc}, W_{oc}$ are diagonal weight matrices for peephole connections. In our implementation, we use vectors to reprenset these diagonal weight matrices. The b terms -denote bias vectors (\f$b_i\f$ is the input gate bias vector), \f$\sigma\f$ +denote bias vectors ($b_i$ is the input gate bias vector), $\sigma$ is the non-line activations, such as logistic sigmoid function, and -\f$i, f, o\f$ and \f$c\f$ are the input gate, forget gate, output gate, +$i, f, o$ and $c$ are the input gate, forget gate, output gate, and cell activation vectors, respectively, all of which have the same size as -the cell output activation vector \f$h\f$. +the cell output activation vector $h$. -The \f$\odot\f$ is the element-wise product of the vectors. \f$act_g\f$ and \f$act_h\f$ +The $\odot$ is the element-wise product of the vectors. $act_g$ and $act_h$ are the cell input and cell output activation functions and `tanh` is usually -used for them. \f$\tilde{c_t}\f$ is also called candidate hidden state, +used for them. $\tilde{c_t}$ is also called candidate hidden state, which is computed based on the current input and the previous hidden state. -Set `use_peepholes` False to disable peephole connection -(http://www.bioinf.jku.at/publications/older/2604.pdf). The formula -is omitted here. +Set `use_peepholes` False to disable peephole connection. The formula +is omitted here, please refer to the paper +http://www.bioinf.jku.at/publications/older/2604.pdf for details. -Note that these \f$W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}\f$ -operations on the input \f$x_{t}\f$ are NOT included in this operator. +Note that these $W_{xi}x_{t}, W_{xf}x_{t}, W_{xc}x_{t}, W_{xo}x_{t}$ +operations on the input $x_{t}$ are NOT included in this operator. Users can choose to use fully-connect operator before LSTM operator. )DOC"); @@ -273,8 +273,9 @@ class LSTMGradOp : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(lstm, ops::LSTMOp, ops::LSTMOpMaker, lstm_grad, ops::LSTMGradOp); -REGISTER_OP_CPU_KERNEL(lstm, ops::LSTMKernel, - ops::LSTMKernel); -REGISTER_OP_CPU_KERNEL(lstm_grad, - ops::LSTMGradKernel, - ops::LSTMGradKernel); +REGISTER_OP_CPU_KERNEL( + lstm, ops::LSTMKernel, + ops::LSTMKernel); +REGISTER_OP_CPU_KERNEL( + lstm_grad, ops::LSTMGradKernel, + ops::LSTMGradKernel); diff --git a/paddle/operators/lstm_op.cu.cc b/paddle/operators/lstm_op.cu.cc index 610cbb03e890203407b1489800bc17f1a196d12c..48519bed6f7d927b40d02683a7e9f2acfb8b85e5 100644 --- a/paddle/operators/lstm_op.cu.cc +++ b/paddle/operators/lstm_op.cu.cc @@ -15,8 +15,9 @@ #include "paddle/operators/lstm_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lstm, ops::LSTMKernel, - ops::LSTMKernel); -REGISTER_OP_GPU_KERNEL(lstm_grad, - ops::LSTMGradKernel, - ops::LSTMGradKernel); +REGISTER_OP_CUDA_KERNEL( + lstm, ops::LSTMKernel, + ops::LSTMKernel); +REGISTER_OP_CUDA_KERNEL( + lstm_grad, ops::LSTMGradKernel, + ops::LSTMGradKernel); diff --git a/paddle/operators/lstm_op.h b/paddle/operators/lstm_op.h index 721aa42c92f2926aabbc13d0a9027b2b4e573225..14abd4bf0a6e73a9c0f000f53a5e1e380f01d1c0 100644 --- a/paddle/operators/lstm_op.h +++ b/paddle/operators/lstm_op.h @@ -24,16 +24,16 @@ namespace operators { using LoDTensor = framework::LoDTensor; using Tensor = framework::Tensor; -template -inline void ReorderInitState(const platform::DeviceContext& ctx, +template +inline void ReorderInitState(const DeviceContext& ctx, const framework::Tensor& src, const size_t* index, framework::Tensor* dst, bool indexed_src) { - math::CopyMatrixRowsFunctor row_shuffle; + math::CopyMatrixRowsFunctor row_shuffle; dst->mutable_data(src.dims(), ctx.GetPlace()); row_shuffle(ctx, src, index, *dst, indexed_src); } -template +template class LSTMKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -52,8 +52,8 @@ class LSTMKernel : public framework::OpKernel { cell_out->mutable_data(ctx.GetPlace()); bool is_reverse = ctx.Attr("is_reverse"); - math::LoDTensor2BatchFunctor to_batch; - auto& device_ctx = ctx.device_context(); + math::LoDTensor2BatchFunctor to_batch; + auto& device_ctx = ctx.template device_context(); to_batch(device_ctx, *input, *batch_gate, true, is_reverse); auto in_dims = input->dims(); @@ -64,7 +64,7 @@ class LSTMKernel : public framework::OpKernel { Tensor b = *bias; b.Resize({bias->numel(), 1}); Tensor gate_bias = b.Slice(0, 4 * frame_size); - math::RowwiseAdd add_bias; + math::RowwiseAdd add_bias; add_bias(device_ctx, *batch_gate, gate_bias, batch_gate); } @@ -73,24 +73,24 @@ class LSTMKernel : public framework::OpKernel { T* bias_data = const_cast(bias->data()); // the code style in LstmMetaValue will be updated later. - lstm_value.checkIg = bias_data + 4 * frame_size; - lstm_value.checkFg = lstm_value.checkIg + frame_size; - lstm_value.checkOg = lstm_value.checkFg + frame_size; + lstm_value.check_ig = bias_data + 4 * frame_size; + lstm_value.check_fg = lstm_value.check_ig + frame_size; + lstm_value.check_og = lstm_value.check_fg + frame_size; } else { - lstm_value.checkIg = nullptr; - lstm_value.checkFg = nullptr; - lstm_value.checkOg = nullptr; + lstm_value.check_ig = nullptr; + lstm_value.check_fg = nullptr; + lstm_value.check_og = nullptr; } - lstm_value.prevStateValue = nullptr; + lstm_value.prev_state_value = nullptr; Tensor ordered_c0; const size_t* order = batch_gate->lod()[2].data(); if (cell_t0) { // Since the batch computing for LSTM reorders the input sequence // according to their length. The initialized cell state also needs // to reorder. - ReorderInitState(device_ctx, *cell_t0, order, &ordered_c0, - true); - lstm_value.prevStateValue = ordered_c0.data(); + ReorderInitState(device_ctx, *cell_t0, order, + &ordered_c0, true); + lstm_value.prev_state_value = ordered_c0.data(); } // Use the local variable as here. @@ -121,9 +121,9 @@ class LSTMKernel : public framework::OpKernel { int pre_h_start = static_cast(batch_starts[n - 1]); int pre_h_end = pre_h_start + cur_batch_size; auto pre_hidden_t = batch_hidden.Slice(pre_h_start, pre_h_end); - math::matmul(device_ctx, pre_hidden_t, false, *weight, false, - static_cast(1.0), &gate_t, - static_cast(1.0)); + math::matmul(device_ctx, pre_hidden_t, false, *weight, + false, static_cast(1.0), &gate_t, + static_cast(1.0)); } else if (hidden_t0) { // If n == 0 and there is no initialized hidden state, that is to say // the H0 is zeros, the calculation W_h * H0 will be skiped. @@ -133,24 +133,24 @@ class LSTMKernel : public framework::OpKernel { // according to their length. The initialized hidden state also needs // to reorder. Tensor ordered_h0; - ReorderInitState(device_ctx, *hidden_t0, order, &ordered_h0, - true); - math::matmul(device_ctx, ordered_h0, false, *weight, false, - static_cast(1.0), &gate_t, - static_cast(1.0)); + ReorderInitState(device_ctx, *hidden_t0, order, + &ordered_h0, true); + math::matmul(device_ctx, ordered_h0, false, *weight, + false, static_cast(1.0), &gate_t, + static_cast(1.0)); } - lstm_value.gateValue = gate_t.data(); - lstm_value.outputValue = out_t.data(); - lstm_value.stateValue = cell_t.data(); - lstm_value.stateActiveValue = cell_pre_act_t.data(); - math::LstmUnitFunctor::compute(device_ctx, lstm_value, - frame_size, cur_batch_size, - gate_act, cell_act, cand_act); - lstm_value.prevStateValue = lstm_value.stateValue; + lstm_value.gate_value = gate_t.data(); + lstm_value.output_value = out_t.data(); + lstm_value.state_value = cell_t.data(); + lstm_value.state_active_value = cell_pre_act_t.data(); + math::LstmUnitFunctor::compute( + device_ctx, lstm_value, frame_size, cur_batch_size, gate_act, + cell_act, cand_act); + lstm_value.prev_state_value = lstm_value.state_value; } - math::Batch2LoDTensorFunctor to_seq; + math::Batch2LoDTensorFunctor to_seq; batch_hidden.set_lod(batch_gate->lod()); // restore the output hidden in LoDTensor from the batch hidden to_seq(device_ctx, batch_hidden, *hidden_out); @@ -161,7 +161,7 @@ class LSTMKernel : public framework::OpKernel { } }; -template +template class LSTMGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -187,8 +187,8 @@ class LSTMGradKernel : public framework::OpKernel { auto* h0_g = ctx.Output(framework::GradVarName("H0")); auto* c0_g = ctx.Output(framework::GradVarName("C0")); - auto& device_ctx = ctx.device_context(); - math::SetConstant zero; + auto& device_ctx = ctx.template device_context(); + math::SetConstant zero; if (weight_g) { weight_g->mutable_data(ctx.GetPlace()); zero(device_ctx, weight_g, static_cast(0.0)); @@ -200,7 +200,8 @@ class LSTMGradKernel : public framework::OpKernel { Tensor ordered_h0, ordered_c0, ordered_h0_g, ordered_c0_g; const size_t* order = batch_gate->lod()[2].data(); if (c0) { - ReorderInitState(device_ctx, *c0, order, &ordered_c0, true); + ReorderInitState(device_ctx, *c0, order, &ordered_c0, + true); } if (c0 && c0_g) { ordered_c0_g.mutable_data(c0_g->dims(), ctx.GetPlace()); @@ -214,13 +215,13 @@ class LSTMGradKernel : public framework::OpKernel { math::LstmMetaValue lstm_value; if (bias && ctx.Attr("use_peepholes")) { T* bias_data = const_cast(bias->data()); - lstm_value.checkIg = bias_data + 4 * frame_size; - lstm_value.checkFg = lstm_value.checkIg + frame_size; - lstm_value.checkOg = lstm_value.checkFg + frame_size; + lstm_value.check_ig = bias_data + 4 * frame_size; + lstm_value.check_fg = lstm_value.check_ig + frame_size; + lstm_value.check_og = lstm_value.check_fg + frame_size; } else { - lstm_value.checkIg = nullptr; - lstm_value.checkFg = nullptr; - lstm_value.checkOg = nullptr; + lstm_value.check_ig = nullptr; + lstm_value.check_fg = nullptr; + lstm_value.check_og = nullptr; } math::LstmMetaGrad lstm_grad; @@ -231,19 +232,19 @@ class LSTMGradKernel : public framework::OpKernel { } if (bias && bias_g && ctx.Attr("use_peepholes")) { T* bias_g_data = bias_g->data(); - lstm_grad.checkIgGrad = bias_g_data + 4 * frame_size; - lstm_grad.checkFgGrad = lstm_grad.checkIgGrad + frame_size; - lstm_grad.checkOgGrad = lstm_grad.checkFgGrad + frame_size; + lstm_grad.check_ig_grad = bias_g_data + 4 * frame_size; + lstm_grad.check_fg_grad = lstm_grad.check_ig_grad + frame_size; + lstm_grad.check_og_grad = lstm_grad.check_fg_grad + frame_size; } else { - lstm_grad.checkIgGrad = nullptr; - lstm_grad.checkFgGrad = nullptr; - lstm_grad.checkOgGrad = nullptr; + lstm_grad.check_ig_grad = nullptr; + lstm_grad.check_fg_grad = nullptr; + lstm_grad.check_og_grad = nullptr; } - math::LoDTensor2BatchFunctor to_batch; + math::LoDTensor2BatchFunctor to_batch; auto ToBatch = [&batch_gate, &to_batch]( - const platform::DeviceContext& ctx, const framework::LoDTensor& src, + const DeviceContext& ctx, const framework::LoDTensor& src, const framework::DDim& dims, framework::LoDTensor& dst) { dst.mutable_data(dims, ctx.GetPlace()); dst.set_lod(batch_gate->lod()); @@ -276,30 +277,30 @@ class LSTMGradKernel : public framework::OpKernel { Tensor gate = batch_gate->Slice(bstart, bend); Tensor cell = batch_cell.Slice(bstart, bend); Tensor cell_pre_act = batch_cell_pre_act->Slice(bstart, bend); - lstm_value.gateValue = gate.data(); - lstm_value.stateValue = cell.data(); - lstm_value.stateActiveValue = cell_pre_act.data(); + lstm_value.gate_value = gate.data(); + lstm_value.state_value = cell.data(); + lstm_value.state_active_value = cell_pre_act.data(); Tensor out_g = batch_hidden_g.Slice(bstart, bend); Tensor gate_g = batch_gate_g.Slice(bstart, bend); Tensor cell_g = batch_cell_g.Slice(bstart, bend); - lstm_grad.stateGrad = cell_g.data(); - lstm_grad.gateGrad = gate_g.data(); - lstm_grad.outputGrad = out_g.data(); + lstm_grad.state_grad = cell_g.data(); + lstm_grad.gate_grad = gate_g.data(); + lstm_grad.output_grad = out_g.data(); if (n > 0) { int bstart_pre = static_cast(batch_starts[n - 1]); Tensor cell_pre = batch_cell.Slice(bstart_pre, bstart); Tensor cell_pre_g = batch_cell_g.Slice(bstart_pre, bstart); - lstm_value.prevStateValue = cell_pre.data(); - lstm_grad.prevStateGrad = cell_pre_g.data(); + lstm_value.prev_state_value = cell_pre.data(); + lstm_grad.prev_state_grad = cell_pre_g.data(); } else { - lstm_value.prevStateValue = c0 ? ordered_c0.data() : nullptr; - lstm_grad.prevStateGrad = c0_g ? ordered_c0_g.data() : nullptr; + lstm_value.prev_state_value = c0 ? ordered_c0.data() : nullptr; + lstm_grad.prev_state_grad = c0_g ? ordered_c0_g.data() : nullptr; } int cur_batch_size = bend - bstart; - math::LstmUnitGradFunctor::compute( + math::LstmUnitGradFunctor::compute( device_ctx, lstm_value, lstm_grad, frame_size, cur_batch_size, gate_act, cell_act, cand_act); @@ -307,33 +308,34 @@ class LSTMGradKernel : public framework::OpKernel { int pre_h_start = static_cast(batch_starts[n - 1]); int pre_h_end = pre_h_start + cur_batch_size; auto pre_hidden_g = batch_hidden_g.Slice(pre_h_start, pre_h_end); - math::matmul(device_ctx, gate_g, false, *weight, true, - static_cast(1.0), &pre_hidden_g, - static_cast(1.0)); + math::matmul(device_ctx, gate_g, false, *weight, true, + static_cast(1.0), &pre_hidden_g, + static_cast(1.0)); if (weight_g) { /* backward weight */ auto pre_hidden = batch_hidden.Slice(pre_h_start, pre_h_end); - math::matmul(device_ctx, pre_hidden, true, gate_g, false, - static_cast(1.0), weight_g, - static_cast(1.0)); + math::matmul(device_ctx, pre_hidden, true, gate_g, + false, static_cast(1.0), weight_g, + static_cast(1.0)); } } else { if (h0 && weight_g) { - ReorderInitState(device_ctx, *h0, order, &ordered_h0, true); - math::matmul(device_ctx, ordered_h0, true, gate_g, false, - static_cast(1.0), weight_g, - static_cast(1.0)); + ReorderInitState(device_ctx, *h0, order, + &ordered_h0, true); + math::matmul(device_ctx, ordered_h0, true, gate_g, + false, static_cast(1.0), weight_g, + static_cast(1.0)); } if (h0 && h0_g) { ordered_h0_g.mutable_data(h0_g->dims(), ctx.GetPlace()); - math::matmul(device_ctx, gate_g, false, *weight, true, - static_cast(1.0), &ordered_h0_g, - static_cast(0.0)); + math::matmul(device_ctx, gate_g, false, *weight, + true, static_cast(1.0), + &ordered_h0_g, static_cast(0.0)); } } } - math::Batch2LoDTensorFunctor to_seq; + math::Batch2LoDTensorFunctor to_seq; if (in_g) { /* backward data */ in_g->mutable_data(ctx.GetPlace()); @@ -344,15 +346,17 @@ class LSTMGradKernel : public framework::OpKernel { Tensor b_g = *bias_g; b_g.Resize({bias_g->numel(), 1}); Tensor gate_bias_g = b_g.Slice(0, 4 * frame_size); - math::ColwiseSum col_sum; + math::ColwiseSum col_sum; col_sum(device_ctx, batch_gate_g, &gate_bias_g); } if (h0 && h0_g) { - ReorderInitState(device_ctx, ordered_h0_g, order, h0_g, false); + ReorderInitState(device_ctx, ordered_h0_g, order, h0_g, + false); } if (c0 && c0_g) { - ReorderInitState(device_ctx, ordered_c0_g, order, c0_g, false); + ReorderInitState(device_ctx, ordered_c0_g, order, c0_g, + false); } } }; diff --git a/paddle/operators/lstm_unit_op.cc b/paddle/operators/lstm_unit_op.cc index 18b9cdf2a39e8226c634194ff2cc56d169979774..34da75c00d336d3f540a9472ee2e6c4b224add09 100644 --- a/paddle/operators/lstm_unit_op.cc +++ b/paddle/operators/lstm_unit_op.cc @@ -48,10 +48,12 @@ class LstmUnitOp : public framework::OperatorWithKernel { class LstmUnitOpMaker : public framework::OpProtoAndCheckerMaker { public: - LstmUnitOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + LstmUnitOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "FC input before the non-linear activation."); + AddInput("X", + "Lstm unit only applies non-linear activations, please make sure" + "that linear tranformation has already been applied to `X`. " + "Linear tranformation can be applied by adding a `fc` layer"); AddInput( "C_prev", "The cell state tensor of last time-step in the Lstm Unit operator."); diff --git a/paddle/operators/lstm_unit_op.cu b/paddle/operators/lstm_unit_op.cu index e192283aa0afac49e8e467506f3703d1ce60d2a6..291f2c295e78288c01c6575df936ceedceba7ce8 100644 --- a/paddle/operators/lstm_unit_op.cu +++ b/paddle/operators/lstm_unit_op.cu @@ -173,7 +173,7 @@ class LstmUnitGradOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(lstm_unit, ops::LstmUnitOpCUDAKernel, - ops::LstmUnitOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(lstm_unit_grad, ops::LstmUnitGradOpCUDAKernel, - ops::LstmUnitGradOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(lstm_unit, ops::LstmUnitOpCUDAKernel, + ops::LstmUnitOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(lstm_unit_grad, ops::LstmUnitGradOpCUDAKernel, + ops::LstmUnitGradOpCUDAKernel); diff --git a/paddle/operators/lstm_unit_op.h b/paddle/operators/lstm_unit_op.h index 38cb298f92a21bb5c7508761fec701d28279a85f..61705675d930369ea8d491229caa1b4046f3e16a 100644 --- a/paddle/operators/lstm_unit_op.h +++ b/paddle/operators/lstm_unit_op.h @@ -35,7 +35,7 @@ inline T tanh(T x) { return 2. * sigmoid(2. * x) - 1.; } -template +template class LstmUnitKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -78,7 +78,7 @@ class LstmUnitKernel : public framework::OpKernel { } }; -template +template class LstmUnitGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/margin_rank_loss_op.cc b/paddle/operators/margin_rank_loss_op.cc index d7e8a0ea7632650203106b01531d724cf0b8e085..fddc72aec0aa7fa17ef585388c53da640d3c1837 100644 --- a/paddle/operators/margin_rank_loss_op.cc +++ b/paddle/operators/margin_rank_loss_op.cc @@ -42,8 +42,7 @@ class MarginRankLossOp : public framework::OperatorWithKernel { template class MarginRankLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - MarginRankLossOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MarginRankLossOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X1", "(2-D tensor with shape [batch_size x 1]) The score for " @@ -117,7 +116,7 @@ REGISTER_OP(margin_rank_loss, ops::MarginRankLossOp, ops::MarginRankLossGradOp); REGISTER_OP_CPU_KERNEL( margin_rank_loss, - ops::MarginRankLossKernel); + ops::MarginRankLossKernel); REGISTER_OP_CPU_KERNEL( margin_rank_loss_grad, - ops::MarginRankLossGradKernel); + ops::MarginRankLossGradKernel); diff --git a/paddle/operators/margin_rank_loss_op.cu b/paddle/operators/margin_rank_loss_op.cu index 3a639f25d478a712c1030d57c57d7e55de1488b5..1c2afccc5b32e22c939a275d8c69ad774d3ebdad 100644 --- a/paddle/operators/margin_rank_loss_op.cu +++ b/paddle/operators/margin_rank_loss_op.cu @@ -16,9 +16,9 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( margin_rank_loss, - ops::MarginRankLossKernel); -REGISTER_OP_GPU_KERNEL( + ops::MarginRankLossKernel); +REGISTER_OP_CUDA_KERNEL( margin_rank_loss_grad, - ops::MarginRankLossGradKernel); + ops::MarginRankLossGradKernel); diff --git a/paddle/operators/margin_rank_loss_op.h b/paddle/operators/margin_rank_loss_op.h index 8d0830147ecc465909e8988e90125929829f6f34..9c1f96cac13f1bdb8c5dfd3e771157d1d1c60e15 100644 --- a/paddle/operators/margin_rank_loss_op.h +++ b/paddle/operators/margin_rank_loss_op.h @@ -34,7 +34,7 @@ struct Heaviside { } }; -template +template class MarginRankLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -56,13 +56,13 @@ class MarginRankLossKernel : public framework::OpKernel { auto x1 = framework::EigenVector::Flatten(*x1_t); auto x2 = framework::EigenVector::Flatten(*x2_t); - auto& dev = ctx.GetEigenDevice(); + auto& dev = *ctx.template device_context().eigen_device(); out.device(dev) = (-label * (x1 - x2) + margin).unaryExpr(ReLU()); act.device(dev) = out.unaryExpr(Heaviside()); } }; -template +template class MarginRankLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -78,7 +78,7 @@ class MarginRankLossGradKernel : public framework::OpKernel { auto d_out = framework::EigenVector::Flatten(*d_out_t); auto act = framework::EigenVector::Flatten(*act_t); auto label = framework::EigenVector::Flatten(*label_t); - auto& dev = ctx.GetEigenDevice(); + auto& dev = *ctx.template device_context().eigen_device(); // compute d_x1 if (d_x1_t) { diff --git a/paddle/operators/math/context_project.cc b/paddle/operators/math/context_project.cc index f82ea5d7bee81fd1578c46f79477bb23939e627a..980dd90df8710cdbcb760e1ca84f1492a76fdb70 100644 --- a/paddle/operators/math/context_project.cc +++ b/paddle/operators/math/context_project.cc @@ -18,8 +18,8 @@ namespace paddle { namespace operators { namespace math { -template class ContextProjectFunctor; -template class ContextProjectFunctor; +template class ContextProjectFunctor; +template class ContextProjectFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/context_project.cu b/paddle/operators/math/context_project.cu index 04eeed543cb165fe449d3578a951cf74b0422252..934e3df645916013b4d1fe5eb4a19be924c914d5 100644 --- a/paddle/operators/math/context_project.cu +++ b/paddle/operators/math/context_project.cu @@ -20,8 +20,8 @@ namespace paddle { namespace operators { namespace math { -template class ContextProjectFunctor; -template class ContextProjectFunctor; +template class ContextProjectFunctor; +template class ContextProjectFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/context_project.h b/paddle/operators/math/context_project.h index d853507188cf8c80aede1e7646736036e30c9678..4036614086e1eb724a4a647db6ef13b6fe7aaaa0 100644 --- a/paddle/operators/math/context_project.h +++ b/paddle/operators/math/context_project.h @@ -81,17 +81,17 @@ using LoDTensor = framework::LoDTensor; * */ -template +template class ContextProjectFunctor { public: - void operator()(const platform::DeviceContext& context, const LoDTensor& in, + void operator()(const DeviceContext& context, const LoDTensor& in, const Tensor& padding_data, bool padding_trainable, const int context_start, const int context_length, const int context_stride, const int up_pad, const int down_pad, Tensor* col) { auto lod_level_0 = in.lod()[0]; - math::Im2ColFunctor im2col_ocf; + math::Im2ColFunctor im2col_ocf; std::vector dilation({1, 1}); std::vector padding({up_pad, 0, down_pad, 0}); @@ -188,17 +188,17 @@ class ContextProjectFunctor { } }; -template +template class ContextProjectGradFunctor { public: - void operator()(const platform::DeviceContext& context, const LoDTensor& in, + void operator()(const DeviceContext& context, const LoDTensor& in, bool padding_trainable, const int context_start, const int context_length, const int context_stride, const int up_pad, const int down_pad, bool pad_grad, bool input_grad, Tensor* padding_data, Tensor* col) { auto lod_level_0 = in.lod()[0]; - math::Col2ImFunctor col2im_ocf; + math::Col2ImFunctor col2im_ocf; std::vector dilation({1, 1}); std::vector padding({up_pad, 0, down_pad, 0}); @@ -258,8 +258,8 @@ class ContextProjectGradFunctor { Tensor out_t_sub = out_t.Slice(k * context_length, k * context_length + padding_size); Tensor w_sub = padding_data->Slice(k, k + padding_size); - axpy(context, w_sub.numel(), static_cast(1), - out_t_sub.data(), w_sub.data()); + axpy(context, w_sub.numel(), static_cast(1), + out_t_sub.data(), w_sub.data()); } } if (down_pad > 0) { @@ -290,8 +290,8 @@ class ContextProjectGradFunctor { (down_pad_begin_row + t) * context_length); Tensor w_sub = padding_data->Slice( up_pad + padding_idx, up_pad + padding_idx + padding_size); - axpy(context, w_sub.numel(), static_cast(1), - out_t_sub.data(), w_sub.data()); + axpy(context, w_sub.numel(), static_cast(1), + out_t_sub.data(), w_sub.data()); } } out_t.Resize({sequence_height, context_length * sequence_width}); diff --git a/paddle/operators/math/cross_entropy.cc b/paddle/operators/math/cross_entropy.cc index cf238a58e0a0b930077b0376a71dc02c5b31efe5..6011a196d446854877e162019f6745deb501ee9d 100644 --- a/paddle/operators/math/cross_entropy.cc +++ b/paddle/operators/math/cross_entropy.cc @@ -24,9 +24,9 @@ template ; template -class CrossEntropyFunctor { +class CrossEntropyFunctor { public: - void operator()(const platform::DeviceContext& ctx, framework::Tensor* out, + void operator()(const platform::CPUDeviceContext& ctx, framework::Tensor* out, const framework::Tensor* prob, const framework::Tensor* labels, const bool softLabel) { const int batch_size = prob->dims()[0]; @@ -35,7 +35,7 @@ class CrossEntropyFunctor { auto lbl = EigenMatrix::From(*labels); auto loss = EigenMatrix::From(*out); - loss.device(*ctx.GetEigenDevice()) = + loss.device(*ctx.eigen_device()) = -((lbl * in.log().unaryExpr(math::TolerableValue())) .sum(Eigen::DSizes(1)) .reshape(Eigen::DSizes(batch_size, 1))); @@ -53,8 +53,8 @@ class CrossEntropyFunctor { } }; -template class CrossEntropyFunctor; -template class CrossEntropyFunctor; +template class CrossEntropyFunctor; +template class CrossEntropyFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/cross_entropy.cu b/paddle/operators/math/cross_entropy.cu index 651c08f740c2991b11c210c9bf012e505adc1835..2132d49c937a85afeed0e0cee0a74a7e30c6a3ca 100644 --- a/paddle/operators/math/cross_entropy.cu +++ b/paddle/operators/math/cross_entropy.cu @@ -95,10 +95,10 @@ __global__ void SoftCrossEntropyKernel(T* Y, const T* X, const T* label, using Tensor = framework::Tensor; template -class CrossEntropyFunctor { +class CrossEntropyFunctor { public: - void operator()(const platform::DeviceContext& ctx, framework::Tensor* out, - const framework::Tensor* prob, + void operator()(const platform::CUDADeviceContext& ctx, + framework::Tensor* out, const framework::Tensor* prob, const framework::Tensor* labels, bool softLabel) { const T* prob_data = prob->data(); T* loss_data = out->mutable_data(ctx.GetPlace()); @@ -118,16 +118,14 @@ class CrossEntropyFunctor { const int64_t* label_data = labels->data(); int block = 512; int grid = (batch_size + block - 1) / block; - CrossEntropyKernel<<< - grid, block, 0, - reinterpret_cast(ctx).stream()>>>( + CrossEntropyKernel<<>>( loss_data, prob_data, label_data, batch_size, class_num); } } }; -template class CrossEntropyFunctor; -template class CrossEntropyFunctor; +template class CrossEntropyFunctor; +template class CrossEntropyFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/cross_entropy.h b/paddle/operators/math/cross_entropy.h index 70ed9ddd551bb8cb7989727c02fea870186c9f2e..677adb5adaf4041fe7acfd29be354073535fd5fc 100644 --- a/paddle/operators/math/cross_entropy.h +++ b/paddle/operators/math/cross_entropy.h @@ -33,11 +33,11 @@ struct TolerableValue { } }; -template +template class CrossEntropyFunctor { public: - void operator()(const platform::DeviceContext& context, - framework::Tensor* out, const framework::Tensor* prob, + void operator()(const DeviceContext& context, framework::Tensor* out, + const framework::Tensor* prob, const framework::Tensor* labels, const bool softLabel); }; } // namespace math diff --git a/paddle/operators/math/detail/lstm_cpu_kernel.h b/paddle/operators/math/detail/lstm_cpu_kernel.h index fc3ad0ce58aa1552ef7e717fb529c2d454b4895a..a734ad31eea4816e952641bad73776d93d8c8d34 100644 --- a/paddle/operators/math/detail/lstm_cpu_kernel.h +++ b/paddle/operators/math/detail/lstm_cpu_kernel.h @@ -26,278 +26,284 @@ namespace detail { template void naive_lstm_forward_one_sequence(Op op, LstmMetaValue value, - int frameSize, + int frame_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - T rValueIn; - T rValueIg; - T rValueFg; - T rValueOg; - T rCheckI; - T rCheckF; - T rCheckO; - T rState; - T rPrevState = 0; - T rStateAtv; - T rOut; - - T *valueIn = value.gateValue; - T *valueIg = value.gateValue + frameSize; - T *valueFg = value.gateValue + frameSize * 2; - T *valueOg = value.gateValue + frameSize * 3; - - for (int i = 0; i < frameSize; i++) { - rValueIn = valueIn[i]; - rValueIg = valueIg[i]; - rValueFg = valueFg[i]; - rValueOg = valueOg[i]; - rCheckI = value.checkIg ? value.checkIg[i] : 0; - rCheckF = value.checkFg ? value.checkFg[i] : 0; - rCheckO = value.checkOg ? value.checkOg[i] : 0; - - if (value.prevStateValue) { - rPrevState = value.prevStateValue[i]; + T r_value_in; + T r_value_ig; + T r_value_fg; + T r_value_og; + T r_checkI; + T r_checkF; + T r_checkO; + T r_state; + T r_prev_state = 0; + T r_state_atv; + T r_out; + + T *value_in = value.gate_value; + T *value_ig = value.gate_value + frame_size; + T *value_fg = value.gate_value + frame_size * 2; + T *value_og = value.gate_value + frame_size * 3; + + for (int i = 0; i < frame_size; i++) { + r_value_in = value_in[i]; + r_value_ig = value_ig[i]; + r_value_fg = value_fg[i]; + r_value_og = value_og[i]; + r_checkI = value.check_ig ? value.check_ig[i] : 0; + r_checkF = value.check_fg ? value.check_fg[i] : 0; + r_checkO = value.check_og ? value.check_og[i] : 0; + + if (value.prev_state_value) { + r_prev_state = value.prev_state_value[i]; } - op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv, - rOut, rCheckI, rCheckF, rCheckO, active_node, active_gate, active_state); - - valueIn[i] = rValueIn; - valueIg[i] = rValueIg; - valueFg[i] = rValueFg; - valueOg[i] = rValueOg; - value.stateValue[i] = rState; - value.stateActiveValue[i] = rStateAtv; - value.outputValue[i] = rOut; + op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_prev_state, r_state, + r_state_atv, r_out, r_checkI, r_checkF, r_checkO, active_node, + active_gate, active_state); + + value_in[i] = r_value_in; + value_ig[i] = r_value_ig; + value_fg[i] = r_value_fg; + value_og[i] = r_value_og; + value.state_value[i] = r_state; + value.state_active_value[i] = r_state_atv; + value.output_value[i] = r_out; } } template void naive_lstm_backward_one_sequence(Op op, LstmMetaValue value, - LstmMetaGrad grad, int frameSize, + LstmMetaGrad grad, int frame_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - T rValueIn; - T rValueIg; - T rValueFg; - T rValueOg; - T rGradIn; - T rGradIg; - T rGradFg; - T rGradOg; - T rPrevState = 0; - T rPrevStateGrad; - T rState; - T rStateGrad; - T rStateAtv; - T rOutputGrad; - T rCheckI; - T rCheckF; - T rCheckO; - T rCheckIGrad; - T rCheckFGrad; - T rCheckOGrad; - - T *valueIn = value.gateValue; - T *valueIg = value.gateValue + frameSize; - T *valueFg = value.gateValue + frameSize * 2; - T *valueOg = value.gateValue + frameSize * 3; - T *gradIn = grad.gateGrad; - T *gradIg = grad.gateGrad + frameSize; - T *gradFg = grad.gateGrad + frameSize * 2; - T *gradOg = grad.gateGrad + frameSize * 3; - - for (int i = 0; i < frameSize; i++) { - rValueIn = valueIn[i]; - rValueIg = valueIg[i]; - rValueFg = valueFg[i]; - rValueOg = valueOg[i]; - rCheckI = value.checkIg ? value.checkIg[i] : 0; - rCheckF = value.checkFg ? value.checkFg[i] : 0; - rCheckO = value.checkOg ? value.checkOg[i] : 0; - rState = value.stateValue[i]; - rStateAtv = value.stateActiveValue[i]; - rOutputGrad = grad.outputGrad[i]; - rStateGrad = grad.stateGrad[i]; - if (value.prevStateValue) { - rPrevState = value.prevStateValue[i]; + T r_value_in; + T r_value_ig; + T r_value_fg; + T r_value_og; + T r_grad_in; + T r_grad_ig; + T r_grad_fg; + T r_grad_og; + T r_prev_state = 0; + T r_prev_state_grad; + T r_state; + T r_state_grad; + T r_state_atv; + T r_output_grad; + T r_checkI; + T r_checkF; + T r_checkO; + T r_checkIGrad; + T r_checkFGrad; + T r_checkOGrad; + + T *value_in = value.gate_value; + T *value_ig = value.gate_value + frame_size; + T *value_fg = value.gate_value + frame_size * 2; + T *value_og = value.gate_value + frame_size * 3; + T *grad_in = grad.gate_grad; + T *grad_ig = grad.gate_grad + frame_size; + T *grad_fg = grad.gate_grad + frame_size * 2; + T *grad_og = grad.gate_grad + frame_size * 3; + + for (int i = 0; i < frame_size; i++) { + r_value_in = value_in[i]; + r_value_ig = value_ig[i]; + r_value_fg = value_fg[i]; + r_value_og = value_og[i]; + r_checkI = value.check_ig ? value.check_ig[i] : 0; + r_checkF = value.check_fg ? value.check_fg[i] : 0; + r_checkO = value.check_og ? value.check_og[i] : 0; + r_state = value.state_value[i]; + r_state_atv = value.state_active_value[i]; + r_output_grad = grad.output_grad[i]; + r_state_grad = grad.state_grad[i]; + if (value.prev_state_value) { + r_prev_state = value.prev_state_value[i]; } - op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg, - rGradOg, rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv, - rOutputGrad, rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, - rCheckOGrad, active_node, active_gate, active_state); - - gradIn[i] = rGradIn; - gradIg[i] = rGradIg; - gradFg[i] = rGradFg; - gradOg[i] = rGradOg; - grad.stateGrad[i] = rStateGrad; - - if (grad.prevStateGrad) grad.prevStateGrad[i] = rPrevStateGrad; - if (value.prevStateValue) { - if (grad.checkIgGrad) grad.checkIgGrad[i] += rCheckIGrad; - if (grad.checkFgGrad) grad.checkFgGrad[i] += rCheckFGrad; + op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_grad_in, r_grad_ig, + r_grad_fg, r_grad_og, r_prev_state, r_prev_state_grad, r_state, + r_state_grad, r_state_atv, r_output_grad, r_checkI, r_checkF, r_checkO, + r_checkIGrad, r_checkFGrad, r_checkOGrad, active_node, active_gate, + active_state); + + grad_in[i] = r_grad_in; + grad_ig[i] = r_grad_ig; + grad_fg[i] = r_grad_fg; + grad_og[i] = r_grad_og; + grad.state_grad[i] = r_state_grad; + + if (grad.prev_state_grad) grad.prev_state_grad[i] = r_prev_state_grad; + if (value.prev_state_value) { + if (grad.check_ig_grad) grad.check_ig_grad[i] += r_checkIGrad; + if (grad.check_fg_grad) grad.check_fg_grad[i] += r_checkFGrad; } - if (grad.checkOgGrad) grad.checkOgGrad[i] += rCheckOGrad; + if (grad.check_og_grad) grad.check_og_grad[i] += r_checkOGrad; } } template -void avx_lstm_forward_one_sequence(Op op, LstmMetaValue value, int frameSize, +void avx_lstm_forward_one_sequence(Op op, LstmMetaValue value, + int frame_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { #ifdef __AVX__ - __m256 rValueIn; - __m256 rValueIg; - __m256 rValueFg; - __m256 rValueOg; - __m256 rCheckI = _mm256_set1_ps(0.0f); - __m256 rCheckF = _mm256_set1_ps(0.0f); - __m256 rCheckO = _mm256_set1_ps(0.0f); - __m256 rState; - __m256 rPrevState = _mm256_set1_ps(0.0f); - __m256 rStateAtv; - __m256 rOut; - - __m256 *valueIn = (__m256 *)value.gateValue; - __m256 *valueIg = (__m256 *)(value.gateValue + frameSize); - __m256 *valueFg = (__m256 *)(value.gateValue + frameSize * 2); - __m256 *valueOg = (__m256 *)(value.gateValue + frameSize * 3); - - for (int i = 0; i < frameSize / 8; i++) { - rValueIn = valueIn[i]; - rValueIg = valueIg[i]; - rValueFg = valueFg[i]; - rValueOg = valueOg[i]; - if (value.checkIg) { - rCheckI = ((__m256 *)value.checkIg)[i]; - rCheckF = ((__m256 *)value.checkFg)[i]; - rCheckO = ((__m256 *)value.checkOg)[i]; + __m256 r_value_in; + __m256 r_value_ig; + __m256 r_value_fg; + __m256 r_value_og; + __m256 r_checkI = _mm256_set1_ps(0.0f); + __m256 r_checkF = _mm256_set1_ps(0.0f); + __m256 r_checkO = _mm256_set1_ps(0.0f); + __m256 r_state; + __m256 r_prev_state = _mm256_set1_ps(0.0f); + __m256 r_state_atv; + __m256 r_out; + + __m256 *value_in = (__m256 *)value.gate_value; + __m256 *value_ig = (__m256 *)(value.gate_value + frame_size); + __m256 *value_fg = (__m256 *)(value.gate_value + frame_size * 2); + __m256 *value_og = (__m256 *)(value.gate_value + frame_size * 3); + + for (int i = 0; i < frame_size / 8; i++) { + r_value_in = value_in[i]; + r_value_ig = value_ig[i]; + r_value_fg = value_fg[i]; + r_value_og = value_og[i]; + if (value.check_ig) { + r_checkI = ((__m256 *)value.check_ig)[i]; + r_checkF = ((__m256 *)value.check_fg)[i]; + r_checkO = ((__m256 *)value.check_og)[i]; } - if (value.prevStateValue) { - rPrevState = ((__m256 *)value.prevStateValue)[i]; + if (value.prev_state_value) { + r_prev_state = ((__m256 *)value.prev_state_value)[i]; } - op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv, - rOut, rCheckI, rCheckF, rCheckO, active_node, active_gate, active_state); - - valueIn[i] = rValueIn; - valueIg[i] = rValueIg; - valueFg[i] = rValueFg; - valueOg[i] = rValueOg; - ((__m256 *)value.stateValue)[i] = rState; - ((__m256 *)value.stateActiveValue)[i] = rStateAtv; - ((__m256 *)value.outputValue)[i] = rOut; + op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_prev_state, r_state, + r_state_atv, r_out, r_checkI, r_checkF, r_checkO, active_node, + active_gate, active_state); + + value_in[i] = r_value_in; + value_ig[i] = r_value_ig; + value_fg[i] = r_value_fg; + value_og[i] = r_value_og; + ((__m256 *)value.state_value)[i] = r_state; + ((__m256 *)value.state_active_value)[i] = r_state_atv; + ((__m256 *)value.output_value)[i] = r_out; } #endif } template void avx_lstm_backward_one_sequence(Op op, LstmMetaValue value, - LstmMetaGrad grad, int frameSize, + LstmMetaGrad grad, int frame_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { #ifdef __AVX__ - __m256 rValueIn; - __m256 rValueIg; - __m256 rValueFg; - __m256 rValueOg; - __m256 rGradIn; - __m256 rGradIg; - __m256 rGradFg; - __m256 rGradOg; - __m256 rPrevState = _mm256_set1_ps(0.0f); - __m256 rPrevStateGrad; - __m256 rStateGrad; - __m256 rState; - __m256 rStateAtv; - __m256 rOutputGrad; - __m256 rCheckI = _mm256_set1_ps(0.0f); - __m256 rCheckF = _mm256_set1_ps(0.0f); - __m256 rCheckO = _mm256_set1_ps(0.0f); - __m256 rCheckIGrad; - __m256 rCheckFGrad; - __m256 rCheckOGrad; - - __m256 *valueIn = (__m256 *)value.gateValue; - __m256 *valueIg = (__m256 *)(value.gateValue + frameSize); - __m256 *valueFg = (__m256 *)(value.gateValue + frameSize * 2); - __m256 *valueOg = (__m256 *)(value.gateValue + frameSize * 3); - __m256 *gradIn = (__m256 *)grad.gateGrad; - __m256 *gradIg = (__m256 *)(grad.gateGrad + frameSize); - __m256 *gradFg = (__m256 *)(grad.gateGrad + frameSize * 2); - __m256 *gradOg = (__m256 *)(grad.gateGrad + frameSize * 3); - - for (int i = 0; i < frameSize / 8; i++) { - rValueIn = valueIn[i]; - rValueIg = valueIg[i]; - rValueFg = valueFg[i]; - rValueOg = valueOg[i]; - if (value.checkIg) { - rCheckI = ((__m256 *)value.checkIg)[i]; - rCheckF = ((__m256 *)value.checkFg)[i]; - rCheckO = ((__m256 *)value.checkOg)[i]; + __m256 r_value_in; + __m256 r_value_ig; + __m256 r_value_fg; + __m256 r_value_og; + __m256 r_grad_in; + __m256 r_grad_ig; + __m256 r_grad_fg; + __m256 r_grad_og; + __m256 r_prev_state = _mm256_set1_ps(0.0f); + __m256 r_prev_state_grad; + __m256 r_state_grad; + __m256 r_state; + __m256 r_state_atv; + __m256 r_output_grad; + __m256 r_checkI = _mm256_set1_ps(0.0f); + __m256 r_checkF = _mm256_set1_ps(0.0f); + __m256 r_checkO = _mm256_set1_ps(0.0f); + __m256 r_checkIGrad; + __m256 r_checkFGrad; + __m256 r_checkOGrad; + + __m256 *value_in = (__m256 *)value.gate_value; + __m256 *value_ig = (__m256 *)(value.gate_value + frame_size); + __m256 *value_fg = (__m256 *)(value.gate_value + frame_size * 2); + __m256 *value_og = (__m256 *)(value.gate_value + frame_size * 3); + __m256 *grad_in = (__m256 *)grad.gate_grad; + __m256 *grad_ig = (__m256 *)(grad.gate_grad + frame_size); + __m256 *grad_fg = (__m256 *)(grad.gate_grad + frame_size * 2); + __m256 *grad_og = (__m256 *)(grad.gate_grad + frame_size * 3); + + for (int i = 0; i < frame_size / 8; i++) { + r_value_in = value_in[i]; + r_value_ig = value_ig[i]; + r_value_fg = value_fg[i]; + r_value_og = value_og[i]; + if (value.check_ig) { + r_checkI = ((__m256 *)value.check_ig)[i]; + r_checkF = ((__m256 *)value.check_fg)[i]; + r_checkO = ((__m256 *)value.check_og)[i]; } - rState = ((__m256 *)value.stateValue)[i]; - rStateAtv = ((__m256 *)value.stateActiveValue)[i]; - rOutputGrad = ((__m256 *)grad.outputGrad)[i]; - rStateGrad = ((__m256 *)grad.stateGrad)[i]; - if (value.prevStateValue) { - rPrevState = ((__m256 *)value.prevStateValue)[i]; + r_state = ((__m256 *)value.state_value)[i]; + r_state_atv = ((__m256 *)value.state_active_value)[i]; + r_output_grad = ((__m256 *)grad.output_grad)[i]; + r_state_grad = ((__m256 *)grad.state_grad)[i]; + if (value.prev_state_value) { + r_prev_state = ((__m256 *)value.prev_state_value)[i]; } - op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg, - rGradOg, rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv, - rOutputGrad, rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, - rCheckOGrad, active_node, active_gate, active_state); - - gradIn[i] = rGradIn; - gradIg[i] = rGradIg; - gradFg[i] = rGradFg; - gradOg[i] = rGradOg; - ((__m256 *)grad.stateGrad)[i] = rStateGrad; - - if (grad.prevStateGrad) ((__m256 *)grad.prevStateGrad)[i] = rPrevStateGrad; - if (value.prevStateValue) { - if (grad.checkIgGrad) ((__m256 *)grad.checkIgGrad)[i] += rCheckIGrad; - if (grad.checkFgGrad) ((__m256 *)grad.checkFgGrad)[i] += rCheckFGrad; + op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_grad_in, r_grad_ig, + r_grad_fg, r_grad_og, r_prev_state, r_prev_state_grad, r_state, + r_state_grad, r_state_atv, r_output_grad, r_checkI, r_checkF, r_checkO, + r_checkIGrad, r_checkFGrad, r_checkOGrad, active_node, active_gate, + active_state); + + grad_in[i] = r_grad_in; + grad_ig[i] = r_grad_ig; + grad_fg[i] = r_grad_fg; + grad_og[i] = r_grad_og; + ((__m256 *)grad.state_grad)[i] = r_state_grad; + + if (grad.prev_state_grad) + ((__m256 *)grad.prev_state_grad)[i] = r_prev_state_grad; + if (value.prev_state_value) { + if (grad.check_ig_grad) ((__m256 *)grad.check_ig_grad)[i] += r_checkIGrad; + if (grad.check_fg_grad) ((__m256 *)grad.check_fg_grad)[i] += r_checkFGrad; } - if (grad.checkOgGrad) ((__m256 *)grad.checkOgGrad)[i] += rCheckOGrad; + if (grad.check_og_grad) ((__m256 *)grad.check_og_grad)[i] += r_checkOGrad; } #endif } template -void cpu_lstm_forward(Op op, LstmMetaValue value, int frameSize, +void cpu_lstm_forward(Op op, LstmMetaValue value, int frame_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - if (Op::avx && !(frameSize & (8 - 1)) && (std::is_same::value)) { - avx_lstm_forward_one_sequence(op, value, frameSize, active_node, + if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same::value)) { + avx_lstm_forward_one_sequence(op, value, frame_size, active_node, active_gate, active_state); } else { - naive_lstm_forward_one_sequence(op, value, frameSize, active_node, + naive_lstm_forward_one_sequence(op, value, frame_size, active_node, active_gate, active_state); } } template void cpu_lstm_backward(Op op, LstmMetaValue value, LstmMetaGrad grad, - int frameSize, activation_mode_t active_node, + int frame_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - if (Op::avx && !(frameSize & (8 - 1)) && (std::is_same::value)) { - avx_lstm_backward_one_sequence(op, value, grad, frameSize, active_node, + if (Op::avx && !(frame_size & (8 - 1)) && (std::is_same::value)) { + avx_lstm_backward_one_sequence(op, value, grad, frame_size, active_node, active_gate, active_state); } else { - naive_lstm_backward_one_sequence(op, value, grad, frameSize, active_node, - active_gate, active_state); + naive_lstm_backward_one_sequence(op, value, grad, frame_size, + active_node, active_gate, active_state); } } diff --git a/paddle/operators/math/detail/lstm_gpu_kernel.h b/paddle/operators/math/detail/lstm_gpu_kernel.h index d138bbe411f69929a14ad19af3e84824ac7a5d58..91bfedea53a2600156c9025f6ff3615d695a712b 100644 --- a/paddle/operators/math/detail/lstm_gpu_kernel.h +++ b/paddle/operators/math/detail/lstm_gpu_kernel.h @@ -26,189 +26,192 @@ namespace math { namespace detail { /* - * threads(framePerBlock, batchPerBlock) - * grid(frameBlocks, batchBlocks) + * threads(frame_per_block, batch_per_block) + * grid(frame_blocks, batch_blocks) */ -template -__global__ void KeLstmForward(Op op, LstmMetaValue value, int frameSize, - int batchSize, activation_mode_t active_node, +template +__global__ void KeLstmForward(Op op, LstmMetaValue value, int frame_size, + int batch_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; - if (frameIdx >= frameSize) return; - - int batchIdx = 0; - if (isBatch) { - batchIdx = blockIdx.y * blockDim.y + threadIdx.y; - if (batchIdx >= batchSize) return; - value.gateValue += batchIdx * frameSize * 4; - value.outputValue += batchIdx * frameSize; - value.stateValue += batchIdx * frameSize; - value.stateActiveValue += batchIdx * frameSize; + const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; + if (frame_idx >= frame_size) return; + + int batch_idx = 0; + if (is_batch) { + batch_idx = blockIdx.y * blockDim.y + threadIdx.y; + if (batch_idx >= batch_size) return; + value.gate_value += batch_idx * frame_size * 4; + value.output_value += batch_idx * frame_size; + value.state_value += batch_idx * frame_size; + value.state_active_value += batch_idx * frame_size; } - T rState; - T rPrevState = 0; - T rStateAtv; - T rOut; - T rValueIn; - T rValueIg; - T rValueFg; - T rValueOg; - - T rCheckI = value.checkIg ? value.checkIg[frameIdx] : 0; - T rCheckF = value.checkFg ? value.checkFg[frameIdx] : 0; - T rCheckO = value.checkOg ? value.checkOg[frameIdx] : 0; - - rValueIn = value.gateValue[frameIdx]; - rValueIg = value.gateValue[frameIdx + frameSize]; - rValueFg = value.gateValue[frameIdx + frameSize * 2]; - rValueOg = value.gateValue[frameIdx + frameSize * 3]; - - if (value.prevStateValue) { - if (isBatch) value.prevStateValue += batchIdx * frameSize; - rPrevState = value.prevStateValue[frameIdx]; + T r_state; + T r_prev_state = 0; + T r_state_atv; + T r_out; + T r_value_in; + T r_value_ig; + T r_value_fg; + T r_value_og; + + T r_checkI = value.check_ig ? value.check_ig[frame_idx] : 0; + T r_checkF = value.check_fg ? value.check_fg[frame_idx] : 0; + T r_checkO = value.check_og ? value.check_og[frame_idx] : 0; + + r_value_in = value.gate_value[frame_idx]; + r_value_ig = value.gate_value[frame_idx + frame_size]; + r_value_fg = value.gate_value[frame_idx + frame_size * 2]; + r_value_og = value.gate_value[frame_idx + frame_size * 3]; + + if (value.prev_state_value) { + if (is_batch) value.prev_state_value += batch_idx * frame_size; + r_prev_state = value.prev_state_value[frame_idx]; } - op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv, - rOut, rCheckI, rCheckF, rCheckO, active_node, active_gate, active_state); + op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_prev_state, r_state, + r_state_atv, r_out, r_checkI, r_checkF, r_checkO, active_node, active_gate, + active_state); - value.gateValue[frameIdx] = rValueIn; - value.gateValue[frameIdx + frameSize] = rValueIg; - value.gateValue[frameIdx + frameSize * 2] = rValueFg; - value.gateValue[frameIdx + frameSize * 3] = rValueOg; + value.gate_value[frame_idx] = r_value_in; + value.gate_value[frame_idx + frame_size] = r_value_ig; + value.gate_value[frame_idx + frame_size * 2] = r_value_fg; + value.gate_value[frame_idx + frame_size * 3] = r_value_og; - value.stateValue[frameIdx] = rState; - value.stateActiveValue[frameIdx] = rStateAtv; - value.outputValue[frameIdx] = rOut; + value.state_value[frame_idx] = r_state; + value.state_active_value[frame_idx] = r_state_atv; + value.output_value[frame_idx] = r_out; } /* - * threads(framePerBlock, batchPerBlock) - * grid(frameBlocks, batchBlocks) + * threads(frame_per_block, batch_per_block) + * grid(frame_blocks, batch_blocks) */ -template +template __global__ void KeLstmBackward(Op op, LstmMetaValue value, - LstmMetaGrad grad, int frameSize, - int batchSize, activation_mode_t active_node, + LstmMetaGrad grad, int frame_size, + int batch_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; - if (frameIdx >= frameSize) return; - - int batchIdx = 0; - if (isBatch) { - batchIdx = blockIdx.y * blockDim.y + threadIdx.y; - if (batchIdx >= batchSize) return; - value.gateValue += batchIdx * frameSize * 4; - value.stateValue += batchIdx * frameSize; - value.stateActiveValue += batchIdx * frameSize; - grad.gateGrad += batchIdx * frameSize * 4; - grad.stateGrad += batchIdx * frameSize; - grad.outputGrad += batchIdx * frameSize; + const int frame_idx = blockIdx.x * blockDim.x + threadIdx.x; + if (frame_idx >= frame_size) return; + + int batch_idx = 0; + if (is_batch) { + batch_idx = blockIdx.y * blockDim.y + threadIdx.y; + if (batch_idx >= batch_size) return; + value.gate_value += batch_idx * frame_size * 4; + value.state_value += batch_idx * frame_size; + value.state_active_value += batch_idx * frame_size; + grad.gate_grad += batch_idx * frame_size * 4; + grad.state_grad += batch_idx * frame_size; + grad.output_grad += batch_idx * frame_size; } - T rValueIn; - T rValueIg; - T rValueFg; - T rValueOg; - T rGradIn; - T rGradIg; - T rGradFg; - T rGradOg; - T rPrevState = 0; - T rPrevStateGrad; - T rState; - T rStateGrad; - T rStateAtv; - T rOutputGrad; - T rCheckI = value.checkIg ? value.checkIg[frameIdx] : 0; - T rCheckF = value.checkFg ? value.checkFg[frameIdx] : 0; - T rCheckO = value.checkOg ? value.checkOg[frameIdx] : 0; - - T rCheckIGrad; - T rCheckFGrad; - T rCheckOGrad; - - rValueIn = value.gateValue[frameIdx]; - rValueIg = value.gateValue[frameIdx + frameSize]; - rValueFg = value.gateValue[frameIdx + frameSize * 2]; - rValueOg = value.gateValue[frameIdx + frameSize * 3]; - rState = value.stateValue[frameIdx]; - rStateAtv = value.stateActiveValue[frameIdx]; - rOutputGrad = grad.outputGrad[frameIdx]; - rStateGrad = grad.stateGrad[frameIdx]; - - if (value.prevStateValue) { - if (isBatch) value.prevStateValue += batchIdx * frameSize; - rPrevState = value.prevStateValue[frameIdx]; + T r_value_in; + T r_value_ig; + T r_value_fg; + T r_value_og; + T r_grad_in; + T r_grad_ig; + T r_grad_fg; + T r_grad_og; + T r_prev_state = 0; + T r_prev_state_grad; + T r_state; + T r_state_grad; + T r_state_atv; + T r_output_grad; + T r_checkI = value.check_ig ? value.check_ig[frame_idx] : 0; + T r_checkF = value.check_fg ? value.check_fg[frame_idx] : 0; + T r_checkO = value.check_og ? value.check_og[frame_idx] : 0; + + T r_checkIGrad; + T r_checkFGrad; + T r_checkOGrad; + + r_value_in = value.gate_value[frame_idx]; + r_value_ig = value.gate_value[frame_idx + frame_size]; + r_value_fg = value.gate_value[frame_idx + frame_size * 2]; + r_value_og = value.gate_value[frame_idx + frame_size * 3]; + r_state = value.state_value[frame_idx]; + r_state_atv = value.state_active_value[frame_idx]; + r_output_grad = grad.output_grad[frame_idx]; + r_state_grad = grad.state_grad[frame_idx]; + + if (value.prev_state_value) { + if (is_batch) value.prev_state_value += batch_idx * frame_size; + r_prev_state = value.prev_state_value[frame_idx]; } - op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg, rGradOg, - rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv, rOutputGrad, - rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, rCheckOGrad, - active_node, active_gate, active_state); - - grad.gateGrad[frameIdx] = rGradIn; - grad.gateGrad[frameIdx + frameSize] = rGradIg; - grad.gateGrad[frameIdx + frameSize * 2] = rGradFg; - grad.gateGrad[frameIdx + frameSize * 3] = rGradOg; - grad.stateGrad[frameIdx] = rStateGrad; - if (grad.prevStateGrad) { - if (isBatch) grad.prevStateGrad += batchIdx * frameSize; - grad.prevStateGrad[frameIdx] = rPrevStateGrad; + op(r_value_in, r_value_ig, r_value_fg, r_value_og, r_grad_in, r_grad_ig, + r_grad_fg, r_grad_og, r_prev_state, r_prev_state_grad, r_state, + r_state_grad, r_state_atv, r_output_grad, r_checkI, r_checkF, r_checkO, + r_checkIGrad, r_checkFGrad, r_checkOGrad, active_node, active_gate, + active_state); + + grad.gate_grad[frame_idx] = r_grad_in; + grad.gate_grad[frame_idx + frame_size] = r_grad_ig; + grad.gate_grad[frame_idx + frame_size * 2] = r_grad_fg; + grad.gate_grad[frame_idx + frame_size * 3] = r_grad_og; + grad.state_grad[frame_idx] = r_state_grad; + if (grad.prev_state_grad) { + if (is_batch) grad.prev_state_grad += batch_idx * frame_size; + grad.prev_state_grad[frame_idx] = r_prev_state_grad; } - if (isBatch) { - if (value.prevStateValue) { - if (grad.checkIgGrad) - paddle::platform::CudaAtomicAdd(grad.checkIgGrad + frameIdx, - rCheckIGrad); - if (grad.checkFgGrad) - paddle::platform::CudaAtomicAdd(grad.checkFgGrad + frameIdx, - rCheckFGrad); + if (is_batch) { + if (value.prev_state_value) { + if (grad.check_ig_grad) + paddle::platform::CudaAtomicAdd(grad.check_ig_grad + frame_idx, + r_checkIGrad); + if (grad.check_fg_grad) + paddle::platform::CudaAtomicAdd(grad.check_fg_grad + frame_idx, + r_checkFGrad); } - if (grad.checkOgGrad) - paddle::platform::CudaAtomicAdd(grad.checkOgGrad + frameIdx, rCheckOGrad); + if (grad.check_og_grad) + paddle::platform::CudaAtomicAdd(grad.check_og_grad + frame_idx, + r_checkOGrad); } else { - if (value.prevStateValue) { - if (grad.checkIgGrad) grad.checkIgGrad[frameIdx] += rCheckIGrad; - if (grad.checkFgGrad) grad.checkFgGrad[frameIdx] += rCheckFGrad; + if (value.prev_state_value) { + if (grad.check_ig_grad) grad.check_ig_grad[frame_idx] += r_checkIGrad; + if (grad.check_fg_grad) grad.check_fg_grad[frame_idx] += r_checkFGrad; } - if (grad.checkOgGrad) grad.checkOgGrad[frameIdx] += rCheckOGrad; + if (grad.check_og_grad) grad.check_og_grad[frame_idx] += r_checkOGrad; } } template void gpu_lstm_forward(const platform::DeviceContext& context, Op op, - LstmMetaValue value, int frameSize, int batchSize, + LstmMetaValue value, int frame_size, int batch_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { dim3 threads; dim3 grid; - if (batchSize == 1) { - int framePerBlock = frameSize <= 1024 ? frameSize : 1024; - int frameBlocks = (frameSize + 1024 - 1) / 1024; - threads = dim3(framePerBlock, 1); - grid = dim3(frameBlocks, 1); + if (batch_size == 1) { + int frame_per_block = frame_size <= 1024 ? frame_size : 1024; + int frame_blocks = (frame_size + 1024 - 1) / 1024; + threads = dim3(frame_per_block, 1); + grid = dim3(frame_blocks, 1); } else { - /* framePerBlock = 32 batchPerBlock = 32 */ + /* frame_per_block = 32 batch_per_block = 32 */ threads = dim3(32, 32); - grid = dim3((frameSize + 32 - 1) / 32, (batchSize + 32 - 1) / 32); + grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 32 - 1) / 32); } auto stream = reinterpret_cast(context).stream(); - if (batchSize == 1) { + if (batch_size == 1) { KeLstmForward<<>>( - op, value, frameSize, batchSize, active_node, active_gate, + /* is_batch= */ false><<>>( + op, value, frame_size, batch_size, active_node, active_gate, active_state); } else { KeLstmForward<<>>( - op, value, frameSize, batchSize, active_node, active_gate, + /* is_batch= */ true><<>>( + op, value, frame_size, batch_size, active_node, active_gate, active_state); } } @@ -216,34 +219,34 @@ void gpu_lstm_forward(const platform::DeviceContext& context, Op op, template void gpu_lstm_backward(const platform::DeviceContext& context, Op op, LstmMetaValue value, LstmMetaGrad grad, - int frameSize, int batchSize, + int frame_size, int batch_size, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { dim3 threads; dim3 grid; - if (batchSize == 1) { - int framePerBlock = frameSize <= 1024 ? frameSize : 1024; - int frameBlocks = (frameSize + 1024 - 1) / 1024; - threads = dim3(framePerBlock, 1); - grid = dim3(frameBlocks, 1); + if (batch_size == 1) { + int frame_per_block = frame_size <= 1024 ? frame_size : 1024; + int frame_blocks = (frame_size + 1024 - 1) / 1024; + threads = dim3(frame_per_block, 1); + grid = dim3(frame_blocks, 1); } else { - /* framePerBlock = 32 batchPerBlock = 16 */ + /* frame_per_block = 32 batch_per_block = 16 */ threads = dim3(32, 16); - grid = dim3((frameSize + 32 - 1) / 32, (batchSize + 16 - 1) / 16); + grid = dim3((frame_size + 32 - 1) / 32, (batch_size + 16 - 1) / 16); } auto stream = reinterpret_cast(context).stream(); - if (batchSize == 1) { + if (batch_size == 1) { KeLstmBackward<<>>( - op, value, grad, frameSize, batchSize, active_node, active_gate, + /* is_batch= */ false><<>>( + op, value, grad, frame_size, batch_size, active_node, active_gate, active_state); } else { KeLstmBackward<<>>( - op, value, grad, frameSize, batchSize, active_node, active_gate, + /* is_batch= */ true><<>>( + op, value, grad, frame_size, batch_size, active_node, active_gate, active_state); } } diff --git a/paddle/operators/math/detail/lstm_kernel.h b/paddle/operators/math/detail/lstm_kernel.h index 9daaf91981a8e0252374f528f0e063111bd32675..78f9a249a3d5d413452952edf990975c02f1a369 100644 --- a/paddle/operators/math/detail/lstm_kernel.h +++ b/paddle/operators/math/detail/lstm_kernel.h @@ -27,19 +27,19 @@ namespace forward { template class lstm { public: - HOSTDEVICE void operator()(T &valueIn, T &valueIg, T &valueFg, T &valueOg, - T &prevState, T &state, T &stateAtv, T &output, + HOSTDEVICE void operator()(T &value_in, T &value_ig, T &value_fg, T &value_og, + T &prev_state, T &state, T &state_atv, T &output, T &checkI, T &checkF, T &checkO, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - valueIn = activation(valueIn, active_node); - valueIg = activation(valueIg + prevState * checkI, active_gate); - valueFg = activation(valueFg + prevState * checkF, active_gate); - state = valueIn * valueIg + prevState * valueFg; - valueOg = activation(valueOg + state * checkO, active_gate); - stateAtv = activation(state, active_state); - output = valueOg * stateAtv; + value_in = activation(value_in, active_node); + value_ig = activation(value_ig + prev_state * checkI, active_gate); + value_fg = activation(value_fg + prev_state * checkF, active_gate); + state = value_in * value_ig + prev_state * value_fg; + value_og = activation(value_og + state * checkO, active_gate); + state_atv = activation(state, active_state); + output = value_og * state_atv; } #ifndef __NVCC__ #ifndef __AVX__ // If not compiled with AVX instructs. Disable AVX by default @@ -48,24 +48,27 @@ class lstm { // Only float support AVX optimization static const bool avx = std::is_same::value; - HOSTDEVICE void operator()(__m256 &valueIn, __m256 &valueIg, __m256 &valueFg, - __m256 &valueOg, __m256 &prevState, __m256 &state, - __m256 &stateAtv, __m256 &output, __m256 &checkI, + HOSTDEVICE void operator()(__m256 &value_in, __m256 &value_ig, + __m256 &value_fg, __m256 &value_og, + __m256 &prev_state, __m256 &state, + __m256 &state_atv, __m256 &output, __m256 &checkI, __m256 &checkF, __m256 &checkO, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - valueIn = activation(valueIn, active_node); - valueIg = activation( - _mm256_add_ps(valueIg, _mm256_mul_ps(prevState, checkI)), active_gate); - valueFg = activation( - _mm256_add_ps(valueFg, _mm256_mul_ps(prevState, checkF)), active_gate); - state = _mm256_add_ps(_mm256_mul_ps(valueIn, valueIg), - _mm256_mul_ps(prevState, valueFg)); - valueOg = activation(_mm256_add_ps(valueOg, _mm256_mul_ps(state, checkO)), - active_gate); - stateAtv = activation(state, active_state); - output = _mm256_mul_ps(valueOg, stateAtv); + value_in = activation(value_in, active_node); + value_ig = + activation(_mm256_add_ps(value_ig, _mm256_mul_ps(prev_state, checkI)), + active_gate); + value_fg = + activation(_mm256_add_ps(value_fg, _mm256_mul_ps(prev_state, checkF)), + active_gate); + state = _mm256_add_ps(_mm256_mul_ps(value_in, value_ig), + _mm256_mul_ps(prev_state, value_fg)); + value_og = activation(_mm256_add_ps(value_og, _mm256_mul_ps(state, checkO)), + active_gate); + state_atv = activation(state, active_state); + output = _mm256_mul_ps(value_og, state_atv); } #endif #endif @@ -78,25 +81,26 @@ namespace backward { template class lstm { public: - HOSTDEVICE void operator()(T &valueIn, T &valueIg, T &valueFg, T &valueOg, - T &gradIn, T &gradIg, T &gradFg, T &gradOg, - T &prevState, T &prevStateGrad, T &state, - T &stateGrad, T &stateAtv, T &outputGrad, + HOSTDEVICE void operator()(T &value_in, T &value_ig, T &value_fg, T &value_og, + T &grad_in, T &grad_ig, T &grad_fg, T &grad_og, + T &prev_state, T &prev_state_grad, T &state, + T &state_grad, T &state_atv, T &output_grad, T &checkI, T &checkF, T &checkO, T &checkIGrad, T &checkFGrad, T &checkOGrad, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - gradOg = activation(outputGrad * stateAtv, valueOg, active_gate); - stateGrad += activation(outputGrad * valueOg, stateAtv, active_state) + - gradOg * checkO; - gradIn = activation(stateGrad * valueIg, valueIn, active_node); - gradIg = activation(stateGrad * valueIn, valueIg, active_gate); - gradFg = activation(stateGrad * prevState, valueFg, active_gate); - prevStateGrad = gradIg * checkI + gradFg * checkF + stateGrad * valueFg; - checkIGrad = gradIg * prevState; - checkFGrad = gradFg * prevState; - checkOGrad = gradOg * state; + grad_og = activation(output_grad * state_atv, value_og, active_gate); + state_grad += activation(output_grad * value_og, state_atv, active_state) + + grad_og * checkO; + grad_in = activation(state_grad * value_ig, value_in, active_node); + grad_ig = activation(state_grad * value_in, value_ig, active_gate); + grad_fg = activation(state_grad * prev_state, value_fg, active_gate); + prev_state_grad = + grad_ig * checkI + grad_fg * checkF + state_grad * value_fg; + checkIGrad = grad_ig * prev_state; + checkFGrad = grad_fg * prev_state; + checkOGrad = grad_og * state; } #ifndef __NVCC__ #ifndef __AVX__ // If not compiled with AVX instructs. Disable AVX by default @@ -105,32 +109,32 @@ class lstm { // Only float support AVX optimization static const bool avx = std::is_same::value; HOSTDEVICE void operator()( - __m256 &valueIn, __m256 &valueIg, __m256 &valueFg, __m256 &valueOg, - __m256 &gradIn, __m256 &gradIg, __m256 &gradFg, __m256 &gradOg, - __m256 &prevState, __m256 &prevStateGrad, __m256 &state, - __m256 &stateGrad, __m256 &stateAtv, __m256 &outputGrad, __m256 &checkI, - __m256 &checkF, __m256 &checkO, __m256 &checkIGrad, __m256 &checkFGrad, - __m256 &checkOGrad, activation_mode_t active_node, + __m256 &value_in, __m256 &value_ig, __m256 &value_fg, __m256 &value_og, + __m256 &grad_in, __m256 &grad_ig, __m256 &grad_fg, __m256 &grad_og, + __m256 &prev_state, __m256 &prev_state_grad, __m256 &state, + __m256 &state_grad, __m256 &state_atv, __m256 &output_grad, + __m256 &checkI, __m256 &checkF, __m256 &checkO, __m256 &checkIGrad, + __m256 &checkFGrad, __m256 &checkOGrad, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { - gradOg = - activation(_mm256_mul_ps(outputGrad, stateAtv), valueOg, active_gate); - stateGrad = _mm256_add_ps( - activation(_mm256_mul_ps(outputGrad, valueOg), stateAtv, active_state), - stateGrad); - stateGrad = _mm256_add_ps(_mm256_mul_ps(gradOg, checkO), stateGrad); - gradIn = - activation(_mm256_mul_ps(stateGrad, valueIg), valueIn, active_node); - gradIg = - activation(_mm256_mul_ps(stateGrad, valueIn), valueIg, active_gate); - gradFg = - activation(_mm256_mul_ps(stateGrad, prevState), valueFg, active_gate); - prevStateGrad = _mm256_add_ps(_mm256_mul_ps(gradIg, checkI), - _mm256_mul_ps(gradFg, checkF)); - prevStateGrad = - _mm256_add_ps(_mm256_mul_ps(stateGrad, valueFg), prevStateGrad); - checkIGrad = _mm256_mul_ps(gradIg, prevState); - checkFGrad = _mm256_mul_ps(gradFg, prevState); - checkOGrad = _mm256_mul_ps(gradOg, state); + grad_og = activation(_mm256_mul_ps(output_grad, state_atv), value_og, + active_gate); + state_grad = _mm256_add_ps(activation(_mm256_mul_ps(output_grad, value_og), + state_atv, active_state), + state_grad); + state_grad = _mm256_add_ps(_mm256_mul_ps(grad_og, checkO), state_grad); + grad_in = + activation(_mm256_mul_ps(state_grad, value_ig), value_in, active_node); + grad_ig = + activation(_mm256_mul_ps(state_grad, value_in), value_ig, active_gate); + grad_fg = activation(_mm256_mul_ps(state_grad, prev_state), value_fg, + active_gate); + prev_state_grad = _mm256_add_ps(_mm256_mul_ps(grad_ig, checkI), + _mm256_mul_ps(grad_fg, checkF)); + prev_state_grad = + _mm256_add_ps(_mm256_mul_ps(state_grad, value_fg), prev_state_grad); + checkIGrad = _mm256_mul_ps(grad_ig, prev_state); + checkFGrad = _mm256_mul_ps(grad_fg, prev_state); + checkOGrad = _mm256_mul_ps(grad_og, state); } #endif #endif diff --git a/paddle/operators/math/gru_compute.cc b/paddle/operators/math/gru_compute.cc index ae4e47b014a9cd1f656dd9332086aa4d1b7cbb52..d570c68cd458914c8951c4ce50a02e3c5b1acab0 100644 --- a/paddle/operators/math/gru_compute.cc +++ b/paddle/operators/math/gru_compute.cc @@ -19,14 +19,14 @@ namespace operators { namespace math { template -struct GRUUnitFunctor { - static void compute(const platform::DeviceContext &context, +struct GRUUnitFunctor { + static void compute(const platform::CPUDeviceContext &context, hl_gru_value value, int frame_size, int batch_size, activation_mode_t active_node, activation_mode_t active_gate) { #ifndef __NVCC__ if (value.prev_out_value) { - math::gemm( + math::gemm( context, false, false, batch_size, frame_size * 2, frame_size, 1, value.prev_out_value, frame_size, value.gate_weight, frame_size * 2, 1, value.gate_value, frame_size * 3); @@ -36,7 +36,7 @@ struct GRUUnitFunctor { frame_size, batch_size, active_gate); if (value.prev_out_value) { - math::gemm( + math::gemm( context, false, false, batch_size, frame_size, frame_size, 1, value.reset_output_value, frame_size, value.state_weight, frame_size, 1, value.gate_value + frame_size * 2, frame_size * 3); @@ -49,8 +49,8 @@ struct GRUUnitFunctor { }; template -struct GRUUnitGradFunctor { - static void compute(const platform::DeviceContext &context, +struct GRUUnitGradFunctor { + static void compute(const platform::CPUDeviceContext &context, hl_gru_value value, hl_gru_grad grad, int frame_size, int batch_size, activation_mode_t active_node, @@ -60,13 +60,13 @@ struct GRUUnitGradFunctor { grad, frame_size, batch_size, active_node); if (value.prev_out_value && grad.prev_out_grad) { - math::gemm( + math::gemm( context, false, true, batch_size, frame_size, frame_size, 1, grad.gate_grad + frame_size * 2, frame_size * 3, value.state_weight, frame_size, 0, grad.reset_output_grad, frame_size); if (grad.state_weight_grad) { - math::gemm( + math::gemm( context, true, false, frame_size, frame_size, batch_size, 1, value.reset_output_value, frame_size, grad.gate_grad + frame_size * 2, frame_size * 3, 1, @@ -78,13 +78,13 @@ struct GRUUnitGradFunctor { grad, frame_size, batch_size, active_gate); if (grad.prev_out_grad && value.prev_out_value) { - math::gemm( + math::gemm( context, false, true, batch_size, frame_size, frame_size * 2, 1, grad.gate_grad, frame_size * 3, value.gate_weight, frame_size * 2, 1, grad.prev_out_grad, frame_size); if (grad.gate_weight_grad) { - math::gemm( + math::gemm( context, true, false, frame_size, frame_size * 2, batch_size, 1, value.prev_out_value, frame_size, grad.gate_grad, frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2); @@ -94,10 +94,10 @@ struct GRUUnitGradFunctor { } }; -template struct GRUUnitFunctor; -template struct GRUUnitFunctor; -template struct GRUUnitGradFunctor; -template struct GRUUnitGradFunctor; +template struct GRUUnitFunctor; +template struct GRUUnitFunctor; +template struct GRUUnitGradFunctor; +template struct GRUUnitGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/gru_compute.cu b/paddle/operators/math/gru_compute.cu index 0252bdbdb63fef2e4754057fc5b6d415cef0c29f..dd518cd1e4bea52f0d463150114feed3ceea0ccb 100644 --- a/paddle/operators/math/gru_compute.cu +++ b/paddle/operators/math/gru_compute.cu @@ -19,13 +19,12 @@ namespace operators { namespace math { template -struct GRUUnitFunctor { - static void compute(const platform::DeviceContext &context, +struct GRUUnitFunctor { + static void compute(const platform::CUDADeviceContext &context, hl_gru_value value, int frame_size, int batch_size, activation_mode_t active_node, activation_mode_t active_gate) { - auto stream = - reinterpret_cast(context).stream(); + auto stream = context.stream(); dim3 threads; dim3 grid; if (batch_size == 1) { @@ -39,7 +38,7 @@ struct GRUUnitFunctor { } if (value.prev_out_value) { - math::gemm( + math::gemm( context, false, false, batch_size, frame_size * 2, frame_size, 1, value.prev_out_value, frame_size, value.gate_weight, frame_size * 2, 1, value.gate_value, frame_size * 3); @@ -62,7 +61,7 @@ struct GRUUnitFunctor { } if (value.prev_out_value) { - math::gemm( + math::gemm( context, false, false, batch_size, frame_size, frame_size, 1, value.reset_output_value, frame_size, value.state_weight, frame_size, 1, value.gate_value + frame_size * 2, frame_size * 3); @@ -87,14 +86,13 @@ struct GRUUnitFunctor { }; template -struct GRUUnitGradFunctor { - static void compute(const platform::DeviceContext &context, +struct GRUUnitGradFunctor { + static void compute(const platform::CUDADeviceContext &context, hl_gru_value value, hl_gru_grad grad, int frame_size, int batch_size, activation_mode_t active_node, activation_mode_t active_gate) { - auto stream = - reinterpret_cast(context).stream(); + auto stream = context.stream(); dim3 threads; dim3 grid; if (batch_size == 1) { @@ -124,13 +122,13 @@ struct GRUUnitGradFunctor { } if (value.prev_out_value && grad.prev_out_grad) { - math::gemm( + math::gemm( context, false, true, batch_size, frame_size, frame_size, 1, grad.gate_grad + frame_size * 2, frame_size * 3, value.state_weight, frame_size, 0, grad.reset_output_grad, frame_size); if (grad.state_weight_grad) { - math::gemm( + math::gemm( context, true, false, frame_size, frame_size, batch_size, 1, value.reset_output_value, frame_size, grad.gate_grad + frame_size * 2, frame_size * 3, 1, @@ -155,13 +153,13 @@ struct GRUUnitGradFunctor { } if (grad.prev_out_grad && value.prev_out_value) { - math::gemm( + math::gemm( context, false, true, batch_size, frame_size, frame_size * 2, 1, grad.gate_grad, frame_size * 3, value.gate_weight, frame_size * 2, 1, grad.prev_out_grad, frame_size); if (grad.gate_weight_grad) { - math::gemm( + math::gemm( context, true, false, frame_size, frame_size * 2, batch_size, 1, value.prev_out_value, frame_size, grad.gate_grad, frame_size * 3, 1, grad.gate_weight_grad, frame_size * 2); @@ -170,10 +168,10 @@ struct GRUUnitGradFunctor { } }; -template struct GRUUnitFunctor; -template struct GRUUnitFunctor; -template struct GRUUnitGradFunctor; -template struct GRUUnitGradFunctor; +template struct GRUUnitFunctor; +template struct GRUUnitFunctor; +template struct GRUUnitGradFunctor; +template struct GRUUnitGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/gru_compute.h b/paddle/operators/math/gru_compute.h index 58ea59f68e91c647a6b29ce3e8bc7e5d25db9b9b..ca1343cb2c5c1eb8da92c2f06b25902c1c2fe8b3 100644 --- a/paddle/operators/math/gru_compute.h +++ b/paddle/operators/math/gru_compute.h @@ -40,19 +40,18 @@ struct hl_gru_grad { T *prev_out_grad; }; -template +template struct GRUUnitFunctor { - static void compute(const platform::DeviceContext &context, - hl_gru_value value, int frame_size, int batch_size, + static void compute(const DeviceContext &context, hl_gru_value value, + int frame_size, int batch_size, activation_mode_t active_node, activation_mode_t active_gate); }; -template +template struct GRUUnitGradFunctor { - static void compute(const platform::DeviceContext &context, - hl_gru_value value, hl_gru_grad grad, - int frame_size, int batch_size, + static void compute(const DeviceContext &context, hl_gru_value value, + hl_gru_grad grad, int frame_size, int batch_size, activation_mode_t active_node, activation_mode_t active_gate); }; diff --git a/paddle/operators/math/im2col.cc b/paddle/operators/math/im2col.cc index c10c44c52076c8ee56eee3a0d82c31df70a1c9c7..c2633b2e16434558d16f699a701e7b8cf1de8342 100644 --- a/paddle/operators/math/im2col.cc +++ b/paddle/operators/math/im2col.cc @@ -25,9 +25,9 @@ namespace math { */ template class Im2ColFunctor { + platform::CPUDeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col) { @@ -61,14 +61,13 @@ class Im2ColFunctor(); T* col_data = col->data(); - for (int c = 0; c < channels_col; ++c) { int w_offset = c % filter_width; int h_offset = (c / filter_width) % filter_height; - int c_im = c / filter_width / filter_height; + int c_im = c / (filter_width * filter_height); for (int h = 0; h < col_height; ++h) { + int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0]; for (int w = 0; w < col_width; ++w) { - int im_row_idx = h * stride[0] - padding[0] + h_offset * dilation[0]; int im_col_idx = w * stride[1] - padding[1] + w_offset * dilation[1]; int col_idx = (c * col_height + h) * col_width + w; int im_idx = (im_row_idx + c_im * im_height) * im_width + im_col_idx; @@ -90,9 +89,9 @@ class Im2ColFunctor class Col2ImFunctor { + platform::CPUDeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, @@ -130,16 +129,14 @@ class Col2ImFunctor= 0 && (im_row_idx) < im_height && (im_col_idx) >= 0 && (im_col_idx) < im_width) { - im_row_idx += c_im * im_height; - im_data[im_row_idx * im_width + im_col_idx] += + im_data[(im_row_idx + c_im * im_height) * im_width + im_col_idx] += col_data[(c * col_height + h) * col_width + w]; } } @@ -149,13 +146,13 @@ class Col2ImFunctor; + platform::CPUDeviceContext, float>; template class Im2ColFunctor; + platform::CPUDeviceContext, double>; template class Col2ImFunctor; + platform::CPUDeviceContext, float>; template class Col2ImFunctor; + platform::CPUDeviceContext, double>; /* * im = [input_channels, input_height, input_width] @@ -164,9 +161,9 @@ template class Col2ImFunctor class Im2ColFunctor { + platform::CPUDeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col) { @@ -199,12 +196,13 @@ class Im2ColFunctor class Col2ImFunctor { + platform::CPUDeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, @@ -271,12 +269,13 @@ class Col2ImFunctor= 0 && im_row_offset < im_height && im_col_offset >= 0 && im_col_offset < im_width) { int im_offset = @@ -300,13 +300,13 @@ class Col2ImFunctor; + platform::CPUDeviceContext, float>; template class Im2ColFunctor; + platform::CPUDeviceContext, double>; template class Col2ImFunctor; + platform::CPUDeviceContext, float>; template class Col2ImFunctor; + platform::CPUDeviceContext, double>; } // namespace math } // namespace operators diff --git a/paddle/operators/math/im2col.cu b/paddle/operators/math/im2col.cu index bf7894243919571c2ab15d53690b1ef05bfcc6ee..a88e837b030f286cce272f99ad7991c70336e4a9 100644 --- a/paddle/operators/math/im2col.cu +++ b/paddle/operators/math/im2col.cu @@ -58,9 +58,9 @@ __global__ void im2col(const T* data_im, int num_outs, int im_height, */ template class Im2ColFunctor { + platform::CUDADeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col) { @@ -96,9 +96,7 @@ class Im2ColFunctor<<(context) - .stream()>>>( + im2col<<>>( im.data(), num_outputs, im_height, im_width, dilation[0], dilation[1], filter_height, filter_width, stride[0], stride[1], padding[0], padding[1], col_height, col_width, col->data()); @@ -160,9 +158,9 @@ __global__ void col2im(int n, const T* data_col, int im_height, int im_width, */ template class Col2ImFunctor { + platform::CUDADeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, @@ -203,9 +201,7 @@ class Col2ImFunctor<<(context) - .stream()>>>( + col2im<<>>( num_kernels, col.data(), im_height, im_width, dilation[0], dilation[1], filter_height, filter_width, stride[0], stride[1], padding[0], padding[2], col_height, col_width, im->data()); @@ -213,13 +209,13 @@ class Col2ImFunctor; + platform::CUDADeviceContext, float>; template class Im2ColFunctor; + platform::CUDADeviceContext, double>; template class Col2ImFunctor; + platform::CUDADeviceContext, float>; template class Col2ImFunctor; + platform::CUDADeviceContext, double>; template __global__ void im2colOCF(const T* im_data, int im_channels, int im_height, @@ -260,9 +256,9 @@ __global__ void im2colOCF(const T* im_data, int im_channels, int im_height, */ template class Im2ColFunctor { + platform::CUDADeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& im, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col) { @@ -310,9 +306,7 @@ class Im2ColFunctor<<(context) - .stream()>>>( + im2colOCF<<>>( im.data(), im_channels, im_height, im_width, filter_height, filter_width, stride[0], stride[1], padding[0], padding[1], col_height, col_width, col->data()); @@ -358,9 +352,9 @@ __global__ void col2imOCF(const T* col_data, int im_channels, int im_height, */ template class Col2ImFunctor { + platform::CUDADeviceContext, T> { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, @@ -409,9 +403,7 @@ class Col2ImFunctor<<(context) - .stream()>>>( + col2imOCF<<>>( col.data(), im_channels, im_height, im_width, filter_height, filter_width, stride[0], stride[1], padding[0], padding[1], col_height, col_width, im->data()); @@ -419,13 +411,13 @@ class Col2ImFunctor; + platform::CUDADeviceContext, float>; template class Im2ColFunctor; + platform::CUDADeviceContext, double>; template class Col2ImFunctor; + platform::CUDADeviceContext, float>; template class Col2ImFunctor; + platform::CUDADeviceContext, double>; } // namespace math } // namespace operators diff --git a/paddle/operators/math/im2col.h b/paddle/operators/math/im2col.h index 24fd9a06e9f5fbd50483429379cf3f46ff88bcaa..38f2c9fe0adf80a2a4355a45bebb9ba0f341d1ab 100644 --- a/paddle/operators/math/im2col.h +++ b/paddle/operators/math/im2col.h @@ -79,20 +79,19 @@ enum class ColFormat { kCFO = 0, kOCF = 1 }; * \note The caller needs to ensure that imShape.inputChannels is equal to * colShape.inputChannels. */ -template +template class Im2ColFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& im, const std::vector& dilation, + void operator()(const DeviceContext& context, const framework::Tensor& im, + const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* col); }; -template +template class Col2ImFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& col, + void operator()(const DeviceContext& context, const framework::Tensor& col, const std::vector& dilation, const std::vector& stride, const std::vector& padding, framework::Tensor* im); diff --git a/paddle/operators/math/im2col_test.cc b/paddle/operators/math/im2col_test.cc index ae197a97ed8aa089b51be77a59a8ba6a98ac70ec..256f3bc9bd487d11b0f139ef057f5a98556b4db1 100644 --- a/paddle/operators/math/im2col_test.cc +++ b/paddle/operators/math/im2col_test.cc @@ -16,7 +16,7 @@ limitations under the License. */ #include #include -template +template void testIm2col() { paddle::framework::Tensor input_tmp; paddle::framework::Tensor input; @@ -59,18 +59,7 @@ void testIm2col() { memcpy(input_ptr, arr, 6 * sizeof(float)); auto* place = new Place(); - paddle::platform::DeviceContext* context; - if (paddle::platform::is_cpu_place(*place)) { - context = - new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace()); - } else { -#ifdef PADDLE_WITH_CUDA - context = - new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); -#else - PADDLE_THROW("no GPU support"); -#endif // PADDLE_WITH_CUDA - } + DeviceContext* context = new DeviceContext(*place); if (paddle::platform::is_cpu_place(*place)) { input = input_tmp; } else { @@ -83,10 +72,10 @@ void testIm2col() { // Im2Col paddle::operators::math::Im2ColFunctor< - paddle::operators::math::ColFormat::kCFO, Place, float> + paddle::operators::math::ColFormat::kCFO, DeviceContext, float> im2col; paddle::operators::math::Im2ColFunctor< - paddle::operators::math::ColFormat::kOCF, Place, float> + paddle::operators::math::ColFormat::kOCF, DeviceContext, float> im2col_ocf; im2col(*context, input, dilation, stride, padding, &output_cfo); @@ -119,10 +108,10 @@ void testIm2col() { // Col2Im: kCFO paddle::operators::math::Col2ImFunctor< - paddle::operators::math::ColFormat::kCFO, Place, float> + paddle::operators::math::ColFormat::kCFO, DeviceContext, float> col2im; paddle::operators::math::Col2ImFunctor< - paddle::operators::math::ColFormat::kOCF, Place, float> + paddle::operators::math::ColFormat::kOCF, DeviceContext, float> col2im_ocf; float col2im_data[] = {0, 2, 2, 3, 8, 5}; @@ -168,8 +157,8 @@ void testIm2col() { } TEST(math, im2col) { - testIm2col(); + testIm2col(); #ifdef PADDLE_WITH_CUDA - testIm2col(); + testIm2col(); #endif } diff --git a/paddle/operators/math/lstm_compute.cc b/paddle/operators/math/lstm_compute.cc index 0febf8e3b70111d12f858cf6259a2801a42d9a90..2c2e8bb82e6f51e21a00de53bbfce5f0b4868e27 100644 --- a/paddle/operators/math/lstm_compute.cc +++ b/paddle/operators/math/lstm_compute.cc @@ -21,8 +21,8 @@ namespace operators { namespace math { template -struct LstmUnitFunctor { - static void compute(const platform::DeviceContext& context, +struct LstmUnitFunctor { + static void compute(const platform::CPUDeviceContext& context, LstmMetaValue value, int frame_size, int batch_size, const std::string& gate_act, const std::string& cell_act, const std::string& cand_act) { @@ -30,20 +30,20 @@ struct LstmUnitFunctor { detail::cpu_lstm_forward(detail::forward::lstm(), value, frame_size, ActiveType(cand_act), ActiveType(gate_act), ActiveType(cell_act)); - value.gateValue += frame_size * 4; - value.stateValue += frame_size; - value.stateActiveValue += frame_size; - value.outputValue += frame_size; - if (value.prevStateValue) { - value.prevStateValue += frame_size; + value.gate_value += frame_size * 4; + value.state_value += frame_size; + value.state_active_value += frame_size; + value.output_value += frame_size; + if (value.prev_state_value) { + value.prev_state_value += frame_size; } } } }; template -struct LstmUnitGradFunctor { - static void compute(const platform::DeviceContext& context, +struct LstmUnitGradFunctor { + static void compute(const platform::CPUDeviceContext& context, LstmMetaValue value, LstmMetaGrad grad, int frame_size, int batch_size, const std::string& gate_act, const std::string& cell_act, @@ -53,29 +53,29 @@ struct LstmUnitGradFunctor { frame_size, ActiveType(cand_act), ActiveType(gate_act), ActiveType(cell_act)); - value.gateValue += frame_size * 4; - value.stateValue += frame_size; - value.stateActiveValue += frame_size; - value.outputValue += frame_size; - if (value.prevStateValue) { - value.prevStateValue += frame_size; + value.gate_value += frame_size * 4; + value.state_value += frame_size; + value.state_active_value += frame_size; + value.output_value += frame_size; + if (value.prev_state_value) { + value.prev_state_value += frame_size; } - grad.gateGrad += frame_size * 4; - grad.stateGrad += frame_size; - grad.stateActiveGrad += frame_size; - grad.outputGrad += frame_size; - if (grad.prevStateGrad) { - grad.prevStateGrad += frame_size; + grad.gate_grad += frame_size * 4; + grad.state_grad += frame_size; + grad.state_active_grad += frame_size; + grad.output_grad += frame_size; + if (grad.prev_state_grad) { + grad.prev_state_grad += frame_size; } } } }; -template class LstmUnitFunctor; -template class LstmUnitFunctor; -template class LstmUnitGradFunctor; -template class LstmUnitGradFunctor; +template class LstmUnitFunctor; +template class LstmUnitFunctor; +template class LstmUnitGradFunctor; +template class LstmUnitGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/lstm_compute.cu b/paddle/operators/math/lstm_compute.cu index b2122f2a5c08a6d9d53293833177f0ba2c3ab860..92b1f4228b49709d2903fab518e7649133932fad 100644 --- a/paddle/operators/math/lstm_compute.cu +++ b/paddle/operators/math/lstm_compute.cu @@ -21,8 +21,8 @@ namespace operators { namespace math { template -struct LstmUnitFunctor { - static void compute(const platform::DeviceContext& context, +struct LstmUnitFunctor { + static void compute(const platform::CUDADeviceContext& context, LstmMetaValue value, int frame_size, int batch_size, const std::string& gate_act, const std::string& cell_act, const std::string& cand_act) { @@ -33,8 +33,8 @@ struct LstmUnitFunctor { }; template -struct LstmUnitGradFunctor { - static void compute(const platform::DeviceContext& context, +struct LstmUnitGradFunctor { + static void compute(const platform::CUDADeviceContext& context, LstmMetaValue value, LstmMetaGrad grad, int frame_size, int batch_size, const std::string& gate_act, const std::string& cell_act, @@ -45,10 +45,10 @@ struct LstmUnitGradFunctor { } }; -template class LstmUnitFunctor; -template class LstmUnitFunctor; -template class LstmUnitGradFunctor; -template class LstmUnitGradFunctor; +template class LstmUnitFunctor; +template class LstmUnitFunctor; +template class LstmUnitGradFunctor; +template class LstmUnitGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/lstm_compute.h b/paddle/operators/math/lstm_compute.h index 28d2c6fd3b0d8143da90c37f241072e37397f98b..5f74e273585aea5184281bf294df694235150e30 100644 --- a/paddle/operators/math/lstm_compute.h +++ b/paddle/operators/math/lstm_compute.h @@ -31,26 +31,26 @@ typedef enum { template struct LstmMetaValue { - T *gateValue; - T *prevStateValue; - T *stateValue; - T *stateActiveValue; - T *outputValue; - T *checkIg; - T *checkFg; - T *checkOg; + T *gate_value; + T *prev_state_value; + T *state_value; + T *state_active_value; + T *output_value; + T *check_ig; + T *check_fg; + T *check_og; }; template struct LstmMetaGrad { - T *gateGrad; - T *prevStateGrad; - T *stateGrad; - T *stateActiveGrad; - T *outputGrad; - T *checkIgGrad; - T *checkFgGrad; - T *checkOgGrad; + T *gate_grad; + T *prev_state_grad; + T *state_grad; + T *state_active_grad; + T *output_grad; + T *check_ig_grad; + T *check_fg_grad; + T *check_og_grad; }; inline activation_mode_t ActiveType(const std::string &type) { @@ -67,21 +67,20 @@ inline activation_mode_t ActiveType(const std::string &type) { } } -template +template class LstmUnitFunctor { public: - static void compute(const platform::DeviceContext &context, - LstmMetaValue value, int frame_size, int batch_size, + static void compute(const DeviceContext &context, LstmMetaValue value, + int frame_size, int batch_size, const std::string &gate_act, const std::string &cell_act, const std::string &cand_act); }; -template +template class LstmUnitGradFunctor { public: - static void compute(const platform::DeviceContext &context, - LstmMetaValue value, LstmMetaGrad grad, - int frame_size, int batch_size, + static void compute(const DeviceContext &context, LstmMetaValue value, + LstmMetaGrad grad, int frame_size, int batch_size, const std::string &gate_act, const std::string &cell_act, const std::string &cand_act); }; diff --git a/paddle/operators/math/math_function.cc b/paddle/operators/math/math_function.cc index 2e333a8cde721f8e65dbf2cf5e3aac6272172cc0..a05810d7781f5286e70b53005ef0b193c945c54c 100644 --- a/paddle/operators/math/math_function.cc +++ b/paddle/operators/math/math_function.cc @@ -21,13 +21,11 @@ namespace operators { namespace math { template <> -void gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE transB, const int M, - const int N, const int K, - const float alpha, const float* A, - const float* B, const float beta, - float* C) { +void gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C) { int lda = (transA == CblasNoTrans) ? K : M; int ldb = (transB == CblasNoTrans) ? N : K; int ldc = N; @@ -36,13 +34,11 @@ void gemm(const platform::DeviceContext& context, } template <> -void gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE transB, const int M, - const int N, const int K, - const double alpha, const double* A, - const double* B, const double beta, - double* C) { +void gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C) { int lda = (transA == CblasNoTrans) ? K : M; int ldb = (transB == CblasNoTrans) ? N : K; int ldc = N; @@ -51,35 +47,32 @@ void gemm(const platform::DeviceContext& context, } template <> -void gemm(const platform::DeviceContext& context, - const bool transA, const bool transB, - const int M, const int N, const int K, - const float alpha, const float* A, - const int lda, const float* B, - const int ldb, const float beta, float* C, - const int ldc) { +void gemm( + const platform::CPUDeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, const float alpha, + const float* A, const int lda, const float* B, const int ldb, + const float beta, float* C, const int ldc) { cblas_sgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); } template <> -void gemm(const platform::DeviceContext& context, - const bool transA, const bool transB, - const int M, const int N, const int K, - const double alpha, const double* A, - const int lda, const double* B, - const int ldb, const double beta, - double* C, const int ldc) { +void gemm( + const platform::CPUDeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, + const double alpha, const double* A, const int lda, const double* B, + const int ldb, const double beta, double* C, const int ldc) { cblas_dgemm(CblasRowMajor, transA == false ? CblasNoTrans : CblasTrans, transB == false ? CblasNoTrans : CblasTrans, M, N, K, alpha, A, lda, B, ldb, beta, C, ldc); } template <> -void matmul( - const platform::DeviceContext& context, const framework::Tensor& matrix_a, - bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha, +void matmul( + const platform::CPUDeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, float alpha, framework::Tensor* matrix_out, float beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); @@ -99,15 +92,16 @@ void matmul( CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; - gemm( + gemm( context, transA, transB, M, N, K, alpha, matrix_a.data(), matrix_b.data(), beta, matrix_out->data()); } template <> -void matmul( - const platform::DeviceContext& context, const framework::Tensor& matrix_a, - bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha, +void matmul( + const platform::CPUDeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, double alpha, framework::Tensor* matrix_out, double beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); @@ -127,16 +121,16 @@ void matmul( CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; - gemm( + gemm( context, transA, transB, M, N, K, alpha, matrix_a.data(), matrix_b.data(), beta, matrix_out->data()); } -#ifdef PADDLE_USE_MKLML +#ifdef PADDLE_WITH_MKLML // Use cblas_{s,d}gemm_batched if available: Run with 1 group of size batchSize. template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const float alpha, const float* A, const float* B, const float beta, float* C, const int batchCount, const int strideA, const int strideB) { @@ -157,8 +151,8 @@ void batched_gemm( } template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, double* C, const int batchCount, const int strideA, const int strideB) { @@ -183,8 +177,8 @@ void batched_gemm( // functions of Intel MKL are not available. In the future, this computation // should be parallelized. template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const float alpha, const float* A, const float* B, const float beta, float* C, const int batchCount, const int strideA, const int strideB) { @@ -192,14 +186,14 @@ void batched_gemm( const float* Ak = &A[k * strideA]; const float* Bk = &B[k * strideB]; float* Ck = &C[k * M * N]; - gemm(context, transA, transB, M, N, K, alpha, Ak, - Bk, beta, Ck); + gemm(context, transA, transB, M, N, K, + alpha, Ak, Bk, beta, Ck); } } template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CPUDeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, double* C, const int batchCount, const int strideA, const int strideB) { @@ -207,55 +201,53 @@ void batched_gemm( const double* Ak = &A[k * strideA]; const double* Bk = &B[k * strideB]; double* Ck = &C[k * M * N]; - gemm(context, transA, transB, M, N, K, alpha, - Ak, Bk, beta, Ck); + gemm(context, transA, transB, M, N, K, + alpha, Ak, Bk, beta, Ck); } } #endif template <> -void gemv(const platform::DeviceContext& context, - const bool trans_a, const int M, - const int N, const float alpha, - const float* A, const float* B, - const float beta, float* C) { +void gemv( + const platform::CPUDeviceContext& context, const bool trans_a, const int M, + const int N, const float alpha, const float* A, const float* B, + const float beta, float* C) { CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; cblas_sgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1); } template <> -void gemv(const platform::DeviceContext& context, - const bool trans_a, const int M, - const int N, const double alpha, - const double* A, const double* B, - const double beta, double* C) { +void gemv( + const platform::CPUDeviceContext& context, const bool trans_a, const int M, + const int N, const double alpha, const double* A, const double* B, + const double beta, double* C) { CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; cblas_dgemv(CblasRowMajor, transA, M, N, alpha, A, N, B, 1, beta, C, 1); } template <> -void axpy(const platform::DeviceContext& context, - const int n, const float alpha, - const float* x, float* y) { +void axpy( + const platform::CPUDeviceContext& context, const int n, const float alpha, + const float* x, float* y) { cblas_saxpy(n, alpha, x, 1, y, 1); } template <> -void axpy(const platform::DeviceContext& context, - const int n, const double alpha, - const double* x, double* y) { +void axpy( + const platform::CPUDeviceContext& context, const int n, const double alpha, + const double* x, double* y) { cblas_daxpy(n, alpha, x, 1, y, 1); } -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; -#define DEFINE_CPU_TRANS(RANK) \ - template struct Transpose; \ - template struct Transpose; +#define DEFINE_CPU_TRANS(RANK) \ + template struct Transpose; \ + template struct Transpose; DEFINE_CPU_TRANS(1); DEFINE_CPU_TRANS(2); @@ -285,6 +277,14 @@ void set_constant_with_place( TensorSetConstantCPU(tensor, value)); } +template <> +void set_constant_with_place( + const platform::DeviceContext& context, framework::Tensor* tensor, + float value) { + framework::VisitDataType(framework::ToDataType(tensor->type()), + TensorSetConstantCPU(tensor, value)); +} + struct TensorSetConstantWithPlace : public boost::static_visitor { TensorSetConstantWithPlace(const platform::DeviceContext& context, framework::Tensor* tensor, float value) @@ -310,10 +310,10 @@ void set_constant(const platform::DeviceContext& context, #endif } -template struct RowwiseAdd; -template struct RowwiseAdd; -template struct ColwiseSum; -template struct ColwiseSum; +template struct RowwiseAdd; +template struct RowwiseAdd; +template struct ColwiseSum; +template struct ColwiseSum; } // namespace math } // namespace operators diff --git a/paddle/operators/math/math_function.cu b/paddle/operators/math/math_function.cu index 3018e50a4f54592123df6b9cadd45ce525d7b3e1..7852bb53a9035f71f52a51529c8e3cea22b0d4aa 100644 --- a/paddle/operators/math/math_function.cu +++ b/paddle/operators/math/math_function.cu @@ -22,13 +22,11 @@ namespace operators { namespace math { template <> -void gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE transB, const int M, - const int N, const int K, - const float alpha, const float* A, - const float* B, const float beta, - float* C) { +void gemm( + const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const float alpha, const float* A, const float* B, const float beta, + float* C) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. int lda = (transA == CblasNoTrans) ? K : M; @@ -39,19 +37,16 @@ void gemm(const platform::DeviceContext& context, (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasSgemm( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, + lda, &beta, C, N)); } template <> -void gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, - const CBLAS_TRANSPOSE transB, const int M, - const int N, const int K, - const double alpha, const double* A, - const double* B, const double beta, - double* C) { +void gemm( + const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, + const double alpha, const double* A, const double* B, const double beta, + double* C) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. int lda = (transA == CblasNoTrans) ? K : M; @@ -61,51 +56,45 @@ void gemm(const platform::DeviceContext& context, cublasOperation_t cuTransB = (transB == CblasNoTrans) ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasDgemm( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, N)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, + lda, &beta, C, N)); } template <> -void gemm(const platform::DeviceContext& context, - const bool transA, const bool transB, - const int M, const int N, const int K, - const float alpha, const float* A, - const int lda, const float* B, - const int ldb, const float beta, float* C, - const int ldc) { +void gemm( + const platform::CUDADeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, const float alpha, + const float* A, const int lda, const float* B, const int ldb, + const float beta, float* C, const int ldc) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T; cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasSgemm( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, + lda, &beta, C, ldc)); } template <> -void gemm(const platform::DeviceContext& context, - const bool transA, const bool transB, - const int M, const int N, const int K, - const double alpha, const double* A, - const int lda, const double* B, - const int ldb, const double beta, - double* C, const int ldc) { +void gemm( + const platform::CUDADeviceContext& context, const bool transA, + const bool transB, const int M, const int N, const int K, + const double alpha, const double* A, const int lda, const double* B, + const int ldb, const double beta, double* C, const int ldc) { // Note that cublas follows fortran order, so the order is different from // the cblas convention. cublasOperation_t cuTransA = transA == false ? CUBLAS_OP_N : CUBLAS_OP_T; cublasOperation_t cuTransB = transB == false ? CUBLAS_OP_N : CUBLAS_OP_T; PADDLE_ENFORCE(platform::dynload::cublasDgemm( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, lda, &beta, C, ldc)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, A, + lda, &beta, C, ldc)); } template <> -void matmul( - const platform::DeviceContext& context, const framework::Tensor& matrix_a, - bool trans_a, const framework::Tensor& matrix_b, bool trans_b, float alpha, +void matmul( + const platform::CUDADeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, float alpha, framework::Tensor* matrix_out, float beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); @@ -125,15 +114,16 @@ void matmul( CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; - gemm( + gemm( context, transA, transB, M, N, K, alpha, matrix_a.data(), matrix_b.data(), beta, matrix_out->data()); } template <> -void matmul( - const platform::DeviceContext& context, const framework::Tensor& matrix_a, - bool trans_a, const framework::Tensor& matrix_b, bool trans_b, double alpha, +void matmul( + const platform::CUDADeviceContext& context, + const framework::Tensor& matrix_a, bool trans_a, + const framework::Tensor& matrix_b, bool trans_b, double alpha, framework::Tensor* matrix_out, double beta) { auto dim_a = matrix_a.dims(); auto dim_b = matrix_b.dims(); @@ -153,14 +143,14 @@ void matmul( CBLAS_TRANSPOSE transA = (trans_a == false) ? CblasNoTrans : CblasTrans; CBLAS_TRANSPOSE transB = (trans_b == false) ? CblasNoTrans : CblasTrans; - gemm( + gemm( context, transA, transB, M, N, K, alpha, matrix_a.data(), matrix_b.data(), beta, matrix_out->data()); } template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const float alpha, const float* A, const float* B, const float beta, float* C, const int batchCount, const int strideA, const int strideB) { @@ -176,15 +166,13 @@ void batched_gemm( const int strideC = M * N; PADDLE_ENFORCE(platform::dynload::cublasSgemmStridedBatched( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA, - &beta, C, ldc, strideC, batchCount)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, + strideB, A, lda, strideA, &beta, C, ldc, strideC, batchCount)); } template <> -void batched_gemm( - const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +void batched_gemm( + const platform::CUDADeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const double alpha, const double* A, const double* B, const double beta, double* C, const int batchCount, const int strideA, const int strideB) { @@ -200,68 +188,58 @@ void batched_gemm( const int strideC = M * N; PADDLE_ENFORCE(platform::dynload::cublasDgemmStridedBatched( - reinterpret_cast(context) - .cublas_handle(), - cuTransB, cuTransA, N, M, K, &alpha, B, ldb, strideB, A, lda, strideA, - &beta, C, ldc, strideC, batchCount)); + context.cublas_handle(), cuTransB, cuTransA, N, M, K, &alpha, B, ldb, + strideB, A, lda, strideA, &beta, C, ldc, strideC, batchCount)); } template <> -void gemv(const platform::DeviceContext& context, - const bool trans_a, const int M, - const int N, const float alpha, - const float* A, const float* B, - const float beta, float* C) { +void gemv( + const platform::CUDADeviceContext& context, const bool trans_a, const int M, + const int N, const float alpha, const float* A, const float* B, + const float beta, float* C) { cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N; - PADDLE_ENFORCE(platform::dynload::cublasSgemv( - reinterpret_cast(context) - .cublas_handle(), - cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1)); + PADDLE_ENFORCE(platform::dynload::cublasSgemv(context.cublas_handle(), + cuTransA, N, M, &alpha, A, N, B, + 1, &beta, C, 1)); } template <> -void gemv(const platform::DeviceContext& context, - const bool trans_a, const int M, - const int N, const double alpha, - const double* A, const double* B, - const double beta, double* C) { +void gemv( + const platform::CUDADeviceContext& context, const bool trans_a, const int M, + const int N, const double alpha, const double* A, const double* B, + const double beta, double* C) { cublasOperation_t cuTransA = (trans_a == false) ? CUBLAS_OP_T : CUBLAS_OP_N; - PADDLE_ENFORCE(platform::dynload::cublasDgemv( - reinterpret_cast(context) - .cublas_handle(), - cuTransA, N, M, &alpha, A, N, B, 1, &beta, C, 1)); + PADDLE_ENFORCE(platform::dynload::cublasDgemv(context.cublas_handle(), + cuTransA, N, M, &alpha, A, N, B, + 1, &beta, C, 1)); } template <> -void axpy(const platform::DeviceContext& context, - const int n, const float alpha, - const float* x, float* y) { - PADDLE_ENFORCE(platform::dynload::cublasSaxpy( - reinterpret_cast(context) - .cublas_handle(), - n, &alpha, x, 1, y, 1)); +void axpy( + const platform::CUDADeviceContext& context, const int n, const float alpha, + const float* x, float* y) { + PADDLE_ENFORCE(platform::dynload::cublasSaxpy(context.cublas_handle(), n, + &alpha, x, 1, y, 1)); } template <> -void axpy(const platform::DeviceContext& context, - const int n, const double alpha, - const double* x, double* y) { - PADDLE_ENFORCE(platform::dynload::cublasDaxpy( - reinterpret_cast(context) - .cublas_handle(), - n, &alpha, x, 1, y, 1)); +void axpy( + const platform::CUDADeviceContext& context, const int n, const double alpha, + const double* x, double* y) { + PADDLE_ENFORCE(platform::dynload::cublasDaxpy(context.cublas_handle(), n, + &alpha, x, 1, y, 1)); } -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; -template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; +template struct SetConstant; -#define DEFINE_GPU_TRANS(RANK) \ - template struct Transpose; \ - template struct Transpose; +#define DEFINE_GPU_TRANS(RANK) \ + template struct Transpose; \ + template struct Transpose; DEFINE_GPU_TRANS(1); DEFINE_GPU_TRANS(2); @@ -277,8 +255,9 @@ struct TensorSetConstantGPU { template void operator()() const { - SetConstant functor; - functor(context_, tensor_, static_cast(value_)); + SetConstant functor; + functor(reinterpret_cast(context_), + tensor_, static_cast(value_)); } const platform::DeviceContext& context_; @@ -294,27 +273,34 @@ void set_constant_with_place( TensorSetConstantGPU(context, tensor, value)); } -template struct RowwiseAdd; -template struct RowwiseAdd; -template struct ColwiseSum; -// template struct ColwiseSum; -// The ColwiseSum failed in debug mode, +template <> +void set_constant_with_place( + const platform::DeviceContext& context, framework::Tensor* tensor, + float value) { + set_constant_with_place(context, tensor, value); +} + +template struct RowwiseAdd; +template struct RowwiseAdd; +template struct ColwiseSum; +// template struct ColwiseSum; +// The ColwiseSum failed in debug mode, // and only failed for this case. So reimplemented it. template <> -void ColwiseSum::operator()( - const platform::DeviceContext& context, const framework::Tensor& input, +void ColwiseSum::operator()( + const platform::CUDADeviceContext& context, const framework::Tensor& input, framework::Tensor* vector) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; PADDLE_ENFORCE_EQ(vector->numel(), size); framework::Tensor one; one.mutable_data({in_dims[0]}, context.GetPlace()); - SetConstant set; + SetConstant set; set(context, &one, static_cast(1.0)); - gemv(context, true, static_cast(in_dims[0]), - static_cast(in_dims[1]), 1.0, - input.data(), one.data(), - 0.0, vector->data()); + gemv( + context, true, static_cast(in_dims[0]), static_cast(in_dims[1]), + 1.0, input.data(), one.data(), 0.0, + vector->data()); } } // namespace math diff --git a/paddle/operators/math/math_function.h b/paddle/operators/math/math_function.h index 5a42854f22234629b3405ec2397143ef761a9d08..8cc03c2ba0facae691a0d2b8a4f2ea768cfa5491 100644 --- a/paddle/operators/math/math_function.h +++ b/paddle/operators/math/math_function.h @@ -13,7 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once -#ifdef PADDLE_USE_MKLML +#ifdef PADDLE_WITH_MKLML #include #include #include @@ -62,53 +62,51 @@ namespace math { // Then matrixA: M * K, matrixB: K * N, matrixC : M * N // For more detailed info, please refer to // http://www.netlib.org/lapack/explore-html/d4/de2/sgemm_8f.html -template -void gemm(const platform::DeviceContext& context, const CBLAS_TRANSPOSE transA, +template +void gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, const int M, const int N, const int K, const T alpha, const T* A, const T* B, const T beta, T* C); // gemm wrapper with stride args for matrix uncontinuous in memory -template -void gemm(const platform::DeviceContext& context, const bool transA, - const bool transB, const int M, const int N, const int K, - const T alpha, const T* A, const int lda, const T* B, const int ldb, - const T beta, T* C, const int ldc); +template +void gemm(const DeviceContext& context, const bool transA, const bool transB, + const int M, const int N, const int K, const T alpha, const T* A, + const int lda, const T* B, const int ldb, const T beta, T* C, + const int ldc); // matrix multiply with continuous memory -template -void matmul(const platform::DeviceContext& context, - const framework::Tensor& matrix_a, bool trans_a, - const framework::Tensor& matrix_b, bool trans_b, T alpha, - framework::Tensor* matrix_out, T beta); +template +void matmul(const DeviceContext& context, const framework::Tensor& matrix_a, + bool trans_a, const framework::Tensor& matrix_b, bool trans_b, + T alpha, framework::Tensor* matrix_out, T beta); // Batched gemm -template -void batched_gemm(const platform::DeviceContext& context, - const CBLAS_TRANSPOSE transA, const CBLAS_TRANSPOSE transB, - const int M, const int N, const int K, const T alpha, - const T* A, const T* B, const T beta, T* C, - const int batchCount, const int strideA, const int strideB); - -template -void gemv(const platform::DeviceContext& context, const bool trans_a, - const int M, const int N, const T alpha, const T* A, const T* B, - const T beta, T* C); - -template -void axpy(const platform::DeviceContext& context, const int n, const T alpha, - const T* x, T* y); - -template +template +void batched_gemm(const DeviceContext& context, const CBLAS_TRANSPOSE transA, + const CBLAS_TRANSPOSE transB, const int M, const int N, + const int K, const T alpha, const T* A, const T* B, + const T beta, T* C, const int batchCount, const int strideA, + const int strideB); + +template +void gemv(const DeviceContext& context, const bool trans_a, const int M, + const int N, const T alpha, const T* A, const T* B, const T beta, + T* C); + +template +void axpy(const DeviceContext& context, const int n, const T alpha, const T* x, + T* y); + +template struct Transpose { - void operator()(const platform::DeviceContext& context, - const framework::Tensor& in, framework::Tensor* out, - const std::vector& axis); + void operator()(const DeviceContext& context, const framework::Tensor& in, + framework::Tensor* out, const std::vector& axis); }; -template +template struct SetConstant { - void operator()(const platform::DeviceContext& context, - framework::Tensor* tensor, T num); + void operator()(const DeviceContext& context, framework::Tensor* tensor, + T num); }; template @@ -118,17 +116,16 @@ void set_constant_with_place(const platform::DeviceContext& context, void set_constant(const platform::DeviceContext& context, framework::Tensor* tensor, float value); -template +template struct RowwiseAdd { - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, const framework::Tensor& vec, - framework::Tensor* output); + void operator()(const DeviceContext& context, const framework::Tensor& input, + const framework::Tensor& vec, framework::Tensor* output); }; -template +template struct ColwiseSum { - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, framework::Tensor* vec); + void operator()(const DeviceContext& context, const framework::Tensor& input, + framework::Tensor* vec); }; } // namespace math diff --git a/paddle/operators/math/math_function_impl.h b/paddle/operators/math/math_function_impl.h index 4dc17a4e525c52b8f696277274a7ad00a6b00a08..aced2690bce9a4c2db6309f18e23a8f6cd0211f3 100644 --- a/paddle/operators/math/math_function_impl.h +++ b/paddle/operators/math/math_function_impl.h @@ -20,16 +20,17 @@ namespace paddle { namespace operators { namespace math { -template -void SetConstant::operator()(const platform::DeviceContext& context, - framework::Tensor* tensor, T num) { +template +void SetConstant::operator()(const DeviceContext& context, + framework::Tensor* tensor, + T num) { auto t = framework::EigenVector::Flatten(*tensor); - t.device(*context.GetEigenDevice()) = t.constant(static_cast(num)); + t.device(*context.eigen_device()) = t.constant(static_cast(num)); } -template -void Transpose::operator()( - const platform::DeviceContext& context, const framework::Tensor& in, +template +void Transpose::operator()( + const DeviceContext& context, const framework::Tensor& in, framework::Tensor* out, const std::vector& axis) { Eigen::array permute; for (int i = 0; i < Rank; i++) { @@ -40,15 +41,15 @@ void Transpose::operator()( auto eigen_in = framework::EigenTensor::From(in); auto eigen_out = framework::EigenTensor::From(*out); - auto* dev = context.GetEigenDevice(); + auto* dev = context.eigen_device(); eigen_out.device(*dev) = eigen_in.shuffle(permute); } -template -void RowwiseAdd::operator()(const platform::DeviceContext& context, - const framework::Tensor& input, - const framework::Tensor& vector, - framework::Tensor* output) { +template +void RowwiseAdd::operator()(const DeviceContext& context, + const framework::Tensor& input, + const framework::Tensor& vector, + framework::Tensor* output) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; PADDLE_ENFORCE_EQ(vector.numel(), size); @@ -59,25 +60,52 @@ void RowwiseAdd::operator()(const platform::DeviceContext& context, auto out = framework::EigenMatrix::From(*output); Eigen::array shape({{1, static_cast(size)}}); Eigen::array bcast({{static_cast(in_dims[0]), 1}}); - out.device(*context.GetEigenDevice()) = + out.device(*context.eigen_device()) = in + vec.reshape(shape).broadcast(bcast); } -template -void ColwiseSum::operator()(const platform::DeviceContext& context, - const framework::Tensor& input, - framework::Tensor* vector) { +template +void ColwiseSum::operator()(const DeviceContext& context, + const framework::Tensor& input, + framework::Tensor* out) { auto in_dims = input.dims(); auto size = input.numel() / in_dims[0]; - PADDLE_ENFORCE_EQ(vector->numel(), size); + PADDLE_ENFORCE_EQ(out->numel(), size); - auto vec = framework::EigenMatrix::From(*vector); auto in = framework::EigenMatrix::From(input); - Eigen::array shape({{1, static_cast(size)}}); - vec.reshape(shape).device(*context.GetEigenDevice()) = - in.sum(Eigen::array({{0}})).reshape(shape); + auto vec = framework::EigenVector::Flatten(*out); + + vec.device(*context.eigen_device()) = in.sum(Eigen::array({{0}})); } +// Specialize for CPU, since Eigen implement a general reduce. However, +// colwise-sum can be easily implemented. General reduce has a huge overhead in +// CPU +template +class ColwiseSum { + public: + void operator()(const platform::CPUDeviceContext& context, + const framework::Tensor& input, framework::Tensor* out) { + auto& in_dims = input.dims(); + auto height = in_dims[0]; + auto size = in_dims[1]; + PADDLE_ENFORCE_EQ(out->numel(), size); + + T* out_buf = out->mutable_data(out->place()); + const T* in_buf = input.data(); + + for (size_t i = 0; i < height; ++i) { + for (size_t j = 0; j < size; ++j) { + if (i == 0) { + out_buf[j] = in_buf[i * size + j]; + } else { + out_buf[j] += in_buf[i * size + j]; + } + } + } + } +}; + } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/math_function_test.cc b/paddle/operators/math/math_function_test.cc index 983c9fdcffb0a67da1bc0b5b4af9420a68bd2ac1..7c6f098ca9065ded1644420a3ab47911bf7bc3b3 100644 --- a/paddle/operators/math/math_function_test.cc +++ b/paddle/operators/math/math_function_test.cc @@ -21,7 +21,7 @@ TEST(math_function, gemm_notrans_cblas) { memcpy(input3_ptr, arr3, 8 * sizeof(float)); paddle::platform::CPUDeviceContext context(*cpu_place); - paddle::operators::math::gemm( + paddle::operators::math::gemm( context, false, false, m, n, k, 1, input1_ptr, 3, input2_ptr + 1, 4, 1, input3_ptr + 1, 4); @@ -55,7 +55,7 @@ TEST(math_function, gemm_trans_clbas) { memcpy(input3_ptr, arr3, 8 * sizeof(float)); paddle::platform::CPUDeviceContext context(*cpu_place); - paddle::operators::math::gemm( + paddle::operators::math::gemm( context, false, true, m, n, k, 1, input1_ptr, 3, input2_ptr + 3, 3, 1, input3_ptr + 1, 4); @@ -74,7 +74,8 @@ TEST(math_function, zero) { auto* cpu_place = new paddle::platform::CPUPlace(); float* t = tensor.mutable_data({2, 2}, *cpu_place); paddle::platform::CPUDeviceContext context(*cpu_place); - paddle::operators::math::SetConstant + paddle::operators::math::SetConstant functor; functor(context, &tensor, 0); EXPECT_EQ(t[0], 0); @@ -110,7 +111,7 @@ void GemvTest(int m, int n, bool trans) { } paddle::platform::CPUDeviceContext context(*cpu_place); - paddle::operators::math::gemv( + paddle::operators::math::gemv( context, trans, static_cast(m), static_cast(n), 1., data_a, data_b, 0., data_c); diff --git a/paddle/operators/math/math_function_test.cu b/paddle/operators/math/math_function_test.cu index d5d6f0c73bc6bce7a74db2c98fa9f884a0bcd9a2..32e96d948714a8fd1fa2c089057603fdaed85c16 100644 --- a/paddle/operators/math/math_function_test.cu +++ b/paddle/operators/math/math_function_test.cu @@ -21,7 +21,7 @@ TEST(math_function, notrans_mul_trans) { out_gpu.mutable_data({2, 2}, *gpu_place); - paddle::operators::math::matmul( + paddle::operators::math::matmul( context, input1_gpu, false, input2_gpu, true, 1, &out_gpu, 0); paddle::framework::CopyFrom(out_gpu, *cpu_place, context, &out); @@ -55,7 +55,7 @@ TEST(math_function, trans_mul_notrans) { out_gpu.mutable_data({3, 3}, *gpu_place); - paddle::operators::math::matmul( + paddle::operators::math::matmul( context, input1_gpu, true, input2_gpu, false, 1, &out_gpu, 0); paddle::framework::CopyFrom(out_gpu, *cpu_place, context, &out); @@ -106,7 +106,7 @@ TEST(math_function, gemm_notrans_cublas) { float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); - paddle::operators::math::gemm( + paddle::operators::math::gemm( context, false, false, m, n, k, 1, a, 3, b + 1, 4, 1, c + 1, 4); paddle::framework::CopyFrom(input3_gpu, *cpu_place, context, &input3); @@ -161,7 +161,7 @@ TEST(math_function, gemm_trans_cublas) { float* b = input2_gpu.data(); float* c = input3_gpu.mutable_data(*gpu_place); - paddle::operators::math::gemm( + paddle::operators::math::gemm( context, false, true, m, n, k, 1, a, 3, b + 3, 3, 1, c + 1, 4); paddle::framework::CopyFrom(input3_gpu, *cpu_place, context, &input3); @@ -208,7 +208,7 @@ void GemvTest(int m, int n, bool trans) { paddle::framework::CopyFrom(mat_a, *gpu_place, context, &g_mat_a); paddle::framework::CopyFrom(vec_b, *gpu_place, context, &g_vec_b); - paddle::operators::math::gemv( + paddle::operators::math::gemv( context, trans, static_cast(m), static_cast(n), 1., g_data_a, g_data_b, 0., g_data_c); diff --git a/paddle/operators/math/matmul.h b/paddle/operators/math/matmul.h index 6ba9a0ba9a70bd938f9362179990ab68fa3186ba..7048e11e6f27a075892c28681a3c4913a27b3f3e 100644 --- a/paddle/operators/math/matmul.h +++ b/paddle/operators/math/matmul.h @@ -26,13 +26,12 @@ namespace math { // // Both a & b can be 1- to 3-dimensional. Higher rank tensors are not supported // yet. -template +template class MatMulFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& a, bool trans_a, - const framework::Tensor& b, bool trans_b, T alpha, - framework::Tensor* out, T beta) { + void operator()(const DeviceContext& context, const framework::Tensor& a, + bool trans_a, const framework::Tensor& b, bool trans_b, + T alpha, framework::Tensor* out, T beta) { auto dim_a = a.dims(); auto dim_b = b.dims(); @@ -108,13 +107,13 @@ class MatMulFunctor { if (!batchCount) { // regular matrix multiplication - gemm(context, transA, transB, M, N, kA, alpha, a.data(), - b.data(), beta, out->data()); + gemm(context, transA, transB, M, N, kA, alpha, + a.data(), b.data(), beta, out->data()); } else { // batched matrix multiplication - batched_gemm(context, transA, transB, M, N, kA, alpha, - a.data(), b.data(), beta, out->data(), - batchCount, strideA, strideB); + batched_gemm( + context, transA, transB, M, N, kA, alpha, a.data(), b.data(), + beta, out->data(), batchCount, strideA, strideB); } } }; diff --git a/paddle/operators/math/maxouting.cc b/paddle/operators/math/maxouting.cc index c9003962d33b70b8e21a0d6b78bf5a77981df409..fea86675f75dad99a336d795d4561ae32d58c30a 100644 --- a/paddle/operators/math/maxouting.cc +++ b/paddle/operators/math/maxouting.cc @@ -20,9 +20,9 @@ namespace math { // All tensors are in NCHW format, and the groups must be greater than 1 template -class MaxOutFunctor { +class MaxOutFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, framework::Tensor* output, int groups) { const int batch_size = input.dims()[0]; @@ -54,9 +54,9 @@ class MaxOutFunctor { }; template -class MaxOutGradFunctor { +class MaxOutGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, framework::Tensor* input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, int groups) { @@ -91,10 +91,10 @@ class MaxOutGradFunctor { } }; -template class MaxOutGradFunctor; -template class MaxOutGradFunctor; -template class MaxOutFunctor; -template class MaxOutFunctor; +template class MaxOutGradFunctor; +template class MaxOutGradFunctor; +template class MaxOutFunctor; +template class MaxOutFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/maxouting.cu b/paddle/operators/math/maxouting.cu index c3fabcae081e24d92d50d0e2a2cad4a2e9872125..6056ad251c12976fe9032f03aaaeb52727da1f42 100644 --- a/paddle/operators/math/maxouting.cu +++ b/paddle/operators/math/maxouting.cu @@ -78,9 +78,9 @@ __global__ void KernelMaxoutGrad(const int nthreads, const T* input_data, * All tensors are in NCHW format. */ template -class MaxOutFunctor { +class MaxOutFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, framework::Tensor* output, int groups) { const int batch_size = input.dims()[0]; @@ -98,20 +98,18 @@ class MaxOutFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxOut< - T><<(context) - .stream()>>>(nthreads, input_data, input_channels, - input_height, input_width, groups, output_data); + KernelMaxOut<<>>( + nthreads, input_data, input_channels, input_height, input_width, groups, + output_data); } }; /* * All tensors are in NCHW format. */ template -class MaxOutGradFunctor { +class MaxOutGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, framework::Tensor* input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, int groups) { @@ -132,20 +130,17 @@ class MaxOutGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxoutGrad< - T><<(context) - .stream()>>>(nthreads, input_data, output_data, - output_grad_data, input_grad_data, input_channels, - input_height, input_width, groups); + KernelMaxoutGrad<<>>( + nthreads, input_data, output_data, output_grad_data, input_grad_data, + input_channels, input_height, input_width, groups); } }; -template class MaxOutGradFunctor; -template class MaxOutGradFunctor; +template class MaxOutGradFunctor; +template class MaxOutGradFunctor; -template class MaxOutFunctor; -template class MaxOutFunctor; +template class MaxOutFunctor; +template class MaxOutFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/maxouting.h b/paddle/operators/math/maxouting.h index 2d9069b0b3ca3e7bad3b21a46985c52ef00f50e6..68f4743db07af0f369eb18f1a7cb6e326d469e85 100644 --- a/paddle/operators/math/maxouting.h +++ b/paddle/operators/math/maxouting.h @@ -23,20 +23,18 @@ namespace math { #define FLT_MAX __FLT_MAX__ -template - +template class MaxOutFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, framework::Tensor* output, - int groups); + void operator()(const DeviceContext& context, const framework::Tensor& input, + framework::Tensor* output, int groups); }; -template +template class MaxOutGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, framework::Tensor* input_grad, + void operator()(const DeviceContext& context, const framework::Tensor& input, + framework::Tensor* input_grad, const framework::Tensor& output, const framework::Tensor& output_grad, int groups); }; diff --git a/paddle/operators/math/pooling.cc b/paddle/operators/math/pooling.cc index 135984586a67f666425f81456148c3623ed7ef25..150de6fd59ef3ac0c4cb9160bf5afb1ce1064577 100644 --- a/paddle/operators/math/pooling.cc +++ b/paddle/operators/math/pooling.cc @@ -24,9 +24,9 @@ namespace math { * height and width, respectively. */ template -class Pool2dFunctor { +class Pool2dFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_process, framework::Tensor* output) { @@ -84,9 +84,9 @@ class Pool2dFunctor { * and width, respectively. */ template -class Pool2dGradFunctor { +class Pool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -152,9 +152,9 @@ class Pool2dGradFunctor { * height and width, respectively. */ template -class MaxPool2dGradFunctor { +class MaxPool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -213,25 +213,29 @@ class MaxPool2dGradFunctor { } }; -template class MaxPool2dGradFunctor; -template class MaxPool2dGradFunctor; +template class MaxPool2dGradFunctor; +template class MaxPool2dGradFunctor; -template class Pool2dFunctor, float>; -template class Pool2dFunctor, float>; -template class Pool2dGradFunctor< - platform::CPUPlace, paddle::operators::math::MaxPoolGrad, float>; -template class Pool2dGradFunctor< - platform::CPUPlace, paddle::operators::math::AvgPoolGrad, float>; -template class Pool2dFunctor, + float>; +template class Pool2dGradFunctor, + float>; +template class Pool2dFunctor, double>; -template class Pool2dFunctor, double>; -template class Pool2dGradFunctor< - platform::CPUPlace, paddle::operators::math::MaxPoolGrad, double>; -template class Pool2dGradFunctor< - platform::CPUPlace, paddle::operators::math::AvgPoolGrad, double>; +template class Pool2dGradFunctor, + double>; +template class Pool2dGradFunctor, + double>; /* * All tensors are in NCDHW format. @@ -239,9 +243,9 @@ template class Pool2dGradFunctor< * depth, height and width, respectively. */ template -class Pool3dFunctor { +class Pool3dFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_process, framework::Tensor* output) { @@ -314,9 +318,9 @@ class Pool3dFunctor { * depth, height and width, respectively. */ template -class Pool3dGradFunctor { +class Pool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -398,9 +402,9 @@ class Pool3dGradFunctor { * depth, height and width, respectively. */ template -class MaxPool3dGradFunctor { +class MaxPool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -473,25 +477,29 @@ class MaxPool3dGradFunctor { } }; -template class MaxPool3dGradFunctor; -template class MaxPool3dGradFunctor; +template class MaxPool3dGradFunctor; +template class MaxPool3dGradFunctor; -template class Pool3dFunctor, float>; -template class Pool3dFunctor, float>; -template class Pool3dGradFunctor< - platform::CPUPlace, paddle::operators::math::MaxPoolGrad, float>; -template class Pool3dGradFunctor< - platform::CPUPlace, paddle::operators::math::AvgPoolGrad, float>; -template class Pool3dFunctor, + float>; +template class Pool3dGradFunctor, + float>; +template class Pool3dFunctor, double>; -template class Pool3dFunctor, double>; -template class Pool3dGradFunctor< - platform::CPUPlace, paddle::operators::math::MaxPoolGrad, double>; -template class Pool3dGradFunctor< - platform::CPUPlace, paddle::operators::math::AvgPoolGrad, double>; +template class Pool3dGradFunctor, + double>; +template class Pool3dGradFunctor, + double>; /* * All tensors are in NCHW format. @@ -499,9 +507,9 @@ template class Pool3dGradFunctor< * height and width, respectively. */ template -class MaxPool2dWithIndexFunctor { +class MaxPool2dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* output, framework::Tensor* mask) { @@ -564,9 +572,9 @@ class MaxPool2dWithIndexFunctor { * height and width, respectively. */ template -class MaxPool2dWithIndexGradFunctor { +class MaxPool2dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -602,10 +610,14 @@ class MaxPool2dWithIndexGradFunctor { } }; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; /* * All tensors are in NCDHW format. @@ -613,9 +625,9 @@ template class MaxPool2dWithIndexGradFunctor; * depth, height and width, respectively. */ template -class MaxPool3dWithIndexFunctor { +class MaxPool3dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* output, framework::Tensor* mask) { @@ -692,9 +704,9 @@ class MaxPool3dWithIndexFunctor { * depth, height and width, respectively. */ template -class MaxPool3dWithIndexGradFunctor { +class MaxPool3dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -735,10 +747,14 @@ class MaxPool3dWithIndexGradFunctor { } }; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/pooling.cu b/paddle/operators/math/pooling.cu index ca3560f264b59057fd655084f3d43adc617c6606..0243cf8316a2a83bfc4c091f64419574c1be2f5c 100644 --- a/paddle/operators/math/pooling.cu +++ b/paddle/operators/math/pooling.cu @@ -155,9 +155,9 @@ __global__ void KernelMaxPool2DGrad( * height and width, respectively. */ template -class Pool2dFunctor { +class Pool2dFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_process, framework::Tensor* output) { @@ -183,11 +183,7 @@ class Pool2dFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelPool2D< - PoolProcess, - T><<(context) - .stream()>>>( + KernelPool2D<<>>( nthreads, input_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, pool_process, output_data); @@ -200,9 +196,9 @@ class Pool2dFunctor { * height and width, respectively. */ template -class Pool2dGradFunctor { +class Pool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -231,11 +227,7 @@ class Pool2dGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelPool2DGrad< - PoolProcess, - T><<(context) - .stream()>>>( + KernelPool2DGrad<<>>( nthreads, input_data, output_data, output_grad_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, @@ -249,9 +241,9 @@ class Pool2dGradFunctor { * height and width, respectively. */ template -class MaxPool2dGradFunctor { +class MaxPool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -281,10 +273,7 @@ class MaxPool2dGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool2DGrad< - T><<(context) - .stream()>>>( + KernelMaxPool2DGrad<<>>( nthreads, input_data, output_data, output_grad_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, @@ -292,25 +281,29 @@ class MaxPool2dGradFunctor { } }; -template class MaxPool2dGradFunctor; -template class MaxPool2dGradFunctor; +template class MaxPool2dGradFunctor; +template class MaxPool2dGradFunctor; -template class Pool2dFunctor, float>; -template class Pool2dFunctor, float>; -template class Pool2dGradFunctor< - platform::GPUPlace, paddle::operators::math::MaxPoolGrad, float>; -template class Pool2dGradFunctor< - platform::GPUPlace, paddle::operators::math::AvgPoolGrad, float>; -template class Pool2dFunctor, + float>; +template class Pool2dGradFunctor, + float>; +template class Pool2dFunctor, double>; -template class Pool2dFunctor, double>; -template class Pool2dGradFunctor< - platform::GPUPlace, paddle::operators::math::MaxPoolGrad, double>; -template class Pool2dGradFunctor< - platform::GPUPlace, paddle::operators::math::AvgPoolGrad, double>; +template class Pool2dGradFunctor, + double>; +template class Pool2dGradFunctor, + double>; template __global__ void KernelPool3D(const int nthreads, const T* input_data, @@ -478,9 +471,9 @@ __global__ void KernelMaxPool3DGrad( * depth, height and width, respectively. */ template -class Pool3dFunctor { +class Pool3dFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_process, framework::Tensor* output) { @@ -512,11 +505,7 @@ class Pool3dFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelPool3D< - PoolProcess, - T><<(context) - .stream()>>>( + KernelPool3D<<>>( nthreads, input_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, @@ -531,9 +520,9 @@ class Pool3dFunctor { * depth, height and width, respectively. */ template -class Pool3dGradFunctor { +class Pool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -569,11 +558,7 @@ class Pool3dGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelPool3DGrad< - PoolProcess, - T><<(context) - .stream()>>>( + KernelPool3DGrad<<>>( nthreads, input_data, output_data, output_grad_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, @@ -588,9 +573,9 @@ class Pool3dGradFunctor { * depth, height and width, respectively. */ template -class MaxPool3dGradFunctor { +class MaxPool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, @@ -626,10 +611,7 @@ class MaxPool3dGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool3DGrad< - T><<(context) - .stream()>>>( + KernelMaxPool3DGrad<<>>( nthreads, input_data, output_data, output_grad_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, @@ -638,25 +620,29 @@ class MaxPool3dGradFunctor { } }; -template class MaxPool3dGradFunctor; -template class MaxPool3dGradFunctor; +template class MaxPool3dGradFunctor; +template class MaxPool3dGradFunctor; -template class Pool3dFunctor, float>; -template class Pool3dFunctor, float>; -template class Pool3dGradFunctor< - platform::GPUPlace, paddle::operators::math::MaxPoolGrad, float>; -template class Pool3dGradFunctor< - platform::GPUPlace, paddle::operators::math::AvgPoolGrad, float>; -template class Pool3dFunctor, + float>; +template class Pool3dGradFunctor, + float>; +template class Pool3dFunctor, double>; -template class Pool3dFunctor, double>; -template class Pool3dGradFunctor< - platform::GPUPlace, paddle::operators::math::MaxPoolGrad, double>; -template class Pool3dGradFunctor< - platform::GPUPlace, paddle::operators::math::AvgPoolGrad, double>; +template class Pool3dGradFunctor, + double>; +template class Pool3dGradFunctor, + double>; template __global__ void KernelMaxPool2dWithIdx( @@ -747,9 +733,9 @@ __global__ void KernelMaxPool2DWithIdxGrad( * height and width, respectively. */ template -class MaxPool2dWithIndexFunctor { +class MaxPool2dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* output, framework::Tensor* mask) { @@ -776,10 +762,7 @@ class MaxPool2dWithIndexFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool2dWithIdx< - T1, T2><<(context) - .stream()>>>( + KernelMaxPool2dWithIdx<<>>( nthreads, input_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, output_data, mask_data); @@ -792,9 +775,9 @@ class MaxPool2dWithIndexFunctor { * height and width, respectively. */ template -class MaxPool2dWithIndexGradFunctor { +class MaxPool2dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -821,10 +804,7 @@ class MaxPool2dWithIndexGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool2DWithIdxGrad< - T1, T2><<(context) - .stream()>>>( + KernelMaxPool2DWithIdxGrad<<>>( nthreads, output_grad_data, mask_data, input_channels, input_height, input_width, output_height, output_width, ksize_height, ksize_width, stride_height, stride_width, padding_height, padding_width, @@ -832,10 +812,14 @@ class MaxPool2dWithIndexGradFunctor { } }; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; -template class MaxPool2dWithIndexFunctor; -template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; +template class MaxPool2dWithIndexFunctor; +template class MaxPool2dWithIndexGradFunctor; template __global__ void KernelMaxPool3DWithIdx( @@ -950,9 +934,9 @@ __global__ void KernelMaxPool3DWithIdxGrad( * depth, height and width, respectively. */ template -class MaxPool3dWithIndexFunctor { +class MaxPool3dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* output, framework::Tensor* mask) { @@ -985,10 +969,7 @@ class MaxPool3dWithIndexFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool3DWithIdx< - T1, T2><<(context) - .stream()>>>( + KernelMaxPool3DWithIdx<<>>( nthreads, input_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, stride_width, @@ -1002,9 +983,9 @@ class MaxPool3dWithIndexFunctor { * depth, height and width, respectively. */ template -class MaxPool3dWithIndexGradFunctor { +class MaxPool3dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -1037,10 +1018,7 @@ class MaxPool3dWithIndexGradFunctor { dim3 threads(1024, 1); dim3 grid(blocks, 1); - KernelMaxPool3DWithIdxGrad< - T1, T2><<(context) - .stream()>>>( + KernelMaxPool3DWithIdxGrad<<>>( nthreads, output_grad_data, mask_data, input_channels, input_depth, input_height, input_width, output_depth, output_height, output_width, ksize_depth, ksize_height, ksize_width, stride_depth, stride_height, @@ -1049,10 +1027,14 @@ class MaxPool3dWithIndexGradFunctor { } }; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; -template class MaxPool3dWithIndexFunctor; -template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; +template class MaxPool3dWithIndexFunctor; +template class MaxPool3dWithIndexGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/pooling.h b/paddle/operators/math/pooling.h index 19fbd8b4bb2469d3ce8a139ce30a48641dbd6e0f..2759f06cb6a51f7ceb6b8010d792030eb6ad5d3e 100644 --- a/paddle/operators/math/pooling.h +++ b/paddle/operators/math/pooling.h @@ -84,62 +84,58 @@ class AvgPoolGrad { * This is different from average pooling. So we rewrite the max_pool_grad: * MaxPool2dGradFunctor, MaxPool3dGradFunctor. */ -template +template class Pool2dFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, std::vector& ksize, - std::vector& strides, std::vector& paddings, - PoolProcess pool_compute, framework::Tensor* output); + void operator()(const DeviceContext& context, const framework::Tensor& input, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_compute, + framework::Tensor* output); }; -template +template class Pool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_compute, framework::Tensor* input_grad); }; -template +template class MaxPool2dGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* input_grad); }; -template +template class Pool3dFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, std::vector& ksize, - std::vector& strides, std::vector& paddings, - PoolProcess pool_compute, framework::Tensor* output); + void operator()(const DeviceContext& context, const framework::Tensor& input, + std::vector& ksize, std::vector& strides, + std::vector& paddings, PoolProcess pool_compute, + framework::Tensor* output); }; -template +template class Pool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, PoolProcess pool_compute, framework::Tensor* input_grad); }; -template +template class MaxPool3dGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& output, const framework::Tensor& output_grad, std::vector& ksize, std::vector& strides, std::vector& paddings, @@ -153,38 +149,38 @@ class MaxPool3dGradFunctor { * In pool2d, all tensors are in NCHW format. In pool3d, all tensors are in * NCDHW format. */ -template +template class MaxPool2dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, std::vector& ksize, - std::vector& strides, std::vector& paddings, - framework::Tensor* output, framework::Tensor* mask); + void operator()(const DeviceContext& context, const framework::Tensor& input, + std::vector& ksize, std::vector& strides, + std::vector& paddings, framework::Tensor* output, + framework::Tensor* mask); }; -template +template class MaxPool2dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, framework::Tensor* input_grad); }; -template +template class MaxPool3dWithIndexFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, std::vector& ksize, - std::vector& strides, std::vector& paddings, - framework::Tensor* output, framework::Tensor* mask); + void operator()(const DeviceContext& context, const framework::Tensor& input, + std::vector& ksize, std::vector& strides, + std::vector& paddings, framework::Tensor* output, + framework::Tensor* mask); }; -template +template class MaxPool3dWithIndexGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::Tensor& output_grad, const framework::Tensor& mask, std::vector& ksize, std::vector& strides, std::vector& paddings, diff --git a/paddle/operators/math/selected_rows_functor.cc b/paddle/operators/math/selected_rows_functor.cc index 514f2adef284c8877e2e74b943b4e6419c6ae721..ab758d1e7fd8ab361948b28e8cb735b9a742a339 100644 --- a/paddle/operators/math/selected_rows_functor.cc +++ b/paddle/operators/math/selected_rows_functor.cc @@ -19,8 +19,8 @@ namespace paddle { namespace operators { namespace math { template -struct SelectedRowsAdd { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAdd { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2, framework::SelectedRows* output) { @@ -67,12 +67,12 @@ struct SelectedRowsAdd { } }; -template struct SelectedRowsAdd; -template struct SelectedRowsAdd; +template struct SelectedRowsAdd; +template struct SelectedRowsAdd; template -struct SelectedRowsAddTensor { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddTensor { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input1, const framework::Tensor& input2, framework::Tensor* output) { auto in1_height = input1.height(); @@ -88,7 +88,7 @@ struct SelectedRowsAddTensor { PADDLE_ENFORCE_EQ(in1_row_numel, input2.numel() / in1_height); PADDLE_ENFORCE_EQ(in1_row_numel, output->numel() / in1_height); - SetConstant functor; + SetConstant functor; functor(context, output, 0.0); auto* in1_data = in1_value.data(); @@ -103,17 +103,16 @@ struct SelectedRowsAddTensor { auto out_eigen = framework::EigenVector::Flatten(*output); auto in2_eigen = framework::EigenVector::Flatten(input2); - out_eigen.device(*context.GetEigenDevice()) = - out_eigen + in2_eigen; + out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen; } }; -template struct SelectedRowsAddTensor; -template struct SelectedRowsAddTensor; +template struct SelectedRowsAddTensor; +template struct SelectedRowsAddTensor; template -struct SelectedRowsAddTo { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddTo { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input1, const int64_t input2_offset, framework::SelectedRows* input2) { @@ -143,14 +142,14 @@ struct SelectedRowsAddTo { } }; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; template -struct SelectedRowsAddToTensor { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddToTensor { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input1, framework::Tensor* input2) { auto in1_height = input1.height(); @@ -175,10 +174,10 @@ struct SelectedRowsAddToTensor { } }; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/selected_rows_functor.cu b/paddle/operators/math/selected_rows_functor.cu index c1dd323ba29e03e3ab4a3e4d7248388b408fb9d6..c44577e00af5f362ae7e168495e496d60d05de95 100644 --- a/paddle/operators/math/selected_rows_functor.cu +++ b/paddle/operators/math/selected_rows_functor.cu @@ -20,8 +20,8 @@ namespace paddle { namespace operators { namespace math { template -struct SelectedRowsAdd { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAdd { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2, framework::SelectedRows* output) { @@ -64,16 +64,15 @@ struct SelectedRowsAdd { reinterpret_cast(context).stream()); auto* in2_data = in2_value.data(); - memory::Copy( - boost::get(out_place), out_data + in1_value.numel(), - boost::get(in2_place), in2_data, - in2_value.numel() * sizeof(T), - reinterpret_cast(context).stream()); + memory::Copy(boost::get(out_place), + out_data + in1_value.numel(), + boost::get(in2_place), in2_data, + in2_value.numel() * sizeof(T), context.stream()); } }; -template struct SelectedRowsAdd; -template struct SelectedRowsAdd; +template struct SelectedRowsAdd; +template struct SelectedRowsAdd; namespace { template @@ -96,8 +95,8 @@ __global__ void SelectedRowsAddTensorKernel(const T* selected_rows, } // namespace template -struct SelectedRowsAddTensor { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddTensor { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input1, const framework::Tensor& input2, framework::Tensor* output) { auto in1_height = input1.height(); @@ -117,30 +116,28 @@ struct SelectedRowsAddTensor { auto* in2_data = input2.data(); auto* out_data = output->data(); - SetConstant functor; + SetConstant functor; functor(context, output, 0.0); const int block_size = 256; dim3 threads(block_size, 1); dim3 grid(1, in1_rows.size()); - SelectedRowsAddTensorKernel<<< - grid, threads, 0, - reinterpret_cast(context) - .stream()>>>(in1_data, in1_rows.data(), out_data, in1_row_numel); + SelectedRowsAddTensorKernel< + T, block_size><<>>( + in1_data, in1_rows.data(), out_data, in1_row_numel); auto out_eigen = framework::EigenVector::Flatten(*output); auto in2_eigen = framework::EigenVector::Flatten(input2); - out_eigen.device(*context.GetEigenDevice()) = - out_eigen + in2_eigen; + out_eigen.device(*context.eigen_device()) = out_eigen + in2_eigen; } }; -template struct SelectedRowsAddTensor; -template struct SelectedRowsAddTensor; +template struct SelectedRowsAddTensor; +template struct SelectedRowsAddTensor; template -struct SelectedRowsAddTo { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddTo { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input1, const int64_t input2_offset, framework::SelectedRows* input2) { @@ -163,18 +160,17 @@ struct SelectedRowsAddTo { auto* in1_data = in1_value.data(); auto* in2_data = in2_value->data(); - memory::Copy( - boost::get(in2_place), in2_data + input2_offset, - boost::get(in1_place), in1_data, - in1_value.numel() * sizeof(T), - reinterpret_cast(context).stream()); + memory::Copy(boost::get(in2_place), + in2_data + input2_offset, + boost::get(in1_place), in1_data, + in1_value.numel() * sizeof(T), context.stream()); } }; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; -template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; +template struct SelectedRowsAddTo; namespace { template @@ -197,8 +193,8 @@ __global__ void SelectedRowsAddToTensorKernel(const T* selected_rows, } // namespace template -struct SelectedRowsAddToTensor { - void operator()(const platform::DeviceContext& context, +struct SelectedRowsAddToTensor { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input1, framework::Tensor* input2) { auto in1_height = input1.height(); @@ -216,17 +212,16 @@ struct SelectedRowsAddToTensor { const int block_size = 256; dim3 threads(block_size, 1); dim3 grid(1, in1_rows.size()); - SelectedRowsAddToTensorKernel<<< - grid, threads, 0, - reinterpret_cast(context) - .stream()>>>(in1_data, in1_rows.data(), in2_data, in1_row_numel); + SelectedRowsAddToTensorKernel< + T, block_size><<>>( + in1_data, in1_rows.data(), in2_data, in1_row_numel); } }; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; -template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; +template struct SelectedRowsAddToTensor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/selected_rows_functor.h b/paddle/operators/math/selected_rows_functor.h index d6dc6c03c941f965394d952574d309c51eb82a62..1149075abf16547a120ac8928c45b4972409fc72 100644 --- a/paddle/operators/math/selected_rows_functor.h +++ b/paddle/operators/math/selected_rows_functor.h @@ -21,33 +21,33 @@ namespace math { // SelectedRows + SelectedRows will simplely concat value and rows. // The real computation happens in dealing with LoDTensor. -template +template struct SelectedRowsAdd { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const framework::SelectedRows& input2, framework::SelectedRows* output); }; -template +template struct SelectedRowsAddTensor { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const framework::Tensor& input2, framework::Tensor* output); }; // input2 = input1 + input2 -template +template struct SelectedRowsAddTo { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& input1, const int64_t input2_offset, framework::SelectedRows* input2); }; // input2 = input1 + input2 -template +template struct SelectedRowsAddToTensor { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& input1, framework::Tensor* input2); }; diff --git a/paddle/operators/math/selected_rows_functor_test.cc b/paddle/operators/math/selected_rows_functor_test.cc index a3649b6875aca61ee3ceb1ca83c7f9b38dc06c42..8c74cab0a1e817f9e98fa682fe4122db7837aec9 100644 --- a/paddle/operators/math/selected_rows_functor_test.cc +++ b/paddle/operators/math/selected_rows_functor_test.cc @@ -23,7 +23,7 @@ TEST(selected_rows_functor, cpu_add) { CPUPlace cpu_place; CPUDeviceContext ctx(cpu_place); - SetConstant functor; + SetConstant functor; int64_t height = 10; int64_t row_numel = 10; @@ -47,7 +47,7 @@ TEST(selected_rows_functor, cpu_add) { // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), cpu_place); - SelectedRowsAdd add_functor; + SelectedRowsAdd add_functor; add_functor(ctx, *selected_rows1, *selected_rows2, output.get()); auto out_height = output->height(); @@ -85,7 +85,7 @@ TEST(selected_rows_functor, cpu_add) { std::unique_ptr tensor2{new Tensor()}; tensor2->mutable_data(make_ddim({height, row_numel}), cpu_place); - SelectedRowsAddTensor add_tensor_functor; + SelectedRowsAddTensor add_tensor_functor; add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); auto* tensor2_data = tensor2->data(); @@ -112,7 +112,7 @@ TEST(selected_rows_functor, cpu_add_to) { CPUPlace cpu_place; CPUDeviceContext ctx(cpu_place); - SetConstant functor; + SetConstant functor; int64_t height = 10; int64_t row_numel = 10; @@ -137,7 +137,7 @@ TEST(selected_rows_functor, cpu_add_to) { // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), cpu_place); - SelectedRowsAddTo add_to_functor; + SelectedRowsAddTo add_to_functor; add_to_functor(ctx, *selected_rows1, 0, output.get()); add_to_functor(ctx, *selected_rows2, in1_value->numel(), output.get()); @@ -173,7 +173,7 @@ TEST(selected_rows_functor, cpu_add_to) { tensor1->mutable_data(make_ddim({height, row_numel}), cpu_place); functor(ctx, tensor1.get(), 3.0); - SelectedRowsAddToTensor add_to_tensor_functor; + SelectedRowsAddToTensor add_to_tensor_functor; add_to_tensor_functor(ctx, *output, tensor1.get()); auto* tensor1_data = tensor1->data(); diff --git a/paddle/operators/math/selected_rows_functor_test.cu b/paddle/operators/math/selected_rows_functor_test.cu index 7de9291c17d3f09a3c6076f00f2457f240e6f0af..777caf5635647d11e8fde05a68fdf7e2c32f48df 100644 --- a/paddle/operators/math/selected_rows_functor_test.cu +++ b/paddle/operators/math/selected_rows_functor_test.cu @@ -24,7 +24,7 @@ TEST(selected_rows_functor, gpu_add) { GPUPlace gpu_place(0); CPUPlace cpu_place; CUDADeviceContext ctx(gpu_place); - SetConstant functor; + SetConstant functor; int64_t height = 10; int64_t row_numel = 10; @@ -48,7 +48,7 @@ TEST(selected_rows_functor, gpu_add) { // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), gpu_place); - SelectedRowsAdd add_functor; + SelectedRowsAdd add_functor; add_functor(ctx, *selected_rows1, *selected_rows2, output.get()); auto out_height = output->height(); @@ -90,7 +90,7 @@ TEST(selected_rows_functor, gpu_add) { std::unique_ptr tensor2{new Tensor()}; tensor2->mutable_data(make_ddim({height, row_numel}), gpu_place); - SelectedRowsAddTensor add_tensor_functor; + SelectedRowsAddTensor add_tensor_functor; add_tensor_functor(ctx, *output, *tensor1, tensor2.get()); Tensor tensor2_cpu; @@ -122,7 +122,7 @@ TEST(selected_rows_functor, gpu_add_to) { GPUPlace gpu_place(0); CPUPlace cpu_place; CUDADeviceContext ctx(gpu_place); - SetConstant functor; + SetConstant functor; int64_t height = 10; int64_t row_numel = 10; @@ -147,7 +147,7 @@ TEST(selected_rows_functor, gpu_add_to) { // simplely concat two SelectedRows out_value->mutable_data(make_ddim({7, 10}), gpu_place); - SelectedRowsAddTo add_to_functor; + SelectedRowsAddTo add_to_functor; add_to_functor(ctx, *selected_rows1, 0, output.get()); add_to_functor(ctx, *selected_rows2, in1_value->numel(), output.get()); @@ -187,7 +187,7 @@ TEST(selected_rows_functor, gpu_add_to) { tensor1->mutable_data(make_ddim({height, row_numel}), gpu_place); functor(ctx, tensor1.get(), 3.0); - SelectedRowsAddToTensor add_to_tensor_functor; + SelectedRowsAddToTensor add_to_tensor_functor; add_to_tensor_functor(ctx, *output, tensor1.get()); Tensor tensor1_cpu; diff --git a/paddle/operators/math/sequence2batch.cc b/paddle/operators/math/sequence2batch.cc index 5b3bde02fbf981772759caa3d0054fac4a8520f9..88977be1f8c030741c3a3a8f07a4feeb1d8bb4d9 100644 --- a/paddle/operators/math/sequence2batch.cc +++ b/paddle/operators/math/sequence2batch.cc @@ -19,9 +19,9 @@ namespace operators { namespace math { template -class CopyMatrixRowsFunctor { +class CopyMatrixRowsFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& src, const size_t* index, framework::Tensor& dst, bool is_src_index) { auto src_dims = src.dims(); @@ -48,13 +48,13 @@ class CopyMatrixRowsFunctor { } }; -template class CopyMatrixRowsFunctor; -template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; -template class LoDTensor2BatchFunctor; -template class LoDTensor2BatchFunctor; -template class Batch2LoDTensorFunctor; -template class Batch2LoDTensorFunctor; +template class LoDTensor2BatchFunctor; +template class LoDTensor2BatchFunctor; +template class Batch2LoDTensorFunctor; +template class Batch2LoDTensorFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/sequence2batch.cu b/paddle/operators/math/sequence2batch.cu index c5d968aeb216bbb3e0e17f138b9e891494d99f75..452ae8951000872b706f7e4227a62dbf98109e7e 100644 --- a/paddle/operators/math/sequence2batch.cu +++ b/paddle/operators/math/sequence2batch.cu @@ -39,9 +39,9 @@ __global__ void CopyMatrixRowsKernel(const T* src, T* dst, const size_t* index, } template -class CopyMatrixRowsFunctor { +class CopyMatrixRowsFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& src, const size_t* index, framework::Tensor& dst, bool is_src_index) { auto src_dims = src.dims(); @@ -59,20 +59,19 @@ class CopyMatrixRowsFunctor { dim3 threads(128, 8); dim3 grid(8, 1); - auto stream = - reinterpret_cast(context).stream(); + auto stream = context.stream(); CopyMatrixRowsKernel<<>>( src_data, dst_data, index, height, width, is_src_index); } }; -template class CopyMatrixRowsFunctor; -template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; +template class CopyMatrixRowsFunctor; -template class LoDTensor2BatchFunctor; -template class LoDTensor2BatchFunctor; -template class Batch2LoDTensorFunctor; -template class Batch2LoDTensorFunctor; +template class LoDTensor2BatchFunctor; +template class LoDTensor2BatchFunctor; +template class Batch2LoDTensorFunctor; +template class Batch2LoDTensorFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/sequence2batch.h b/paddle/operators/math/sequence2batch.h index 73295ddbcb73fe80be08e732790f0ec75e94b415..a5c43a2c7d4d729c35a20a27de2a23141e6019bc 100644 --- a/paddle/operators/math/sequence2batch.h +++ b/paddle/operators/math/sequence2batch.h @@ -26,7 +26,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class CopyMatrixRowsFunctor { public: // If is_src_index is true, @@ -34,12 +34,12 @@ class CopyMatrixRowsFunctor { // If is_src_index is false, // copy the input src to the indexed rows of output dst. // The indexed rows are based on the input index. - void operator()(const platform::DeviceContext& context, - const framework::Tensor& src, const size_t* index, - framework::Tensor& dst, bool is_src_index); + void operator()(const DeviceContext& context, const framework::Tensor& src, + const size_t* index, framework::Tensor& dst, + bool is_src_index); }; -template +template class LoDTensor2BatchFunctor { // Calculate the length of each sequence and // sort sequence index by the length. @@ -56,7 +56,7 @@ class LoDTensor2BatchFunctor { }; public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::LoDTensor& lod_tensor, framework::LoDTensor& batch, bool is_cal_batch_lod, bool is_reverse = false) const { @@ -65,7 +65,7 @@ class LoDTensor2BatchFunctor { PADDLE_ENFORCE_GT(lods.size(), 2UL); PADDLE_ENFORCE_EQ(lods[1].size(), static_cast(lod_tensor.dims()[0])); - CopyMatrixRowsFunctor to_batch; + CopyMatrixRowsFunctor to_batch; to_batch(context, lod_tensor, lods[1].data(), batch, true); return; } @@ -143,22 +143,22 @@ class LoDTensor2BatchFunctor { } batch.set_lod(batch_lods); - CopyMatrixRowsFunctor to_batch; + CopyMatrixRowsFunctor to_batch; to_batch(context, lod_tensor, seq2batch_idx, batch, true); } }; -template +template class Batch2LoDTensorFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::LoDTensor& batch, framework::LoDTensor& lod_tensor) const { auto in_lod = batch.lod(); PADDLE_ENFORCE_GT(in_lod.size(), 2UL); PADDLE_ENFORCE_EQ(in_lod[1].size(), static_cast(lod_tensor.dims()[0])); - CopyMatrixRowsFunctor to_seq; + CopyMatrixRowsFunctor to_seq; size_t* index = in_lod[1].data(); to_seq(context, batch, index, lod_tensor, false); } diff --git a/paddle/operators/math/sequence_pooling.cc b/paddle/operators/math/sequence_pooling.cc index 5913c99fdb01100d0de44ab317124550fa626528..8fb92b1a130b8f25163d856f3f596136072180cf 100644 --- a/paddle/operators/math/sequence_pooling.cc +++ b/paddle/operators/math/sequence_pooling.cc @@ -20,9 +20,9 @@ namespace operators { namespace math { template -class MaxSeqPoolFunctor { +class MaxSeqPoolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::LoDTensor& input, framework::Tensor* output, framework::Tensor* index) { auto in_dims = input.dims(); @@ -60,9 +60,9 @@ class MaxSeqPoolFunctor { }; template -class MaxSeqPoolGradFunctor { +class MaxSeqPoolGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& out_grad, const framework::Tensor& index, framework::LoDTensor* in_grad) { @@ -80,7 +80,7 @@ class MaxSeqPoolGradFunctor { const int* max_index = index.data(); T* ig_data = in_grad->data(); - SetConstant set_zero; + SetConstant set_zero; set_zero(context, in_grad, static_cast(0.0)); int64_t num_seq = og_dims[0]; int64_t dim = out_grad.numel() / num_seq; @@ -93,10 +93,10 @@ class MaxSeqPoolGradFunctor { } }; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolGradFunctor; -template class MaxSeqPoolGradFunctor; +template class MaxSeqPoolFunctor; +template class MaxSeqPoolFunctor; +template class MaxSeqPoolGradFunctor; +template class MaxSeqPoolGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/sequence_pooling.cu b/paddle/operators/math/sequence_pooling.cu index 5ed951402fecba66a8960f4d024bf3785dac51c7..4c9e6b375ce7251747b9cd443d86cca0858c84ef 100644 --- a/paddle/operators/math/sequence_pooling.cu +++ b/paddle/operators/math/sequence_pooling.cu @@ -46,9 +46,9 @@ __global__ void KeMaxSequencePool(const T* input, const size_t* starts, } template -class MaxSeqPoolFunctor { +class MaxSeqPoolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::LoDTensor& input, framework::Tensor* output, framework::Tensor* index) { auto in_dims = input.dims(); @@ -71,8 +71,7 @@ class MaxSeqPoolFunctor { dim3 threads(256, 1); dim3 grid(num_seq, 1); - auto stream = - reinterpret_cast(context).stream(); + auto stream = context.stream(); KeMaxSequencePool<<>>( in_data, starts.data(), out_data, max_index, num_seq, dim); } @@ -91,9 +90,9 @@ __global__ void KeMaxSequencePoolGrad(const T* out_grad, const int* max_index, } template -class MaxSeqPoolGradFunctor { +class MaxSeqPoolGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& out_grad, const framework::Tensor& index, framework::LoDTensor* in_grad) { @@ -111,7 +110,7 @@ class MaxSeqPoolGradFunctor { const int* max_index = index.data(); T* ig_data = in_grad->data(); - SetConstant set_zero; + SetConstant set_zero; set_zero(context, in_grad, static_cast(0.0)); int64_t num_seq = og_dims[0]; int64_t dim = out_grad.numel() / num_seq; @@ -119,17 +118,16 @@ class MaxSeqPoolGradFunctor { unsigned int blocks = (num_seq * dim + 128 - 1) / 128; dim3 threads(128, 1); dim3 grid(blocks, 1); - auto stream = - reinterpret_cast(context).stream(); + auto stream = context.stream(); KeMaxSequencePoolGrad<<>>( og_data, max_index, ig_data, num_seq, dim); } }; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolGradFunctor; -template class MaxSeqPoolGradFunctor; +template class MaxSeqPoolFunctor; +template class MaxSeqPoolFunctor; +template class MaxSeqPoolGradFunctor; +template class MaxSeqPoolGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/sequence_pooling.h b/paddle/operators/math/sequence_pooling.h index 35dfe26de1a87a064410401244914d4e2a94176e..13ffb2ebef3a683b5e5fe64433a90237b944002e 100644 --- a/paddle/operators/math/sequence_pooling.h +++ b/paddle/operators/math/sequence_pooling.h @@ -23,18 +23,18 @@ namespace math { #define FLT_MAX __FLT_MAX__ -template +template class MaxSeqPoolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::LoDTensor& input, framework::Tensor* output, framework::Tensor* index); }; -template +template class MaxSeqPoolGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::Tensor& out_grad, const framework::Tensor& index, framework::LoDTensor* in_grad); diff --git a/paddle/operators/math/softmax.cc b/paddle/operators/math/softmax.cc index 3e2f15d6c27f58818128f32fab0bd4c5f36b0050..72f10f35f4ef39b41fbc5e900313eafd7ba669e9 100644 --- a/paddle/operators/math/softmax.cc +++ b/paddle/operators/math/softmax.cc @@ -19,10 +19,10 @@ namespace paddle { namespace operators { namespace math { -template class SoftmaxFunctor; -template class SoftmaxFunctor; -template class SoftmaxGradFunctor; -template class SoftmaxGradFunctor; +template class SoftmaxFunctor; +template class SoftmaxFunctor; +template class SoftmaxGradFunctor; +template class SoftmaxGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/softmax.cu b/paddle/operators/math/softmax.cu index 4dbab51d46bdaaa506a6c242d0958c73687f4eb9..9e73f6a371c950ed6f81ee90216f7fd3899f73ce 100644 --- a/paddle/operators/math/softmax.cu +++ b/paddle/operators/math/softmax.cu @@ -21,10 +21,10 @@ namespace paddle { namespace operators { namespace math { -template class SoftmaxFunctor; -template class SoftmaxFunctor; -template class SoftmaxGradFunctor; -template class SoftmaxGradFunctor; +template class SoftmaxFunctor; +template class SoftmaxFunctor; +template class SoftmaxGradFunctor; +template class SoftmaxGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/softmax.h b/paddle/operators/math/softmax.h index fe1074650234c5beb5889e7efd713164769ad740..471f44d340cfd0d6305a9127c34289ef1663accb 100644 --- a/paddle/operators/math/softmax.h +++ b/paddle/operators/math/softmax.h @@ -19,19 +19,18 @@ namespace paddle { namespace operators { namespace math { -template +template class SoftmaxFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor* X, framework::Tensor* Y); + void operator()(const DeviceContext& context, const framework::Tensor* X, + framework::Tensor* Y); }; -template +template class SoftmaxGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor* y, const framework::Tensor* y_grad, - framework::Tensor* x_grad); + void operator()(const DeviceContext& context, const framework::Tensor* y, + const framework::Tensor* y_grad, framework::Tensor* x_grad); }; } // namespace math diff --git a/paddle/operators/math/softmax_impl.h b/paddle/operators/math/softmax_impl.h index 05793eeb3eeafaf36c301236197555b7b35e5803..82f597ff792decb1760f59e693026cd453432d05 100644 --- a/paddle/operators/math/softmax_impl.h +++ b/paddle/operators/math/softmax_impl.h @@ -32,10 +32,10 @@ struct ValueClip { } }; -template -void SoftmaxFunctor::operator()( - const platform::DeviceContext& context, const framework::Tensor* X, - framework::Tensor* Y) { +template +void SoftmaxFunctor::operator()(const DeviceContext& context, + const framework::Tensor* X, + framework::Tensor* Y) { auto logits = EigenMatrix::From(*X); auto softmax = EigenMatrix::From(*Y); @@ -56,19 +56,18 @@ void SoftmaxFunctor::operator()( .broadcast(one_by_class)) .unaryExpr(ValueClip()); - softmax.device(*context.GetEigenDevice()) = shifted_logits.exp(); - softmax.device(*context.GetEigenDevice()) = - (softmax * - softmax.sum(along_class) - .inverse() - .eval() - .reshape(batch_by_one) - .broadcast(one_by_class)); + softmax.device(*context.eigen_device()) = shifted_logits.exp(); + softmax.device(*context.eigen_device()) = (softmax * + softmax.sum(along_class) + .inverse() + .eval() + .reshape(batch_by_one) + .broadcast(one_by_class)); } -template -void SoftmaxGradFunctor::operator()( - const platform::DeviceContext& context, const framework::Tensor* y, +template +void SoftmaxGradFunctor::operator()( + const DeviceContext& context, const framework::Tensor* y, const framework::Tensor* y_grad, framework::Tensor* x_grad) { auto softmax = EigenMatrix::From(*y); auto softmax_grad = EigenMatrix::From(*y_grad); @@ -89,8 +88,7 @@ void SoftmaxGradFunctor::operator()( .eval() .reshape(batch_by_one) .broadcast(one_by_class); - logits_grad.device(*context.GetEigenDevice()) = - (softmax_grad - dot) * softmax; + logits_grad.device(*context.eigen_device()) = (softmax_grad - dot) * softmax; } } // namespace math diff --git a/paddle/operators/math/unpooling.cc b/paddle/operators/math/unpooling.cc index b57d3dc1414cff492db8d7d503a7fce370a3f151..ecd3a647e00655a57d11c2f082bd1f81822cf92b 100644 --- a/paddle/operators/math/unpooling.cc +++ b/paddle/operators/math/unpooling.cc @@ -17,9 +17,9 @@ namespace paddle { namespace operators { namespace math { template -class Unpool2dMaxFunctor { +class Unpool2dMaxFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, framework::Tensor* output) { const int batch_size = input.dims()[0]; @@ -48,9 +48,9 @@ class Unpool2dMaxFunctor { } }; template -class Unpool2dMaxGradFunctor { +class Unpool2dMaxGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, const framework::Tensor& output, @@ -82,10 +82,10 @@ class Unpool2dMaxGradFunctor { } } }; -template class Unpool2dMaxGradFunctor; -template class Unpool2dMaxGradFunctor; -template class Unpool2dMaxFunctor; -template class Unpool2dMaxFunctor; +template class Unpool2dMaxGradFunctor; +template class Unpool2dMaxGradFunctor; +template class Unpool2dMaxFunctor; +template class Unpool2dMaxFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/unpooling.cu b/paddle/operators/math/unpooling.cu index 37c3c8b689f9a69b68ddffd23813fa9ad8ced0e7..ecbde0f6a798ba817c28714b37af8187d2e9555e 100644 --- a/paddle/operators/math/unpooling.cu +++ b/paddle/operators/math/unpooling.cu @@ -67,9 +67,9 @@ __global__ void KernelUnpool2dMaxGrad( * All tensors are in NCHW format. */ template -class Unpool2dMaxFunctor { +class Unpool2dMaxFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, framework::Tensor* output) { const int batch_size = input.dims()[0]; @@ -83,21 +83,18 @@ class Unpool2dMaxFunctor { T* output_data = output->mutable_data(context.GetPlace()); int threads = 1024; int grid = (input.numel() + threads - 1) / threads; - KernelUnpool2dMax< - T><<(context) - .stream()>>>(input.numel(), input_data, indices_data, - input_height, input_width, output_channels, - output_data, output_height, output_width); + KernelUnpool2dMax<<>>( + input.numel(), input_data, indices_data, input_height, input_width, + output_channels, output_data, output_height, output_width); } }; /* * All tensors are in NCHW format. */ template -class Unpool2dMaxGradFunctor { +class Unpool2dMaxGradFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, const framework::Tensor& output, @@ -116,19 +113,16 @@ class Unpool2dMaxGradFunctor { T* input_grad_data = input_grad->mutable_data(context.GetPlace()); int threads = 1024; int grid = (input.numel() + threads - 1) / threads; - KernelUnpool2dMaxGrad< - T><<(context) - .stream()>>>(input.numel(), input_data, indices_data, - input_height, input_width, output_channels, - output_data, output_grad_data, output_height, - output_width, input_grad_data); + KernelUnpool2dMaxGrad<<>>( + input.numel(), input_data, indices_data, input_height, input_width, + output_channels, output_data, output_grad_data, output_height, + output_width, input_grad_data); } }; -template class Unpool2dMaxGradFunctor; -template class Unpool2dMaxGradFunctor; -template class Unpool2dMaxFunctor; -template class Unpool2dMaxFunctor; +template class Unpool2dMaxGradFunctor; +template class Unpool2dMaxGradFunctor; +template class Unpool2dMaxFunctor; +template class Unpool2dMaxFunctor; } // namespace math } // namespace operators } // namespace paddle diff --git a/paddle/operators/math/unpooling.h b/paddle/operators/math/unpooling.h index 7077d7c2274fd9e02b69ef343f310f4ffbbcff1a..0f0ff1371ebea8c7501aee1c7c45bc6a79de397e 100644 --- a/paddle/operators/math/unpooling.h +++ b/paddle/operators/math/unpooling.h @@ -18,18 +18,16 @@ limitations under the License. */ namespace paddle { namespace operators { namespace math { -template +template class Unpool2dMaxFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, framework::Tensor* output); }; -template +template class Unpool2dMaxGradFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& input, + void operator()(const DeviceContext& context, const framework::Tensor& input, const framework::Tensor& indices, const framework::Tensor& output, const framework::Tensor& output_grad, diff --git a/paddle/operators/math/vol2col.cc b/paddle/operators/math/vol2col.cc index 99eb7fd46de42400a915d86706580d15b08a74a2..d574ed9234304d992a6e4a10fce0816aee7fa40a 100644 --- a/paddle/operators/math/vol2col.cc +++ b/paddle/operators/math/vol2col.cc @@ -25,9 +25,9 @@ namespace math { * output_depth, output_height, output_width] */ template -class Vol2ColFunctor { +class Vol2ColFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& vol, const std::vector& dilations, const std::vector& strides, @@ -111,9 +111,9 @@ class Vol2ColFunctor { * output_depth, output_height, output_width] */ template -class Col2VolFunctor { +class Col2VolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& col, const std::vector& dilations, const std::vector& strides, @@ -190,10 +190,10 @@ class Col2VolFunctor { } }; -template class Vol2ColFunctor; -template class Vol2ColFunctor; -template class Col2VolFunctor; -template class Col2VolFunctor; +template class Vol2ColFunctor; +template class Vol2ColFunctor; +template class Col2VolFunctor; +template class Col2VolFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/vol2col.cu b/paddle/operators/math/vol2col.cu index dae3be858e9f47d0133aa37e8a5f90a0addf1dfd..b029442fe48dd27232d322aadec5864760e1b9ff 100644 --- a/paddle/operators/math/vol2col.cu +++ b/paddle/operators/math/vol2col.cu @@ -68,9 +68,9 @@ __global__ void vol2col(int num_kernels, const T* data_vol, int depth, * output_depth, output_height, output_width] */ template -class Vol2ColFunctor { +class Vol2ColFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& vol, const std::vector& dilations, const std::vector& strides, @@ -117,9 +117,7 @@ class Vol2ColFunctor { const int threads = 1024; const int blocks = (num_outputs + 1024 - 1) / 1024; - vol2col<<(context) - .stream()>>>( + vol2col<<>>( num_outputs, vol.data(), input_depth, input_height, input_width, dilations[0], dilations[1], dilations[2], filter_depth, filter_height, filter_width, strides[0], strides[1], strides[2], paddings[0], @@ -196,9 +194,9 @@ __global__ void col2vol(int num_kernels, const T* data_col, int depth, * output_depth, output_height, output_width] */ template -class Col2VolFunctor { +class Col2VolFunctor { public: - void operator()(const platform::DeviceContext& context, + void operator()(const platform::CUDADeviceContext& context, const framework::Tensor& col, const std::vector& dilations, const std::vector& strides, @@ -245,9 +243,7 @@ class Col2VolFunctor { const int threads = 1024; const int blocks = (num_kernels + 1024 - 1) / 1024; - col2vol<<(context) - .stream()>>>( + col2vol<<>>( num_kernels, col.data(), input_depth, input_height, input_width, dilations[0], dilations[1], dilations[2], filter_depth, filter_height, filter_width, strides[0], strides[1], strides[2], paddings[0], @@ -256,10 +252,10 @@ class Col2VolFunctor { } }; -template class Vol2ColFunctor; -template class Vol2ColFunctor; -template class Col2VolFunctor; -template class Col2VolFunctor; +template class Vol2ColFunctor; +template class Vol2ColFunctor; +template class Col2VolFunctor; +template class Col2VolFunctor; } // namespace math } // namespace operators diff --git a/paddle/operators/math/vol2col.h b/paddle/operators/math/vol2col.h index dc64d1d9776261541a380ed15207904d6b4e641c..dcd80370e8516d34b764b1ab3b0b98516e738bf6 100644 --- a/paddle/operators/math/vol2col.h +++ b/paddle/operators/math/vol2col.h @@ -63,22 +63,20 @@ namespace math { * \note The caller needs to ensure that volShape.inputChannels is equal to * colShape.inputChannels. */ -template +template class Vol2ColFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& vol, + void operator()(const DeviceContext& context, const framework::Tensor& vol, const std::vector& dilations, const std::vector& strides, const std::vector& paddings, framework::Tensor* col) const; }; -template +template class Col2VolFunctor { public: - void operator()(const platform::DeviceContext& context, - const framework::Tensor& col, + void operator()(const DeviceContext& context, const framework::Tensor& col, const std::vector& dilations, const std::vector& strides, const std::vector& paddings, diff --git a/paddle/operators/math/vol2col_test.cc b/paddle/operators/math/vol2col_test.cc index 62c3152304ad7fe946c996be413e102f3dd92bb2..f46db3c56713399798a45854bf1613d07aee26e6 100644 --- a/paddle/operators/math/vol2col_test.cc +++ b/paddle/operators/math/vol2col_test.cc @@ -16,7 +16,7 @@ limitations under the License. */ #include #include -template +template void testVol2col() { paddle::framework::Tensor input; paddle::framework::Tensor input_tmp; @@ -24,18 +24,7 @@ void testVol2col() { paddle::framework::Tensor output_tmp; auto* place = new Place(); - paddle::platform::DeviceContext* context; - if (paddle::platform::is_cpu_place(*place)) { - context = - new paddle::platform::CPUDeviceContext(paddle::platform::CPUPlace()); - } else { -#ifdef PADDLE_WITH_CUDA - context = - new paddle::platform::CUDADeviceContext(paddle::platform::GPUPlace()); -#else - PADDLE_THROW("no GPU support"); -#endif // PADDLE_WITH_CUDA - } + DeviceContext* context = new DeviceContext(*place); /** * input = [[0, 1, 2, @@ -88,7 +77,7 @@ void testVol2col() { output_depth, output_height, output_width}, *place); - paddle::operators::math::Vol2ColFunctor vol2col; + paddle::operators::math::Vol2ColFunctor vol2col; vol2col(*context, input, dilations, strides, paddings, &output); float vol_2_col[] = {0, 1, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 10, 10, 11}; @@ -113,7 +102,7 @@ void testVol2col() { CopyFrom(input_tmp, *place, *context, &input); } - paddle::operators::math::Col2VolFunctor col2vol; + paddle::operators::math::Col2VolFunctor col2vol; col2vol(*context, output, dilations, strides, paddings, &input); float* in_ptr; @@ -130,8 +119,9 @@ void testVol2col() { } TEST(math, vol2col) { - testVol2col(); + testVol2col(); #ifdef PADDLE_WITH_CUDA - testVol2col(); + testVol2col(); #endif // PADDLE_WITH_CUDA } diff --git a/paddle/operators/matmul_op.cc b/paddle/operators/matmul_op.cc index 5a1a6154203d40186f1e41491194b19612931b1f..fd65d894d5749c97f860d614de354e89f6d9441d 100644 --- a/paddle/operators/matmul_op.cc +++ b/paddle/operators/matmul_op.cc @@ -130,7 +130,7 @@ class MatMulOp : public framework::OperatorWithKernel { class MatMulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MatMulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + MatMulOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The first input of MatMul op"); AddInput("Y", "The second input of MatMul op"); @@ -206,7 +206,8 @@ class MatMulOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(matmul, ops::MatMulOp, ops::MatMulOpMaker, matmul_grad, ops::MatMulOpGrad); -REGISTER_OP_CPU_KERNEL(matmul, - ops::MatMulKernel); REGISTER_OP_CPU_KERNEL( - matmul_grad, ops::MatMulGradKernel); + matmul, ops::MatMulKernel); +REGISTER_OP_CPU_KERNEL( + matmul_grad, + ops::MatMulGradKernel); diff --git a/paddle/operators/matmul_op.cu.cc b/paddle/operators/matmul_op.cu.cc index b7e66382f00445b087e14103e7a148d450b37405..6a3772c00457993dcc7b55a0f15493974633026c 100644 --- a/paddle/operators/matmul_op.cu.cc +++ b/paddle/operators/matmul_op.cu.cc @@ -15,7 +15,8 @@ #include "paddle/operators/matmul_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(matmul, - ops::MatMulKernel); -REGISTER_OP_GPU_KERNEL( - matmul_grad, ops::MatMulGradKernel); +REGISTER_OP_CUDA_KERNEL( + matmul, ops::MatMulKernel); +REGISTER_OP_CUDA_KERNEL( + matmul_grad, + ops::MatMulGradKernel); diff --git a/paddle/operators/matmul_op.h b/paddle/operators/matmul_op.h index 1e4aa48b7018d8e3d6f02591fbca2877ddbd3c5d..de9da487b3d627cc79962db3770632813e9cd9f5 100644 --- a/paddle/operators/matmul_op.h +++ b/paddle/operators/matmul_op.h @@ -27,7 +27,7 @@ using DDim = framework::DDim; using framework::make_ddim; using framework::vectorize; -template +template class MatMulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -38,8 +38,9 @@ class MatMulKernel : public framework::OpKernel { bool transpose_x = context.Attr("transpose_X"); bool transpose_y = context.Attr("transpose_Y"); - math::MatMulFunctor()(context.device_context(), x, transpose_x, y, - transpose_y, T(1), out, T(0)); + math::MatMulFunctor()( + context.template device_context(), x, transpose_x, y, + transpose_y, T(1), out, T(0)); } }; @@ -68,17 +69,16 @@ Tensor CombineBatchAndM(const Tensor& input) { // Reshape a rank-3 tensor from P x M x N to M x (P * N). // (Warning: This requires transposing data and writes into new memory.) // Identity op if the tensor is not of rank 3. -template -Tensor CombineBatchAndN(const framework::ExecutionContext& context, - const Tensor& input) { +template +Tensor CombineBatchAndN(const DeviceContext& context, const Tensor& input) { Tensor output; auto in_dims = input.dims(); if (in_dims.size() == 3) { output.Resize({in_dims[1], in_dims[0], in_dims[2]}); output.mutable_data(context.GetPlace()); std::vector axis = {1, 0, 2}; - math::Transpose trans; - trans(context.device_context(), input, &output, axis); + math::Transpose trans; + trans(context, input, &output, axis); std::vector out_dims = {in_dims[1], in_dims[0] * in_dims[2]}; output.Resize({in_dims[1], in_dims[0] * in_dims[2]}); } else { @@ -112,7 +112,7 @@ Tensor CombineBatchAndN(const framework::ExecutionContext& context, // // To handle this sort of scenario, we reshape X : P x M x K, dOut: P x M x N // to X: (P * M) x K, dOut: (P * M) x N. -template +template class MatMulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -178,24 +178,23 @@ class MatMulGradKernel : public framework::OpKernel { Tensor Y = Reshape(y, make_ddim(y_dims)); Tensor dOut = Reshape(dout, make_ddim(dout_dims)); + auto& dev_ctx = context.template device_context(); if (dx) { dx->mutable_data(context.GetPlace()); const Tensor& dOut_for_dX = (x_dims.size() == 2 && y_dims.size() == 3) - ? CombineBatchAndN(context, dOut) + ? CombineBatchAndN(dev_ctx, dOut) : dOut; if (x_dims.size() == 2 && y_dims.size() == 3) { Y = transpose_y ? CombineBatchAndM(Y) - : CombineBatchAndN(context, Y); + : CombineBatchAndN(dev_ctx, Y); } if (transpose_x) { - math::MatMulFunctor()(context.device_context(), Y, - transpose_y, dOut_for_dX, transpose_x, - T(1), dx, T(0)); + math::MatMulFunctor()( + dev_ctx, Y, transpose_y, dOut_for_dX, transpose_x, T(1), dx, T(0)); } else { - math::MatMulFunctor()(context.device_context(), dOut_for_dX, - transpose_x, Y, !transpose_y, T(1), dx, - T(0)); + math::MatMulFunctor()( + dev_ctx, dOut_for_dX, transpose_x, Y, !transpose_y, T(1), dx, T(0)); } } @@ -205,18 +204,16 @@ class MatMulGradKernel : public framework::OpKernel { ? CombineBatchAndM(dOut) : dOut; if (y_dims.size() == 2 && x_dims.size() == 3) { - X = transpose_x ? CombineBatchAndN(context, X) + X = transpose_x ? CombineBatchAndN(dev_ctx, X) : CombineBatchAndM(X); dOut = CombineBatchAndM(dOut); } if (transpose_y) { - math::MatMulFunctor()(context.device_context(), dOut_for_dY, - transpose_y, X, transpose_x, T(1), dy, - T(0)); + math::MatMulFunctor()( + dev_ctx, dOut_for_dY, transpose_y, X, transpose_x, T(1), dy, T(0)); } else { - math::MatMulFunctor()(context.device_context(), X, - !transpose_x, dOut_for_dY, transpose_y, - T(1), dy, T(0)); + math::MatMulFunctor()( + dev_ctx, X, !transpose_x, dOut_for_dY, transpose_y, T(1), dy, T(0)); } } } diff --git a/paddle/operators/max_sequence_len_op.cc b/paddle/operators/max_sequence_len_op.cc index 798022c9dd904a0ac189b4b550a94264a433ebf2..dec2874a1fd13c1379e37d7b9755d465ffb1a6f7 100644 --- a/paddle/operators/max_sequence_len_op.cc +++ b/paddle/operators/max_sequence_len_op.cc @@ -40,8 +40,7 @@ class MaxSeqenceLenOp : public framework::OperatorBase { class MaxSeqenceLenOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - MaxSeqenceLenOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MaxSeqenceLenOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("RankTable", "The lod_rank_table."); AddOutput("Out", "The max sequence length."); diff --git a/paddle/operators/maxout_op.cc b/paddle/operators/maxout_op.cc index e203a25d544372220e8246e5e17ffbc6408d2998..3ee32269417e80cd14a6ff0f8e52c0b2dec4b8be 100644 --- a/paddle/operators/maxout_op.cc +++ b/paddle/operators/maxout_op.cc @@ -20,7 +20,7 @@ using framework::Tensor; class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker { public: - MaxOutOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + MaxOutOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -40,23 +40,28 @@ class MaxOutOpMaker : public framework::OpProtoAndCheckerMaker { "the number of channels divided by groups.." )DOC"); AddComment(R"DOC( - Assumed the input shape is (N, Ci, H, W). - The output shape is (N, Co, H, W). Then `Co = Ci / groups`. +MaxOut Operator. - math: - y_{si+j} = \max_k x_{gsi + sk + j} - g = groups - s = input.size / num_channels - 0 \le i < num_channels / groups - 0 \le j < s - 0 \le k < groups +Assumed the input shape is (N, Ci, H, W). +The output shape is (N, Co, H, W). +Then $Co = Ci / groups$ and the operator formula is as follows: - Please refer to Paper: - - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf - - Multi-digit Number Recognition from Street View \ - Imagery using Deep Convolutional Neural Networks: \ - https://arxiv.org/pdf/1312.6082v4.pdf - )DOC"); +$$ +y_{si+j} = \max_k x_{gsi + sk + j} \\ +g = groups \\ +s = \frac{input.size}{num\_channels} \\ +0 \le i < \frac{num\_channels}{groups} \\ +0 \le j < s \\ +0 \le k < groups +$$ + +Please refer to Paper: + - Maxout Networks: http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf + - Multi-digit Number Recognition from Street View \ + Imagery using Deep Convolutional Neural Networks: \ + https://arxiv.org/pdf/1312.6082v4.pdf + +)DOC"); } }; @@ -96,7 +101,8 @@ class MaxOutOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(maxout, ops::MaxOutOp, ops::MaxOutOpMaker, maxout_grad, ops::MaxOutOpGrad); -REGISTER_OP_CPU_KERNEL(maxout, - ops::MaxOutKernel); REGISTER_OP_CPU_KERNEL( - maxout_grad, ops::MaxOutGradKernel); + maxout, ops::MaxOutKernel); +REGISTER_OP_CPU_KERNEL( + maxout_grad, + ops::MaxOutGradKernel); diff --git a/paddle/operators/maxout_op.cu.cc b/paddle/operators/maxout_op.cu.cc index decd43913d69d122330886e07178778d03f7fef5..2904f0ff96f06cefad29a65898cd82107d9bd600 100644 --- a/paddle/operators/maxout_op.cu.cc +++ b/paddle/operators/maxout_op.cu.cc @@ -15,9 +15,10 @@ #include "paddle/operators/maxout_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(maxout, - ops::MaxOutKernel, - ops::MaxOutKernel); -REGISTER_OP_GPU_KERNEL( - maxout_grad, ops::MaxOutGradKernel, - ops::MaxOutGradKernel); +REGISTER_OP_CUDA_KERNEL( + maxout, ops::MaxOutKernel, + ops::MaxOutKernel); +REGISTER_OP_CUDA_KERNEL( + maxout_grad, + ops::MaxOutGradKernel, + ops::MaxOutGradKernel); diff --git a/paddle/operators/maxout_op.h b/paddle/operators/maxout_op.h index 44a0d073dda642f6e261ce5760013f3e1055f43d..e8b12552b9ff39e23702de17abc9825a527f02aa 100644 --- a/paddle/operators/maxout_op.h +++ b/paddle/operators/maxout_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class MaxOutKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -31,12 +31,13 @@ class MaxOutKernel : public framework::OpKernel { Tensor* out = context.Output("Out"); int groups = context.template Attr("groups"); - math::MaxOutFunctor maxout_forward; - maxout_forward(context.device_context(), *in_x, out, groups); + math::MaxOutFunctor maxout_forward; + maxout_forward(context.template device_context(), *in_x, out, + groups); } }; -template +template class MaxOutGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -46,14 +47,13 @@ class MaxOutGradKernel : public framework::OpKernel { context.Input(framework::GradVarName("Out")); Tensor* in_x_grad = context.Output(framework::GradVarName("X")); int groups = context.template Attr("groups"); - auto& device_ctx = context.device_context(); - math::SetConstant zero; + auto& device_ctx = context.template device_context(); + math::SetConstant zero; if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); zero(device_ctx, in_x_grad, static_cast(0.0)); - math::MaxOutGradFunctor maxout_backward; - maxout_backward(context.device_context(), *in_x, in_x_grad, *out, - *out_grad, groups); + math::MaxOutGradFunctor maxout_backward; + maxout_backward(device_ctx, *in_x, in_x_grad, *out, *out_grad, groups); } } }; diff --git a/paddle/operators/mean_op.cc b/paddle/operators/mean_op.cc index dcc5b4286f4ac833268a779a9a7edd2ed119ffff..411f4d14efbfa5a8ee6dd7da645a044b191bf006 100644 --- a/paddle/operators/mean_op.cc +++ b/paddle/operators/mean_op.cc @@ -32,7 +32,7 @@ class MeanOp : public framework::OperatorWithKernel { class MeanOpMaker : public framework::OpProtoAndCheckerMaker { public: - MeanOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + MeanOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of mean op"); AddOutput("Out", "The output of mean op"); @@ -60,13 +60,13 @@ class MeanGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto* grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto* grad_op = new framework::OpDesc(); grad_op->SetType("mean_grad"); grad_op->SetInput("X", Input("X")); grad_op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); grad_op->SetOutput(framework::GradVarName("X"), InputGrad("X")); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -76,8 +76,9 @@ class MeanGradMaker : public framework::SingleGradOpDescMaker { namespace ops = paddle::operators; REGISTER_OPERATOR(mean, ops::MeanOp, ops::MeanOpMaker, ops::MeanGradMaker); REGISTER_OPERATOR(mean_grad, ops::MeanGradOp); -REGISTER_OP_CPU_KERNEL(mean, ops::MeanKernel, - ops::MeanKernel); -REGISTER_OP_CPU_KERNEL(mean_grad, - ops::MeanGradKernel, - ops::MeanGradKernel); +REGISTER_OP_CPU_KERNEL( + mean, ops::MeanKernel, + ops::MeanKernel); +REGISTER_OP_CPU_KERNEL( + mean_grad, ops::MeanGradKernel, + ops::MeanGradKernel); diff --git a/paddle/operators/mean_op.cu b/paddle/operators/mean_op.cu index ca089938c048f7aa5bd561f57c093aa74cce4e11..93062bf540ad64350f7ee9a554c3c469aba46677 100644 --- a/paddle/operators/mean_op.cu +++ b/paddle/operators/mean_op.cu @@ -17,8 +17,9 @@ #include "paddle/operators/mean_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(mean, ops::MeanKernel, - ops::MeanKernel); -REGISTER_OP_GPU_KERNEL(mean_grad, - ops::MeanGradKernel, - ops::MeanGradKernel); +REGISTER_OP_CUDA_KERNEL( + mean, ops::MeanKernel, + ops::MeanKernel); +REGISTER_OP_CUDA_KERNEL( + mean_grad, ops::MeanGradKernel, + ops::MeanGradKernel); diff --git a/paddle/operators/mean_op.h b/paddle/operators/mean_op.h index c99286a5b928f1edcd845b01b21b95654c25db07..351b34595974b1771d9f4ae5232e0b3a33491104 100644 --- a/paddle/operators/mean_op.h +++ b/paddle/operators/mean_op.h @@ -27,7 +27,7 @@ template using EigenVector = framework::EigenVector; -template +template class MeanKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -38,13 +38,14 @@ class MeanKernel : public framework::OpKernel { auto X = EigenVector::Flatten(*input); auto y = EigenScalar::From(*output); - auto& place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); y.device(place) = X.mean(); } }; -template +template class MeanGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -56,7 +57,8 @@ class MeanGradKernel : public framework::OpKernel { T ig_size = static_cast(IG->numel()); Eigen::DSizes bcast(ig_size); - EigenVector::Flatten(*IG).device(context.GetEigenDevice()) = + EigenVector::Flatten(*IG).device( + *context.template device_context().eigen_device()) = (EigenVector::From(*OG) / ig_size).broadcast(bcast); } }; diff --git a/paddle/operators/merge_lod_tensor_op.cc b/paddle/operators/merge_lod_tensor_op.cc index adc688dbd5e13a2203d6842a12acdb8625288275..5edf29c3af958f5a939fdb830d46aca4b8d3dbe0 100644 --- a/paddle/operators/merge_lod_tensor_op.cc +++ b/paddle/operators/merge_lod_tensor_op.cc @@ -114,8 +114,7 @@ class MergeLoDTensorOp : public framework::OperatorBase { class MergeLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - MergeLoDTensorOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MergeLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input LoDTensor, contains complete lod information to " @@ -162,15 +161,15 @@ class MergeLoDTensorGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("split_lod_tensor"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetInput("Mask", Input("Mask")); grad_op->SetOutput("OutTrue", InputGrad("InTrue")); grad_op->SetOutput("OutFalse", InputGrad("InFalse")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/minus_op.cc b/paddle/operators/minus_op.cc index 4684c20208501a3239fd57b35428946bb52af4a0..2e9cc9d29d8c92ac56b451834f930758216e6a44 100644 --- a/paddle/operators/minus_op.cc +++ b/paddle/operators/minus_op.cc @@ -46,7 +46,7 @@ class MinusOp : public framework::OperatorWithKernel { class MinusOpMaker : public framework::OpProtoAndCheckerMaker { public: - MinusOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + MinusOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The left tensor of minus operator."); AddInput("Y", "The right tensor of minus operator."); @@ -70,12 +70,11 @@ class MinusGradMaker : public framework::GradOpDescMakerBase { public: using framework::GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() - const override { - std::vector> ops; + std::vector> operator()() const override { + std::vector> ops; auto x_g = InputGrad("X"); if (!x_g.empty()) { - auto *x_g_op = new framework::OpDescBind(); + auto *x_g_op = new framework::OpDesc(); x_g_op->SetType("scale"); x_g_op->SetInput("X", OutputGrad("Out")); x_g_op->SetOutput("Out", x_g); @@ -85,7 +84,7 @@ class MinusGradMaker : public framework::GradOpDescMakerBase { auto y_g = InputGrad("Y"); if (!y_g.empty()) { - auto *y_g_op = new framework::OpDescBind(); + auto *y_g_op = new framework::OpDesc(); y_g_op->SetType("scale"); y_g_op->SetInput("X", OutputGrad("Out")); y_g_op->SetOutput("Out", y_g); @@ -102,5 +101,5 @@ class MinusGradMaker : public framework::GradOpDescMakerBase { namespace ops = paddle::operators; REGISTER_OPERATOR(minus, ops::MinusOp, ops::MinusOpMaker, ops::MinusGradMaker); -REGISTER_OP_CPU_KERNEL(minus, - ops::MinusKernel); +REGISTER_OP_CPU_KERNEL( + minus, ops::MinusKernel); diff --git a/paddle/operators/minus_op.cu b/paddle/operators/minus_op.cu index a8375cc6301b2c1a917299c3933b03226bb72907..3b202ea92ee8692f2441909083f559adff5fea8c 100644 --- a/paddle/operators/minus_op.cu +++ b/paddle/operators/minus_op.cu @@ -14,5 +14,6 @@ #include "paddle/operators/minus_op.h" -REGISTER_OP_GPU_KERNEL( - minus, paddle::operators::MinusKernel); +REGISTER_OP_CUDA_KERNEL( + minus, + paddle::operators::MinusKernel); diff --git a/paddle/operators/minus_op.h b/paddle/operators/minus_op.h index bd9a2790aa2b208c2d3dfc792031283eb6c42397..78e1e1be6d622d504db9e664dcb5f35ca0c22b95 100644 --- a/paddle/operators/minus_op.h +++ b/paddle/operators/minus_op.h @@ -19,7 +19,7 @@ namespace paddle { namespace operators { -template +template class MinusKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -28,7 +28,8 @@ class MinusKernel : public framework::OpKernel { auto* out_tensor = context.Output("Out"); out_tensor->mutable_data(context.GetPlace()); - auto& dev = context.GetEigenDevice(); + auto& dev = + *context.template device_context().eigen_device(); framework::EigenVector::Flatten(*out_tensor).device(dev) = framework::EigenVector::Flatten(*left_tensor) - framework::EigenVector::Flatten(*right_tensor); diff --git a/paddle/operators/modified_huber_loss_op.cc b/paddle/operators/modified_huber_loss_op.cc index 28528848af1f467bf38be53f9d05fee6ca3f93cc..dbb28f8466b141502fbba8ae5d8a511a6b1d74c3 100644 --- a/paddle/operators/modified_huber_loss_op.cc +++ b/paddle/operators/modified_huber_loss_op.cc @@ -39,8 +39,7 @@ class ModifiedHuberLossOp : public framework::OperatorWithKernel { class ModifiedHuberLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - ModifiedHuberLossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ModifiedHuberLossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of modified huber loss op. " @@ -115,6 +114,6 @@ REGISTER_OP(modified_huber_loss, ops::ModifiedHuberLossOp, REGISTER_OP_CPU_KERNEL( modified_huber_loss, - ops::ModifiedHuberLossKernel); + ops::ModifiedHuberLossKernel); REGISTER_OP_CPU_KERNEL(modified_huber_loss_grad, ops::ModifiedHuberLossGradCPUKernel); diff --git a/paddle/operators/modified_huber_loss_op.cu b/paddle/operators/modified_huber_loss_op.cu index 8854e166cd99ce914d7f9f9bcead3234b0649506..40a8447da4d9d4874af232f3408557c950b58482 100644 --- a/paddle/operators/modified_huber_loss_op.cu +++ b/paddle/operators/modified_huber_loss_op.cu @@ -71,8 +71,8 @@ class ModifiedHuberLossGradGPUKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( modified_huber_loss, - ops::ModifiedHuberLossKernel); -REGISTER_OP_GPU_KERNEL(modified_huber_loss_grad, - ops::ModifiedHuberLossGradGPUKernel); + ops::ModifiedHuberLossKernel); +REGISTER_OP_CUDA_KERNEL(modified_huber_loss_grad, + ops::ModifiedHuberLossGradGPUKernel); diff --git a/paddle/operators/modified_huber_loss_op.h b/paddle/operators/modified_huber_loss_op.h index aba75efad9c19e3e113b4f09bc1fbd4732f4e187..157ae0682e0cf4392dab003153d44f48209d00a1 100644 --- a/paddle/operators/modified_huber_loss_op.h +++ b/paddle/operators/modified_huber_loss_op.h @@ -46,7 +46,7 @@ struct ModifiedHuberLossForward { } }; -template +template class ModifiedHuberLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -57,7 +57,8 @@ class ModifiedHuberLossKernel : public framework::OpKernel { out0->mutable_data(context.GetPlace()); out1->mutable_data(context.GetPlace()); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto x = EigenVector::Flatten(*in0); auto y = EigenVector::Flatten(*in1); diff --git a/paddle/operators/momentum_op.cc b/paddle/operators/momentum_op.cc index 19954006195c1e9fd34328b52ed2a9eade526235..15b8b80776732f43c3ef4f8b80cffedf5c2a76fd 100644 --- a/paddle/operators/momentum_op.cc +++ b/paddle/operators/momentum_op.cc @@ -54,8 +54,7 @@ class MomentumOp : public framework::OperatorWithKernel { class MomentumOpMaker : public framework::OpProtoAndCheckerMaker { public: - MomentumOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MomentumOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -71,8 +70,12 @@ class MomentumOpMaker : public framework::OpProtoAndCheckerMaker { "(Tensor, default Tensor) " "Input learning rate"); - AddOutput("ParamOut", "(Tensor) Output updated parameter"); - AddOutput("VelocityOut", "(Tensor) Output updated velocity"); + AddOutput("ParamOut", + "(Tensor) This output is updated parameter. " + "It shared memory with Input(Param)."); + AddOutput("VelocityOut", + "(Tensor) This output is updated velocity. " + "It shared memory with Input(Velocity)."); AddAttr("mu", "(float) Momentum coefficient"); AddAttr("use_nesterov", @@ -101,5 +104,5 @@ $$ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(momentum, ops::MomentumOp, ops::MomentumOpMaker); -REGISTER_OP_CPU_KERNEL( - momentum, ops::MomentumOpKernel); +REGISTER_OP_CPU_KERNEL(momentum, ops::MomentumOpKernel, + ops::MomentumOpKernel); diff --git a/paddle/operators/momentum_op.cu b/paddle/operators/momentum_op.cu index efc24e795e05951024009f0b3258769c352df344..00f1253465d336e0fad580d0c6b898369e4783ca 100644 --- a/paddle/operators/momentum_op.cu +++ b/paddle/operators/momentum_op.cu @@ -12,9 +12,67 @@ See the License for the specific language governing permissions and limitations under the License. */ -#define EIGEN_USE_GPU -#include "paddle/operators/momentum_op.h" +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +__global__ void MomentumKernel(const T* p, const T* g, const T* v, + const T* learning_rate, const T mu, + const int64_t num, bool use_nesterov, T* p_out, + T* v_out) { + T lr = learning_rate[0]; + if (use_nesterov) { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num; + i += blockDim.x * gridDim.x) { + T g_val = g[i]; + T v_new = v[i] * mu + g_val; + v_out[i] = v_new; + p_out[i] = p[i] - (g_val - v_new * mu) * lr; + } + } else { + for (int i = blockIdx.x * blockDim.x + threadIdx.x; i < num; + i += blockDim.x * gridDim.x) { + T v_new = v[i] * mu + g[i]; + v_out[i] = v_new; + p_out[i] = p[i] - lr * v_new; + } + } +} + +template +class MomentumOpCUDAKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& ctx) const override { + auto param_out = ctx.Output("ParamOut"); + auto velocity_out = ctx.Output("VelocityOut"); + auto param = ctx.Input("Param"); + auto velocity = ctx.Input("Velocity"); + auto grad = ctx.Input("Grad"); + auto learning_rate = ctx.Input("LearningRate"); + + T* p_out = param_out->mutable_data(ctx.GetPlace()); + T* v_out = velocity_out->mutable_data(ctx.GetPlace()); + + T mu = static_cast(ctx.Attr("mu")); + bool use_nesterov = ctx.Attr("use_nesterov"); + + auto* p = param->data(); + auto* v = velocity->data(); + auto* g = grad->data(); + auto* lr = learning_rate->data(); + + int block = 512; + int grid = (param->numel() + block - 1) / block; + MomentumKernel<<>>( + p, g, v, lr, mu, param->numel(), use_nesterov, p_out, v_out); + } +}; + +} // namespace operators +} // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - momentum, ops::MomentumOpKernel); +REGISTER_OP_CUDA_KERNEL(momentum, ops::MomentumOpCUDAKernel, + ops::MomentumOpCUDAKernel); diff --git a/paddle/operators/momentum_op.h b/paddle/operators/momentum_op.h index 8f7f5eb5c21c0342f57a47b85d28f4454f4566c2..da69532ea58bad8d3908770d82dbcc6e6b108fce 100644 --- a/paddle/operators/momentum_op.h +++ b/paddle/operators/momentum_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class MomentumOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -33,7 +33,7 @@ class MomentumOpKernel : public framework::OpKernel { param_out->mutable_data(ctx.GetPlace()); velocity_out->mutable_data(ctx.GetPlace()); - float mu = ctx.Attr("mu"); + T mu = static_cast(ctx.Attr("mu")); bool use_nesterov = ctx.Attr("use_nesterov"); auto p_out = framework::EigenVector::Flatten(*param_out); @@ -42,18 +42,13 @@ class MomentumOpKernel : public framework::OpKernel { auto p = framework::EigenVector::Flatten(*param); auto v = framework::EigenVector::Flatten(*velocity); auto g = framework::EigenVector::Flatten(*grad); - auto lr = framework::EigenVector::Flatten(*learning_rate); + auto* lr = learning_rate->data(); - auto place = ctx.GetEigenDevice(); - - Eigen::DSizes grad_dsize(grad->numel()); - - v_out.device(place) = v * mu + g; + v_out = v * mu + g; if (use_nesterov) { - p_out.device(place) = p - g * lr.broadcast(grad_dsize) + - v_out * mu * lr.broadcast(grad_dsize); + p_out = p - (g - v_out * mu) * lr[0]; } else { - p_out.device(place) = p - lr.broadcast(grad_dsize) * v_out; + p_out = p - lr[0] * v_out; } } }; diff --git a/paddle/operators/mul_op.cc b/paddle/operators/mul_op.cc index 3c39ae10dc50084cff284c307167c33c9208a3ce..599df9c3df58db6444d7cb729e1a2c1f9f628b5b 100644 --- a/paddle/operators/mul_op.cc +++ b/paddle/operators/mul_op.cc @@ -71,41 +71,52 @@ class MulOpShapeInference : public framework::InferShapeBase { class MulOpMaker : public framework::OpProtoAndCheckerMaker { public: - MulOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + MulOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "The first input of mul op"); - AddInput("Y", "The second input of mul op"); - AddOutput("Out", "The output of mul op"); + AddInput("X", "(Tensor), The first input tensor of mul op."); + AddInput("Y", "(Tensor), The second input tensor of mul op."); + AddOutput("Out", "(Tensor), The output tensor of mul op."); AddAttr( "x_num_col_dims", - "(int, default 1) " - R"DOC(mul_op can take tensors with more than two dimensions as input `X`, - in that case, tensors will be reshaped to a matrix. The matrix's first - dimension(column length) will be the product of tensor's last - `num_col_dims` dimensions, and the matrix's second dimension(row length) - will be the product of tensor's first `rank - num_col_dims` dimensions. + R"DOC((int, default 1), The mul_op can take tensors with more than two + dimensions as its inputs. If the input $X$ is a tensor with more + than two dimensions, $X$ will be flattened into a two-dimensional + matrix first. The flattening rule is: the first `num_col_dims` + will be flattened to form the first dimension of the final matrix + (the height of the matrix), and the rest `rank(X) - num_col_dims` + dimensions are flattened to form the second dimension of the final + matrix (the width of the matrix). As a result, height of the + flattened matrix is equal to the product of $X$'s first + `x_num_col_dims` dimensions' sizes, and width of the flattened + matrix is equal to the product of $X$'s last `rank(x) - num_col_dims` + dimensions' size. For example, suppose $X$ is a 6-dimensional + tensor with the shape [2, 3, 4, 5, 6], and `x_num_col_dims` = 3. + Thus, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = + [24, 30]. )DOC") .SetDefault(1) .EqualGreaterThan(1); AddAttr( "y_num_col_dims", - "(int, default 1) " - R"DOC(mul_op can take tensors with more than two dimensions as input `Y`, - in that case, tensors will be reshaped to a matrix. Just like input `X`. + R"DOC((int, default 1), The mul_op can take tensors with more than two, + dimensions as its inputs. If the input $Y$ is a tensor with more + than two dimensions, $Y$ will be flattened into a two-dimensional + matrix first. The attribute `y_num_col_dims` determines how $Y$ is + flattened. See comments of `x_num_col_dims` for more details. )DOC") .SetDefault(1) .EqualGreaterThan(1); AddComment(R"DOC( -Mul Operator. +Mul Operator. -This operator is used to perform matrix multiplication for input X and Y. +This operator is used to perform matrix multiplication for input $X$ and $Y$. The equation is: $$Out = X * Y$$ -Both the input `X` and `Y` can carry the LoD (Level of Details) information, -or not. But the output only shares the LoD information with input `X`. +Both the input $X$ and $Y$ can carry the LoD (Level of Details) information, +or not. But the output only shares the LoD information with input $X$. )DOC"); } @@ -149,6 +160,7 @@ REGISTER_OPERATOR(mul, paddle::framework::OperatorWithKernel, ops::MulOpMaker, ops::MulOpShapeInference, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(mul_grad, ops::MulOpGrad); -REGISTER_OP_CPU_KERNEL(mul, ops::MulKernel); -REGISTER_OP_CPU_KERNEL(mul_grad, - ops::MulGradKernel); +REGISTER_OP_CPU_KERNEL( + mul, ops::MulKernel); +REGISTER_OP_CPU_KERNEL( + mul_grad, ops::MulGradKernel); diff --git a/paddle/operators/mul_op.cu.cc b/paddle/operators/mul_op.cu.cc index 66dc3d6d106a18640adad413d4e967fa101abcfc..6095de58d0c58be6b647771e9784348cbf8c4ad4 100644 --- a/paddle/operators/mul_op.cu.cc +++ b/paddle/operators/mul_op.cu.cc @@ -15,6 +15,7 @@ #include "paddle/operators/mul_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(mul, ops::MulKernel); -REGISTER_OP_GPU_KERNEL(mul_grad, - ops::MulGradKernel); +REGISTER_OP_CUDA_KERNEL( + mul, ops::MulKernel); +REGISTER_OP_CUDA_KERNEL( + mul_grad, ops::MulGradKernel); diff --git a/paddle/operators/mul_op.h b/paddle/operators/mul_op.h index 0eb9df41e9415845f88af283de63856158b447f9..1b467dca8302c10fe08a157aac4586230e096dd0 100644 --- a/paddle/operators/mul_op.h +++ b/paddle/operators/mul_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class MulKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -46,15 +46,16 @@ class MulKernel : public framework::OpKernel { if (z_dim.size() != 2) { z->Resize({x_matrix.dims()[0], y_matrix.dims()[1]}); } - math::matmul(context.device_context(), x_matrix, false, y_matrix, - false, 1, z, 0); + math::matmul( + context.template device_context(), x_matrix, false, + y_matrix, false, 1, z, 0); if (z_dim.size() != 2) { z->Resize(z_dim); } } }; -template +template class MulGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -77,6 +78,7 @@ class MulGradKernel : public framework::OpKernel { Tensor* dx = ctx.Output(framework::GradVarName("X")); Tensor* dy = ctx.Output(framework::GradVarName("Y")); + auto& dev_ctx = ctx.template device_context(); if (dx) { dx->mutable_data(ctx.GetPlace()); Tensor dx_matrix = dx->dims().size() > 2 @@ -84,8 +86,8 @@ class MulGradKernel : public framework::OpKernel { : *dx; // dx = dout * y'. dx: M x K, dout : M x N, y : K x N - math::matmul(ctx.device_context(), dout_mat, false, y_matrix, - true, 1, &dx_matrix, 0); + math::matmul(dev_ctx, dout_mat, false, y_matrix, true, + 1, &dx_matrix, 0); } if (dy) { dy->mutable_data(ctx.GetPlace()); @@ -93,8 +95,8 @@ class MulGradKernel : public framework::OpKernel { ? framework::ReshapeToMatrix(*dy, y_num_col_dims) : *dy; // dy = x' * dout. dy K x N, dout : M x N, x : M x K - math::matmul(ctx.device_context(), x_matrix, true, dout_mat, - false, 1, &dy_matrix, 0); + math::matmul(dev_ctx, x_matrix, true, dout_mat, false, + 1, &dy_matrix, 0); } } }; diff --git a/paddle/operators/multiplex_op.cc b/paddle/operators/multiplex_op.cc index f8527dfab3f3c42f430c433a11351f12b8dfae8b..f524de60dbb3c652aa2a74478af6c0e38fb3cb43 100644 --- a/paddle/operators/multiplex_op.cc +++ b/paddle/operators/multiplex_op.cc @@ -61,8 +61,7 @@ class MultiplexOp : public framework::OperatorWithKernel { class MultiplexOpMaker : public framework::OpProtoAndCheckerMaker { public: - MultiplexOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + MultiplexOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Ids", "The index tensor of multiplex operator."); AddInput("X", "The candidate tensors of multiplex operator.") @@ -99,13 +98,7 @@ class MultiplexGradOp : public framework::OperatorWithKernel { "Output(X@Grad) should not be null."); PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), "Input(Out@GRAD) should not be null."); - std::vector d_ins; - auto ins = ctx->GetInputsDim("X"); - // No need to compute gradient for Input(Ids) - for (size_t i = 0; i < ins.size(); i++) { - d_ins.push_back(ins[i]); - } - ctx->SetOutputsDim(framework::GradVarName("X"), d_ins); + ctx->SetOutputsDim(framework::GradVarName("X"), ctx->GetInputsDim("X")); } protected: @@ -125,7 +118,8 @@ REGISTER_OPERATOR(multiplex, ops::MultiplexOp, ops::MultiplexOpMaker, paddle::framework::DefaultGradOpDescMaker); REGISTER_OPERATOR(multiplex_grad, ops::MultiplexGradOp); REGISTER_OP_CPU_KERNEL( - multiplex, ops::MultiplexCPUKernel); + multiplex, + ops::MultiplexCPUKernel); REGISTER_OP_CPU_KERNEL( multiplex_grad, - ops::MultiplexGradCPUKernel); + ops::MultiplexGradCPUKernel); diff --git a/paddle/operators/multiplex_op.cu b/paddle/operators/multiplex_op.cu index 10dff8d021d0394702cc8b92e779c012a4cf3eb2..47986e9ff86f2e08b0861cde35ac3a44b10caed1 100644 --- a/paddle/operators/multiplex_op.cu +++ b/paddle/operators/multiplex_op.cu @@ -36,7 +36,7 @@ class MultiplexGPUKernel : public framework::OpKernel { CopyFrom(*ids, platform::CPUPlace(), ctx.device_context(), &index_t_cpu); auto* index = index_t_cpu.data(); auto stream = ctx.cuda_device_context().stream(); - Place place = boost::get(ctx.GetPlace()); + platform::GPUPlace place = boost::get(ctx.GetPlace()); for (auto i = 0; i < rows; i++) { int32_t k = index[i]; PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative."); @@ -60,7 +60,8 @@ class MultiplexGradGPUKernel : public framework::OpKernel { if (d_ins[i]) { d_ins[i]->mutable_data(ctx.GetPlace()); auto t = framework::EigenVector::Flatten(*d_ins[i]); - t.device(ctx.GetEigenDevice()) = t.constant(static_cast(0)); + t.device(*ctx.template device_context().eigen_device()) = + t.constant(static_cast(0)); } } @@ -72,7 +73,7 @@ class MultiplexGradGPUKernel : public framework::OpKernel { auto* index = index_t_cpu.data(); auto stream = ctx.cuda_device_context().stream(); - Place place = boost::get(ctx.GetPlace()); + platform::GPUPlace place = boost::get(ctx.GetPlace()); for (auto i = 0; i < rows; i++) { size_t k = static_cast(index[i]); if (d_ins[k]) { @@ -87,8 +88,9 @@ class MultiplexGradGPUKernel : public framework::OpKernel { namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - multiplex, ops::MultiplexGPUKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + multiplex, + ops::MultiplexGPUKernel); +REGISTER_OP_CUDA_KERNEL( multiplex_grad, - ops::MultiplexGradGPUKernel); + ops::MultiplexGradGPUKernel); diff --git a/paddle/operators/multiplex_op.h b/paddle/operators/multiplex_op.h index ab3cafaa324a29d6f249cf1f73db92e1364eebc8..344315116122f7ad843af740be8a31313c8a0342 100644 --- a/paddle/operators/multiplex_op.h +++ b/paddle/operators/multiplex_op.h @@ -22,7 +22,7 @@ namespace paddle { namespace operators { -template +template class MultiplexCPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -35,7 +35,7 @@ class MultiplexCPUKernel : public framework::OpKernel { auto rows = ins[0]->dims()[0]; auto cols = ins[0]->numel() / rows; auto index = ids->data(); - Place place = boost::get(ctx.GetPlace()); + platform::CPUPlace place = boost::get(ctx.GetPlace()); for (auto i = 0; i < rows; i++) { int32_t k = index[i]; PADDLE_ENFORCE_GE(k, 0, "index must be nonnegative."); @@ -47,7 +47,7 @@ class MultiplexCPUKernel : public framework::OpKernel { } }; -template +template class MultiplexGradCPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -60,14 +60,15 @@ class MultiplexGradCPUKernel : public framework::OpKernel { if (d_ins[i]) { d_ins[i]->mutable_data(ctx.GetPlace()); auto t = framework::EigenVector::Flatten(*d_ins[i]); - t.device(ctx.GetEigenDevice()) = t.constant(static_cast(0)); + t.device(*ctx.template device_context().eigen_device()) = + t.constant(static_cast(0)); } } auto rows = ins[0]->dims()[0]; auto cols = ins[0]->numel() / rows; auto* index = ids->data(); - Place place = boost::get(ctx.GetPlace()); + platform::CPUPlace place = boost::get(ctx.GetPlace()); for (auto i = 0; i < rows; i++) { size_t k = static_cast(index[i]); if (d_ins[k]) { diff --git a/paddle/operators/nccl_op.cc b/paddle/operators/nccl_op.cc index 22a37ff1bbf6b8cfb2cbc3c3dbbb20a87c5ea4e7..e19f534f8a2d05cd9b569a0eebb287db3d3321ba 100644 --- a/paddle/operators/nccl_op.cc +++ b/paddle/operators/nccl_op.cc @@ -43,8 +43,7 @@ class NCCLInitOp : public framework::OperatorBase { class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCCLInitOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + NCCLInitOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Communicator", "Create Communicator for communicating between gpus"); @@ -52,7 +51,7 @@ class NCCLInitOpMaker : public framework::OpProtoAndCheckerMaker { AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddComment(R"DOC( NCCLInit Operator. @@ -141,8 +140,7 @@ class NCCLBcastOp : public framework::OperatorWithKernel { // AllreduceOp class NCCLAllReduceOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCCLAllReduceOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + NCCLAllReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of AllReduce op"); AddInput("Communicator", "Communicator for communicating between gpus"); @@ -163,8 +161,7 @@ AllReduce the input tensors. // ReduceOp class NCCLReduceOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCCLReduceOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + NCCLReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of Reduce op"); AddInput("Communicator", "Communicator for communicating between gpus"); @@ -190,8 +187,7 @@ Reduce the tensors. // BcastOp class NCCLBcastOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCCLBcastOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + NCCLBcastOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of BcastSend op"); AddInput("Communicator", "Communicator for communicating between gpus"); diff --git a/paddle/operators/nccl_op.cu.cc b/paddle/operators/nccl_op.cu.cc index 4f0a2a79edb9f24c7758fc91483d374425b36853..6ca6db7253da0e59c742f115cd25a1b8203a3044 100644 --- a/paddle/operators/nccl_op.cu.cc +++ b/paddle/operators/nccl_op.cu.cc @@ -204,6 +204,6 @@ class NCCLBcastKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel); -REGISTER_OP_GPU_KERNEL(ncclBcast, ops::NCCLBcastKernel); -REGISTER_OP_GPU_KERNEL(ncclReduce, ops::NCCLReduceKernel); +REGISTER_OP_CUDA_KERNEL(ncclAllReduce, ops::NCCLAllReduceKernel); +REGISTER_OP_CUDA_KERNEL(ncclBcast, ops::NCCLBcastKernel); +REGISTER_OP_CUDA_KERNEL(ncclReduce, ops::NCCLReduceKernel); diff --git a/paddle/operators/nccl_op_test.cu.cc b/paddle/operators/nccl_op_test.cu.cc index bb7ae20286dd8e52f72b79cbf353bd812a2cc092..c1046aadafbde303a3a8b12f2377018396b9adb8 100644 --- a/paddle/operators/nccl_op_test.cu.cc +++ b/paddle/operators/nccl_op_test.cu.cc @@ -33,9 +33,9 @@ #include "paddle/platform/place.h" USE_NO_KERNEL_OP(ncclInit); -USE_GPU_ONLY_OP(ncclAllReduce); -USE_GPU_ONLY_OP(ncclReduce); -USE_GPU_ONLY_OP(ncclBcast); +USE_CUDA_ONLY_OP(ncclAllReduce); +USE_CUDA_ONLY_OP(ncclReduce); +USE_CUDA_ONLY_OP(ncclBcast); namespace f = paddle::framework; namespace p = paddle::platform; @@ -65,7 +65,7 @@ class NCCLTester : public ::testing::Test { } void NCCLInitOp() { - std::unique_ptr op1(new f::OpDescBind); + std::unique_ptr op1(new f::OpDesc); op1->SetType("ncclInit"); op1->SetOutput("Communicator", {"comm"}); @@ -81,10 +81,9 @@ class NCCLTester : public ::testing::Test { } template - void PerThreadProgram(int gpu_id, const f::OpDescBind &op_desc, - f::Scope *scope) { + void PerThreadProgram(int gpu_id, const f::OpDesc &op_desc, f::Scope *scope) { std::unique_lock lk(mu); - const f::OpDescBind *op1 = &op_desc; + const f::OpDesc *op1 = &op_desc; p::GPUPlace place(gpu_id); auto &ctx = dev_ctxs.at(gpu_id); @@ -125,7 +124,7 @@ class NCCLTester : public ::testing::Test { // ncclInitOp with desc TEST(NCCL, ncclInitOp) { - std::unique_ptr op_desc(new f::OpDescBind); + std::unique_ptr op_desc(new f::OpDesc); op_desc->SetType("ncclInit"); op_desc->SetOutput("Communicator", {"x1"}); @@ -145,7 +144,7 @@ TEST(NCCL, ncclInitOp) { // ncclAllReduceOp with desc TEST_F(NCCLTester, ncclAllReduceOp) { - std::unique_ptr op2(new f::OpDescBind); + std::unique_ptr op2(new f::OpDesc); op2->SetType("ncclAllReduce"); op2->SetInput("X", {"st"}); op2->SetInput("Communicator", {"comm"}); @@ -192,7 +191,7 @@ TEST_F(NCCLTester, ncclAllReduceOp) { // ncclReduceOp with desc TEST_F(NCCLTester, ncclReduceOp) { - std::unique_ptr op2(new f::OpDescBind); + std::unique_ptr op2(new f::OpDesc); const int kRoot = 0; op2->SetType("ncclReduce"); op2->SetInput("X", {"st"}); @@ -240,7 +239,7 @@ TEST_F(NCCLTester, ncclReduceOp) { // ncclBcastOp with desc TEST_F(NCCLTester, ncclBcastOp) { - std::unique_ptr op2(new f::OpDescBind); + std::unique_ptr op2(new f::OpDesc); const int kRoot = 5; op2->SetType("ncclBcast"); op2->SetInput("X", {"st"}); diff --git a/paddle/operators/nce_op.cc b/paddle/operators/nce_op.cc index 952da10434df01a10fc713a017084d315a2a59d3..6dd457f7a2e410b65680004599ab753acbb34f71 100644 --- a/paddle/operators/nce_op.cc +++ b/paddle/operators/nce_op.cc @@ -67,13 +67,13 @@ class NCEOp : public framework::OperatorWithKernel { const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), - ctx.device_context()); + ctx.GetPlace()); } }; class NCEOpMaker : public framework::OpProtoAndCheckerMaker { public: - NCEOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + NCEOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Input", "(Tensor) A tensor of shape [batch_size, dim]."); AddInput( @@ -170,7 +170,7 @@ class NCEOpGrad : public framework::OperatorWithKernel { const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( framework::ToDataType(ctx.Input("Input")->type()), - ctx.device_context()); + ctx.GetPlace()); } }; diff --git a/paddle/operators/nce_op.h b/paddle/operators/nce_op.h index ea92a797fe18e218be602e019f3fda6bc0b05f33..6636dad06037f163252dc342200a99c756ed2a2e 100644 --- a/paddle/operators/nce_op.h +++ b/paddle/operators/nce_op.h @@ -28,7 +28,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template void PrepareSamples(const framework::ExecutionContext& context) { auto label = context.Input("Label"); const int64_t* label_data = label->data(); @@ -49,7 +49,7 @@ void PrepareSamples(const framework::ExecutionContext& context) { int num_label = label_dims.size() == 2 ? label_dims[1] : 1; int index = 0; - for (size_t i = 0; i < label_dims[0]; ++i) { + for (int64_t i = 0; i < label_dims[0]; ++i) { int j = 0; for (; j < num_label; ++j) { sample_labels_data[index++] = label_data[i * num_label + j]; @@ -67,11 +67,11 @@ void PrepareSamples(const framework::ExecutionContext& context) { } } -template +template class NCEKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - PrepareSamples(context); + PrepareSamples(context); auto sample_labels = context.Output("SampleLabels"); const int64_t* sample_labels_data = sample_labels->data(); auto sample_out = context.Output("SampleLogits"); @@ -86,7 +86,7 @@ class NCEKernel : public framework::OpKernel { T* out_data = out->mutable_data(context.GetPlace()); int num_neg_samples = context.Attr("num_neg_samples"); int num_total_classes = context.Attr("num_total_classes"); - int num_true_class = 1; + int64_t num_true_class = 1; if (label != nullptr) { num_true_class = label->dims()[1]; } @@ -95,18 +95,18 @@ class NCEKernel : public framework::OpKernel { auto bias = context.Input("Bias"); if (bias != nullptr) { const T* bias_data = bias->data(); - for (size_t i = 0; i < sample_labels->numel(); ++i) { + for (int64_t i = 0; i < sample_labels->numel(); ++i) { sample_out_data[i] = bias_data[sample_labels_data[i]]; } } else { - for (size_t i = 0; i < sample_labels->numel(); ++i) { + for (int64_t i = 0; i < sample_labels->numel(); ++i) { sample_out_data[i] = 0; } } // forward mul auto input_mat = EigenMatrix::From(*(context.Input("Input"))); auto weight_mat = EigenMatrix::From(*(context.Input("Weight"))); - for (size_t i = 0; i < sample_labels->numel(); ++i) { + for (int64_t i = 0; i < sample_labels->numel(); ++i) { Eigen::Tensor result = (input_mat.chip((int)(i / sample_labels->dims()[1]), 0) * weight_mat.chip(sample_labels_data[i], 0)) @@ -115,8 +115,8 @@ class NCEKernel : public framework::OpKernel { sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i]))); } // forward cost - for (size_t i = 0; i < sample_labels->dims()[0]; ++i) { - size_t j = 0; + for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) { + int64_t j = 0; out_data[i] = 0; T w = sample_weight == nullptr ? 1. : sample_weight_data[i]; // for true classes @@ -135,7 +135,7 @@ class NCEKernel : public framework::OpKernel { } }; -template +template class NCEGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -162,7 +162,7 @@ class NCEGradKernel : public framework::OpKernel { T* sample_grad_data = sample_grad.mutable_data(sample_labels->dims(), context.GetPlace()); // backward cost - for (size_t i = 0; i < sample_labels->numel(); ++i) { + for (int64_t i = 0; i < sample_labels->numel(); ++i) { T o = sample_out_data[i]; T w = sample_weight == nullptr ? 1 @@ -177,7 +177,7 @@ class NCEGradKernel : public framework::OpKernel { if (d_bias != nullptr) { T* d_bias_data = d_bias->mutable_data(context.GetPlace()); std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0); - for (size_t i = 0; i < sample_labels->numel(); ++i) { + for (int64_t i = 0; i < sample_labels->numel(); ++i) { d_bias_data[sample_labels_data[i]] += sample_grad_data[i]; } } @@ -188,7 +188,7 @@ class NCEGradKernel : public framework::OpKernel { std::fill(d_w_data, d_w_data + d_w->numel(), 0.0); auto d_w_matrix = EigenMatrix::From(*d_w); auto x_matrix = EigenMatrix::From(*(context.Input("Input"))); - for (size_t i = 0; i < sample_labels->numel(); ++i) { + for (int64_t i = 0; i < sample_labels->numel(); ++i) { d_w_matrix.chip(sample_labels_data[i], 0) += x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) * sample_grad_data[i]; @@ -200,7 +200,7 @@ class NCEGradKernel : public framework::OpKernel { d_x->mutable_data(context.GetPlace()); auto d_x_matrix = EigenMatrix::From(*d_x); auto w_matrix = EigenMatrix::From(*(context.Input("Weight"))); - for (size_t i = 0; i < sample_labels->numel(); ++i) { + for (int64_t i = 0; i < sample_labels->numel(); ++i) { d_x_matrix.chip((int)(i / sample_labels->dims()[1]), 0) += w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i]; } diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index ebeb262d9621fa35c870b6407992f6b6d2bf7c70..8935751f15ccc4861c9e06d8d9031c8dff1a4af3 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -38,7 +38,10 @@ namespace operators { class NetOp : public framework::OperatorBase { public: static const char kAll[]; - NetOp() : framework::OperatorBase("plain_net", {}, {}, {}) {} + NetOp() + : framework::OperatorBase("plain_net", framework::VariableNameMap{}, + framework::VariableNameMap{}, + framework::AttributeMap{}) {} NetOp(const std::string& type, const framework::VariableNameMap& inputs, const framework::VariableNameMap& outputs, diff --git a/paddle/operators/net_op_test.cc b/paddle/operators/net_op_test.cc index 63bebd5b44719868a38ddf2b023955d1ab05245c..22fba9568d018586b4622884b7d6145fd646adb0 100644 --- a/paddle/operators/net_op_test.cc +++ b/paddle/operators/net_op_test.cc @@ -38,10 +38,10 @@ TEST(OpKernel, all) { net->AppendOp(std::unique_ptr( new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, - {{"Out", {"y"}}}, {}))); + {{"Out", {"y"}}}, framework::AttributeMap{}))); net->AppendOp(std::unique_ptr( new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}}, - {{"Out", {"z"}}}, {}))); + {{"Out", {"z"}}}, framework::AttributeMap{}))); net->CompleteAddOp(); AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, @@ -58,7 +58,7 @@ TEST(NetOp, insert_op) { NetOp net; auto op1 = std::unique_ptr( new framework::NOP("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, - {{"Out", {"y"}}}, {})); + {{"Out", {"y"}}}, framework::AttributeMap{})); net.AppendOp(*op1); net.InsertOp(0, *op1); ASSERT_EQ(2UL, net.ops_.size()); @@ -68,10 +68,12 @@ TEST(NetOp, insert_op) { TEST(NetOp, Clone) { NetOp net; - net.AppendOp( - std::unique_ptr(new framework::NOP{"empty", {}, {}, {}})); - net.AppendOp(std::unique_ptr( - new framework::NOP{"empty2", {}, {}, {}})); + net.AppendOp(std::unique_ptr(new framework::NOP{ + "empty", framework::VariableNameMap{}, framework::VariableNameMap{}, + framework::AttributeMap{}})); + net.AppendOp(std::unique_ptr(new framework::NOP{ + "empty2", framework::VariableNameMap{}, framework::VariableNameMap{}, + framework::AttributeMap{}})); net.CompleteAddOp(true); auto new_net_op = net.Clone(); ASSERT_NE(new_net_op, nullptr); diff --git a/paddle/operators/batch_norm_op.md b/paddle/operators/op_documentation/batch_norm_op.md similarity index 100% rename from paddle/operators/batch_norm_op.md rename to paddle/operators/op_documentation/batch_norm_op.md diff --git a/paddle/operators/name_convention.md b/paddle/operators/op_documentation/name_convention.md similarity index 96% rename from paddle/operators/name_convention.md rename to paddle/operators/op_documentation/name_convention.md index b5cb176e003b4584321142ac9f1c3380b7010936..a02b356f058da68442516c2705d0bac140f8ef18 100644 --- a/paddle/operators/name_convention.md +++ b/paddle/operators/op_documentation/name_convention.md @@ -35,8 +35,8 @@ Here we give some examples to show how these rules will be used. ```c++ class AccumulateOpMaker : public framework::OpProtoAndCheckerMaker { public: - AccumulateOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + AccumulateOpMaker(OpProto *proto, + OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor that has to be accumulated to the output tensor. If the output size is not the same as input size, diff --git a/paddle/operators/net_op_design.md b/paddle/operators/op_documentation/net_op_design.md similarity index 100% rename from paddle/operators/net_op_design.md rename to paddle/operators/op_documentation/net_op_design.md diff --git a/paddle/operators/op_documentation/op_markdown_format.md b/paddle/operators/op_documentation/op_markdown_format.md new file mode 100644 index 0000000000000000000000000000000000000000..0ee804d592252c727622cbe59b0644813db3c4fd --- /dev/null +++ b/paddle/operators/op_documentation/op_markdown_format.md @@ -0,0 +1,64 @@ +# Standard Markdown Format for Operators +The following should be the standard format for documentation for all the operators that will get rendered in the `html`: + +``` +Operator Name (In PaddlePaddle) + +Operator Name (Standard) + +Operator description. + +LaTeX equation of how the operator performs an update. + +The signature of the operator. +``` + +Each section mentioned above has been covered in further detail in the rest of the document. + +# PaddlePaddle Operator Name +This should be in all small letters, in case of multiple words, we separate them with an underscore. For example: +`array to lod tensor` should be written as `array_to_lod_tensor`. + +This naming convention should be standard across all PaddlePaddle operators. + +# Standard Operator Name +This is the standard name of the operator as used in the community. The general standard is usually: +- Standard abbreviations like `SGD` are written in all capital letters. +- Operator names that have multiple words inside a single word use `camelCase` (capitalize word boundaries inside of a word). +- Keep numbers inside a word as is, with no boundary delimiters. +- Follow the name of the operator with the keyword: `Activation Operator.` + +# Operator description +This section should contain the description of what the operator does, including the operation performed, the literature from where it comes and was introduced first, and other important details. The relevant paper/article including the hyperlink should be cited in this section. + +# LaTeX equation +This section should contain an overall equation of the update or operation that the operator performs. The variables used in the equation should follow the naming convention of operators as described [here](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md). Two words in the same word should be separated by an underscore (`_`). + +# The signature +This section describes the signature of the operator. A list of Inputs and Outputs, each of which have a small description of what the variable represents and the type of variable. The variable names follow the `CamelCase` naming convention. The proposed format for this is: +`Section : +VariableName : (VariableType) VariableDescription +... +... +` + + +The following example for an `sgd` operator covers the above mentioned sections as they would ideally look like in the `html`: + +``` +sgd + +SGD operator + +This operator implements one step of the stochastic gradient descent algorithm. + +param_out = param_learning_rate * grad + +Inputs: +Param : (Tensor) Input parameter +LearningRate : (Tensor) Learning rate of SGD +Grad : (Tensor) Input gradient + +Outputs: +ParamOut : (Tensor) Output parameter +``` diff --git a/paddle/operators/rnn_design.md b/paddle/operators/op_documentation/rnn_design.md similarity index 100% rename from paddle/operators/rnn_design.md rename to paddle/operators/op_documentation/rnn_design.md diff --git a/paddle/operators/pad_op.cc b/paddle/operators/pad_op.cc index adb75df6ef10c59fc6f3db4d36e1ffb1ae0b4b1e..40f7a7eed53354fa65373830b0972c0e72ef54da 100644 --- a/paddle/operators/pad_op.cc +++ b/paddle/operators/pad_op.cc @@ -48,7 +48,7 @@ class PadOp : public framework::OperatorWithKernel { class PadOpMaker : public framework::OpProtoAndCheckerMaker { public: - PadOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + PadOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input of pad op. " @@ -116,14 +116,14 @@ class PadOpGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto* bind = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto* bind = new framework::OpDesc(); bind->SetInput("X", Input("X")); bind->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); bind->SetOutput(framework::GradVarName("X"), InputGrad("X")); bind->SetAttrMap(Attrs()); bind->SetType("pad_grad"); - return std::unique_ptr(bind); + return std::unique_ptr(bind); } }; @@ -134,6 +134,7 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(pad, ops::PadOp, ops::PadOpMaker, ops::PadOpGradMaker); REGISTER_OPERATOR(pad_grad, ops::PadOpGrad); -REGISTER_OP_CPU_KERNEL(pad, ops::PadKernel); -REGISTER_OP_CPU_KERNEL(pad_grad, - ops::PadGradKernel); +REGISTER_OP_CPU_KERNEL( + pad, ops::PadKernel); +REGISTER_OP_CPU_KERNEL( + pad_grad, ops::PadGradKernel); diff --git a/paddle/operators/pad_op.cu b/paddle/operators/pad_op.cu index 555a7dba23c6fa2659cabf4858b42ff70d74bf18..c309fb625cca203418db2599a59ea0144782efc2 100644 --- a/paddle/operators/pad_op.cu +++ b/paddle/operators/pad_op.cu @@ -16,6 +16,7 @@ #include "paddle/operators/pad_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(pad, ops::PadKernel); -REGISTER_OP_GPU_KERNEL(pad_grad, - ops::PadGradKernel); +REGISTER_OP_CUDA_KERNEL( + pad, ops::PadKernel); +REGISTER_OP_CUDA_KERNEL( + pad_grad, ops::PadGradKernel); diff --git a/paddle/operators/pad_op.h b/paddle/operators/pad_op.h index 9534dbf54529e3b9ae2b6640d51fe291e9521927..1b95942af3b3711fcad965cdc3f2d2f99b2f32e8 100644 --- a/paddle/operators/pad_op.h +++ b/paddle/operators/pad_op.h @@ -26,7 +26,7 @@ template using EigenTensor = framework::EigenTensor; -template +template void PadFunction(const framework::ExecutionContext& context) { auto pads = context.Attr>("paddings"); Eigen::array, D> paddings; @@ -42,33 +42,34 @@ void PadFunction(const framework::ExecutionContext& context) { auto x_tensor = EigenTensor::From(*x); auto out_tensor = EigenTensor::From(*out); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); out_tensor.device(place) = x_tensor.pad(paddings, pad_value); } -template +template class PadKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { int rank = context.Input("X")->dims().size(); switch (rank) { case 1: - PadFunction(context); + PadFunction(context); break; case 2: - PadFunction(context); + PadFunction(context); break; case 3: - PadFunction(context); + PadFunction(context); break; case 4: - PadFunction(context); + PadFunction(context); break; case 5: - PadFunction(context); + PadFunction(context); break; case 6: - PadFunction(context); + PadFunction(context); break; default: PADDLE_THROW( @@ -77,7 +78,7 @@ class PadKernel : public framework::OpKernel { } }; -template +template void PadGradFunction(const framework::ExecutionContext& context) { auto pads = context.Attr>("paddings"); Eigen::array, D> paddings; @@ -91,12 +92,13 @@ void PadGradFunction(const framework::ExecutionContext& context) { d_x->mutable_data(context.GetPlace()); auto d_x_tensor = EigenTensor::From(*d_x); auto d_out_tensor = EigenTensor::From(*d_out); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); d_x_tensor.device(place) = d_out_tensor.pad(paddings, 0); } } -template +template class PadGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -104,22 +106,22 @@ class PadGradKernel : public framework::OpKernel { context.Input(framework::GradVarName("Out"))->dims().size(); switch (rank) { case 1: - PadGradFunction(context); + PadGradFunction(context); break; case 2: - PadGradFunction(context); + PadGradFunction(context); break; case 3: - PadGradFunction(context); + PadGradFunction(context); break; case 4: - PadGradFunction(context); + PadGradFunction(context); break; case 5: - PadGradFunction(context); + PadGradFunction(context); break; case 6: - PadGradFunction(context); + PadGradFunction(context); break; default: PADDLE_THROW( diff --git a/paddle/operators/pool_cudnn_op.cc b/paddle/operators/pool_cudnn_op.cc index be9fcc5661f420aadf908cf80cce6c963008b0e4..77407f5cdf7e4ef7b76c38ef8992517b4bd1c5fe 100644 --- a/paddle/operators/pool_cudnn_op.cc +++ b/paddle/operators/pool_cudnn_op.cc @@ -19,19 +19,21 @@ namespace ops = paddle::operators; REGISTER_OP(pool2d_cudnn, ops::PoolOp, ops::Pool2dOpMaker, pool2d_cudnn_grad, ops::PoolOpGrad); -REGISTER_OP_CPU_KERNEL(pool2d_cudnn, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_CPU_KERNEL(pool2d_cudnn_grad, - ops::PoolGradKernel, - ops::PoolGradKernel) +REGISTER_OP_CPU_KERNEL( + pool2d_cudnn, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL( + pool2d_cudnn_grad, + ops::PoolGradKernel, + ops::PoolGradKernel) REGISTER_OP(pool3d_cudnn, ops::PoolOp, ops::Pool3dOpMaker, pool3d_cudnn_grad, ops::PoolOpGrad); -REGISTER_OP_CPU_KERNEL(pool3d_cudnn, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_CPU_KERNEL(pool3d_cudnn_grad, - ops::PoolGradKernel, - ops::PoolGradKernel) +REGISTER_OP_CPU_KERNEL( + pool3d_cudnn, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL( + pool3d_cudnn_grad, + ops::PoolGradKernel, + ops::PoolGradKernel) diff --git a/paddle/operators/pool_cudnn_op.cu.cc b/paddle/operators/pool_cudnn_op.cu.cc index 66dd194ccd5ed629c5861552a7c124dc911362d7..fc2b37bd0fbac82005e709779b2939843b839596 100644 --- a/paddle/operators/pool_cudnn_op.cu.cc +++ b/paddle/operators/pool_cudnn_op.cu.cc @@ -162,12 +162,12 @@ class PoolCudnnGradOpKernel : public framework::OpKernel { namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel, - ops::PoolCudnnOpKernel); -REGISTER_OP_GPU_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel, - ops::PoolCudnnGradOpKernel); - -REGISTER_OP_GPU_KERNEL(pool3d_cudnn, ops::PoolCudnnOpKernel, - ops::PoolCudnnOpKernel); -REGISTER_OP_GPU_KERNEL(pool3d_cudnn_grad, ops::PoolCudnnGradOpKernel, - ops::PoolCudnnGradOpKernel); +REGISTER_OP_CUDA_KERNEL(pool2d_cudnn, ops::PoolCudnnOpKernel, + ops::PoolCudnnOpKernel); +REGISTER_OP_CUDA_KERNEL(pool2d_cudnn_grad, ops::PoolCudnnGradOpKernel, + ops::PoolCudnnGradOpKernel); + +REGISTER_OP_CUDA_KERNEL(pool3d_cudnn, ops::PoolCudnnOpKernel, + ops::PoolCudnnOpKernel); +REGISTER_OP_CUDA_KERNEL(pool3d_cudnn_grad, ops::PoolCudnnGradOpKernel, + ops::PoolCudnnGradOpKernel); diff --git a/paddle/operators/pool_op.cc b/paddle/operators/pool_op.cc index e26ffd86e5b5645e361070ca9fd9d8dc49d1ed30..50057eb6483e9c9e745bc07dee26a0bbbbb5a48c 100644 --- a/paddle/operators/pool_op.cc +++ b/paddle/operators/pool_op.cc @@ -67,8 +67,7 @@ void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const { ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); } -Pool2dOpMaker::Pool2dOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) +Pool2dOpMaker::Pool2dOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -136,8 +135,7 @@ Example: )DOC"); } -Pool3dOpMaker::Pool3dOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) +Pool3dOpMaker::Pool3dOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor of pooling operator. " @@ -216,19 +214,19 @@ namespace ops = paddle::operators; REGISTER_OP(pool2d, ops::PoolOp, ops::Pool2dOpMaker, pool2d_grad, ops::PoolOpGrad); -REGISTER_OP_CPU_KERNEL(pool2d, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_CPU_KERNEL(pool2d_grad, - ops::PoolGradKernel, - ops::PoolGradKernel) +REGISTER_OP_CPU_KERNEL( + pool2d, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL( + pool2d_grad, ops::PoolGradKernel, + ops::PoolGradKernel) REGISTER_OP(pool3d, ops::PoolOp, ops::Pool3dOpMaker, pool3d_grad, ops::PoolOpGrad); -REGISTER_OP_CPU_KERNEL(pool3d, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_CPU_KERNEL(pool3d_grad, - ops::PoolGradKernel, - ops::PoolGradKernel); +REGISTER_OP_CPU_KERNEL( + pool3d, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CPU_KERNEL( + pool3d_grad, ops::PoolGradKernel, + ops::PoolGradKernel); diff --git a/paddle/operators/pool_op.cu.cc b/paddle/operators/pool_op.cu.cc index 1010cb762289dd39cd632c699f7528f4ba638278..39a9dfbf794b3dbaf81e2435f8609014dc27f3af 100644 --- a/paddle/operators/pool_op.cu.cc +++ b/paddle/operators/pool_op.cu.cc @@ -16,16 +16,18 @@ limitations under the License. */ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(pool2d, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_GPU_KERNEL(pool2d_grad, - ops::PoolGradKernel, - ops::PoolGradKernel); +REGISTER_OP_CUDA_KERNEL( + pool2d, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CUDA_KERNEL( + pool2d_grad, + ops::PoolGradKernel, + ops::PoolGradKernel); -REGISTER_OP_GPU_KERNEL(pool3d, - ops::PoolKernel, - ops::PoolKernel); -REGISTER_OP_GPU_KERNEL(pool3d_grad, - ops::PoolGradKernel, - ops::PoolGradKernel); +REGISTER_OP_CUDA_KERNEL( + pool3d, ops::PoolKernel, + ops::PoolKernel); +REGISTER_OP_CUDA_KERNEL( + pool3d_grad, + ops::PoolGradKernel, + ops::PoolGradKernel); diff --git a/paddle/operators/pool_op.h b/paddle/operators/pool_op.h index 63492a89e8d4e44a036bc3c2b16cc54c7e77b534..3860e295f4b4dbeb2d60cfb304847de39083f1e1 100644 --- a/paddle/operators/pool_op.h +++ b/paddle/operators/pool_op.h @@ -40,17 +40,15 @@ class PoolOpGrad : public framework::OperatorWithKernel { class Pool2dOpMaker : public framework::OpProtoAndCheckerMaker { public: - Pool2dOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Pool2dOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; class Pool3dOpMaker : public framework::OpProtoAndCheckerMaker { public: - Pool3dOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker); + Pool3dOpMaker(OpProto* proto, OpAttrChecker* op_checker); }; -template +template class PoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -67,41 +65,41 @@ class PoolKernel : public framework::OpKernel { ksize[i] = static_cast(in_x->dims()[i + 2]); } } - + auto& dev_ctx = context.template device_context(); switch (ksize.size()) { case 2: { if (pooling_type == "max") { paddle::operators::math::Pool2dFunctor< - Place, paddle::operators::math::MaxPool, T> + DeviceContext, paddle::operators::math::MaxPool, T> pool2d_forward; paddle::operators::math::MaxPool pool_process; - pool2d_forward(context.device_context(), *in_x, ksize, strides, - paddings, pool_process, out); + pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, + out); } else if (pooling_type == "avg") { paddle::operators::math::Pool2dFunctor< - Place, paddle::operators::math::AvgPool, T> + DeviceContext, paddle::operators::math::AvgPool, T> pool2d_forward; paddle::operators::math::AvgPool pool_process; - pool2d_forward(context.device_context(), *in_x, ksize, strides, - paddings, pool_process, out); + pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, + out); } } break; case 3: { if (pooling_type == "max") { paddle::operators::math::Pool3dFunctor< - Place, paddle::operators::math::MaxPool, T> + DeviceContext, paddle::operators::math::MaxPool, T> pool3d_forward; paddle::operators::math::MaxPool pool_process; - pool3d_forward(context.device_context(), *in_x, ksize, strides, - paddings, pool_process, out); + pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, + out); } else if (pooling_type == "avg") { paddle::operators::math::Pool3dFunctor< - Place, paddle::operators::math::AvgPool, T> + DeviceContext, paddle::operators::math::AvgPool, T> pool3d_forward; paddle::operators::math::AvgPool pool_process; - pool3d_forward(context.device_context(), *in_x, ksize, strides, - paddings, pool_process, out); + pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, pool_process, + out); } } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } @@ -109,7 +107,7 @@ class PoolKernel : public framework::OpKernel { } }; -template +template class PoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -130,42 +128,43 @@ class PoolGradKernel : public framework::OpKernel { ksize[i] = static_cast(in_x->dims()[i + 2]); } } - + auto& dev_ctx = context.template device_context(); if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); auto temp = framework::EigenVector::Flatten(*in_x_grad); - temp.device(context.GetEigenDevice()) = + temp.device( + *context.template device_context().eigen_device()) = temp.constant(static_cast(0)); switch (ksize.size()) { case 2: { if (pooling_type == "max") { - paddle::operators::math::MaxPool2dGradFunctor + paddle::operators::math::MaxPool2dGradFunctor pool2d_backward; - pool2d_backward(context.device_context(), *in_x, *out, *out_grad, - ksize, strides, paddings, in_x_grad); + pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, + paddings, in_x_grad); } else if (pooling_type == "avg") { paddle::operators::math::Pool2dGradFunctor< - Place, paddle::operators::math::AvgPoolGrad, T> + DeviceContext, paddle::operators::math::AvgPoolGrad, T> pool2d_backward; paddle::operators::math::AvgPoolGrad pool_process; - pool2d_backward(context.device_context(), *in_x, *out, *out_grad, - ksize, strides, paddings, pool_process, in_x_grad); + pool2d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, + paddings, pool_process, in_x_grad); } } break; case 3: { if (pooling_type == "max") { - paddle::operators::math::MaxPool3dGradFunctor + paddle::operators::math::MaxPool3dGradFunctor pool3d_backward; - pool3d_backward(context.device_context(), *in_x, *out, *out_grad, - ksize, strides, paddings, in_x_grad); + pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, + paddings, in_x_grad); } else if (pooling_type == "avg") { paddle::operators::math::Pool3dGradFunctor< - Place, paddle::operators::math::AvgPoolGrad, T> + DeviceContext, paddle::operators::math::AvgPoolGrad, T> pool3d_backward; paddle::operators::math::AvgPoolGrad pool_process; - pool3d_backward(context.device_context(), *in_x, *out, *out_grad, - ksize, strides, paddings, pool_process, in_x_grad); + pool3d_backward(dev_ctx, *in_x, *out, *out_grad, ksize, strides, + paddings, pool_process, in_x_grad); } } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } diff --git a/paddle/operators/pool_with_index_op.cc b/paddle/operators/pool_with_index_op.cc index b9c42a69128a26ff5942748e11fb87c57d3e3f58..980e9dc08b2ac160e6e06dfb11ff8f3e1279be46 100644 --- a/paddle/operators/pool_with_index_op.cc +++ b/paddle/operators/pool_with_index_op.cc @@ -100,8 +100,7 @@ class MaxPoolWithIndexOpGrad : public framework::OperatorWithKernel { class MaxPool2dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { public: - MaxPool2dWithIndexOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MaxPool2dWithIndexOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -178,8 +177,7 @@ Example: class MaxPool3dWithIndexOpMaker : public framework::OpProtoAndCheckerMaker { public: - MaxPool3dWithIndexOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + MaxPool3dWithIndexOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor of pooling operator. " @@ -266,12 +264,15 @@ REGISTER_OP(max_pool2d_with_index, ops::MaxPoolWithIndexOp, REGISTER_OP_CPU_KERNEL( max_pool2d_with_index, - ops::MaxPoolWithIndexKernel, - ops::MaxPoolWithIndexKernel); + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); REGISTER_OP_CPU_KERNEL( max_pool2d_with_index_grad, - ops::MaxPoolWithIndexGradKernel, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp, ops::MaxPool3dWithIndexOpMaker, max_pool3d_with_index_grad, @@ -279,9 +280,12 @@ REGISTER_OP(max_pool3d_with_index, ops::MaxPoolWithIndexOp, REGISTER_OP_CPU_KERNEL( max_pool3d_with_index, - ops::MaxPoolWithIndexKernel, - ops::MaxPoolWithIndexKernel); + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); REGISTER_OP_CPU_KERNEL( max_pool3d_with_index_grad, - ops::MaxPoolWithIndexGradKernel, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) diff --git a/paddle/operators/pool_with_index_op.cu.cc b/paddle/operators/pool_with_index_op.cu.cc index 335064a7eea4ec15c529db5254cbb026ba575f3d..4c9804da639e3ad44f90963b53948cd8b755a6ac 100644 --- a/paddle/operators/pool_with_index_op.cu.cc +++ b/paddle/operators/pool_with_index_op.cu.cc @@ -16,20 +16,28 @@ limitations under the License. */ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( max_pool2d_with_index, - ops::MaxPoolWithIndexKernel, - ops::MaxPoolWithIndexKernel); -REGISTER_OP_GPU_KERNEL( + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); +REGISTER_OP_CUDA_KERNEL( max_pool2d_with_index_grad, - ops::MaxPoolWithIndexGradKernel, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( max_pool3d_with_index, - ops::MaxPoolWithIndexKernel, - ops::MaxPoolWithIndexKernel); -REGISTER_OP_GPU_KERNEL( + ops::MaxPoolWithIndexKernel, + ops::MaxPoolWithIndexKernel); +REGISTER_OP_CUDA_KERNEL( max_pool3d_with_index_grad, - ops::MaxPoolWithIndexGradKernel, - ops::MaxPoolWithIndexGradKernel) + ops::MaxPoolWithIndexGradKernel, + ops::MaxPoolWithIndexGradKernel) diff --git a/paddle/operators/pool_with_index_op.h b/paddle/operators/pool_with_index_op.h index 40766c7e821e8b85aeda9473798a1f696d0ad719..4f4087d1dd36d6e91cdd9a9253dd72a71735e136 100644 --- a/paddle/operators/pool_with_index_op.h +++ b/paddle/operators/pool_with_index_op.h @@ -24,7 +24,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class MaxPoolWithIndexKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -35,6 +35,8 @@ class MaxPoolWithIndexKernel : public framework::OpKernel { std::vector ksize = context.Attr>("ksize"); std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); + + auto& dev_ctx = context.template device_context(); if (context.Attr("global_pooling")) { for (size_t i = 0; i < ksize.size(); ++i) { paddings[i] = 0; @@ -44,23 +46,23 @@ class MaxPoolWithIndexKernel : public framework::OpKernel { switch (ksize.size()) { case 2: { - paddle::operators::math::MaxPool2dWithIndexFunctor + paddle::operators::math::MaxPool2dWithIndexFunctor pool2d_forward; - pool2d_forward(context.device_context(), *in_x, ksize, strides, - paddings, out, mask); + pool2d_forward(dev_ctx, *in_x, ksize, strides, paddings, out, mask); } break; case 3: { - paddle::operators::math::MaxPool3dWithIndexFunctor + paddle::operators::math::MaxPool3dWithIndexFunctor pool3d_forward; - pool3d_forward(context.device_context(), *in_x, ksize, strides, - paddings, out, mask); + pool3d_forward(dev_ctx, *in_x, ksize, strides, paddings, out, mask); } break; default: { PADDLE_THROW("Pool op only supports 2D and 3D input."); } } } }; -template +template class MaxPoolWithIndexGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -81,18 +83,20 @@ class MaxPoolWithIndexGradKernel : public framework::OpKernel { if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); - auto& device_ctx = context.device_context(); + auto& device_ctx = context.template device_context(); math::set_constant(device_ctx, in_x_grad, 0); switch (ksize.size()) { case 2: { - paddle::operators::math::MaxPool2dWithIndexGradFunctor + paddle::operators::math::MaxPool2dWithIndexGradFunctor pool2d_backward; pool2d_backward(device_ctx, *out_grad, *mask, ksize, strides, paddings, in_x_grad); } break; case 3: { - paddle::operators::math::MaxPool3dWithIndexGradFunctor + paddle::operators::math::MaxPool3dWithIndexGradFunctor pool3d_backward; pool3d_backward(device_ctx, *out_grad, *mask, ksize, strides, paddings, in_x_grad); diff --git a/paddle/operators/positive_negative_pair_op.cc b/paddle/operators/positive_negative_pair_op.cc index 4ba40a62ec5f696ad980c2913f7e162879a557e2..ab9f67bfe6b3d6f59b35a57cb8135e9c6d00636e 100644 --- a/paddle/operators/positive_negative_pair_op.cc +++ b/paddle/operators/positive_negative_pair_op.cc @@ -95,8 +95,7 @@ class PositiveNegativePairOp : public framework::OperatorWithKernel { class PositiveNegativePairOpMaker : public framework::OpProtoAndCheckerMaker { public: - PositiveNegativePairOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + PositiveNegativePairOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Score", "(Tensor, float) Model Score on an item (with " diff --git a/paddle/operators/positive_negative_pair_op.h b/paddle/operators/positive_negative_pair_op.h index 2efd3777e04c17b27c07bccde524de5785af35fe..977e59b7d2f771fc4c3412f0092f1eba92ef22da 100644 --- a/paddle/operators/positive_negative_pair_op.h +++ b/paddle/operators/positive_negative_pair_op.h @@ -22,7 +22,7 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template +template class PositiveNegativePairKernel : public framework::OpKernel { public: struct PredictionResult { diff --git a/paddle/operators/precision_recall_op.cc b/paddle/operators/precision_recall_op.cc index 1ace4f2a5935dcb4239526c42599a42d288ff552..21dcd28c67bb5eb1d3af0ac8ba16f1d5df1958a8 100644 --- a/paddle/operators/precision_recall_op.cc +++ b/paddle/operators/precision_recall_op.cc @@ -90,8 +90,7 @@ class PrecisionRecallOp : public framework::OperatorWithKernel { class PrecisionRecallOpMaker : public framework::OpProtoAndCheckerMaker { public: - PrecisionRecallOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + PrecisionRecallOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("MaxProbs", "(Tensor, default Tensor) A 2-D tensor with shape N x 1, " diff --git a/paddle/operators/precision_recall_op.h b/paddle/operators/precision_recall_op.h index 4a871ce6741469cf9af409ec90215f721d52f36c..c0d55405a362809f414b8dc3b12ed692f96c24e9 100644 --- a/paddle/operators/precision_recall_op.h +++ b/paddle/operators/precision_recall_op.h @@ -26,7 +26,7 @@ using EigenMatrix = framework::EigenMatrix; enum StateVariable { TP = 0, FP, TN, FN }; -template +template class PrecisionRecallKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/prelu_op.cc b/paddle/operators/prelu_op.cc index 055c471b4561e5fd3c7a65c6f81d66cdce1a5578..4af8f85277ddb2262aa534f8d81be30449ccf8da 100644 --- a/paddle/operators/prelu_op.cc +++ b/paddle/operators/prelu_op.cc @@ -38,7 +38,7 @@ class PReluOp : public framework::OperatorWithKernel { class PReluOpMaker : public framework::OpProtoAndCheckerMaker { public: - PReluOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + PReluOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of prelu operator."); AddInput("Alpha", "The alpha weight of prelu operator."); @@ -85,7 +85,8 @@ namespace ops = paddle::operators; REGISTER_OP(prelu, ops::PReluOp, ops::PReluOpMaker, prelu_grad, ops::PReluGradOp); -REGISTER_OP_CPU_KERNEL(prelu, - ops::PReluKernel); -REGISTER_OP_CPU_KERNEL(prelu_grad, - ops::PReluGradKernel); +REGISTER_OP_CPU_KERNEL( + prelu, ops::PReluKernel); +REGISTER_OP_CPU_KERNEL( + prelu_grad, + ops::PReluGradKernel); diff --git a/paddle/operators/prelu_op.cu b/paddle/operators/prelu_op.cu index 9e391dabae735cc8a740b46b50d31d271f99b65d..12033dee0e1c190b08080023d6746fcad48db2fd 100644 --- a/paddle/operators/prelu_op.cu +++ b/paddle/operators/prelu_op.cu @@ -14,8 +14,9 @@ #include "paddle/operators/prelu_op.h" -REGISTER_OP_GPU_KERNEL( - prelu, paddle::operators::PReluKernel); -REGISTER_OP_GPU_KERNEL( - prelu_grad, - paddle::operators::PReluGradKernel); +REGISTER_OP_CUDA_KERNEL( + prelu, + paddle::operators::PReluKernel); +REGISTER_OP_CUDA_KERNEL(prelu_grad, + paddle::operators::PReluGradKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/prelu_op.h b/paddle/operators/prelu_op.h index 5ad31c2203ae6c9bf6f48bb9ecf9a714597e7da8..56f9a553ec12d5bfa745af63ec0570ad30910628 100644 --- a/paddle/operators/prelu_op.h +++ b/paddle/operators/prelu_op.h @@ -39,7 +39,7 @@ class PReluFunctor { const T* alpha_; }; -template +template class PReluKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -54,9 +54,9 @@ class PReluKernel : public framework::OpKernel { int numel = x->numel(); - Transform trans; - trans(context.device_context(), x_ptr, x_ptr + numel, o_ptr, - PReluFunctor(alpha_ptr)); + Transform trans; + trans(context.template device_context(), x_ptr, + x_ptr + numel, o_ptr, PReluFunctor(alpha_ptr)); } }; @@ -76,7 +76,7 @@ class PReluGradFunctor { const T* alpha_; }; -template +template class PReluGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -92,9 +92,9 @@ class PReluGradKernel : public framework::OpKernel { const T* out_ptr = out->data(); int numel = dx->numel(); - Transform trans; - trans(context.device_context(), out_ptr, out_ptr + numel, dout_ptr, dx_ptr, - PReluGradFunctor(alpha_ptr)); + Transform trans; + trans(context.template device_context(), out_ptr, + out_ptr + numel, dout_ptr, dx_ptr, PReluGradFunctor(alpha_ptr)); // TODO(Zhuoyuan): add dalpha upgrade when GPU kernels ready } diff --git a/paddle/operators/proximal_adagrad_op.cc b/paddle/operators/proximal_adagrad_op.cc index 36e460103ab46bf6f1408840a0699793e2be134d..b92f46b5bd4e48a25f8c87873c5df53f1753b71b 100644 --- a/paddle/operators/proximal_adagrad_op.cc +++ b/paddle/operators/proximal_adagrad_op.cc @@ -59,8 +59,7 @@ class ProximalAdagradOp : public framework::OperatorWithKernel { class ProximalAdagradOpMaker : public framework::OpProtoAndCheckerMaker { public: - ProximalAdagradOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ProximalAdagradOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -114,4 +113,4 @@ REGISTER_OP_WITHOUT_GRADIENT(proximal_adagrad, ops::ProximalAdagradOp, ops::ProximalAdagradOpMaker); REGISTER_OP_CPU_KERNEL( proximal_adagrad, - ops::ProximalAdagradOpKernel); + ops::ProximalAdagradOpKernel); diff --git a/paddle/operators/proximal_adagrad_op.cu b/paddle/operators/proximal_adagrad_op.cu index d0ae0395184ae4f794565f2e28c57f960f0ccbeb..42a178f94b94c8e80ec8f9b5e6471b75878b65d1 100644 --- a/paddle/operators/proximal_adagrad_op.cu +++ b/paddle/operators/proximal_adagrad_op.cu @@ -15,6 +15,6 @@ specific language governing permissions and limitations under the License. */ #include "paddle/operators/proximal_adagrad_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( proximal_adagrad, - ops::ProximalAdagradOpKernel); + ops::ProximalAdagradOpKernel); diff --git a/paddle/operators/proximal_adagrad_op.h b/paddle/operators/proximal_adagrad_op.h index 7a1560e8cb339a306ab19513808aab165f82cc8a..523924d80e127d9ad2483e6b239fb948aa72200c 100644 --- a/paddle/operators/proximal_adagrad_op.h +++ b/paddle/operators/proximal_adagrad_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class ProximalAdagradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -45,20 +45,20 @@ class ProximalAdagradOpKernel : public framework::OpKernel { auto p_out = EigenVector::Flatten(*param_out); auto m_out = EigenVector::Flatten(*moment_out); - auto place = ctx.GetEigenDevice(); + auto* place = ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); - m_out.device(place) = m + g * g; + m_out.device(*place) = m + g * g; auto prox_param = p - lr.broadcast(grad_dsize) * g / m_out.sqrt(); if (l1 > static_cast(0)) { - p_out.device(place) = + p_out.device(*place) = prox_param.sign() * (((prox_param.abs() - (lr * l1).broadcast(grad_dsize)) .cwiseMax(static_cast(0.0))) / (static_cast(1.0) + (lr * l2).broadcast(grad_dsize))); } else { - p_out.device(place) = + p_out.device(*place) = prox_param / (static_cast(1.0) + (lr * l2).broadcast(grad_dsize)); } } diff --git a/paddle/operators/proximal_gd_op.cc b/paddle/operators/proximal_gd_op.cc index 5693d0ec9ebf4c470dfa5141b6eeee431f24f2ea..2d3bbdaf320a4d6bdf18ec92230a81ad98371498 100644 --- a/paddle/operators/proximal_gd_op.cc +++ b/paddle/operators/proximal_gd_op.cc @@ -47,8 +47,7 @@ class ProximalGDOp : public framework::OperatorWithKernel { class ProximalGDOpMaker : public framework::OpProtoAndCheckerMaker { public: - ProximalGDOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ProximalGDOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -94,4 +93,5 @@ namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(proximal_gd, ops::ProximalGDOp, ops::ProximalGDOpMaker); REGISTER_OP_CPU_KERNEL( - proximal_gd, ops::ProximalGDOpKernel); + proximal_gd, + ops::ProximalGDOpKernel); diff --git a/paddle/operators/proximal_gd_op.cu b/paddle/operators/proximal_gd_op.cu index 26f4ebaa0f43620fee7ece2d71755be94a0e01a5..b7dd840d19a13cd3329fb68563693a80d22291ca 100644 --- a/paddle/operators/proximal_gd_op.cu +++ b/paddle/operators/proximal_gd_op.cu @@ -15,5 +15,6 @@ specific language governing permissions and limitations under the License. */ #include "paddle/operators/proximal_gd_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - proximal_gd, ops::ProximalGDOpKernel); +REGISTER_OP_CUDA_KERNEL( + proximal_gd, + ops::ProximalGDOpKernel); diff --git a/paddle/operators/proximal_gd_op.h b/paddle/operators/proximal_gd_op.h index bebda0204173ec5c3ec9a7a9da6fb623171f4cea..64648b3ccaf9615c995d65464607105d87c04198 100644 --- a/paddle/operators/proximal_gd_op.h +++ b/paddle/operators/proximal_gd_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class ProximalGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -42,7 +42,7 @@ class ProximalGDOpKernel : public framework::OpKernel { auto lr = EigenVector::Flatten(*ctx.Input("LearningRate")); auto p_out = EigenVector::Flatten(*param_out); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); diff --git a/paddle/operators/rank_loss_op.cc b/paddle/operators/rank_loss_op.cc index 912f88f455252effbdb12ecfc45e4afefa60e03e..b5a9949d236bfa6910227092f0682a599543a425 100644 --- a/paddle/operators/rank_loss_op.cc +++ b/paddle/operators/rank_loss_op.cc @@ -45,8 +45,7 @@ class RankLossOp : public framework::OperatorWithKernel { class RankLossOpMaker : public framework::OpProtoAndCheckerMaker { public: - RankLossOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RankLossOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Label", "(2-D Tensor with shape [batch_size x 1]) " @@ -123,7 +122,8 @@ namespace ops = paddle::operators; REGISTER_OP(rank_loss, ops::RankLossOp, ops::RankLossOpMaker, rank_loss_grad, ops::RankLossGradOp); -REGISTER_OP_CPU_KERNEL(rank_loss, - ops::RankLossKernel); REGISTER_OP_CPU_KERNEL( - rank_loss_grad, ops::RankLossGradKernel); + rank_loss, ops::RankLossKernel); +REGISTER_OP_CPU_KERNEL( + rank_loss_grad, + ops::RankLossGradKernel); diff --git a/paddle/operators/rank_loss_op.cu b/paddle/operators/rank_loss_op.cu index 5382e3a6296acd257211104d8ec6835c11b90bdd..5aee66443d60c8e20625880ba2ec9606b8a007a0 100644 --- a/paddle/operators/rank_loss_op.cu +++ b/paddle/operators/rank_loss_op.cu @@ -14,9 +14,9 @@ #include "paddle/operators/rank_loss_op.h" -REGISTER_OP_GPU_KERNEL( - rank_loss, - paddle::operators::RankLossKernel); -REGISTER_OP_GPU_KERNEL( - rank_loss_grad, - paddle::operators::RankLossGradKernel); +REGISTER_OP_CUDA_KERNEL(rank_loss, + paddle::operators::RankLossKernel< + paddle::platform::CUDADeviceContext, float>); +REGISTER_OP_CUDA_KERNEL(rank_loss_grad, + paddle::operators::RankLossGradKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/rank_loss_op.h b/paddle/operators/rank_loss_op.h index 703c77a0b21f2b2f0b0ae6fae86aae819ea824b5..ea24b61fd94b57950e79b7c1ddb13fa165953538 100644 --- a/paddle/operators/rank_loss_op.h +++ b/paddle/operators/rank_loss_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { -template +template class RankLossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -35,13 +35,13 @@ class RankLossKernel : public framework::OpKernel { auto left = framework::EigenVector::Flatten(*left_t); auto right = framework::EigenVector::Flatten(*right_t); - auto& dev = ctx.GetEigenDevice(); + auto& dev = *ctx.template device_context().eigen_device(); out.device(dev) = (1. + (left - right).exp()).log() - label * (left - right); } }; -template +template class RankLossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -55,7 +55,7 @@ class RankLossGradKernel : public framework::OpKernel { auto* left_t = ctx.Input("Left"); auto* right_t = ctx.Input("Right"); - auto& dev = ctx.GetEigenDevice(); + auto& dev = *ctx.template device_context().eigen_device(); auto d_out = framework::EigenVector::Flatten(*d_out_t); auto label = framework::EigenVector::Flatten(*label_t); auto left = framework::EigenVector::Flatten(*left_t); diff --git a/paddle/operators/recurrent_op.cc b/paddle/operators/recurrent_op.cc index c976e22c7740ad11279ab5ee75e4d130be8fa0c5..5981d5745d24e0b2fe68bf8b9852cb8a6094885f 100644 --- a/paddle/operators/recurrent_op.cc +++ b/paddle/operators/recurrent_op.cc @@ -25,7 +25,7 @@ constexpr char kOutputs[] = "outputs"; constexpr char kStepScopes[] = "step_scopes"; constexpr char kExStates[] = "ex_states"; constexpr char kStates[] = "states"; -constexpr char kStepBlock[] = "step_block"; +constexpr char kStepBlock[] = "sub_block"; constexpr char kReverse[] = "reverse"; constexpr char kIsTrain[] = "is_train"; #define GRAD_SUFFIX "@GRAD" @@ -234,7 +234,7 @@ class RecurrentOp : public RecurrentBase { auto reverse = Attr(kReverse); framework::Executor executor(dev_ctx); - auto *block = Attr(kStepBlock); + auto *block = Attr(kStepBlock); auto *program = block->Program(); for (size_t i = 0; i < seq_len; ++i) { @@ -317,7 +317,7 @@ class RecurrentGradOp : public RecurrentBase { auto reverse = Attr(kReverse); framework::Executor executor(dev_ctx); - auto *block = Attr(kStepBlock); + auto *block = Attr(kStepBlock); auto *program = block->Program(); for (size_t step_id = 0; step_id < seq_len; ++step_id) { @@ -408,7 +408,8 @@ class RecurrentGradOp : public RecurrentBase { attrs["value"] = 0.0f; auto zero_op = framework::OpRegistry::CreateOp( - "fill_constant", {}, {{"Out", {pg_names[param_id]}}}, attrs); + "fill_constant", framework::VariableNameMap{}, + {{"Out", {pg_names[param_id]}}}, attrs); zero_op->Run(scope, dev_ctx); } @@ -417,7 +418,7 @@ class RecurrentGradOp : public RecurrentBase { auto sum_op = framework::OpRegistry::CreateOp( "sum", {{"X", {pg_names[param_id], new_inside_name}}}, - {{"Out", {pg_names[param_id]}}}, {}); + {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{}); sum_op->Run(cur_scope, dev_ctx); cur_scope.Rename(new_inside_name, inside_grad_name); @@ -496,8 +497,7 @@ class RecurrentGradOp : public RecurrentBase { class RecurrentOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - RecurrentOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RecurrentOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput(kInputs, "rnn inputs").AsDuplicable(); AddInput(kInitialStates, "rnn initial states").AsDuplicable(); @@ -522,8 +522,7 @@ The ex-state means the state value in the ex-timestep or the previous time step string::Sprintf( "The state variable names. [%s, %s, %s] must be the same order", kExStates, kStates, kInitStateGrads)); - AddAttr(kStepBlock, - "The step block inside RNN"); + AddAttr(kStepBlock, "The step block inside RNN"); AddAttr(kReverse, R"DOC(Calculate RNN reversely or not. By default reverse=False @@ -565,13 +564,13 @@ class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - virtual std::unique_ptr Apply() const { - auto *grad = new framework::OpDescBind(); + virtual std::unique_ptr Apply() const { + auto *grad = new framework::OpDesc(); grad->SetType("recurrent_grad"); for (auto &input_param : this->InputNames()) { grad->SetInput(input_param, this->Input(input_param)); grad->SetOutput(framework::GradVarName(input_param), - this->InputGrad(input_param)); + this->InputGrad(input_param, false)); } for (auto &output_param : this->OutputNames()) { @@ -588,7 +587,7 @@ class RecurrentGradOpDescMaker : public framework::SingleGradOpDescMaker { grad->SetAttrMap(this->Attrs()); grad->SetBlockAttr(kStepBlock, *grad_block_[0]); - return std::unique_ptr(grad); + return std::unique_ptr(grad); } }; @@ -599,7 +598,9 @@ class RecurrentGradOpShapeInference : public framework::InferShapeBase { std::vector output{kOutputs}; for (auto &s : input) { PADDLE_ENFORCE(ctx->HasInputs(s)); - PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s))); + PADDLE_ENFORCE(ctx->HasOutputs(framework::GradVarName(s)), + "Cannot find the gradient variable %s", + framework::GradVarName(s)); } for (auto &s : output) { PADDLE_ENFORCE(ctx->HasInputs(s)); diff --git a/paddle/operators/recv_op.cc b/paddle/operators/recv_op.cc index ca1c091920f4984786dcf6a58a097fca783b6463..ed4206dc4c074e24658d48d6da7a2f0b93cd4496 100644 --- a/paddle/operators/recv_op.cc +++ b/paddle/operators/recv_op.cc @@ -24,6 +24,7 @@ #include "paddle/framework/framework.pb.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/op_registry.h" +#include "paddle/framework/proto_desc.h" #include "paddle/operators/detail/send_recv_impl.h" #include "paddle/operators/detail/simple_block_queue.h" @@ -61,27 +62,76 @@ class RecvOp : public framework::OperatorBase { server_thread_->join(); } + std::string GetGradVarNameForTrainer(const std::string &varname) const { + if (grads_counter_.find(varname) == grads_counter_.end()) { + grads_counter_[varname] = 0; + } + char ret[256]; + snprintf(ret, sizeof(ret), "%s.trainer_%d", varname.c_str(), + grads_counter_[varname]++); + return std::string(ret); + } + void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - // blocking get one var from client. - const framework::LoDTensor &t = rpc_service_->Get(); + // FIXME(typhoonzero): no new scopes for every run. framework::Scope &recv_scope = scope.NewScope(); - // set graph input var - auto *var = recv_scope.Var(Input("RX")); - auto *tensor = var->GetMutable(); - // FIXME(typhoonzero): do not copy - framework::CopyFrom(t, dev_ctx.GetPlace(), dev_ctx, tensor); - - auto *block = Attr("OptimizeBlock"); - auto *program = block->Program(); - framework::Executor executor(dev_ctx); - // Run sub graph to get optimized tensor - executor.Run(*program, &recv_scope, block->ID(), - false /*create_local_scope*/); - - auto *out_var = recv_scope.FindVar("Out"); - // push back - rpc_service_->Push(out_var->Get()); + rpc_service_->SetScope(&recv_scope); + auto param_list = Attr>("ParamList"); + auto grad_list = Attr>("GradList"); + auto trainer_count = Attr("Trainers"); + size_t param_count = param_list.size(); + rpc_service_->Reset(); + // TODO(typhoonzero): change this to a while_op for every cluster-batch. + while (true) { + // Get from multiple trainers, we don't care about order in which + // the gradient arrives, just add suffix 0~n then average the gradient. + for (size_t i = 0; i < param_count * trainer_count; ++i) { + // blocking get one var from client. + const detail::TensorWithName &v = rpc_service_->Get(); + auto grad_var_name = v.first; + auto it = std::find(grad_list.begin(), grad_list.end(), grad_var_name); + std::string param_var_name; + if (it != grad_list.end()) { + param_var_name = param_list[it - grad_list.begin()]; + } else { + LOG(ERROR) << "grad have no paired param found!"; + } + VLOG(3) << "recved grad: " << grad_var_name + << " updating param: " << param_var_name; + auto *merged_grad = recv_scope.FindVar(grad_var_name); + if (merged_grad == nullptr) { + // create output of merged var. + auto merged_var = recv_scope.Var(grad_var_name); + merged_var->GetMutable(); + } + + if (trainer_count > 1) { + grad_var_name = this->GetGradVarNameForTrainer(grad_var_name); + } + + auto *var = recv_scope.Var(grad_var_name); + auto *tensor = var->GetMutable(); + // FIXME(typhoonzero): do not copy + framework::CopyFrom(v.second, dev_ctx.GetPlace(), dev_ctx, tensor); + } + rpc_service_->Reset(); + + std::string program_str = Attr("OptimizeProgram"); + framework::proto::ProgramDesc program_desc; + program_desc.ParseFromString(program_str); + framework::ProgramDesc program(program_desc); + framework::Executor executor(dev_ctx); + // Run sub graph to get optimized tensor + try { + executor.Run(program, &recv_scope, 0, /*global_block*/ + false /*create_local_scope*/, false /*create_vars*/); + } catch (std::exception &e) { + LOG(ERROR) << "run sub program error " << e.what(); + } + rpc_service_->Done(); + grads_counter_.clear(); + } // while(true) } protected: @@ -91,13 +141,14 @@ class RecvOp : public framework::OperatorBase { // grpc send/recv service implement to register. std::shared_ptr rpc_service_; std::shared_ptr server_thread_; + mutable std::unordered_map grads_counter_; }; class RecvOpMaker : public framework::OpProtoAndCheckerMaker { public: - RecvOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + RecvOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("RX", "(Tensor) Input tensor to be saved"); + AddInput("RX", "(Tensor) Input tensor to be optimized").AsDuplicable(); AddComment(R"DOC( Recv operator @@ -108,8 +159,19 @@ This operator will recv tensor from send_op "IP address to listen on.") .SetDefault("127.0.0.1:6164") .AddCustomChecker([](const std::string &ip) { return !ip.empty(); }); - AddAttr("OptimizeBlock", "type BlockDescBind*", - "optimize network run in server"); + AddAttr("OptimizeProgram", "type string", + "Serialized ProgramDesc string for recv to run."); + AddAttr>( + "ParamList", "type list of string", + "grad->param name mapping to find which param to optimize.") + .SetDefault({}); + AddAttr>( + "GradList", "type list of string", + "grad->param name mapping to find which param to optimize.") + .SetDefault({}); + AddAttr("Trainers", "type int", + "Number of trainers in the current cluster job") + .SetDefault(1); } }; diff --git a/paddle/operators/reduce_op.cc b/paddle/operators/reduce_op.cc index 2589a54cfc7fc5bc11ae983797d480a134e0eb25..19220f2f59d218e9b4d57b260b35df64b4abd2cb 100644 --- a/paddle/operators/reduce_op.cc +++ b/paddle/operators/reduce_op.cc @@ -37,18 +37,23 @@ class ReduceOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_LT( dim, x_rank, "The dim should be in the range [-rank(input), rank(input))."); - bool keep_dim = ctx->Attrs().Get("keep_dim"); - auto dims_vector = vectorize(x_dims); - if (keep_dim || x_rank == 1) { - dims_vector[dim] = 1; + bool reduce_all = ctx->Attrs().Get("reduce_all"); + if (reduce_all) { + ctx->SetOutputDim("Out", {1}); } else { - dims_vector.erase(dims_vector.begin() + dim); - } - auto out_dims = framework::make_ddim(dims_vector); - ctx->SetOutputDim("Out", out_dims); - if (dim != 0) { - // Only pass LoD when not reducing on the first dim. - ctx->ShareLoD("X", /*->*/ "Out"); + bool keep_dim = ctx->Attrs().Get("keep_dim"); + auto dims_vector = vectorize(x_dims); + if (keep_dim || x_rank == 1) { + dims_vector[dim] = 1; + } else { + dims_vector.erase(dims_vector.begin() + dim); + } + auto out_dims = framework::make_ddim(dims_vector); + ctx->SetOutputDim("Out", out_dims); + if (dim != 0) { + // Only pass LoD when not reducing on the first dim. + ctx->ShareLoD("X", /*->*/ "Out"); + } } } }; @@ -78,7 +83,7 @@ class ReduceGradOp : public framework::OperatorWithKernel { class ReduceOpMaker : public framework::OpProtoAndCheckerMaker { public: - ReduceOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ReduceOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input tensor. Tensors with rank at most 6 are " @@ -95,11 +100,16 @@ class ReduceOpMaker : public framework::OpProtoAndCheckerMaker { "(bool, default false) " "If true, retain the reduced dimension with length 1.") .SetDefault(false); + AddAttr("reduce_all", + "(bool, default false) " + "If true, output a scalar reduced along all dimensions.") + .SetDefault(false); comment_ = R"DOC( {ReduceOp} Operator. This operator computes the {reduce} of input tensor along the given dimension. The result tensor has 1 fewer dimension than the input unless keep_dim is true. +If reduce_all is true, just reduce along all dimensions and output a scalar. )DOC"; AddComment(comment_); @@ -125,8 +135,7 @@ The result tensor has 1 fewer dimension than the input unless keep_dim is true. class ReduceSumOpMaker : public ReduceOpMaker { public: - ReduceSumOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReduceSumOpMaker(OpProto *proto, OpAttrChecker *op_checker) : ReduceOpMaker(proto, op_checker) { SetComment("ReduceSum", "sum"); AddComment(comment_); @@ -135,8 +144,7 @@ class ReduceSumOpMaker : public ReduceOpMaker { class ReduceMeanOpMaker : public ReduceOpMaker { public: - ReduceMeanOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReduceMeanOpMaker(OpProto *proto, OpAttrChecker *op_checker) : ReduceOpMaker(proto, op_checker) { SetComment("ReduceMean", "mean"); AddComment(comment_); @@ -145,8 +153,7 @@ class ReduceMeanOpMaker : public ReduceOpMaker { class ReduceMaxOpMaker : public ReduceOpMaker { public: - ReduceMaxOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReduceMaxOpMaker(OpProto *proto, OpAttrChecker *op_checker) : ReduceOpMaker(proto, op_checker) { SetComment("ReduceMax", "max"); AddComment(comment_); @@ -155,8 +162,7 @@ class ReduceMaxOpMaker : public ReduceOpMaker { class ReduceMinOpMaker : public ReduceOpMaker { public: - ReduceMinOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReduceMinOpMaker(OpProto *proto, OpAttrChecker *op_checker) : ReduceOpMaker(proto, op_checker) { SetComment("ReduceMin", "min"); AddComment(comment_); @@ -180,12 +186,13 @@ REGISTER_OP(reduce_max, ops::ReduceOp, ops::ReduceMaxOpMaker, reduce_max_grad, REGISTER_OP(reduce_min, ops::ReduceOp, ops::ReduceMinOpMaker, reduce_min_grad, ops::ReduceGradOp); -#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \ - REGISTER_OP_CPU_KERNEL( \ - reduce_type, \ - ops::ReduceKernel); \ - REGISTER_OP_CPU_KERNEL(reduce_type##_grad, \ - ops::ReduceGradKernel); +#define REGISTER_REDUCE_CPU_KERNEL(reduce_type, functor, grad_functor) \ + REGISTER_OP_CPU_KERNEL(reduce_type, \ + ops::ReduceKernel); \ + REGISTER_OP_CPU_KERNEL( \ + reduce_type##_grad, \ + ops::ReduceGradKernel); FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_CPU_KERNEL); diff --git a/paddle/operators/reduce_op.cu b/paddle/operators/reduce_op.cu index d306e1a24096d737438d71d4d4abc35328d160cb..a10ace5253b850db5855bef8384278edebc9e45f 100644 --- a/paddle/operators/reduce_op.cu +++ b/paddle/operators/reduce_op.cu @@ -17,12 +17,13 @@ namespace ops = paddle::operators; -#define REGISTER_REDUCE_GPU_KERNEL(reduce_type, functor, grad_functor) \ - REGISTER_OP_GPU_KERNEL( \ - reduce_type, \ - ops::ReduceKernel); \ - REGISTER_OP_GPU_KERNEL(reduce_type##_grad, \ - ops::ReduceGradKernel); +#define REGISTER_REDUCE_GPU_KERNEL(reduce_type, functor, grad_functor) \ + REGISTER_OP_CUDA_KERNEL( \ + reduce_type, ops::ReduceKernel); \ + REGISTER_OP_CUDA_KERNEL( \ + reduce_type##_grad, \ + ops::ReduceGradKernel); FOR_EACH_KERNEL_FUNCTOR(REGISTER_REDUCE_GPU_KERNEL); diff --git a/paddle/operators/reduce_op.h b/paddle/operators/reduce_op.h index dd6547542d16b0fe336184a0c09a8498027db6ea..7bd99cb1e6d532963ef648202f460f363baad9b5 100644 --- a/paddle/operators/reduce_op.h +++ b/paddle/operators/reduce_op.h @@ -26,61 +26,63 @@ using DDim = framework::DDim; template using EigenTensor = framework::EigenTensor; - template using EigenScalar = framework::EigenScalar; +template +using EigenVector = framework::EigenVector; struct SumFunctor { - template - void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + template + void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.sum(dim); } }; struct SumGradFunctor { - template - void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + template + void operator()(const DeviceContext& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { dx.device(place) = dy.broadcast(dim); } }; struct MeanFunctor { - template - void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + template + void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.mean(dim); } }; struct MeanGradFunctor { - template - void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + template + void operator()(const DeviceContext& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { dx.device(place) = dy.broadcast(dim) / dx.constant(size); } }; struct MaxFunctor { - template - void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + template + void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.maximum(dim); } }; struct MinFunctor { - template - void operator()(const Place& place, X& x, Y& y, const Dim& dim) { + template + void operator()(const DeviceContext& place, X& x, Y& y, const Dim& dim) { y.device(place) = x.minimum(dim); } }; struct MaxOrMinGradFunctor { - template - void operator()(const Place& place, X& x, Y& y, DX& dx, DY& dy, + template + void operator()(const DeviceContext& place, X& x, Y& y, DX& dx, DY& dy, const Dim& dim, int size) { auto equals = x == y.broadcast(dim); auto ones = dx.constant(1); @@ -91,30 +93,45 @@ struct MaxOrMinGradFunctor { } }; -template +template class ReduceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - int rank = context.Input("X")->dims().size(); - switch (rank) { - case 1: - ReduceCompute<1>(context); - break; - case 2: - ReduceCompute<2>(context); - break; - case 3: - ReduceCompute<3>(context); - break; - case 4: - ReduceCompute<4>(context); - break; - case 5: - ReduceCompute<5>(context); - break; - case 6: - ReduceCompute<6>(context); - break; + bool reduce_all = context.Attr("reduce_all"); + if (reduce_all) { + // Flatten and reduce 1-D tensor + auto* input = context.Input("X"); + auto* output = context.Output("Out"); + output->mutable_data(context.GetPlace()); + auto x = EigenVector::Flatten(*input); + auto out = EigenScalar::From(*output); + auto& place = + *context.template device_context().eigen_device(); + auto reduce_dim = Eigen::array({{0}}); + Functor functor; + functor(place, x, out, reduce_dim); + } else { + int rank = context.Input("X")->dims().size(); + switch (rank) { + case 1: + ReduceCompute<1>(context); + break; + case 2: + ReduceCompute<2>(context); + break; + case 3: + ReduceCompute<3>(context); + break; + case 4: + ReduceCompute<4>(context); + break; + case 5: + ReduceCompute<5>(context); + break; + case 6: + ReduceCompute<6>(context); + break; + } } } @@ -139,7 +156,8 @@ class ReduceKernel : public framework::OpKernel { dims = framework::make_ddim(dims_vector); } - auto& place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); Functor functor; if (D == 1) { @@ -152,30 +170,50 @@ class ReduceKernel : public framework::OpKernel { } }; -template +template class ReduceGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - int rank = context.Input("X")->dims().size(); - switch (rank) { - case 1: - ReduceGradCompute<1>(context); - break; - case 2: - ReduceGradCompute<2>(context); - break; - case 3: - ReduceGradCompute<3>(context); - break; - case 4: - ReduceGradCompute<4>(context); - break; - case 5: - ReduceGradCompute<5>(context); - break; - case 6: - ReduceGradCompute<6>(context); - break; + bool reduce_all = context.Attr("reduce_all"); + if (reduce_all) { + auto* input0 = context.Input("X"); + auto* input1 = context.Input("Out"); + auto* input2 = context.Input(framework::GradVarName("Out")); + auto* output = context.Output(framework::GradVarName("X")); + output->mutable_data(context.GetPlace()); + auto x = EigenVector::Flatten(*input0); + auto x_reduce = EigenVector::From(*input1); + auto x_reduce_grad = EigenVector::From(*input2); + auto x_grad = EigenVector::Flatten(*output); + auto& place = + *context.template device_context().eigen_device(); + auto broadcast_dim = + Eigen::array({{static_cast(input0->numel())}}); + Functor functor; + functor(place, x, x_reduce, x_grad, x_reduce_grad, broadcast_dim, + broadcast_dim[0]); + } else { + int rank = context.Input("X")->dims().size(); + switch (rank) { + case 1: + ReduceGradCompute<1>(context); + break; + case 2: + ReduceGradCompute<2>(context); + break; + case 3: + ReduceGradCompute<3>(context); + break; + case 4: + ReduceGradCompute<4>(context); + break; + case 5: + ReduceGradCompute<5>(context); + break; + case 6: + ReduceGradCompute<6>(context); + break; + } } } @@ -201,7 +239,8 @@ class ReduceGradKernel : public framework::OpKernel { Eigen::array broadcast_dim; for (size_t i = 0; i < D; ++i) broadcast_dim[i] = 1; broadcast_dim[dim] = input0->dims()[dim]; - auto& place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); Functor functor; functor(place, x, x_reduce, x_grad, x_reduce_grad, broadcast_dim, broadcast_dim[dim]); diff --git a/paddle/operators/reshape_op.cc b/paddle/operators/reshape_op.cc index 39bf2118d603881531bf583ae468e8dc9b8bd181..2c5167295d8546358b09e018ee02f0941f2897d1 100644 --- a/paddle/operators/reshape_op.cc +++ b/paddle/operators/reshape_op.cc @@ -34,21 +34,33 @@ class ReshapeOp : public framework::OperatorWithKernel { auto shape = ctx->Attrs().Get>("shape"); PADDLE_ENFORCE(shape.size() > 0, "Attr(shape) shouldn't be empty."); auto x_dims = ctx->GetInputDim("X"); - // TODO(qiao) change batch_size - for (size_t i = 1; i < shape.size(); ++i) { - PADDLE_ENFORCE(shape[i] > 0, - "Each dimension of Attr(shape) " - "must be positive except the first one."); - } - if (shape[0] < 0) { - shape[0] = x_dims[0]; + + std::vector neg_dims_idx; + // set some dimension to -1 if it is unknown + const int unknown_size = -1; + for (size_t i = 0; i < shape.size(); ++i) { + PADDLE_ENFORCE(shape[i] > 0 || shape[i] == unknown_size, + "Each dimension of Attr(shape) must be positive or %d.", + unknown_size); + if (shape[i] == unknown_size) { + neg_dims_idx.push_back(i); + PADDLE_ENFORCE(neg_dims_idx.size() <= 1, + "Only one dimension of Attr(shape) can be unknown."); + } } - // capacity check + int64_t capacity = std::accumulate(shape.begin(), shape.end(), 1, std::multiplies()); int64_t in_size = framework::product(x_dims); - PADDLE_ENFORCE_EQ(capacity, in_size, - "The size of Input(X) mismatches with Attr(shape)."); + if (neg_dims_idx.size() == 1) { + // dim infer + shape[neg_dims_idx[0]] = in_size / (-capacity); + // recalculate capacity + capacity = shape[neg_dims_idx[0]] * (-capacity); + } + // capacity check + PADDLE_ENFORCE(capacity == in_size, + "The size of Input(X) mismatches with Attr(shape)."); // resize output std::vector shape_int64(shape.size(), 0); std::transform(shape.begin(), shape.end(), shape_int64.begin(), @@ -65,8 +77,7 @@ class ReshapeOp : public framework::OperatorWithKernel { class ReshapeOpMaker : public framework::OpProtoAndCheckerMaker { public: - ReshapeOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReshapeOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of reshape operator."); AddOutput("Out", "The output tensor of reshape operator."); @@ -84,10 +95,13 @@ Given a 2-D tensor X with 2 rows and 2 columns [[1, 2], [3, 4]] and target shape = [1, 4], the reshape operator will transform -the tensor X into a 1-D tensor: +the tensor X into a 2-D tensor: - [1, 2, 3, 4] + [[1, 2, 3, 4]] +One dimension in the target shape can be set -1, representing that its +size is unknown. In this case, the real dimension will be infered from +the original shape of Input(X) and other dimensions in the target shape. )DOC"); } }; diff --git a/paddle/operators/reshape_op.cu b/paddle/operators/reshape_op.cu index dca6c15007a64808248443af32141b4a677f95d7..b7329238c0ea8ebb374d35bd7cddced3dfee1a2c 100644 --- a/paddle/operators/reshape_op.cu +++ b/paddle/operators/reshape_op.cu @@ -14,9 +14,9 @@ #include "paddle/operators/reshape_op.h" -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( reshape, paddle::operators::ReshapeKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( reshape_grad, paddle::operators::ReshapeGradKernel); diff --git a/paddle/operators/reshape_op.h b/paddle/operators/reshape_op.h index 73fd1da6428f55976a397b7f6f92bb0c796bfe02..92d8cbbb56e224fe67e630bdfcb16d7df44f2846 100644 --- a/paddle/operators/reshape_op.h +++ b/paddle/operators/reshape_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { -template +template class ReshapeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { @@ -33,7 +33,7 @@ class ReshapeKernel : public framework::OpKernel { } }; -template +template class ReshapeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const { diff --git a/paddle/operators/rmsprop_op.cc b/paddle/operators/rmsprop_op.cc index a9c45f639c6728ff2fd6de6fcdadfe5032a705d7..f7c250bf913b9213e7d7e2cca9ecadf74cac91a1 100644 --- a/paddle/operators/rmsprop_op.cc +++ b/paddle/operators/rmsprop_op.cc @@ -63,8 +63,7 @@ class RmspropOp : public framework::OperatorWithKernel { class RmspropOpMaker : public framework::OpProtoAndCheckerMaker { public: - RmspropOpMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RmspropOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor, default Tensor) " @@ -116,5 +115,5 @@ http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf) namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(rmsprop, ops::RmspropOp, ops::RmspropOpMaker); -REGISTER_OP_CPU_KERNEL(rmsprop, - ops::RmspropOpKernel); +REGISTER_OP_CPU_KERNEL( + rmsprop, ops::RmspropOpKernel); diff --git a/paddle/operators/rmsprop_op.cu b/paddle/operators/rmsprop_op.cu index 52634a54816bcd5ad0ba82a56f1df95110112265..2a9fd6e1044e923b9ccffab834ff64df0f7cf5d7 100644 --- a/paddle/operators/rmsprop_op.cu +++ b/paddle/operators/rmsprop_op.cu @@ -16,5 +16,5 @@ #include "paddle/operators/rmsprop_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(rmsprop, - ops::RmspropOpKernel); +REGISTER_OP_CUDA_KERNEL( + rmsprop, ops::RmspropOpKernel); diff --git a/paddle/operators/rmsprop_op.h b/paddle/operators/rmsprop_op.h index 7bf2129010f994966d79ef11d5cec30159b47068..16a561835d02457cf2268f713289001773e63d6c 100644 --- a/paddle/operators/rmsprop_op.h +++ b/paddle/operators/rmsprop_op.h @@ -24,7 +24,7 @@ template using EigenVector = framework::EigenVector; -template +template class RmspropOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -51,7 +51,7 @@ class RmspropOpKernel : public framework::OpKernel { auto p_out = EigenVector::Flatten(*param_out); auto mom_out = EigenVector::Flatten(*moment_out); auto ms_out = EigenVector::Flatten(*mean_square_out); - auto place = ctx.GetEigenDevice(); + auto& place = *ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); diff --git a/paddle/operators/rnn_memory_helper_op.cc b/paddle/operators/rnn_memory_helper_op.cc index 3a035f0b9acb94bab60659938e11b4996b8eaa0f..795bdf3e51a2dd323e85c497fcf203ad3ed54183 100644 --- a/paddle/operators/rnn_memory_helper_op.cc +++ b/paddle/operators/rnn_memory_helper_op.cc @@ -57,15 +57,14 @@ class RNNMemoryHelperOpShapeInference : public framework::InferShapeBase { class RNNMemoryHelperOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: - RNNMemoryHelperOpInfoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RNNMemoryHelperOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", ""); AddOutput("Out", ""); AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddComment(""); } }; @@ -114,8 +113,7 @@ class RNNMemoryHelperGradOp : public framework::OperatorBase { class RNNMemoryHelperGradOpInfoMaker : public framework::OpProtoAndCheckerMaker { public: - RNNMemoryHelperGradOpInfoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + RNNMemoryHelperGradOpInfoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput(framework::GradVarName("Out"), ""); AddInput("X", ""); @@ -124,7 +122,7 @@ class RNNMemoryHelperGradOpInfoMaker AddAttr("dtype", "(int, default 5 (FP32)) " "Output data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); AddComment(""); } }; diff --git a/paddle/operators/roi_pool_op.cc b/paddle/operators/roi_pool_op.cc index 2b5e66c96b726a3c1fdb2596a244c5395db85279..85b6a8e15160d0c259a270f5e12ca9e67a6508ab 100644 --- a/paddle/operators/roi_pool_op.cc +++ b/paddle/operators/roi_pool_op.cc @@ -99,8 +99,7 @@ class ROIPoolGradOp : public framework::OperatorWithKernel { class ROIPoolOpMaker : public framework::OpProtoAndCheckerMaker { public: - ROIPoolOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ROIPoolOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor), " @@ -157,9 +156,10 @@ namespace ops = paddle::operators; REGISTER_OP(roi_pool, ops::ROIPoolOp, ops::ROIPoolOpMaker, roi_pool_grad, ops::ROIPoolGradOp); REGISTER_OP_CPU_KERNEL( - roi_pool, ops::CPUROIPoolOpKernel, - ops::CPUROIPoolOpKernel); + roi_pool, + ops::CPUROIPoolOpKernel, + ops::CPUROIPoolOpKernel); REGISTER_OP_CPU_KERNEL( roi_pool_grad, - ops::CPUROIPoolGradOpKernel, - ops::CPUROIPoolOpKernel); + ops::CPUROIPoolGradOpKernel, + ops::CPUROIPoolOpKernel); diff --git a/paddle/operators/roi_pool_op.cu b/paddle/operators/roi_pool_op.cu index 9a4c8ca752bb7abc4f44d4815743769bc989703a..a874befe4d12029afa9ce55230da22cb048000aa 100644 --- a/paddle/operators/roi_pool_op.cu +++ b/paddle/operators/roi_pool_op.cu @@ -177,7 +177,7 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel { if (x_grad) { x_grad->mutable_data(ctx.GetPlace()); math::SetConstant set_zero; - set_zero(ctx.device_context(), x_grad, static_cast(0)); + set_zero(ctx.cuda_device_context(), x_grad, static_cast(0)); int output_grad_size = out_grad->numel(); int blocks = NumBlocks(output_grad_size); @@ -199,10 +199,11 @@ class GPUROIPoolGradOpKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - roi_pool, ops::GPUROIPoolOpKernel, - ops::GPUROIPoolOpKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + roi_pool, + ops::GPUROIPoolOpKernel, + ops::GPUROIPoolOpKernel); +REGISTER_OP_CUDA_KERNEL( roi_pool_grad, - ops::GPUROIPoolGradOpKernel, - ops::GPUROIPoolOpKernel); + ops::GPUROIPoolGradOpKernel, + ops::GPUROIPoolOpKernel); diff --git a/paddle/operators/roi_pool_op.h b/paddle/operators/roi_pool_op.h index 3812c66c65457b9d1337690d1a82759aab9a9732..09a9d3d870c1066f1c6f780c4b3203679e9e7505 100644 --- a/paddle/operators/roi_pool_op.h +++ b/paddle/operators/roi_pool_op.h @@ -19,7 +19,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class CPUROIPoolOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -126,7 +126,7 @@ class CPUROIPoolOpKernel : public framework::OpKernel { } }; -template +template class CPUROIPoolGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -145,8 +145,9 @@ class CPUROIPoolGradOpKernel : public framework::OpKernel { const T* out_grad_data = out_grad->data(); const int64_t* argmax_data = argmax->data(); T* in_grad_data = in_grad->mutable_data(ctx.GetPlace()); - math::SetConstant set_zero; - set_zero(ctx.device_context(), in_grad, static_cast(0)); + math::SetConstant set_zero; + set_zero(ctx.template device_context(), in_grad, + static_cast(0)); auto in_stride = framework::stride(in->dims()); auto argmax_stride = framework::stride(argmax->dims()); diff --git a/paddle/operators/row_conv_op.cc b/paddle/operators/row_conv_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..6b116a9fe704e6ddf18c22455c06346ea14909d2 --- /dev/null +++ b/paddle/operators/row_conv_op.cc @@ -0,0 +1,259 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/row_conv_op.h" +#include "paddle/framework/eigen.h" + +namespace paddle { +namespace operators { + +using LoDTensor = framework::LoDTensor; +using framework::Tensor; + +template +using EigenMatrix = framework::EigenMatrix; + +class RowConvOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of RowConvOp should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Filter"), + "Input(Filter) of RowConvOp should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of RowConvOp should not be null."); + + auto x_dims = ctx->GetInputDim("X"); + auto filter_dims = ctx->GetInputDim("Filter"); + PADDLE_ENFORCE_EQ(x_dims.size(), 2, "Input(X)'s rank should be 2."); + PADDLE_ENFORCE_EQ(filter_dims.size(), 2, "Input(Y)'s rank should be 2."); + PADDLE_ENFORCE_EQ( + x_dims[1], filter_dims[1], + "The 2nd dimension of Input(X) and Input(Filter) should be same."); + ctx->SetOutputDim("Out", x_dims); + ctx->ShareLoD("X", "Out"); + } +}; + +class RowConvGradOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + + void InferShape(framework::InferShapeContext *ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null."); + PADDLE_ENFORCE(ctx->HasInput("Filter"), + "Input(Filter) should not be null."); + PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")), + "Gradient of output(Out) should not be null."); + + auto x_grad_name = framework::GradVarName("X"); + if (ctx->HasOutput(x_grad_name)) { + auto x_dims = ctx->GetInputDim("X"); + ctx->SetOutputDim(x_grad_name, x_dims); + } + + auto filter_grad_name = framework::GradVarName("Filter"); + if (ctx->HasOutput(filter_grad_name)) { + auto filter_dims = ctx->GetInputDim("Filter"); + ctx->SetOutputDim(filter_grad_name, filter_dims); + } + } +}; + +class RowConvOpMaker : public framework::OpProtoAndCheckerMaker { + public: + RowConvOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", + "(LoDTensor), the input(X) is a LodTensor, which supports " + "variable time-length input sequences. The underlying tensor " + "in this LoDTensor is a matrix with shape (T x N), where T " + "is the total time steps in this mini-batch and N is the input " + "data dimension."); + AddInput("Filter", + "(Tensor), the input(Filter) is a learnable parameter. It " + "is a 2-D tensor with shape (future_context x N), where, " + "future_context is the future context length and N is the data " + "dimension."); + AddOutput("Out", + "(LoDTensor), the output(Out) is a LodTensor, which supports " + "variable time-length input sequences. The underlying tensor " + "in this LodTensor is a matrix with shape T x N, i.e., the " + "same shape as X."); + AddComment(R"DOC( +Row-convolution Operator. + +The row convolution is called lookahead convolution. This operator was +introduced in the following paper for DeepSpeech2: +http://www.cs.cmu.edu/~dyogatam/papers/wang+etal.iclrworkshop2016.pdf + +The main motivation is that a bidirectional RNN, useful in DeepSpeech +like speech models, learns representation for a sequence by performing a +forward and a backward pass through the entire sequence. However, unlike +unidirectional RNNs, bidirectional RNNs are challenging to deploy in an online +and low-latency setting. The lookahead convolution incorporates information +from future subsequences in a computationally efficient manner to improve +unidirectional recurrent neural networks. The row convolution operator is +different from the 1D sequence convolution, and is computed as follows: + +Given an input sequence $in$ of length $t$ and input dimension $d$, +and a filter ($W$) of size $context \times d$, +the output sequence is convolved as: + +$$ +out_{i, :} = \sum_{j=i}^{i + context} in_{j,:} \dot W_{i-j, :} +$$ + +)DOC"); + } +}; + +template +class RowConvKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + auto *x = context.Input("X"); + auto *filter = context.Input("Filter"); + auto *out = context.Output("Out"); + + out->mutable_data(context.GetPlace()); + + auto batch_indices = x->lod()[0]; + auto input_dim = x->dims()[1]; // 'in' is of size T x N + size_t num_sequence = batch_indices.size() - 1; + + auto future_context = filter->dims()[0]; + auto weights = EigenMatrix::From(*filter); + + for (size_t i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + Tensor cur_input_sequence = + x->Slice(start, end); // Current input sequence + Tensor cur_output_sequence = + out->Slice(start, end); // Current output sequence + auto cip_seq = EigenMatrix::From(cur_input_sequence); + auto cot_seq = EigenMatrix::From(cur_output_sequence); + + for (int k = 0; k < current_timesteps; + k++) { // For different time steps in the same sequence + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + for (int d = 0; d < input_dim; d++) { + if (w == 0) { + cot_seq(k, d) = weights(w, d) * cip_seq(k + w, d); + } else { + cot_seq(k, d) += weights(w, d) * cip_seq(k + w, d); + } + } + } + } + } + } +}; + +template +class RowConvGradKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + auto *x = context.Input("X"); + auto *filter = context.Input("Filter"); + auto *d_out = context.Input(framework::GradVarName("Out")); + auto *dx = context.Output(framework::GradVarName("X")); + auto *d_filter = context.Output(framework::GradVarName("Filter")); + + auto input_dim = x->dims()[1]; // 'x' is of size T x N + auto batch_indices = x->lod()[0]; + size_t num_sequence = batch_indices.size() - 1; + auto future_context = filter->dims()[0]; + + if (d_filter) { + d_filter->mutable_data(context.GetPlace()); + auto dweights = + EigenMatrix::From(*d_filter); // Gradient of weight matrix + dweights.setZero(); + + for (size_t i = 0; i < num_sequence; i++) { // For different sequences + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + + Tensor cur_input = x->Slice(start, end); // Current input sequence + Tensor cur_doutput = + d_out->Slice(start, end); // Current output grad sequence + + auto cur_ip = EigenMatrix::From(cur_input); + auto cur_dout = EigenMatrix::From(cur_doutput); + int current_timesteps = end - start; + + for (int k = 0; k < current_timesteps; + k++) { // For different time steps in the same sequence + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + // For dweights (Updating the gradient of weight matrix) + for (int d = 0; d < input_dim; d++) { + dweights(w, d) += cur_ip(k + w, d) * cur_dout(k, d); + } + } + } + } + } + + if (dx) { + dx->mutable_data(context.GetPlace()); + auto weights = EigenMatrix::From(*filter); + for (size_t i = 0; i < num_sequence; i++) { // For different sequences + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + + Tensor cur_doutput = + d_out->Slice(start, end); // Current output grad sequence + Tensor cur_dinput = + dx->Slice(start, end); // Current input grad sequence + + auto cur_dout = EigenMatrix::From(cur_doutput); + auto cur_dip = EigenMatrix::From(cur_dinput); + cur_dip.setZero(); + int current_timesteps = end - start; + + for (int k = 0; k < current_timesteps; + k++) { // For different time steps in the same sequence + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + // For dinput (Updating the gradient wrt input) + for (int d = 0; d < input_dim; d++) { + cur_dip(k + w, d) += weights(w, d) * cur_dout(k, d); + } + } + } + } + } + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(row_conv, ops::RowConvOp, ops::RowConvOpMaker, row_conv_grad, + ops::RowConvGradOp); +REGISTER_OP_CPU_KERNEL( + row_conv, ops::RowConvKernel); +REGISTER_OP_CPU_KERNEL( + row_conv_grad, + ops::RowConvGradKernel); diff --git a/paddle/operators/row_conv_op.cu b/paddle/operators/row_conv_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..56a98ff299e8263179306756631949761e386f70 --- /dev/null +++ b/paddle/operators/row_conv_op.cu @@ -0,0 +1,410 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/row_conv_op.h" +#include "paddle/platform/cuda_helper.h" + +namespace paddle { +namespace operators { + +using LoDTensor = framework::LoDTensor; +using framework::Tensor; + +namespace { + +inline int DivUp(int x, int y) { return (x + y - 1) / y; } + +// Forward prop (shared memory version, for small future_context) +template +__global__ void RowConvForwardSharedMemory(const T *in, const T *wt, + int num_sequence, int input_dim, + int future_context, + const size_t *batch_indices, + T *out) { + int blx = blockDim.x; + int bly = blockDim.y; + int thx = threadIdx.x; + int thy = threadIdx.y; + int d = blockIdx.x * blx + thx; // index along input dim + + extern __shared__ T mem[]; + T *sw = mem; + + if (thy < future_context) { + sw[thy * blx + thx] = + (d < input_dim) ? wt[thy * input_dim + d] : static_cast(0); + } + __syncthreads(); + + for (size_t i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + for (int k = thy; k < current_timesteps; k += bly) { + T sum = 0; + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + sum += (d < input_dim) + ? sw[w * blx + thx] * in[(start + k + w) * input_dim + d] + : static_cast(0); + } + if (d < input_dim) { + out[(start + k) * input_dim + d] = sum; + } + } + } +} + +// Forward prop (naive version) +template +__global__ void RowConvForward(const T *in, const T *wt, int num_sequence, + int input_dim, int future_context, + const size_t *batch_indices, T *out) { + int d = blockIdx.x * blockDim.x + threadIdx.x; // index along input_dim + int bly = blockDim.y; + int thy = threadIdx.y; + + if (d >= input_dim) return; + + for (size_t i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + for (int k = thy; k < current_timesteps; k += bly) { + T sum = 0; + for (int w = 0; (w < future_context) && ((k + w) < current_timesteps); + w++) { + sum += (wt[w * input_dim + d] * in[(start + k + w) * input_dim + d]); + } + out[(start + k) * input_dim + d] = sum; + } + } +} + +// Compute input gradient (shared memory version, for small future_context) +template +__global__ void RowConvGradInputSharedMemory(const T *dout, const T *wt, + int num_sequence, int input_dim, + int future_context, + const size_t *batch_indices, + T *din) { + int blx = blockDim.x; + int bly = blockDim.y; + int thx = threadIdx.x; + int thy = threadIdx.y; + int d = blockIdx.x * blx + thx; // index along input dim + + extern __shared__ T mem[]; + T *sw = mem; + if (thy < future_context) { + sw[thy * blx + thx] = + (d < input_dim) ? wt[thy * input_dim + d] : static_cast(0); + } + __syncthreads(); + + for (int i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + for (int k = thy; k < current_timesteps; k += bly) { + T sum = 0; + for (int w = 0; (w < future_context) && ((k - w) >= 0); w++) { + sum += (d < input_dim) + ? (sw[w * blx + thx] * dout[(k + start - w) * input_dim + d]) + : static_cast(0); + } + if (d < input_dim) { + din[(k + start) * input_dim + d] = sum; + } + } + } +} + +// Compute input gradient (Naive version) +template +__global__ void RowConvGradInput(const T *dout, const T *wt, int num_sequence, + int input_dim, int future_context, + const size_t *batch_indices, T *din) { + int d = blockIdx.x * blockDim.x + threadIdx.x; // index along input_dim + int bly = blockDim.y; + int thy = threadIdx.y; + + if (d >= input_dim) return; + for (int i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + for (int k = thy; k < current_timesteps; k += bly) { + T sum = 0; + for (int w = 0; (w < future_context) && ((k - w) >= 0); w++) { + sum += (wt[w * input_dim + d] * dout[(k + start - w) * input_dim + d]); + } + din[(k + start) * input_dim + d] = sum; + } + } +} + +// Compute W gradient (small future_context version) +template +__global__ void RowConvGradFilterImproved(const T *in, const T *dout, + int num_sequence, int input_dim, + int future_context, int block_x, + int block_y, + const size_t *batch_indices, + T *dfilter) { + int blx = blockDim.x; + int bly = blockDim.y; + int thx = threadIdx.x; + int thy = threadIdx.y; + int gx = blockIdx.x * blx; + int d = gx + thx; // index along input dim + + extern __shared__ T mem[]; + + int xdim_sh_in = block_y; + int xdim_sh_dout = block_y; + // int xdim_sh_dfilter = future_context; + int ydim_sh_in = block_x; + int ydim_sh_dout = block_x + future_context - 1; + int ydim_sh_dfilter = block_y; + + T *sh_in = mem; + T *sh_dout = &mem[xdim_sh_in * ydim_sh_in]; + T *sh_dfilter = &mem[xdim_sh_in * ydim_sh_in + xdim_sh_dout * ydim_sh_dout]; + + if (thy < future_context) { + sh_dfilter[thy * ydim_sh_dfilter + thx] = static_cast(0); + } + __syncthreads(); + + for (int i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + int scaled_cur_steps = + ((current_timesteps + block_x - 1) / block_x) * block_x; + + for (int k = thy; k < scaled_cur_steps; k += block_x) { + int pos = start + k; + sh_in[thx * ydim_sh_in + thy] = + (d < input_dim && pos < end) ? in[pos * input_dim + d] : T(0); + sh_dout[thx * ydim_sh_dout + thy + future_context - 1] = + (d < input_dim && pos < end) ? dout[pos * input_dim + d] : T(0); + __syncthreads(); + + if (thy < future_context - 1) { + int pos_offset = pos - future_context + 1; + sh_dout[thx * ydim_sh_dout + thy] = + (d < input_dim && pos_offset >= start) + ? dout[pos_offset * input_dim + d] + : T(0); + } + __syncthreads(); + + for (int w = 0; w < future_context; w++) { + T val = sh_in[thy * ydim_sh_in + thx] * + sh_dout[thy * ydim_sh_dout + thx + future_context - 1 - w]; + __syncthreads(); + + for (int offset = 16; offset > 0; + offset = offset / 2) { // blockDim.x is 32. + val += __shfl_down(val, offset); + } + __syncthreads(); + + if (thx == 0) { + sh_dfilter[w * ydim_sh_dfilter + thy] += val; + } + __syncthreads(); + } + } + } + for (int w = thy; (w < future_context) && (d < input_dim); w += bly) { + dfilter[w * input_dim + d] += sh_dfilter[w * ydim_sh_dfilter + thx]; + } +} + +// Compute weight(filter) gradient +template +__global__ void RowConvGradFilter(const T *in, const T *dout, int num_sequence, + int input_dim, int future_context, + int block_x, int block_y, + const size_t *batch_indices, T *dfilter) { + int blx = blockDim.x; + int thx = threadIdx.x; + int thy = threadIdx.y; + int gx = blockIdx.x * blx; + int d = gx + thx; // index along input dim + extern __shared__ T mem[]; + T *sh_in = mem; + T *sh_dout = &mem[block_x * block_y]; + + for (int i = 0; i < num_sequence; i++) { + int start = static_cast(batch_indices[i]); + int end = static_cast(batch_indices[i + 1]); + int current_timesteps = end - start; + int scaled_cur_steps = + ((current_timesteps + block_x - 1) / block_x) * block_x; + + for (int k = thy; k < scaled_cur_steps; k += block_x) { + int pos = start + k; + sh_in[thx * block_y + thy] = + (d < input_dim && pos < end) ? in[pos * input_dim + d] : 0.0; + __syncthreads(); + + for (int w = 0; w < future_context; w++) { + sh_dout[thx * block_y + thy] = + (d < input_dim && (k - w) >= 0 && (k - w) < current_timesteps) + ? dout[(pos - w) * input_dim + d] + : 0.0; + __syncthreads(); + + T val = sh_in[thy * block_y + thx] * sh_dout[thy * block_y + thx]; + __syncthreads(); + + for (int offset = 16; offset > 0; + offset = offset / 2) { // blockDim.x is 32. + val += __shfl_down(val, offset); + } + __syncthreads(); + + if (thx == 0 && (gx + thy) < input_dim) { + dfilter[w * input_dim + gx + thy] += val; + } + } + } + } +} + +} // namespace + +template +class RowConvKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + auto *X = context.Input("X"); + auto *Filter = context.Input("Filter"); + auto *Out = context.Output("Out"); + + const T *in = X->data(); + const T *weight = Filter->data(); + T *out = Out->mutable_data(context.GetPlace()); + + auto batch_indices = X->lod()[0]; + int input_dim = X->dims()[1]; + int num_sequence = batch_indices.size() - 1; + int future_context = Filter->dims()[0]; + size_t *idx = batch_indices.data(); + auto stream = context.cuda_device_context().stream(); + + if (future_context <= 32) { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + int mem_per_block = (future_context * block_dim.x) * sizeof(T); + RowConvForwardSharedMemory< + T><<>>( + in, weight, num_sequence, input_dim, future_context, idx, out); + } else { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + RowConvForward<<>>( + in, weight, num_sequence, input_dim, future_context, idx, out); + } + } +}; + +template +class RowConvGradKernel + : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override { + auto *X = context.Input("X"); + auto *Filter = context.Input("Filter"); + auto *dOut = context.Input(framework::GradVarName("Out")); + const T *in = X->data(); + const T *weights = Filter->data(); + const T *dout = dOut->data(); + + Tensor *dX = context.Output(framework::GradVarName("X")); + Tensor *dFilter = context.Output(framework::GradVarName("Filter")); + + auto batch_indices = X->lod()[0]; + int input_dim = X->dims()[1]; + int num_sequence = batch_indices.size() - 1; + int future_context = Filter->dims()[0]; + size_t *idx = batch_indices.data(); + + auto &device_ctx = context.cuda_device_context(); + math::SetConstant zero; + + if (dFilter) { + T *dfilter = dFilter->mutable_data(context.GetPlace()); + zero(device_ctx, dFilter, static_cast(0.0)); + + if (future_context <= 32) { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + int block_x = block_dim.x; + int block_y = block_dim.y; + int mem_per_block = + (block_y * block_x + block_y * (block_x + future_context - 1) + + future_context * block_y) * + sizeof(T); + RowConvGradFilterImproved< + T><<>>( + in, dout, num_sequence, input_dim, future_context, block_x, block_y, + idx, dfilter); + } else { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + int block_x = block_dim.x; + int block_y = block_dim.y; + int mem_per_block = + (block_x * block_y * 2) * sizeof(T); // For 2 arrays of size 32x32 + RowConvGradFilter< + T><<>>( + in, dout, num_sequence, input_dim, future_context, block_x, block_y, + idx, dfilter); + } + } + + if (dX) { + T *din = dX->mutable_data(context.GetPlace()); + if (future_context <= 32) { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + int mem_per_block = (future_context * block_dim.x) * sizeof(T); + RowConvGradInputSharedMemory< + T><<>>( + dout, weights, num_sequence, input_dim, future_context, idx, din); + } else { + dim3 block_dim = dim3(32, 32); + dim3 grid_dim = dim3(DivUp(input_dim, block_dim.x), 1); + RowConvGradInput<<>>( + dout, weights, num_sequence, input_dim, future_context, idx, din); + } + } + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + row_conv, ops::RowConvKernel); +REGISTER_OP_CUDA_KERNEL( + row_conv_grad, + ops::RowConvGradKernel); diff --git a/paddle/operators/row_conv_op.h b/paddle/operators/row_conv_op.h new file mode 100644 index 0000000000000000000000000000000000000000..80912ad8f73b3581efa9e263427e99304208d581 --- /dev/null +++ b/paddle/operators/row_conv_op.h @@ -0,0 +1,33 @@ +/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class RowConvKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override; +}; + +template +class RowConvGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext &context) const override; +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/save_op.cc b/paddle/operators/save_op.cc index d4921cb80c8d78c52ae1887c36819b52621470eb..eae1146d6c61fe56ebc48ac50e1eacd62e3fa7d0 100644 --- a/paddle/operators/save_op.cc +++ b/paddle/operators/save_op.cc @@ -94,8 +94,7 @@ class SaveOp : public framework::OperatorBase { class SaveOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - SaveOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + SaveOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor ) Input tensor to be saved"); AddComment(R"DOC( diff --git a/paddle/operators/scale_op.cc b/paddle/operators/scale_op.cc index e5c10fec4d840c58a74758a65ddfa93421ab4827..ee39888713544703ee8d305b2c04e4b03deeceab 100644 --- a/paddle/operators/scale_op.cc +++ b/paddle/operators/scale_op.cc @@ -38,7 +38,7 @@ class ScaleOp : public framework::OperatorWithKernel { template class ScaleOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScaleOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + ScaleOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input tensor of scale operator."); AddOutput("Out", "(Tensor) Output tensor of scale operator."); @@ -58,13 +58,13 @@ class ScaleGradMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("scale"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttr("scale", GetAttr("scale")); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -75,8 +75,8 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(scale, ops::ScaleOp, ops::ScaleOpMaker, ops::ScaleGradMaker); -REGISTER_OP_CPU_KERNEL(scale, - ops::ScaleKernel, - ops::ScaleKernel, - ops::ScaleKernel, - ops::ScaleKernel); +REGISTER_OP_CPU_KERNEL( + scale, ops::ScaleKernel, + ops::ScaleKernel, + ops::ScaleKernel, + ops::ScaleKernel); diff --git a/paddle/operators/scale_op.cu b/paddle/operators/scale_op.cu index 0d707751598e65bc56bf73a435c10b4acd6d8ed0..0c7980430f31e2720c7af97aa14cf146c7dfc009 100644 --- a/paddle/operators/scale_op.cu +++ b/paddle/operators/scale_op.cu @@ -14,8 +14,10 @@ #include "paddle/operators/scale_op.h" -REGISTER_OP_GPU_KERNEL( - scale, paddle::operators::ScaleKernel, - paddle::operators::ScaleKernel, - paddle::operators::ScaleKernel, - paddle::operators::ScaleKernel); +REGISTER_OP_CUDA_KERNEL( + scale, + paddle::operators::ScaleKernel, + paddle::operators::ScaleKernel, + paddle::operators::ScaleKernel, + paddle::operators::ScaleKernel); diff --git a/paddle/operators/scale_op.h b/paddle/operators/scale_op.h index 4931294c9d3661f4c53798bd0895a5cd38ae4501..02a8c97a83f5b6f95bbd4079c453dfdc7b7c1481 100644 --- a/paddle/operators/scale_op.h +++ b/paddle/operators/scale_op.h @@ -19,7 +19,7 @@ namespace paddle { namespace operators { -template +template class ScaleKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& context) const { @@ -31,7 +31,8 @@ class ScaleKernel : public framework::OpKernel { auto eigen_out = framework::EigenVector::Flatten(*tensor); auto eigen_in = framework::EigenVector::Flatten(*in); - auto& dev = context.GetEigenDevice(); + auto& dev = + *context.template device_context().eigen_device(); eigen_out.device(dev) = scale * eigen_in; } }; diff --git a/paddle/operators/scatter_op.cc b/paddle/operators/scatter_op.cc index ce4b794bc35aca0912d89a4ae81a9aa0c73a2104..173c9582557eb4e020824d5830731e3e2312dc3c 100644 --- a/paddle/operators/scatter_op.cc +++ b/paddle/operators/scatter_op.cc @@ -78,8 +78,7 @@ class ScatterGradOp : public framework::OperatorWithKernel { class ScatterOpMaker : public framework::OpProtoAndCheckerMaker { public: - ScatterOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + ScatterOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Ref", "The source input of scatter op"); AddInput("Index", @@ -87,10 +86,15 @@ class ScatterOpMaker : public framework::OpProtoAndCheckerMaker { AddInput("Updates", "The updated value of updates op"); AddOutput("Out", "The output of add op"); AddComment(R"DOC( -Scatter Operator by selecting from the first axis, +Scatter Operator. -Out = Ref +This operator obtains output by updating the input on selected indices on the first axis: + +$$ +Out = Ref \\ Out[Index] = Ref[Index] + Updates +$$ + )DOC"); } }; diff --git a/paddle/operators/scatter_op.cu b/paddle/operators/scatter_op.cu index 3b32ae2fb77a5d3d4c558742ec469c74d15eee07..6b43a1389f98bf268cb3b70d7e61409f361e0063 100644 --- a/paddle/operators/scatter_op.cu +++ b/paddle/operators/scatter_op.cu @@ -59,5 +59,5 @@ class ScatterGradOpCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(scatter, ops::ScatterOpCUDAKernel); -REGISTER_OP_GPU_KERNEL(scatter_grad, ops::ScatterGradOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(scatter, ops::ScatterOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(scatter_grad, ops::ScatterGradOpCUDAKernel); diff --git a/paddle/operators/send_op.cc b/paddle/operators/send_op.cc index 0f76545743a294ea3ab4f7f01dd8a684587485d2..3ad5df5e4a210c4702675708755c6a22f031c150 100644 --- a/paddle/operators/send_op.cc +++ b/paddle/operators/send_op.cc @@ -34,46 +34,57 @@ class SendOp : public framework::OperatorBase { const framework::AttributeMap &attrs) : OperatorBase(type, inputs, outputs, attrs) { // init client when the operator is created at runtime. - if (!client_) { - std::string endpoint = Attr("endpoint"); - client_.reset(new detail::RPCClient( - grpc::CreateChannel(endpoint, grpc::InsecureChannelCredentials()))); - // TODO(typhoonzero): how to call InitVariables + std::vector endpoints = + Attr>("endpoints"); + for (auto ep : endpoints) { + client_map_[ep].reset(new detail::RPCClient( + grpc::CreateChannel(ep, grpc::InsecureChannelCredentials()))); } } void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - auto iname = Input("X"); - auto oname = Output("Out"); - // TODO(typhoonzero): currently it's non-blocking, - // should block until server responds. - bool ret = client_->SendVariable(scope, iname, oname); - if (!ret) { - LOG(ERROR) << "send variable error"; + auto ins = Inputs("X"); + std::vector epmap = Attr>("epmap"); + // TODO(typhoonzero): use async calls to send multiple variable asyncly. + for (size_t i = 0; i < ins.size(); ++i) { + bool ret = client_map_[epmap[i]]->SendVariable(scope, ins[i]); + if (!ret) { + LOG(ERROR) << "send variable error: " << ins[i]; + } + } + // TODO(typhoonzero): support async optimization + client_map_[epmap[0]]->Wait(); + for (size_t i = 0; i < ins.size(); ++i) { + bool ret = client_map_[epmap[i]]->GetVariable(scope, ins[i]); + if (!ret) { + LOG(ERROR) << "GetVariable error: " << ins[i]; + } } } protected: - std::shared_ptr client_{nullptr}; + mutable std::unordered_map> + client_map_; }; class SendOpMaker : public framework::OpProtoAndCheckerMaker { public: - SendOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SendOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { - AddInput("X", "(Tensor) Input tensor to be saved"); - AddOutput("Out", "(Tensor) Output fetched from server"); + AddInput("X", "(Tensor) Input tensor to be send").AsDuplicable(); AddComment(R"DOC( Recv operator This operator will recv tensor from send_op )DOC"); - AddAttr("endpoint", - "(string, default 127.0.0.1:6164)" - "IP address to listen on.") - .SetDefault("127.0.0.1:6164") - .AddCustomChecker([](const std::string &ip) { return !ip.empty(); }); + AddAttr>("endpoints", + "(string vector, default 127.0.0.1:6164)" + "Server endpoints to send variables to."); + AddAttr>("epmap", + "(string vector, default 127.0.0.1:6164)" + "Server endpoints in the order of input " + "variables for mapping"); } }; diff --git a/paddle/operators/send_recv_op_benchmark.cc b/paddle/operators/send_recv_op_benchmark.cc index 9fb38e5d6cd5356bd10cd79bedb560fb4aded316..5aa81f051cd93f83302f36a4ccf7e8aa7c6d24aa 100644 --- a/paddle/operators/send_recv_op_benchmark.cc +++ b/paddle/operators/send_recv_op_benchmark.cc @@ -93,9 +93,7 @@ void StartServerNet() { recv_op = paddle::framework::OpRegistry::CreateOp("recv", {{"RX", {"RX"}}}, {{"Out", {"Out"}}}, attrs); paddle::platform::CPUDeviceContext ctx(place); - for (int i = 0; i < benchmark_count; ++i) { - recv_op->Run(scope, ctx); - } + recv_op->Run(scope, ctx); } TEST(SendRecvBenchmark, CPU) { diff --git a/paddle/operators/send_recv_op_test.cc b/paddle/operators/send_recv_op_test.cc index 42cbc50ca9008ccb4b130f2cb8462b182dd61a5c..69a3adae9b286941ee17e24dbf9ddc10e00d8c68 100644 --- a/paddle/operators/send_recv_op_test.cc +++ b/paddle/operators/send_recv_op_test.cc @@ -12,17 +12,15 @@ See the License for the specific language governing permissions and limitations under the License. */ -// TODO(typhoonzero): add python bindings for this test as -// a RemoteOptimizer. - #include -#include +#include #include #include "gtest/gtest.h" #include "paddle/framework/op_registry.h" #include "paddle/framework/operator.h" #include "paddle/framework/program_desc.h" +#include "paddle/string/printf.h" USE_NO_KERNEL_OP(send); USE_NO_KERNEL_OP(recv); @@ -34,30 +32,33 @@ std::unique_ptr recv_op; void InitTensorsInScope(paddle::framework::Scope &scope, paddle::platform::CPUPlace &place) { paddle::platform::CPUDeviceContext ctx(place); - auto var = scope.Var("X"); - auto tensor = var->GetMutable(); - tensor->Resize({10, 10}); - float *expect = tensor->mutable_data(place); - for (int64_t i = 0; i < tensor->numel(); ++i) { - expect[i] = static_cast(i) / 1000.0f; + for (int i = 0; i < 2; ++i) { + auto var_name = paddle::string::Sprintf("x%d", i); + auto var = scope.Var(var_name); + auto tensor = var->GetMutable(); + tensor->Resize({10, 10}); + float *expect = tensor->mutable_data(place); + for (int64_t i = 0; i < tensor->numel(); ++i) { + expect[i] = static_cast(i); + } } auto out_var = scope.Var("Out"); auto out_tensor = out_var->GetMutable(); out_tensor->Resize({10, 10}); - tensor->mutable_data(place); // allocate + out_tensor->mutable_data(place); // allocate } void AddOp(const std::string &type, const paddle::framework::VariableNameMap &inputs, const paddle::framework::VariableNameMap &outputs, paddle::framework::AttributeMap attrs, - paddle::framework::BlockDescBind *block) { + paddle::framework::BlockDesc *block) { // insert output for (auto kv : outputs) { for (auto v : kv.second) { auto var = block->Var(v); - var->SetDataType(paddle::framework::DataType::FP32); + var->SetDataType(paddle::framework::proto::DataType::FP32); } } @@ -79,16 +80,19 @@ void StartServerNet() { InitTensorsInScope(scope, place); // sub program run in recv_op, for simple test we use sum - paddle::framework::ProgramDescBind program; - paddle::framework::BlockDescBind *block = program.MutableBlock(0); + paddle::framework::ProgramDesc program; + paddle::framework::BlockDesc *block = program.MutableBlock(0); // X for server side tensors, RX for received tensers, must be of same shape. - AddOp("sum", {{"X", {"X", "RX"}}}, {{"Out", {"Out"}}}, {}, block); + AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, block); paddle::framework::AttributeMap attrs; attrs.insert({"endpoint", std::string("127.0.0.1:6174")}); - attrs.insert({"OptimizeBlock", block}); - recv_op = paddle::framework::OpRegistry::CreateOp("recv", {{"RX", {"RX"}}}, - {{"Out", {"Out"}}}, attrs); + std::string program_proto; + PADDLE_ENFORCE(program.Proto()->SerializeToString(&program_proto)); + + attrs.insert({"OptimizeProgram", program_proto}); + recv_op = paddle::framework::OpRegistry::CreateOp( + "recv", {{"RX", {"x0", "x1"}}}, {{"Out", {"Out"}}}, attrs); paddle::platform::CPUDeviceContext ctx(place); while (1) { recv_op->Run(scope, ctx); @@ -109,11 +113,11 @@ TEST(SendRecvOp, CPU) { attrs.insert({"endpoint", std::string("127.0.0.1:6174")}); auto send_op = paddle::framework::OpRegistry::CreateOp( - "send", {{"X", {"X"}}}, {{"Out", {"Out"}}}, attrs); + "send", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, attrs); paddle::platform::CPUDeviceContext ctx(place); send_op->Run(scope, ctx); - auto in_var = scope.Var("X"); + auto in_var = scope.Var("x0"); auto tensor = in_var->GetMutable(); float *expected = tensor->data(); diff --git a/paddle/operators/sequence_concat_op.cc b/paddle/operators/sequence_concat_op.cc index d1de0b444712a8c304c33bd194e306dfe3c41f02..2f0aad2003e48952ca26ca27573bc45386a4e585 100644 --- a/paddle/operators/sequence_concat_op.cc +++ b/paddle/operators/sequence_concat_op.cc @@ -43,8 +43,7 @@ class SequenceConcatOp : public framework::OperatorWithKernel { class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequenceConcatOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceConcatOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LodTensorArray) Input is a vector of LoDTensor, " @@ -68,12 +67,12 @@ class SequenceConcatOpMaker : public framework::OpProtoAndCheckerMaker { "The level should be less than the level number of inputs.") .SetDefault(0); AddComment(R"DOC( -The sequence_concat operator concatenates multiple LoDTensors. -It only supports sequence (LoD Tensor with level number is 1) +The sequence_concat operator concatenates multiple LoDTensors. +It only supports sequence (LoD Tensor with level number is 1) or a nested sequence (LoD tensor with level number is 2) as its input. - Case1: If the axis is other than 0(here, axis is 1 and level is 1), - each input should have the same LoD information and the LoD + each input should have the same LoD information and the LoD information of the output keeps the same as the input. LoD(x0) = {{0,2,4}, {0,1,2,3,4}}; Dims(x0) = (4,3,4) @@ -81,7 +80,7 @@ or a nested sequence (LoD tensor with level number is 2) as its input. LoD(Out) = {{0,2,4}, {0,1,2,3,4}}; Dims(Out) = (4,7,4) - Case2: - If the axis is 0(here, leve is 0), the inputs are concatenated along + If the axis is 0(here, leve is 0), the inputs are concatenated along time steps, the LoD information of the output need to re-compute. The LoD information of level-1 should be same. @@ -125,11 +124,12 @@ class SequenceConcatGradOp : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(sequence_concat, ops::SequenceConcatOp, ops::SequenceConcatOpMaker, - sequence_concat_grad, ops::SequenceConcatGradOp); +REGISTER_OP_EX(sequence_concat, ops::SequenceConcatOp, + ops::SequenceConcatOpMaker, sequence_concat_grad, + ops::SequenceConcatGradOp, false); REGISTER_OP_CPU_KERNEL( sequence_concat, - ops::SequenceConcatOpKernel); + ops::SequenceConcatOpKernel); REGISTER_OP_CPU_KERNEL( sequence_concat_grad, - ops::SequenceConcatGradOpKernel); + ops::SequenceConcatGradOpKernel); diff --git a/paddle/operators/sequence_concat_op.cu.cc b/paddle/operators/sequence_concat_op.cu.cc index 9ca99c2258f547e6f9c23be0d394bc3ea2bb6678..144bdb5af635b0cb75bcd1f654700041186dae46 100644 --- a/paddle/operators/sequence_concat_op.cu.cc +++ b/paddle/operators/sequence_concat_op.cu.cc @@ -15,9 +15,9 @@ limitations under the License. */ #include "paddle/operators/sequence_concat_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( sequence_concat, - ops::SequenceConcatOpKernel); -REGISTER_OP_GPU_KERNEL( - sequence_concat_grad, - ops::SequenceConcatGradOpKernel); + ops::SequenceConcatOpKernel); +REGISTER_OP_CUDA_KERNEL(sequence_concat_grad, + ops::SequenceConcatGradOpKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/sequence_concat_op.h b/paddle/operators/sequence_concat_op.h index 09212070aa90b0f080f6140a312924229162aaec..8445224f46aba6110280783c9080ed4691266b8b 100644 --- a/paddle/operators/sequence_concat_op.h +++ b/paddle/operators/sequence_concat_op.h @@ -59,7 +59,7 @@ LoD ConcatLoD(const std::vector ins, const size_t level) { return out_lod; } -template +template class SequenceConcatOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -119,7 +119,7 @@ class SequenceConcatOpKernel : public framework::OpKernel { } }; -template +template class SequenceConcatGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/sequence_conv_op.cc b/paddle/operators/sequence_conv_op.cc index c5533732d44737bb8cc71fd8ac46f3c36c72ada1..c5b7c81bd7c6e1110aa9e2ced629bea5d88832d1 100644 --- a/paddle/operators/sequence_conv_op.cc +++ b/paddle/operators/sequence_conv_op.cc @@ -100,8 +100,7 @@ class SequenceConvGradOp : public framework::OperatorWithKernel { class SequenceConvOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequenceConvOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceConvOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -179,9 +178,10 @@ REGISTER_OP(sequence_conv, ops::SequenceConvOp, ops::SequenceConvOpMaker, sequence_conv_grad, ops::SequenceConvGradOp); REGISTER_OP_CPU_KERNEL( - sequence_conv, ops::SequenceConvKernel, - ops::SequenceConvKernel); + sequence_conv, + ops::SequenceConvKernel, + ops::SequenceConvKernel); REGISTER_OP_CPU_KERNEL( sequence_conv_grad, - ops::SequenceConvGradKernel, - ops::SequenceConvGradKernel); + ops::SequenceConvGradKernel, + ops::SequenceConvGradKernel); diff --git a/paddle/operators/sequence_conv_op.cu.cc b/paddle/operators/sequence_conv_op.cu.cc index c8136dbcb35be4f1236dddc3d24546f9d91670c8..eacba79ace3e60a408d5f5e21a6fe2658da56ca7 100644 --- a/paddle/operators/sequence_conv_op.cu.cc +++ b/paddle/operators/sequence_conv_op.cu.cc @@ -15,10 +15,11 @@ #include "paddle/operators/sequence_conv_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - sequence_conv, ops::SequenceConvKernel, - ops::SequenceConvKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + sequence_conv, + ops::SequenceConvKernel, + ops::SequenceConvKernel); +REGISTER_OP_CUDA_KERNEL( sequence_conv_grad, - ops::SequenceConvGradKernel, - ops::SequenceConvGradKernel); + ops::SequenceConvGradKernel, + ops::SequenceConvGradKernel); diff --git a/paddle/operators/sequence_conv_op.h b/paddle/operators/sequence_conv_op.h index b8fbe2647c4338a2fa16aa655ebab64dd8d5417d..bb584b7bfa5fb8f6eb0a452468d24ca034be6f1b 100644 --- a/paddle/operators/sequence_conv_op.h +++ b/paddle/operators/sequence_conv_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template +template class SequenceConvKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -56,21 +56,23 @@ class SequenceConvKernel : public framework::OpKernel { Tensor col; col.mutable_data(col_shape, context.GetPlace()); // Because if padding_trainable is false, padding data should be zeros. - math::SetConstant set_zero; - set_zero(context.device_context(), &col, static_cast(0)); + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); + set_zero(dev_ctx, &col, static_cast(0)); - math::ContextProjectFunctor seq_project_functor; + math::ContextProjectFunctor seq_project_functor; - seq_project_functor(context.device_context(), *in, *padding_data, - padding_trainable, context_start, context_length, - context_stride, up_pad, down_pad, &col); + seq_project_functor(dev_ctx, *in, *padding_data, padding_trainable, + context_start, context_length, context_stride, up_pad, + down_pad, &col); - math::matmul(context.device_context(), col, false, filter, false, - static_cast(1.0), out, static_cast(0.0)); + math::matmul(dev_ctx, col, false, filter, false, + static_cast(1.0), out, + static_cast(0.0)); } }; -template +template class SequenceConvGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -95,7 +97,8 @@ class SequenceConvGradKernel : public framework::OpKernel { int down_pad = std::max(0, context_start + context_length - 1); int sequence_width = static_cast(in->dims()[1]); - math::SetConstant set_zero; + math::SetConstant set_zero; + auto& dev_ctx = context.template device_context(); // use col_shape in the im2col calculation framework::DDim col_shape = {in->dims()[0], sequence_width * context_length}; @@ -104,38 +107,36 @@ class SequenceConvGradKernel : public framework::OpKernel { if (in_g || filter_g || (padding_trainable && padding_data_g)) { col.mutable_data(col_shape, context.GetPlace()); // Because if padding_trainable is false, padding data should be zeros. - set_zero(context.device_context(), &col, static_cast(0)); - math::matmul(context.device_context(), *out_g, false, *filter, - true, T(1.0), &col, T(1.0)); + set_zero(dev_ctx, &col, static_cast(0)); + math::matmul(dev_ctx, *out_g, false, *filter, true, + T(1.0), &col, T(1.0)); } - math::ContextProjectFunctor seq_project_functor; - math::ContextProjectGradFunctor seq_project_grad_functor; + math::ContextProjectFunctor seq_project_functor; + math::ContextProjectGradFunctor seq_project_grad_functor; if (in_g) { in_g->mutable_data(context.GetPlace()); in_g->set_lod(in->lod()); - set_zero(context.device_context(), in_g, static_cast(0)); + set_zero(dev_ctx, in_g, static_cast(0)); - seq_project_grad_functor(context.device_context(), *in_g, - padding_trainable, context_start, context_length, - context_stride, up_pad, down_pad, false, true, - padding_data_g, &col); + seq_project_grad_functor(dev_ctx, *in_g, padding_trainable, context_start, + context_length, context_stride, up_pad, down_pad, + false, true, padding_data_g, &col); } if (padding_trainable && padding_data_g) { padding_data_g->mutable_data(context.GetPlace()); - set_zero(context.device_context(), padding_data_g, static_cast(0)); + set_zero(dev_ctx, padding_data_g, static_cast(0)); LoDTensor* input = const_cast(in); - seq_project_grad_functor(context.device_context(), *input, - padding_trainable, context_start, context_length, - context_stride, up_pad, down_pad, true, false, - padding_data_g, &col); + seq_project_grad_functor( + dev_ctx, *input, padding_trainable, context_start, context_length, + context_stride, up_pad, down_pad, true, false, padding_data_g, &col); } if (filter_g) { filter_g->mutable_data(context.GetPlace()); - set_zero(context.device_context(), filter_g, static_cast(0)); + set_zero(dev_ctx, filter_g, static_cast(0)); Tensor filter_grad = *filter_g; LoDTensor out_grad = *out_g; @@ -145,12 +146,12 @@ class SequenceConvGradKernel : public framework::OpKernel { padding_data = context.Input("PaddingData"); } - seq_project_functor(context.device_context(), *in, *padding_data, - padding_trainable, context_start, context_length, - context_stride, up_pad, down_pad, &col); + seq_project_functor(dev_ctx, *in, *padding_data, padding_trainable, + context_start, context_length, context_stride, up_pad, + down_pad, &col); - math::matmul(context.device_context(), col, true, out_grad, - false, T(1.0), &filter_grad, T(1.0)); + math::matmul(dev_ctx, col, true, out_grad, false, + T(1.0), &filter_grad, T(1.0)); } } }; diff --git a/paddle/operators/seq_expand_op.cc b/paddle/operators/sequence_expand_op.cc similarity index 82% rename from paddle/operators/seq_expand_op.cc rename to paddle/operators/sequence_expand_op.cc index b862056ad400290a60e8a75a23dceeb1d4422ea4..6227408be0529e63318bddcf6fa4f1927bb05eca 100644 --- a/paddle/operators/seq_expand_op.cc +++ b/paddle/operators/sequence_expand_op.cc @@ -12,14 +12,14 @@ See the License for the specific language governing permissions and limitations under the License. */ -#include "paddle/operators/seq_expand_op.h" +#include "paddle/operators/sequence_expand_op.h" namespace paddle { namespace operators { using framework::Tensor; -class SeqExpandOp : public framework::OperatorWithKernel { +class SequenceExpandOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; @@ -35,25 +35,24 @@ class SeqExpandOp : public framework::OperatorWithKernel { } }; -class SeqExpandOpMaker : public framework::OpProtoAndCheckerMaker { +class SequenceExpandOpMaker : public framework::OpProtoAndCheckerMaker { public: - SeqExpandOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceExpandOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor or LoDTensor) The input(X) of this operator can be a " "LoDTensor or a base Tensor."); AddInput("Y", - "(LoDTensor)The reference input(Y) of seq_expand op." + "(LoDTensor)The reference input(Y) of sequence_expand op." "It must be a LoDTensor with k-level(k>0)." "The input(X) will be expanded according to LOD of input(Y)." "The element numbers of last level in input(Y) " "must be equal to dims[0] of input(X)."); AddOutput("Out", - "(LodTensor)The output of seq_expand op." + "(LodTensor)The output of sequence_expand op." "The lod of output will be as same as input(Y)'s lod."); AddComment(R"DOC( -Seq Expand Operator. +Sequence Expand Operator. This operator expands input(X) according to LOD of input(Y). Following are cases to better explain how this works: @@ -124,7 +123,7 @@ then we get 2-level LoDTensor } }; -class SeqExpandOpGrad : public framework::OperatorWithKernel { +class SequenceExpandOpGrad : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; @@ -146,10 +145,11 @@ class SeqExpandOpGrad : public framework::OperatorWithKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP(seq_expand, ops::SeqExpandOp, ops::SeqExpandOpMaker, - seq_expand_grad, ops::SeqExpandOpGrad); -REGISTER_OP_CPU_KERNEL(seq_expand, - ops::SeqExpandKernel); +REGISTER_OP(sequence_expand, ops::SequenceExpandOp, ops::SequenceExpandOpMaker, + sequence_expand_grad, ops::SequenceExpandOpGrad); REGISTER_OP_CPU_KERNEL( - seq_expand_grad, - ops::SeqExpandGradKernel); + sequence_expand, + ops::SequenceExpandKernel); +REGISTER_OP_CPU_KERNEL( + sequence_expand_grad, + ops::SequenceExpandGradKernel); diff --git a/paddle/operators/sequence_expand_op.cu b/paddle/operators/sequence_expand_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..f79c84dff8bf4f0e97f89d5c8bb23655abd73d46 --- /dev/null +++ b/paddle/operators/sequence_expand_op.cu @@ -0,0 +1,24 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. */ + +#define EIGEN_USE_GPU +#include "paddle/operators/sequence_expand_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + sequence_expand, + ops::SequenceExpandKernel); +REGISTER_OP_CUDA_KERNEL( + sequence_expand_grad, + ops::SequenceExpandGradKernel); diff --git a/paddle/operators/seq_expand_op.h b/paddle/operators/sequence_expand_op.h similarity index 87% rename from paddle/operators/seq_expand_op.h rename to paddle/operators/sequence_expand_op.h index 4ef0d02cf85c43e95335660be65a67df66b4f55c..411b819c6563ec95b87881082caef5f5eb471d3b 100644 --- a/paddle/operators/seq_expand_op.h +++ b/paddle/operators/sequence_expand_op.h @@ -23,8 +23,8 @@ namespace operators { using LoDTensor = framework::LoDTensor; -template -class SeqExpandKernel : public framework::OpKernel { +template +class SequenceExpandKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* x = context.Input("X"); @@ -37,7 +37,8 @@ class SeqExpandKernel : public framework::OpKernel { "The size of last lod level in Input(Y)" "must be equal to dims[0] of Input(X)."); out->set_lod(y->lod()); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); size_t element_len = framework::product(x_dims) / x_dims[0]; T* out_data = out->mutable_data(context.GetPlace()); auto out_starts = out->lod().back(); @@ -50,7 +51,7 @@ class SeqExpandKernel : public framework::OpKernel { Eigen::TensorMap> out_t(out_data, scale, element_len); Eigen::array cast({{scale, 1}}); - out_t.device(place) = x_t.broadcast(cast); + out_t.device(*place) = x_t.broadcast(cast); x_data += element_len; out_data += element_len * scale; } @@ -69,8 +70,8 @@ class SeqExpandKernel : public framework::OpKernel { * Grad(X).lod = Input(X).lod * * */ -template -class SeqExpandGradKernel : public framework::OpKernel { +template +class SequenceExpandGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* d_out = context.Input(framework::GradVarName("Out")); @@ -89,8 +90,9 @@ class SeqExpandGradKernel : public framework::OpKernel { d_out_t(d_out_data, static_cast(repeat), element_len); Eigen::TensorMap> d_x_t(d_x_data, static_cast(element_len)); - auto place = context.GetEigenDevice(); - d_x_t.device(place) = d_out_t.sum(Eigen::array({{0}})); + auto place = + context.template device_context().eigen_device(); + d_x_t.device(*place) = d_out_t.sum(Eigen::array({{0}})); d_out_data += (repeat * element_len); d_x_data += element_len; } diff --git a/paddle/operators/sequence_pool_op.cc b/paddle/operators/sequence_pool_op.cc index 2a000ac60b176737277605c3ac812ea65a0e03fc..0eb675caaddf1274a941cbfe29017cb9ea11f40f 100644 --- a/paddle/operators/sequence_pool_op.cc +++ b/paddle/operators/sequence_pool_op.cc @@ -37,8 +37,7 @@ class SequencePoolOp : public framework::OperatorWithKernel { class SequencePoolOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequencePoolOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequencePoolOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) The variable-length input of SequencePoolOp"); AddOutput("Out", @@ -58,12 +57,12 @@ Sequence Pool Operator. The SequencePoolOp pools features of all time-steps of each instance. It supports six pooling types: -1. AVERAGE: Out[i] = $$avg(X_i)$$ -2. SUM: Out[i] = $$\sum_jX_{ij}$$ -3. SQRT: Out[i] = $$\frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$ +1. AVERAGE: $$Out[i] = \frac{\sum_i X_i}{N}$$ +2. SUM: $$Out[i] = \sum_jX_{ij}$$ +3. SQRT: $$Out[i] = \frac{\sum_jX_{ij}}{\sqrt{len(X_i)}}$$ 4. LAST: Out[i] = last instance in i-th sequence X[i] 5. FIRST: Out[i] = first instance in i-th sequence X[i] -6. MAX: Out[i] = $$max(X_i)$$ +6. MAX: $$Out[i] = max(X_i)$$ The following example explains how this works: For a mini-batch of 3 variable-length sentences, @@ -104,6 +103,7 @@ class SequencePoolGradOp : public framework::OperatorWithKernel { PADDLE_ENFORCE_EQ(og_dims[i], x_dims[i], "The dimension mismatch."); } ctx->SetOutputDim(framework::GradVarName("X"), x_dims); + ctx->ShareLoD("X", framework::GradVarName("X")); } protected: @@ -122,7 +122,8 @@ namespace ops = paddle::operators; REGISTER_OP(sequence_pool, ops::SequencePoolOp, ops::SequencePoolOpMaker, sequence_pool_grad, ops::SequencePoolGradOp); REGISTER_OP_CPU_KERNEL( - sequence_pool, ops::SequencePoolKernel); + sequence_pool, + ops::SequencePoolKernel); REGISTER_OP_CPU_KERNEL( sequence_pool_grad, - ops::SequencePoolGradKernel); + ops::SequencePoolGradKernel); diff --git a/paddle/operators/sequence_pool_op.cu b/paddle/operators/sequence_pool_op.cu index 66850772d501f873cf754205c19e9d0c0090370a..fcd65084353744dc836ff1dc5a3aa4b03a205130 100644 --- a/paddle/operators/sequence_pool_op.cu +++ b/paddle/operators/sequence_pool_op.cu @@ -17,8 +17,9 @@ #include "paddle/operators/sequence_pool_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - sequence_pool, ops::SequencePoolKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + sequence_pool, + ops::SequencePoolKernel); +REGISTER_OP_CUDA_KERNEL( sequence_pool_grad, - ops::SequencePoolGradKernel); + ops::SequencePoolGradKernel); diff --git a/paddle/operators/sequence_pool_op.h b/paddle/operators/sequence_pool_op.h index 7f136d8cf0e1eaae7b4de32988b60ae8a5034cc6..7519aa1d7208b9832f7a3d3afbc59a2eb4e8e13a 100644 --- a/paddle/operators/sequence_pool_op.h +++ b/paddle/operators/sequence_pool_op.h @@ -30,7 +30,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class SequencePoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -54,17 +54,18 @@ class SequencePoolKernel : public framework::OpKernel { auto lod_level_0 = lod[0]; out->mutable_data(context.GetPlace()); - + auto& dev_ctx = context.template device_context(); if (pooltype == "MAX") { - math::MaxSeqPoolFunctor max_pool; + math::MaxSeqPoolFunctor max_pool; auto* index = context.Output("MaxIndex"); index->Resize({dims}); index->mutable_data(context.GetPlace()); - max_pool(context.device_context(), *in, out, index); + max_pool(dev_ctx, *in, out, index); return; } - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { Tensor in_t = in->Slice(static_cast(lod_level_0[i]), static_cast(lod_level_0[i + 1])); @@ -91,7 +92,7 @@ class SequencePoolKernel : public framework::OpKernel { } }; -template +template class SequencePoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -105,20 +106,23 @@ class SequencePoolGradKernel : public framework::OpKernel { int64_t w = in->numel() / dims[0]; in_g->mutable_data(context.GetPlace()); + auto& dev_ctx = context.template device_context(); if (pooltype == "MAX") { - math::MaxSeqPoolGradFunctor max_pool_grad; + math::MaxSeqPoolGradFunctor max_pool_grad; auto* index = context.Input("MaxIndex"); - max_pool_grad(context.device_context(), *out_g, *index, in_g); + max_pool_grad(dev_ctx, *out_g, *index, in_g); return; } if (pooltype == "LAST" || pooltype == "FIRST") { // set X@Grad be zero at first when pooltype is LAST/FIRST - math::SetConstant functor; - functor(context.device_context(), in_g, 0); + math::SetConstant functor; + functor(dev_ctx, in_g, 0); } - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); + for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { auto in_g_t = in_g->Slice(static_cast(lod[i]), static_cast(lod[i + 1])); diff --git a/paddle/operators/sequence_slice_op.cc b/paddle/operators/sequence_slice_op.cc index 255683a572c0e8d54791cb0c905d85239920d992..309ee1f3a82c35104db74084c4ef761bd4b06695 100644 --- a/paddle/operators/sequence_slice_op.cc +++ b/paddle/operators/sequence_slice_op.cc @@ -79,8 +79,7 @@ class SequenceSliceGradOp : public framework::OperatorWithKernel { class SequenceSliceOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequenceSliceOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceSliceOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor), " @@ -125,7 +124,7 @@ REGISTER_OP(sequence_slice, ops::SequenceSliceOp, ops::SequenceSliceOpMaker, sequence_slice_grad, ops::SequenceSliceGradOp); REGISTER_OP_CPU_KERNEL( sequence_slice, - ops::SequenceSliceOpKernel); + ops::SequenceSliceOpKernel); REGISTER_OP_CPU_KERNEL( sequence_slice_grad, - ops::SequenceSliceGradOpKernel); + ops::SequenceSliceGradOpKernel); diff --git a/paddle/operators/sequence_slice_op.cu b/paddle/operators/sequence_slice_op.cu index a9f59dadba74d900fa5cc0601fb5b264ea19e34d..43a21d619f4116874c329eb968f09dc230975c05 100755 --- a/paddle/operators/sequence_slice_op.cu +++ b/paddle/operators/sequence_slice_op.cu @@ -15,9 +15,9 @@ limitations under the License. */ #include "paddle/operators/sequence_slice_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( sequence_slice, - ops::SequenceSliceOpKernel); -REGISTER_OP_GPU_KERNEL( + ops::SequenceSliceOpKernel); +REGISTER_OP_CUDA_KERNEL( sequence_slice_grad, - ops::SequenceSliceGradOpKernel); + ops::SequenceSliceGradOpKernel); diff --git a/paddle/operators/sequence_slice_op.h b/paddle/operators/sequence_slice_op.h index 428ef556daa248a918f58dde608dc024144e773c..14bcaebbb402cb47507f1bf60035bc2d37f9baf7 100644 --- a/paddle/operators/sequence_slice_op.h +++ b/paddle/operators/sequence_slice_op.h @@ -39,7 +39,7 @@ inline LoD SequenceSliceLoD(const T& in, const int64_t* offset_data, return out_lod; } -template +template class SequenceSliceOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -108,7 +108,7 @@ class SequenceSliceOpKernel : public framework::OpKernel { } }; -template +template class SequenceSliceGradOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -143,8 +143,9 @@ class SequenceSliceGradOpKernel : public framework::OpKernel { if (x_grad) { x_grad->mutable_data(ctx.GetPlace()); x_grad->set_lod(in->lod()); - math::SetConstant set_zero; - set_zero(ctx.device_context(), x_grad, static_cast(0)); + math::SetConstant set_zero; + set_zero(ctx.template device_context(), x_grad, + static_cast(0)); auto out_grad_stride = framework::stride(out_grad->dims()); diff --git a/paddle/operators/sequence_softmax_op.cc b/paddle/operators/sequence_softmax_op.cc index 32c15025660ebf0baf317e269a33c047e6844219..b74766f012e333cc2a317e6efe17c5b60238924a 100644 --- a/paddle/operators/sequence_softmax_op.cc +++ b/paddle/operators/sequence_softmax_op.cc @@ -33,8 +33,7 @@ class SequenceSoftmaxOp : public framework::OperatorWithKernel { class SequenceSoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { public: - SequenceSoftmaxOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SequenceSoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) 1-D or 2-D input LoDTensor with the 2-nd dimension " @@ -51,10 +50,14 @@ input Tensor can be either [N, 1] or [N], where N is the sum of the length of all sequences. The algorithm works as follows: + for i-th sequence in a mini-batch: - $$Out(X[lod[i]:lod[i+1]], :) = - \frac{\exp(X[lod[i]:lod[i+1], :])} - {\sum(\exp(X[lod[i]:lod[i+1], :]))}$$ + +$$ +Out(X[lod[i]:lod[i+1]], :) = \ +\frac{\exp(X[lod[i]:lod[i+1], :])} \ +{\sum(\exp(X[lod[i]:lod[i+1], :]))} +$$ For example, for a mini-batch of 3 sequences with variable-length, each containing 2, 3, 2 time-steps, the lod of which is [0, 2, 5, 7], @@ -99,7 +102,7 @@ REGISTER_OP(sequence_softmax, ops::SequenceSoftmaxOp, ops::SequenceSoftmaxGradOp); REGISTER_OP_CPU_KERNEL( sequence_softmax, - ops::SequenceSoftmaxKernel); + ops::SequenceSoftmaxKernel); REGISTER_OP_CPU_KERNEL( sequence_softmax_grad, - ops::SequenceSoftmaxGradKernel); + ops::SequenceSoftmaxGradKernel); diff --git a/paddle/operators/sequence_softmax_op.cu.cc b/paddle/operators/sequence_softmax_op.cu.cc index 7023795a3b5777c250a9323a304a54849d763e9e..5f65b4daf97cf025b975d2d95212375b5fca01f8 100644 --- a/paddle/operators/sequence_softmax_op.cu.cc +++ b/paddle/operators/sequence_softmax_op.cu.cc @@ -15,9 +15,9 @@ limitations under the License. */ #include "paddle/operators/sequence_softmax_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( sequence_softmax, - ops::SequenceSoftmaxKernel) -REGISTER_OP_GPU_KERNEL( + ops::SequenceSoftmaxKernel) +REGISTER_OP_CUDA_KERNEL( sequence_softmax_grad, - ops::SequenceSoftmaxGradKernel); + ops::SequenceSoftmaxGradKernel); diff --git a/paddle/operators/sequence_softmax_op.h b/paddle/operators/sequence_softmax_op.h index 1b68dd0662ddfffc57b187945fe131e202c55174..e889e88cb34719b6648e3032754645fbb2807741 100644 --- a/paddle/operators/sequence_softmax_op.h +++ b/paddle/operators/sequence_softmax_op.h @@ -23,7 +23,7 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template +template class SequenceSoftmaxKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -52,12 +52,13 @@ class SequenceSoftmaxKernel : public framework::OpKernel { framework::DDim dims_i = framework::make_ddim({1UL, end_pos - start_pos}); x_i.Resize(dims_i); out_i.Resize(dims_i); - math::SoftmaxFunctor()(ctx.device_context(), &x_i, &out_i); + math::SoftmaxFunctor()( + ctx.template device_context(), &x_i, &out_i); } } }; -template +template class SequenceSoftmaxGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -83,8 +84,9 @@ class SequenceSoftmaxGradKernel : public framework::OpKernel { out_i.Resize(dims_i); out_grad_i.Resize(dims_i); x_grad_i.Resize(dims_i); - math::SoftmaxGradFunctor()(ctx.device_context(), &out_i, - &out_grad_i, &x_grad_i); + math::SoftmaxGradFunctor()( + ctx.template device_context(), &out_i, &out_grad_i, + &x_grad_i); } } }; diff --git a/paddle/operators/sgd_op.cc b/paddle/operators/sgd_op.cc index 5576d7b8be060a3c58cb18ed667041562cf853b8..fb4b43e472f86f2fa30a7013731c4621cb2b3e0e 100644 --- a/paddle/operators/sgd_op.cc +++ b/paddle/operators/sgd_op.cc @@ -43,7 +43,7 @@ class SGDOp : public framework::OperatorWithKernel { class SGDOpMaker : public framework::OpProtoAndCheckerMaker { public: - SGDOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + SGDOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Param", "(Tensor) Input parameter"); AddInput("LearningRate", "(Tensor) Learning rate of SGD"); @@ -62,8 +62,8 @@ $$param\_out = param - learning\_rate * grad$$ }; template -struct SparseSGDFunctor { - void operator()(const platform::DeviceContext& context, +struct SparseSGDFunctor { + void operator()(const platform::CPUDeviceContext& context, const framework::SelectedRows& input, const framework::Tensor& learning_rate, framework::Tensor* output) { @@ -90,13 +90,14 @@ struct SparseSGDFunctor { } }; -template struct SparseSGDFunctor; -template struct SparseSGDFunctor; +template struct SparseSGDFunctor; +template struct SparseSGDFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_WITHOUT_GRADIENT(sgd, ops::SGDOp, ops::SGDOpMaker); -REGISTER_OP_CPU_KERNEL(sgd, ops::SGDOpKernel, - ops::SGDOpKernel); +REGISTER_OP_CPU_KERNEL( + sgd, ops::SGDOpKernel, + ops::SGDOpKernel); diff --git a/paddle/operators/sgd_op.cu b/paddle/operators/sgd_op.cu index 7b6c5ec30628b521b594ceaa3b7f1e0e03e497e4..a3c0db7e50ecaabd6d4b83c43e5436e6be491676 100644 --- a/paddle/operators/sgd_op.cu +++ b/paddle/operators/sgd_op.cu @@ -41,8 +41,8 @@ __global__ void SparseSGDFunctorKernel(const T* selected_rows, } // namespace template -struct SparseSGDFunctor { - void operator()(const platform::DeviceContext& context, +struct SparseSGDFunctor { + void operator()(const platform::CUDADeviceContext& context, const framework::SelectedRows& input, const framework::Tensor& learning_rate, framework::Tensor* output) { @@ -62,21 +62,19 @@ struct SparseSGDFunctor { const int block_size = 256; dim3 threads(block_size, 1); dim3 grid(1, in_rows.size()); - SparseSGDFunctorKernel< - T, 256><<(context) - .stream()>>>(in_data, in_rows.data(), - learning_rate.data(), out_data, - in_row_numel); + SparseSGDFunctorKernel<<>>( + in_data, in_rows.data(), learning_rate.data(), out_data, + in_row_numel); } }; -template struct SparseSGDFunctor; -template struct SparseSGDFunctor; +template struct SparseSGDFunctor; +template struct SparseSGDFunctor; } // namespace operators } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(sgd, ops::SGDOpKernel, - ops::SGDOpKernel); +REGISTER_OP_CUDA_KERNEL( + sgd, ops::SGDOpKernel, + ops::SGDOpKernel); diff --git a/paddle/operators/sgd_op.h b/paddle/operators/sgd_op.h index 78b595fc6c63d775b627f23cafa9458f1dadd4e5..c920025a91cd0b68019bcb05558398093f31e206 100644 --- a/paddle/operators/sgd_op.h +++ b/paddle/operators/sgd_op.h @@ -20,15 +20,15 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template struct SparseSGDFunctor { - void operator()(const platform::DeviceContext& context, + void operator()(const DeviceContext& context, const framework::SelectedRows& input, const framework::Tensor& learning_rate, framework::Tensor* output); }; -template +template class SGDOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { @@ -46,7 +46,8 @@ class SGDOpKernel : public framework::OpKernel { auto g = framework::EigenVector::Flatten(*grad); auto o = framework::EigenVector::Flatten(*param_out); auto lr = framework::EigenVector::Flatten(*learning_rate); - auto place = ctx.GetEigenDevice(); + auto& place = + *ctx.template device_context().eigen_device(); Eigen::DSizes grad_dsize(grad->numel()); o.device(place) = p - lr.broadcast(grad_dsize) * g; @@ -56,8 +57,9 @@ class SGDOpKernel : public framework::OpKernel { // It's better to find a more elegant solution. PADDLE_ENFORCE_EQ(param, param_out); auto* grad = ctx.Input("Grad"); - SparseSGDFunctor functor; - functor(ctx.device_context(), *grad, *learning_rate, param_out); + SparseSGDFunctor functor; + functor(ctx.template device_context(), *grad, + *learning_rate, param_out); } else { PADDLE_THROW("Unsupported Variable Type of Grad"); } diff --git a/paddle/operators/shrink_rnn_memory_op.cc b/paddle/operators/shrink_rnn_memory_op.cc index c380e606869fd2c559c7d5f378857ca74fa8d8d3..48194a547bbea5ddda7c5f3e2421431d1d81042d 100644 --- a/paddle/operators/shrink_rnn_memory_op.cc +++ b/paddle/operators/shrink_rnn_memory_op.cc @@ -54,8 +54,7 @@ class ShrinkRNNMemoryOp : public ArrayOp { class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - ShrinkRNNMemoryOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ShrinkRNNMemoryOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) The RNN step memory to be shrinked."); AddInput("RankTable", "(LoDRankTable) The lod_rank_table of dynamic RNN."); @@ -137,14 +136,14 @@ class ShrinkRNNGradOpMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *op = new framework::OpDesc(); op->SetType("shrink_rnn_memory_grad"); op->SetInput("X", Input("X")); op->SetInput(framework::GradVarName("Out"), OutputGrad("Out")); op->SetOutput(framework::GradVarName("X"), InputGrad("X")); op->SetAttrMap(Attrs()); - return std::unique_ptr(op); + return std::unique_ptr(op); } }; diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc index 782f4c79361b3255cc686ec3b1edf31ce37f5a2d..9b5227d92d1cfd7d6ac7e28186fbba6d887475b1 100644 --- a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cc @@ -86,8 +86,8 @@ class SigmoidCrossEntropyWithLogitsGradOp class SigmoidCrossEntropyWithLogitsOpMaker : public framework::OpProtoAndCheckerMaker { public: - SigmoidCrossEntropyWithLogitsOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SigmoidCrossEntropyWithLogitsOpMaker(OpProto* proto, + OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor, default Tensor), a 2-D tensor with shape N x D, " @@ -142,7 +142,7 @@ REGISTER_OP(sigmoid_cross_entropy_with_logits, ops::SigmoidCrossEntropyWithLogitsGradOp); REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits, ops::SigmoidCrossEntropyWithLogitsKernel< - paddle::platform::CPUPlace, float>); + paddle::platform::CPUDeviceContext, float>); REGISTER_OP_CPU_KERNEL(sigmoid_cross_entropy_with_logits_grad, ops::SigmoidCrossEntropyWithLogitsGradKernel< - paddle::platform::CPUPlace, float>); + paddle::platform::CPUDeviceContext, float>); diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu index 32a39956a14a206373b7b4c141dad19577d171f0..1b569c93ed9568a26824defef0d25bb1c3dadad4 100644 --- a/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.cu @@ -16,9 +16,9 @@ #include "paddle/operators/sigmoid_cross_entropy_with_logits_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(sigmoid_cross_entropy_with_logits, - ops::SigmoidCrossEntropyWithLogitsKernel< - paddle::platform::GPUPlace, float>); -REGISTER_OP_GPU_KERNEL(sigmoid_cross_entropy_with_logits_grad, - ops::SigmoidCrossEntropyWithLogitsGradKernel< - paddle::platform::GPUPlace, float>); +REGISTER_OP_CUDA_KERNEL(sigmoid_cross_entropy_with_logits, + ops::SigmoidCrossEntropyWithLogitsKernel< + paddle::platform::CUDADeviceContext, float>); +REGISTER_OP_CUDA_KERNEL(sigmoid_cross_entropy_with_logits_grad, + ops::SigmoidCrossEntropyWithLogitsGradKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/sigmoid_cross_entropy_with_logits_op.h b/paddle/operators/sigmoid_cross_entropy_with_logits_op.h index 2a9d9bbc77266c8ecfba82663c396bbd8e4dbe27..8fe7c5ba8224f8dac5de8d7ee772ebc71f987d69 100644 --- a/paddle/operators/sigmoid_cross_entropy_with_logits_op.h +++ b/paddle/operators/sigmoid_cross_entropy_with_logits_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { // Out = max(X, 0) - X * Labels + log(1 + exp(-abs(X))) -template +template class SigmoidCrossEntropyWithLogitsKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -32,7 +32,7 @@ class SigmoidCrossEntropyWithLogitsKernel : public framework::OpKernel { auto x = framework::EigenVector::Flatten(*X); auto labels = framework::EigenVector::Flatten(*Labels); auto out = framework::EigenVector::Flatten(*Out); - auto place = context.GetEigenDevice(); + auto &place = *context.device_context().eigen_device(); // term1 = max(x, 0) auto term1 = x.cwiseMax(static_cast(0)); @@ -46,7 +46,7 @@ class SigmoidCrossEntropyWithLogitsKernel : public framework::OpKernel { }; // dX = sigmoid(X) - labels -template +template class SigmoidCrossEntropyWithLogitsGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -62,7 +62,8 @@ class SigmoidCrossEntropyWithLogitsGradKernel : public framework::OpKernel { auto labels = framework::EigenVector::Flatten(*Labels); auto dout = framework::EigenVector::Flatten(*dOut); auto dx = framework::EigenVector::Flatten(*dX); - auto place = context.GetEigenDevice(); + auto &place = + *context.template device_context().eigen_device(); auto sigmoid_x = static_cast(1) / (static_cast(1) + (-x).exp()); dx.device(place) = dout * (sigmoid_x - labels); diff --git a/paddle/operators/sign_op.cc b/paddle/operators/sign_op.cc index 08bf2e4e7cc101a3bcc907d3b40ee82347b39f80..b2459fb2f53939b3131af1540044ce361b87d08a 100644 --- a/paddle/operators/sign_op.cc +++ b/paddle/operators/sign_op.cc @@ -34,7 +34,7 @@ class SignOp : public framework::OperatorWithKernel { template class SignOpMaker : public framework::OpProtoAndCheckerMaker { public: - SignOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SignOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input tensor of sign operator."); AddOutput("Out", "(Tensor) Output tensor of sign operator."); @@ -50,13 +50,13 @@ class SignGradMaker : public framework::SingleGradOpDescMaker { public: using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("scale"); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttr("scale", 0.0f); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -67,5 +67,5 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(sign, ops::SignOp, ops::SignOpMaker, ops::SignGradMaker); -REGISTER_OP_CPU_KERNEL(sign, - ops::SignKernel); +REGISTER_OP_CPU_KERNEL( + sign, ops::SignKernel); diff --git a/paddle/operators/sign_op.cu b/paddle/operators/sign_op.cu index 4d0638cb97d84bf650fb23e4d2a201adc51a4b68..9bc1c65d214ba8f988dec3b7b11da9e1ec3a6581 100644 --- a/paddle/operators/sign_op.cu +++ b/paddle/operators/sign_op.cu @@ -14,5 +14,6 @@ #include "paddle/operators/sign_op.h" -REGISTER_OP_GPU_KERNEL( - sign, paddle::operators::SignKernel); +REGISTER_OP_CUDA_KERNEL( + sign, + paddle::operators::SignKernel); diff --git a/paddle/operators/sign_op.h b/paddle/operators/sign_op.h index ab5cd4bac019d602c63ea51629fb85fa7e206841..2e476ed6658491b3dcec3cf1388ccc4a0813449c 100644 --- a/paddle/operators/sign_op.h +++ b/paddle/operators/sign_op.h @@ -19,7 +19,7 @@ namespace paddle { namespace operators { -template +template class SignKernel : public framework::OpKernel { public: virtual void Compute(const framework::ExecutionContext& context) const { @@ -29,7 +29,8 @@ class SignKernel : public framework::OpKernel { auto eigen_out = framework::EigenVector::Flatten(*out); auto eigen_in = framework::EigenVector::Flatten(*in); - auto& place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); eigen_out.device(place) = eigen_in.sign(); } }; diff --git a/paddle/operators/smooth_l1_loss_op.cc b/paddle/operators/smooth_l1_loss_op.cc index 50543fcc148698c42e15259ba20bdacdd50ac1af..42a53cfa06f7724000ff59c69504629890f6ec87 100644 --- a/paddle/operators/smooth_l1_loss_op.cc +++ b/paddle/operators/smooth_l1_loss_op.cc @@ -47,8 +47,7 @@ class SmoothL1LossOp : public framework::OperatorWithKernel { template class SmoothL1LossOpMaker : public framework::OpProtoAndCheckerMaker { public: - SmoothL1LossOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SmoothL1LossOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor, default Tensor) A tensor with rank at least 2. " @@ -138,7 +137,8 @@ REGISTER_OP(smooth_l1_loss, ops::SmoothL1LossOp, ops::SmoothL1LossOpMaker, smooth_l1_loss_grad, ops::SmoothL1LossGradOp); REGISTER_OP_CPU_KERNEL( - smooth_l1_loss, ops::SmoothL1LossKernel); + smooth_l1_loss, + ops::SmoothL1LossKernel); REGISTER_OP_CPU_KERNEL( smooth_l1_loss_grad, - ops::SmoothL1LossGradKernel); + ops::SmoothL1LossGradKernel); diff --git a/paddle/operators/smooth_l1_loss_op.cu b/paddle/operators/smooth_l1_loss_op.cu index 1c3172f43867741cd1f26979a366b2425f326321..8e94ebac644d1047920827250c4313c657b22ea0 100644 --- a/paddle/operators/smooth_l1_loss_op.cu +++ b/paddle/operators/smooth_l1_loss_op.cu @@ -17,8 +17,9 @@ #include "paddle/operators/smooth_l1_loss_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( - smooth_l1_loss, ops::SmoothL1LossKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + smooth_l1_loss, + ops::SmoothL1LossKernel); +REGISTER_OP_CUDA_KERNEL( smooth_l1_loss_grad, - ops::SmoothL1LossGradKernel); + ops::SmoothL1LossGradKernel); diff --git a/paddle/operators/smooth_l1_loss_op.h b/paddle/operators/smooth_l1_loss_op.h index 39d0070b6c8909b8f433de48038240e851d9d6cf..1a70c9c63c340d66b6bf0db97cc8ab35a663f816 100644 --- a/paddle/operators/smooth_l1_loss_op.h +++ b/paddle/operators/smooth_l1_loss_op.h @@ -44,7 +44,7 @@ struct SmoothL1LossForward { T sigma2; }; -template +template class SmoothL1LossKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -57,7 +57,8 @@ class SmoothL1LossKernel : public framework::OpKernel { out0->mutable_data(context.GetPlace()); out1->mutable_data(context.GetPlace()); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); auto sigma = static_cast(context.Attr("sigma")); T sigma2 = sigma * sigma; @@ -67,12 +68,12 @@ class SmoothL1LossKernel : public framework::OpKernel { auto y = EigenVector::Flatten(*in1); auto diff = EigenVector::Flatten(*out0); - diff.device(place) = x - y; + diff.device(*place) = x - y; // multiply inside weight if (has_weight) { auto inside_weight = EigenVector::Flatten(*in2); // cache diff, reused in bp - diff.device(place) = diff * inside_weight; + diff.device(*place) = diff * inside_weight; } auto in_counts = in0->numel(); @@ -81,12 +82,12 @@ class SmoothL1LossKernel : public framework::OpKernel { context.GetPlace()); auto errors = EigenVector::Flatten(ptensor_errors); // apply smooth l1 forward - errors.device(place) = diff.unaryExpr(SmoothL1LossForward(sigma2)); + errors.device(*place) = diff.unaryExpr(SmoothL1LossForward(sigma2)); // multiply outside weight if (has_weight) { auto outside_weight = EigenVector::Flatten(*in3); - errors.device(place) = errors * outside_weight; + errors.device(*place) = errors * outside_weight; } auto loss = EigenVector::Flatten(*out1); // first dimension of 'X' is the number of samples @@ -94,7 +95,7 @@ class SmoothL1LossKernel : public framework::OpKernel { framework::make_ddim({static_cast(in0->dims()[0]), static_cast(in_counts / in0->dims()[0])}); auto errors_mat_view = EigenMatrix::From(ptensor_errors, mat_dims); - loss.device(place) = errors_mat_view.sum(Eigen::array({{1}})); + loss.device(*place) = errors_mat_view.sum(Eigen::array({{1}})); } }; @@ -114,7 +115,7 @@ struct SmoothL1LossBackward { T sigma2; }; -template +template class SmoothL1LossGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -126,7 +127,8 @@ class SmoothL1LossGradKernel : public framework::OpKernel { T sigma2 = sigma * sigma; bool has_weight = (in0 != nullptr) && (in1 != nullptr); - auto place = context.GetEigenDevice(); + auto* place = + context.template device_context().eigen_device(); auto in_dims = in2->dims(); auto counts = in2->numel(); @@ -139,7 +141,7 @@ class SmoothL1LossGradKernel : public framework::OpKernel { context.GetPlace()); auto diff = EigenVector::Flatten(ptensor_diff); // apply smooth l1 backwoard - diff.device(place) = EigenVector::Flatten(*in2).unaryExpr( + diff.device(*place) = EigenVector::Flatten(*in2).unaryExpr( SmoothL1LossBackward(sigma2)); // compute weights @@ -147,11 +149,11 @@ class SmoothL1LossGradKernel : public framework::OpKernel { ptensor_weights.mutable_data(mat_dims, context.GetPlace()); auto weights = EigenMatrix::From(ptensor_weights); // initialize to 1.0 - weights.device(place) = weights.constant(static_cast(1.0)); + weights.device(*place) = weights.constant(static_cast(1.0)); if (has_weight) { auto inside_weight = EigenMatrix::From(*in0, mat_dims); auto outside_weight = EigenMatrix::From(*in1, mat_dims); - weights.device(place) = inside_weight * outside_weight; + weights.device(*place) = inside_weight * outside_weight; } // compute gradients @@ -167,13 +169,13 @@ class SmoothL1LossGradKernel : public framework::OpKernel { if (out0) { out0->mutable_data(context.GetPlace()); auto x_grad = EigenMatrix::From(*out0, mat_dims); - x_grad.device(place) = gradients; + x_grad.device(*place) = gradients; } if (out1) { out1->mutable_data(context.GetPlace()); auto y_grad = EigenMatrix::From(*out1, mat_dims); - y_grad.device(place) = -1 * gradients; + y_grad.device(*place) = -1 * gradients; } } }; diff --git a/paddle/operators/softmax_op.cc b/paddle/operators/softmax_op.cc index 93e0525badc26808f0dca70cc1153ac728f1fe9c..6b3f19bb46c45b7dd8ec6c23ee449521b36d759c 100644 --- a/paddle/operators/softmax_op.cc +++ b/paddle/operators/softmax_op.cc @@ -36,8 +36,7 @@ class SoftmaxOp : public framework::OperatorWithKernel { class SoftmaxOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftmaxOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SoftmaxOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input tensor of softmax. " @@ -89,7 +88,8 @@ namespace ops = paddle::operators; REGISTER_OP(softmax, ops::SoftmaxOp, ops::SoftmaxOpMaker, softmax_grad, ops::SoftmaxOpGrad); -REGISTER_OP_CPU_KERNEL(softmax, - ops::SoftmaxKernel); REGISTER_OP_CPU_KERNEL( - softmax_grad, ops::SoftmaxGradKernel); + softmax, ops::SoftmaxKernel); +REGISTER_OP_CPU_KERNEL( + softmax_grad, + ops::SoftmaxGradKernel); diff --git a/paddle/operators/softmax_op.cu.cc b/paddle/operators/softmax_op.cu.cc index 013ace19ae3d4a1af29b570ba33fea3e4595fe5b..7b9882cbcfe1a0381541386f76867c6bb0f1fe55 100644 --- a/paddle/operators/softmax_op.cu.cc +++ b/paddle/operators/softmax_op.cu.cc @@ -16,7 +16,8 @@ namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(softmax, - ops::SoftmaxKernel); -REGISTER_OP_GPU_KERNEL( - softmax_grad, ops::SoftmaxGradKernel); +REGISTER_OP_CUDA_KERNEL( + softmax, ops::SoftmaxKernel); +REGISTER_OP_CUDA_KERNEL( + softmax_grad, + ops::SoftmaxGradKernel); diff --git a/paddle/operators/softmax_op.h b/paddle/operators/softmax_op.h index 44d1e63f1bb4798144218cd1caf01f133825bcff..0f8998b99e93b5ed6c9b43ad7adabc2d515c1ff1 100644 --- a/paddle/operators/softmax_op.h +++ b/paddle/operators/softmax_op.h @@ -21,7 +21,7 @@ namespace operators { using Tensor = framework::Tensor; -template +template class SoftmaxKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -31,11 +31,12 @@ class SoftmaxKernel : public framework::OpKernel { // allocate memory on device. Y->mutable_data(context.GetPlace()); - math::SoftmaxFunctor()(context.device_context(), X, Y); + math::SoftmaxFunctor()( + context.template device_context(), X, Y); } }; -template +template class SoftmaxGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -46,7 +47,8 @@ class SoftmaxGradKernel : public framework::OpKernel { // allocate memory on device. dX->mutable_data(context.GetPlace()); - math::SoftmaxGradFunctor()(context.device_context(), Y, dY, dX); + math::SoftmaxGradFunctor()( + context.template device_context(), Y, dY, dX); } }; diff --git a/paddle/operators/softmax_with_cross_entropy_op.cc b/paddle/operators/softmax_with_cross_entropy_op.cc index fc027d6f95cdbc24af59ef1188b6f16f6a93e85c..d9911a6901447d8900c3881a60c7a0852dcbf429 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cc +++ b/paddle/operators/softmax_with_cross_entropy_op.cc @@ -13,7 +13,6 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/operators/softmax_with_cross_entropy_op.h" -#include namespace paddle { namespace operators { @@ -21,8 +20,7 @@ namespace operators { class SoftmaxWithCrossEntropyOpMaker : public framework::OpProtoAndCheckerMaker { public: - SoftmaxWithCrossEntropyOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SoftmaxWithCrossEntropyOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("Logits", "(Tensor, default: Tensor), The unscaled log probabilities " @@ -175,8 +173,8 @@ class SoftmaxGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto* grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto* grad_op = new framework::OpDesc(); grad_op->SetType("softmax_with_cross_entropy_grad"); grad_op->SetInput("Label", Input("Label")); grad_op->SetInput("Softmax", Output("Softmax")); @@ -185,7 +183,7 @@ class SoftmaxGradMaker : public framework::SingleGradOpDescMaker { grad_op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss")); grad_op->SetOutput(framework::GradVarName("Logits"), InputGrad("Logits")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/softmax_with_cross_entropy_op.cu b/paddle/operators/softmax_with_cross_entropy_op.cu index b1faddac3fd21aaf817caf9d3e57e664f4e0e2d5..6100c63f9aba006d9739173a8a5a2fb398187e55 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.cu +++ b/paddle/operators/softmax_with_cross_entropy_op.cu @@ -69,10 +69,10 @@ class SoftmaxWithCrossEntropyCUDAKernel : public framework::OpKernel { softmax->mutable_data(context.GetPlace()); loss->mutable_data(context.GetPlace()); - math::SoftmaxFunctor()(context.device_context(), - logits, softmax); - math::CrossEntropyFunctor()( - context.device_context(), loss, softmax, labels, + math::SoftmaxFunctor()( + context.cuda_device_context(), logits, softmax); + math::CrossEntropyFunctor()( + context.cuda_device_context(), loss, softmax, labels, context.Attr("soft_label")); } }; @@ -98,18 +98,18 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { if (context.Attr("soft_label")) { const T* label_data = labels->data(); - SoftCrossEntropyGradientKernel<<< - grid, block, 0, reinterpret_cast( - context.device_context()) - .stream()>>>(logit_grad_data, loss_grad_data, - label_data, batch_size, class_num); + SoftCrossEntropyGradientKernel< + T><<() + .stream()>>>(logit_grad_data, loss_grad_data, label_data, + batch_size, class_num); } else { const int64_t* label_data = labels->data(); - CrossEntropyGrad<<< - grid, block, 0, reinterpret_cast( - context.device_context()) - .stream()>>>(logit_grad_data, loss_grad_data, - label_data, batch_size, class_num); + CrossEntropyGrad< + T><<() + .stream()>>>(logit_grad_data, loss_grad_data, label_data, + batch_size, class_num); } } }; @@ -118,9 +118,9 @@ class SoftmaxWithCrossEntropyGradCUDAKernel : public framework::OpKernel { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(softmax_with_cross_entropy, - ops::SoftmaxWithCrossEntropyCUDAKernel, - ops::SoftmaxWithCrossEntropyCUDAKernel); -REGISTER_OP_GPU_KERNEL(softmax_with_cross_entropy_grad, - ops::SoftmaxWithCrossEntropyGradCUDAKernel, - ops::SoftmaxWithCrossEntropyGradCUDAKernel); +REGISTER_OP_CUDA_KERNEL(softmax_with_cross_entropy, + ops::SoftmaxWithCrossEntropyCUDAKernel, + ops::SoftmaxWithCrossEntropyCUDAKernel); +REGISTER_OP_CUDA_KERNEL(softmax_with_cross_entropy_grad, + ops::SoftmaxWithCrossEntropyGradCUDAKernel, + ops::SoftmaxWithCrossEntropyGradCUDAKernel); diff --git a/paddle/operators/softmax_with_cross_entropy_op.h b/paddle/operators/softmax_with_cross_entropy_op.h index c4ab3f74b4b07d13957d99e01aa4868fac719f61..9c3431605b2f2285b2e7d71c5ff2f4a53c6c6f30 100644 --- a/paddle/operators/softmax_with_cross_entropy_op.h +++ b/paddle/operators/softmax_with_cross_entropy_op.h @@ -40,11 +40,12 @@ class SoftmaxWithCrossEntropyKernel : public framework::OpKernel { softmax->mutable_data(context.GetPlace()); loss->mutable_data(context.GetPlace()); - math::SoftmaxFunctor()(context.device_context(), - logits, softmax); - math::CrossEntropyFunctor()( - context.device_context(), loss, softmax, labels, - context.Attr("soft_label")); + auto& dev_ctx = + context.template device_context(); + math::SoftmaxFunctor()(dev_ctx, logits, + softmax); + math::CrossEntropyFunctor()( + dev_ctx, loss, softmax, labels, context.Attr("soft_label")); } }; @@ -62,14 +63,15 @@ class SoftmaxWithCrossEntropyGradKernel : public framework::OpKernel { const int class_num = logit_grad->dims()[1]; auto out_grad_mat = EigenMatrix::From(*out_grad); auto logit_grad_mat = EigenMatrix::From(*logit_grad); - + auto& place = *context.template device_context() + .eigen_device(); if (context.Attr("soft_label")) { auto lbl_mat = EigenMatrix::From(*labels); - logit_grad_mat.device(context.GetEigenDevice()) = + logit_grad_mat.device(place) = out_grad_mat.broadcast(Eigen::DSizes(1, class_num)) * (logit_grad_mat - lbl_mat); } else { - logit_grad_mat.device(context.GetEigenDevice()) = + logit_grad_mat.device(place) = logit_grad_mat * out_grad_mat.broadcast(Eigen::DSizes(1, class_num)); diff --git a/paddle/operators/split_lod_tensor_op.cc b/paddle/operators/split_lod_tensor_op.cc index f164a4771186635232fea46327ca1fb8b86f2852..3542d8624fec49f75314f046434cbcadf307497e 100644 --- a/paddle/operators/split_lod_tensor_op.cc +++ b/paddle/operators/split_lod_tensor_op.cc @@ -118,8 +118,7 @@ class SplitLoDTensorOp : public framework::OperatorBase { class SplitLoDTensorOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - SplitLoDTensorOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + SplitLoDTensorOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "The input LoDTensor"); AddInput("Mask", "A bool column vector which mask the input"); @@ -164,8 +163,8 @@ class SplitLoDTensorArrayGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("merge_lod_tensor"); grad_op->SetInput("InTrue", OutputGrad("OutTrue")); grad_op->SetInput("InFalse", OutputGrad("OutFalse")); @@ -173,7 +172,7 @@ class SplitLoDTensorArrayGradMaker : public framework::SingleGradOpDescMaker { grad_op->SetInput("X", Input("X")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/split_op.cc b/paddle/operators/split_op.cc index 275b25e96aa75fdbcb7275e272c49ea8d278d2c8..4dfae043cb1091c9491d89aec4d1415d4741e013 100644 --- a/paddle/operators/split_op.cc +++ b/paddle/operators/split_op.cc @@ -65,7 +65,7 @@ class SplitOp : public framework::OperatorWithKernel { class SplitOpMaker : public framework::OpProtoAndCheckerMaker { public: - SplitOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + SplitOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input tensor of the split operator."); AddOutput("Out", "(Tensor) Output tensors of the split operator.") @@ -108,13 +108,13 @@ class SplitGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto op = new framework::OpDesc(); op->SetType("concat"); op->SetInput("X", OutputGrad("Out")); op->SetOutput("Out", InputGrad("X")); op->SetAttrMap(Attrs()); - return std::unique_ptr(op); + return std::unique_ptr(op); } }; diff --git a/paddle/operators/split_op.cu.cc b/paddle/operators/split_op.cu.cc index 93d1fc3c44cbc146c945c51af1abe6494572d1ae..dbad0bbf68d7924cfba80721bb3294b7e0cfac00 100644 --- a/paddle/operators/split_op.cu.cc +++ b/paddle/operators/split_op.cu.cc @@ -14,5 +14,5 @@ limitations under the License. */ #include "paddle/operators/split_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(split, - ops::SplitOpKernel); +REGISTER_OP_CUDA_KERNEL( + split, ops::SplitOpKernel); diff --git a/paddle/operators/split_op.h b/paddle/operators/split_op.h index fa26e5f677b18c84b45dd583004d02cab4c1d375..a38c435d531d7da2a1a60eb2c455bc1782c1cd4c 100644 --- a/paddle/operators/split_op.h +++ b/paddle/operators/split_op.h @@ -21,7 +21,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class SplitOpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/spp_op.cc b/paddle/operators/spp_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..c0aa87b0f06ca9c7d156dfdf8df188da68ac1450 --- /dev/null +++ b/paddle/operators/spp_op.cc @@ -0,0 +1,99 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/spp_op.h" +namespace paddle { +namespace operators { + +class SppOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SppOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput( + "X", + "(Tensor) The input tensor of spp operator. " + "The format of input tensor is NCHW. Where N is batch size, C is the " + "number of channels, H and W is the height and width of feature."); + AddOutput("Out", + "(Tensor) The output tensor of spp operator." + "N * M." + "M = C * H * W"); + AddAttr("pyramid_height", "(int), multi level pooling"); + AddAttr( + "pooling_type", + "(string), pooling type, can be \"max\" for max-pooling " + "and \"avg\" for average-pooling.") + .InEnum({"max", "avg"}); + AddComment(R"DOC( + "With spatial pyramid pooling, the input image can + be of any sizes. This not only allows arbitrary aspect + ratios, but also allows arbitrary scales. We can resize + the input image to any scale (e.g., min(w, h)=180, 224, + ...) and apply the same deep network. When the + input image is at different scales, the network (with + the same filter sizes) will extract features at different + scales. The scales play important roles in traditional + methods. + Input shape: $(N, C_{in}, H_{in}, W_{in})$ + Output shape: $(H_{out}, W_{out})$ + Where + $$ + H_{out} = N \\ + W_{out} = (((4^pyramid_height) - 1) / (4 - 1))$ * C_{in} + $$ + paper https://arxiv.org/pdf/1406.4729v4.pdf + )DOC"); + } +}; + +class SppOp : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), + "Input(X) of SppOp" + "should not be null."); + PADDLE_ENFORCE(ctx->HasOutput("Out"), + "Output(Out) of SppOp should not be null."); + auto in_x_dims = ctx->GetInputDim("X"); + int pyramid_height = ctx->Attrs().Get("pyramid_height"); + PADDLE_ENFORCE(in_x_dims.size() == 4, + "Spping intput must be of 4-dimensional."); + int outlen = ((std::pow(4, pyramid_height) - 1) / (4 - 1)) * in_x_dims[1]; + std::vector output_shape({in_x_dims[0], outlen}); + ctx->SetOutputDim("Out", framework::make_ddim(output_shape)); + } +}; + +class SppOpGrad : public framework::OperatorWithKernel { + public: + using framework::OperatorWithKernel::OperatorWithKernel; + void InferShape(framework::InferShapeContext* ctx) const override { + PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null."); + PADDLE_ENFORCE(ctx->HasOutput(framework::GradVarName("X")), + "Input(X@GRAD) should not be null."); + ctx->SetOutputDim(framework::GradVarName("X"), ctx->GetInputDim("X")); + } +}; +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; +REGISTER_OP(spp, ops::SppOp, ops::SppOpMaker, spp_grad, ops::SppOpGrad); +REGISTER_OP_CPU_KERNEL( + spp, ops::SppKernel, + ops::SppKernel); +REGISTER_OP_CPU_KERNEL( + spp_grad, ops::SppGradKernel, + ops::SppGradKernel); diff --git a/paddle/operators/spp_op.cu.cc b/paddle/operators/spp_op.cu.cc new file mode 100644 index 0000000000000000000000000000000000000000..761e4d6c4a9639898ba548d56bed3c8817720c1b --- /dev/null +++ b/paddle/operators/spp_op.cu.cc @@ -0,0 +1,23 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/operators/spp_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + spp, ops::SppKernel, + ops::SppKernel); +REGISTER_OP_CUDA_KERNEL( + spp_grad, ops::SppGradKernel, + ops::SppGradKernel); diff --git a/paddle/operators/spp_op.h b/paddle/operators/spp_op.h new file mode 100644 index 0000000000000000000000000000000000000000..f35b305d02c73bcae6e72b8afa5ce55148ea98b8 --- /dev/null +++ b/paddle/operators/spp_op.h @@ -0,0 +1,161 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +Indicesou may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include "paddle/framework/op_registry.h" +#include "paddle/operators/math/math_function.h" +#include "paddle/operators/math/pooling.h" +#include "paddle/operators/strided_memcpy.h" + +namespace paddle { +namespace operators { +template +class SppKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_x = context.Input("X"); + auto* out = context.Output("Out"); + int pyramid_height = context.template Attr("pyramid_height"); + std::string pooling_type = + context.template Attr("pooling_type"); + out->mutable_data(context.GetPlace()); + auto out_stride = framework::stride(out->dims()); + int input_h = in_x->dims()[2]; + int input_w = in_x->dims()[3]; + size_t output_offset = 0; + for (int p = 0; p < pyramid_height; ++p) { + int bins = std::pow(2, p); + int kernel_size_h = std::ceil(input_h / static_cast(bins)); + int kernel_size_w = std::ceil(input_w / static_cast(bins)); + int padding_h = (kernel_size_h * bins - input_h + 1) / 2; + int padding_w = (kernel_size_w * bins - input_w + 1) / 2; + std::vector kernel_size({kernel_size_h, kernel_size_w}); + std::vector strides({kernel_size_h, kernel_size_w}); + std::vector paddings({padding_h, padding_w}); + // pooling output shape + framework::Tensor out_level; + std::vector output_shape_vec( + {in_x->dims()[0], in_x->dims()[1], bins, bins}); + framework::DDim output_shape(framework::make_ddim(output_shape_vec)); + out_level.mutable_data(output_shape, context.GetPlace()); + // pooling + if (pooling_type == "max") { + math::Pool2dFunctor, T> pool_forward; + math::MaxPool max_process; + pool_forward(context.template device_context(), *in_x, + kernel_size, strides, paddings, max_process, &out_level); + } else if (pooling_type == "avg") { + math::Pool2dFunctor, T> pool_forward; + math::AvgPool avg_process; + pool_forward(context.template device_context(), *in_x, + kernel_size, strides, paddings, avg_process, &out_level); + } + // flatten pooling output shape + int output_flatten_w = in_x->dims()[1] * bins * bins; + std::vector output_flatten_shape_vec( + {in_x->dims()[0], output_flatten_w}); + framework::DDim output_flatten_shape( + framework::make_ddim(output_flatten_shape_vec)); + out_level.Resize(output_flatten_shape); + // concat + auto out_level_stride = framework::stride(out_level.dims()); + StridedMemcpy(context.template device_context(), + out_level.data(), out_level_stride, out_level.dims(), + out_stride, out->data() + output_offset); + output_offset += out_level.dims()[1] * out_level_stride[1]; + } + } +}; +template +class SppGradKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + const framework::Tensor* in_x = context.Input("X"); + const framework::Tensor* out = context.Input("Out"); + const framework::Tensor* out_grad = + context.Input(framework::GradVarName("Out")); + framework::Tensor* in_x_grad = + context.Output(framework::GradVarName("X")); + int pyramid_height = context.template Attr("pyramid_height"); + std::string pooling_type = + context.template Attr("pooling_type"); + auto& device_ctx = context.template device_context(); + math::SetConstant zero; + in_x_grad->mutable_data(context.GetPlace()); + zero(device_ctx, in_x_grad, static_cast(0)); + auto out_stride = framework::stride(out->dims()); + int input_h = in_x->dims()[2]; + int input_w = in_x->dims()[3]; + size_t out_offset = 0; + for (int p = 0; p < pyramid_height; ++p) { + int bins = std::pow(2, p); + int kernel_size_h = std::ceil(input_h / static_cast(bins)); + int kernel_size_w = std::ceil(input_w / static_cast(bins)); + int padding_h = (kernel_size_h * bins - input_h + 1) / 2; + int padding_w = (kernel_size_w * bins - input_w + 1) / 2; + std::vector kernel_size({kernel_size_h, kernel_size_w}); + std::vector strides({kernel_size_h, kernel_size_w}); + std::vector paddings({padding_h, padding_w}); + // split out and outgrad ... to flatten + framework::Tensor out_level; + framework::Tensor outgrad_level; + int out_flatten_w = in_x->dims()[1] * bins * bins; + std::vector out_flatten_shape_vec( + {in_x->dims()[0], out_flatten_w}); + framework::DDim out_flatten_shape( + framework::make_ddim(out_flatten_shape_vec)); + out_level.mutable_data(out_flatten_shape, context.GetPlace()); + outgrad_level.mutable_data(out_flatten_shape, context.GetPlace()); + auto flatten_stride = framework::stride(out_level.dims()); + // memcpy + StridedMemcpy(context.template device_context(), + out->data() + out_offset, out_stride, + out_level.dims(), flatten_stride, out_level.data()); + + StridedMemcpy(context.template device_context(), + out_grad->data() + out_offset, out_stride, + outgrad_level.dims(), flatten_stride, + outgrad_level.data()); + out_offset += out_level.dims()[1] * out_stride[1]; + // flatten backward to nchw + + std::vector out_shape_vec({in_x->dims()[0], in_x->dims()[1]}); + out_shape_vec.push_back( + (input_h - kernel_size_h + 2 * padding_h) / kernel_size_h + 1); + out_shape_vec.push_back( + (input_w - kernel_size_w + 2 * padding_w) / kernel_size_w + 1); + framework::DDim out_shape(framework::make_ddim(out_shape_vec)); + out_level.ShareDataWith(out_level); + out_level.Resize(out_shape); + outgrad_level.ShareDataWith(outgrad_level); + outgrad_level.Resize(out_shape); + // pooling backward + if (pooling_type == "max") { + math::MaxPool2dGradFunctor pool2d_backward; + pool2d_backward(context.template device_context(), *in_x, + *&out_level, *&outgrad_level, kernel_size, strides, + paddings, in_x_grad); + } else if (pooling_type == "avg") { + math::Pool2dGradFunctor, T> + pool_backward; + math::AvgPoolGrad avg_process; + pool_backward(context.template device_context(), *in_x, + *&out_level, *&outgrad_level, kernel_size, strides, + paddings, avg_process, in_x_grad); + } + } + } +}; +} // namespace operators +} // namespace paddle diff --git a/paddle/operators/squared_l2_distance_op.cc b/paddle/operators/squared_l2_distance_op.cc index bec2a2c18ae8da892ee7d71f45afe53c887c0f57..9e097176f3434e81e31f2ecf4093af47b654e816 100644 --- a/paddle/operators/squared_l2_distance_op.cc +++ b/paddle/operators/squared_l2_distance_op.cc @@ -56,8 +56,7 @@ class SquaredL2DistanceOp : public framework::OperatorWithKernel { class SquaredL2DistanceOpMaker : public framework::OpProtoAndCheckerMaker { public: - SquaredL2DistanceOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SquaredL2DistanceOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) Input of SquaredL2DistanceOp."); AddInput("Y", "(Tensor) Target of SquaredL2DistanceOp."); @@ -115,7 +114,7 @@ REGISTER_OP(squared_l2_distance, ops::SquaredL2DistanceOp, ops::SquaredL2DistanceGradOp); REGISTER_OP_CPU_KERNEL( squared_l2_distance, - ops::SquaredL2DistanceKernel); -REGISTER_OP_CPU_KERNEL( - squared_l2_distance_grad, - ops::SquaredL2DistanceGradKernel); + ops::SquaredL2DistanceKernel); +REGISTER_OP_CPU_KERNEL(squared_l2_distance_grad, + ops::SquaredL2DistanceGradKernel< + paddle::platform::CPUDeviceContext, float>); diff --git a/paddle/operators/squared_l2_distance_op.cu b/paddle/operators/squared_l2_distance_op.cu index 3fe62f1a9cb56722ea544b0fed052ac384e799aa..ecc82ed1e49501b05e0cf54e5b44114db150a427 100644 --- a/paddle/operators/squared_l2_distance_op.cu +++ b/paddle/operators/squared_l2_distance_op.cu @@ -17,9 +17,9 @@ #include "paddle/operators/squared_l2_distance_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( squared_l2_distance, - ops::SquaredL2DistanceKernel); -REGISTER_OP_GPU_KERNEL( - squared_l2_distance_grad, - ops::SquaredL2DistanceGradKernel); + ops::SquaredL2DistanceKernel); +REGISTER_OP_CUDA_KERNEL(squared_l2_distance_grad, + ops::SquaredL2DistanceGradKernel< + paddle::platform::CUDADeviceContext, float>); diff --git a/paddle/operators/squared_l2_distance_op.h b/paddle/operators/squared_l2_distance_op.h index 259ef4029646914f83a112b9c6d7fdf8401483f6..5bd5f4819a35966b73038f433d38c06031e18715 100644 --- a/paddle/operators/squared_l2_distance_op.h +++ b/paddle/operators/squared_l2_distance_op.h @@ -27,7 +27,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class SquaredL2DistanceKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -51,7 +51,8 @@ class SquaredL2DistanceKernel : public framework::OpKernel { auto sub_result = EigenMatrix::From(*out0); auto z = EigenVector::Flatten(*out1); - auto place = context.GetEigenDevice(); + auto& place = + *context.template device_context().eigen_device(); auto x_dims = x.dimensions(); auto y_dims = y.dimensions(); // buffer the substraction result @@ -67,7 +68,7 @@ class SquaredL2DistanceKernel : public framework::OpKernel { } }; -template +template class SquaredL2DistanceGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -89,7 +90,8 @@ class SquaredL2DistanceGradKernel : public framework::OpKernel { sub_result; // propagate back to input - auto eigen_place = context.GetEigenDevice(); + auto& eigen_place = + *context.template device_context().eigen_device(); if (x_g) { x_g->mutable_data(context.GetPlace()); // eigen matrix diff --git a/paddle/operators/squared_l2_norm_op.cc b/paddle/operators/squared_l2_norm_op.cc index 3c10e6159f44bc8c21b1e79aefaa962c7a2b64ed..9c239042cb5127af7eebc0e534da7a7705388de8 100644 --- a/paddle/operators/squared_l2_norm_op.cc +++ b/paddle/operators/squared_l2_norm_op.cc @@ -48,8 +48,7 @@ class SquaredL2NormGradOp : public framework::OperatorWithKernel { class SquaredL2NormOpMaker : public framework::OpProtoAndCheckerMaker { public: - SquaredL2NormOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + SquaredL2NormOpMaker(OpProto* proto, OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of squared_l2_norm op."); AddOutput("Out", "(Scalar) The output of squared_l2_norm op."); @@ -72,7 +71,7 @@ REGISTER_OP(squared_l2_norm, ops::SquaredL2NormOp, ops::SquaredL2NormOpMaker, squared_l2_norm_grad, ops::SquaredL2NormGradOp); REGISTER_OP_CPU_KERNEL( squared_l2_norm, - ops::SquaredL2NormKernel); + ops::SquaredL2NormKernel); REGISTER_OP_CPU_KERNEL( squared_l2_norm_grad, - ops::SquaredL2NormGradKernel); + ops::SquaredL2NormGradKernel); diff --git a/paddle/operators/squared_l2_norm_op.cu b/paddle/operators/squared_l2_norm_op.cu index d384e9c28c9150fa901404478739ff809f29126f..2d6567d090a96a43cbda203fb8176041d719e55f 100644 --- a/paddle/operators/squared_l2_norm_op.cu +++ b/paddle/operators/squared_l2_norm_op.cu @@ -16,9 +16,9 @@ #include "paddle/operators/squared_l2_norm_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( squared_l2_norm, - ops::SquaredL2NormKernel); -REGISTER_OP_GPU_KERNEL( + ops::SquaredL2NormKernel); +REGISTER_OP_CUDA_KERNEL( squared_l2_norm_grad, - ops::SquaredL2NormGradKernel); + ops::SquaredL2NormGradKernel); diff --git a/paddle/operators/squared_l2_norm_op.h b/paddle/operators/squared_l2_norm_op.h index 48d7b1c2d56882f04330dbf27b0a92e37cb8874c..0ced7e7d70ab3627a337d70890db6842ba0f7768 100644 --- a/paddle/operators/squared_l2_norm_op.h +++ b/paddle/operators/squared_l2_norm_op.h @@ -20,7 +20,7 @@ namespace paddle { namespace operators { // Out = sum(square(X)) -template +template class SquaredL2NormKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -30,14 +30,15 @@ class SquaredL2NormKernel : public framework::OpKernel { auto x = framework::EigenVector::Flatten(*X); auto out = framework::EigenScalar::From(*Out); - auto place = context.GetEigenDevice(); + auto *place = + context.template device_context().eigen_device(); - out.device(place) = x.square().sum(); + out.device(*place) = x.square().sum(); } }; // dX = X -template +template class SquaredL2NormGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -53,10 +54,11 @@ class SquaredL2NormGradKernel : public framework::OpKernel { auto x = framework::EigenVector::Flatten(*X); auto dout = framework::EigenVector::Flatten(*dOut); auto dx = framework::EigenVector::Flatten(*dX); - auto place = context.GetEigenDevice(); + auto *place = + context.template device_context().eigen_device(); Eigen::DSizes x_dsize(X->numel()); - dx.device(place) = (dout.broadcast(x_dsize) * x) * static_cast(2.0); + dx.device(*place) = (dout.broadcast(x_dsize) * x) * static_cast(2.0); } }; diff --git a/paddle/operators/strided_memcpy_test.cc b/paddle/operators/strided_memcpy_test.cc index 68f064eaee5851333ddf9767b7138da83a28503d..230cc1ab0bbd5ac57eb7494795e3fbcdf02c3cc8 100644 --- a/paddle/operators/strided_memcpy_test.cc +++ b/paddle/operators/strided_memcpy_test.cc @@ -85,8 +85,10 @@ TEST(StridedMemcpy, GPUCrop) { platform::GPUPlace gpu0(0); platform::CPUPlace cpu; + platform::CUDADeviceContext ctx(gpu0); + int* gpu_src = reinterpret_cast(memory::Alloc(gpu0, sizeof(src))); - memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src)); + memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src), ctx.stream()); framework::DDim src_stride({5, 1}); @@ -96,7 +98,6 @@ TEST(StridedMemcpy, GPUCrop) { framework::DDim dst_dim({2, 2}); framework::DDim dst_stride({2, 1}); - platform::CUDADeviceContext ctx(gpu0); StridedMemcpy(ctx, gpu_src + 1, src_stride, dst_dim, dst_stride, gpu_dst); @@ -122,9 +123,10 @@ TEST(StridedMemcpy, GPUConcat) { platform::GPUPlace gpu0(0); platform::CPUPlace cpu; + platform::CUDADeviceContext ctx(gpu0); int* gpu_src = reinterpret_cast(memory::Alloc(gpu0, sizeof(src))); - memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src)); + memory::Copy(gpu0, gpu_src, cpu, src, sizeof(src), ctx.stream()); int dst[8]; int* gpu_dst = reinterpret_cast(memory::Alloc(gpu0, sizeof(dst))); @@ -132,7 +134,6 @@ TEST(StridedMemcpy, GPUConcat) { framework::DDim src_stride({2, 1}); framework::DDim dst_dim({2, 2}); framework::DDim dst_stride({4, 1}); - platform::CUDADeviceContext ctx(gpu0); StridedMemcpy(ctx, gpu_src, src_stride, dst_dim, dst_stride, gpu_dst); StridedMemcpy(ctx, gpu_src, src_stride, dst_dim, dst_stride, diff --git a/paddle/operators/sum_op.cc b/paddle/operators/sum_op.cc index ddc210c26e69566fef9baa20f49ba1052e993b3f..891839bf9cd991e15d96b86e24ea61b09e35a7c7 100644 --- a/paddle/operators/sum_op.cc +++ b/paddle/operators/sum_op.cc @@ -29,7 +29,7 @@ class SumOp : public framework::OperatorWithKernel { "Output(Out) of SumOp should not be null."); if (ctx->IsRuntime() && ctx->GetOutputsVarType("Out")[0] == - framework::VarDesc::LOD_TENSOR_ARRAY) { + framework::proto::VarDesc::LOD_TENSOR_ARRAY) { return; // skip runtime infershape when is tensor array; } @@ -37,10 +37,16 @@ class SumOp : public framework::OperatorWithKernel { size_t N = x_dims.size(); PADDLE_ENFORCE_GT(N, 1, "Input tensors count should > 1."); - auto in_dim = x_dims[0]; - for (size_t i = 1; i < N; i++) { - auto dim = x_dims[i]; - PADDLE_ENFORCE_EQ(in_dim, dim, "Input tensors must have same shape"); + framework::DDim in_dim({0}); + for (auto& x_dim : x_dims) { + if (framework::product(x_dim) == 0) { + continue; + } + if (framework::product(in_dim) == 0) { + in_dim = x_dim; + } else { + PADDLE_ENFORCE_EQ(in_dim, x_dim, "Input tensors must have same shape"); + } } ctx->SetOutputDim("Out", in_dim); ctx->ShareLoD("X", /*->*/ "Out"); @@ -51,9 +57,23 @@ class SumOp : public framework::OperatorWithKernel { const framework::ExecutionContext& ctx) const override { auto x_vars = ctx.MultiInputVar("X"); if (x_vars[0]->IsType()) { + int dtype = -1; + for (auto& x_var : x_vars) { + auto& lod_tensor = x_var->Get(); + if (lod_tensor.numel() == 0) { + continue; + } + if (dtype == -1) { + dtype = framework::ToDataType(lod_tensor.type()); + } else { + PADDLE_ENFORCE_EQ(dtype, framework::ToDataType(lod_tensor.type())); + } + } + PADDLE_ENFORCE_NE(dtype, -1, + "Sum operator should have at least one tensor"); + return framework::OpKernelType( - framework::ToDataType(x_vars[0]->Get().type()), - ctx.device_context()); + static_cast(dtype), ctx.device_context()); } else if (x_vars[0]->IsType()) { return framework::OpKernelType( framework::ToDataType( @@ -78,7 +98,7 @@ class SumOp : public framework::OperatorWithKernel { class SumOpMaker : public framework::OpProtoAndCheckerMaker { public: - SumOpMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + SumOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(vector) The input tensors of sum operator.") .AsDuplicable(); @@ -86,8 +106,8 @@ class SumOpMaker : public framework::OpProtoAndCheckerMaker { AddComment(R"DOC( Sum operator. -This operators sums the input tensors. All the inputs can carry the -LoD (Level of Details) information. However, the output only shares +This operators sums the input tensors. All the inputs can carry the +LoD (Level of Details) information. However, the output only shares the LoD information with the first input. )DOC"); } @@ -95,10 +115,10 @@ the LoD information with the first input. class SumOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind& op_desc, - framework::BlockDescBind* block) const override { + void operator()(const framework::OpDesc& op_desc, + framework::BlockDesc* block) const override { auto& inputs = op_desc.Input("X"); - auto var_type = framework::VarDesc::SELECTED_ROWS; + auto var_type = framework::proto::VarDesc::SELECTED_ROWS; for (auto& name : op_desc.Input("X")) { VLOG(10) << name << " " @@ -108,12 +128,12 @@ class SumOpVarTypeInference : public framework::VarTypeInference { bool any_input_is_lod_tensor = std::any_of( inputs.begin(), inputs.end(), [block](const std::string& name) { return block->FindRecursiveOrCreateVar(name)->GetType() == - framework::VarDesc::LOD_TENSOR; + framework::proto::VarDesc::LOD_TENSOR; }); auto is_tensor_array = [block](const std::string& name) { return detail::Ref(block->FindRecursiveOrCreateVar(name)).GetType() == - framework::VarDesc::LOD_TENSOR_ARRAY; + framework::proto::VarDesc::LOD_TENSOR_ARRAY; }; bool any_input_is_tensor_array = @@ -132,9 +152,9 @@ class SumOpVarTypeInference : public framework::VarTypeInference { PADDLE_ENFORCE(all_inputs_are_tensor_array, "Not all inputs are tensor array:\n%s", os.str()); } - var_type = framework::VarDesc::LOD_TENSOR_ARRAY; + var_type = framework::proto::VarDesc::LOD_TENSOR_ARRAY; } else if (any_input_is_lod_tensor) { - var_type = framework::VarDesc::LOD_TENSOR; + var_type = framework::proto::VarDesc::LOD_TENSOR; } auto out_var_name = op_desc.Output("Out").front(); @@ -149,20 +169,19 @@ class SumGradMaker : public framework::GradOpDescMakerBase { public: using framework::GradOpDescMakerBase::GradOpDescMakerBase; - std::vector> operator()() - const override { - auto x_grads = InputGrad("X"); - std::vector> grad_ops; + std::vector> operator()() const override { + auto x_grads = InputGrad("X", false); + std::vector> grad_ops; grad_ops.reserve(x_grads.size()); auto og = OutputGrad("Out"); std::transform(x_grads.begin(), x_grads.end(), std::back_inserter(grad_ops), [&og](const std::string& x_grad) { - auto* grad_op = new framework::OpDescBind(); + auto* grad_op = new framework::OpDesc(); grad_op->SetType("scale"); grad_op->SetInput("X", og); grad_op->SetOutput("Out", {x_grad}); grad_op->SetAttr("scale", 1.0f); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); }); return grad_ops; } @@ -175,7 +194,8 @@ namespace ops = paddle::operators; REGISTER_OPERATOR(sum, ops::SumOp, ops::SumOpMaker, ops::SumGradMaker, ops::SumOpVarTypeInference); -REGISTER_OP_CPU_KERNEL(sum, ops::SumKernel, - ops::SumKernel, - ops::SumKernel, - ops::SumKernel); +REGISTER_OP_CPU_KERNEL( + sum, ops::SumKernel, + ops::SumKernel, + ops::SumKernel, + ops::SumKernel); diff --git a/paddle/operators/sum_op.cu b/paddle/operators/sum_op.cu index 5c30dd4d470c2e0acecef18524a4a81f9eb786a9..873155076c179d5280a418e25fd39fdaf4b0a2b2 100644 --- a/paddle/operators/sum_op.cu +++ b/paddle/operators/sum_op.cu @@ -13,7 +13,8 @@ limitations under the License. */ #include "paddle/operators/sum_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(sum, ops::SumKernel, - ops::SumKernel, - ops::SumKernel, - ops::SumKernel); +REGISTER_OP_CUDA_KERNEL( + sum, ops::SumKernel, + ops::SumKernel, + ops::SumKernel, + ops::SumKernel); diff --git a/paddle/operators/sum_op.h b/paddle/operators/sum_op.h index a1eb3b014edc65b7ed604c8b7f17d72f7e460f70..eaa36aa1aea53e0b37ef6c578d8bb1cda230ded0 100644 --- a/paddle/operators/sum_op.h +++ b/paddle/operators/sum_op.h @@ -26,7 +26,7 @@ template using EigenVector = framework::EigenVector; -template +template class SumKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { @@ -43,21 +43,26 @@ class SumKernel : public framework::OpKernel { auto result = EigenVector::Flatten(*out); if (!in_place) { - math::SetConstant constant_functor; - constant_functor(context.device_context(), out, 0.0); + math::SetConstant constant_functor; + constant_functor(context.template device_context(), out, + 0.0); } - math::SelectedRowsAddToTensor functor; - auto place = context.GetEigenDevice(); + math::SelectedRowsAddToTensor functor; + auto &place = + *context.template device_context().eigen_device(); // If in_place, just skip the first tensor for (int i = in_place ? 1 : 0; i < N; i++) { if (in_vars[i]->IsType()) { auto &in_t = in_vars[i]->Get(); + if (in_t.numel() == 0) { + continue; + } auto in = EigenVector::Flatten(in_t); result.device(place) = result + in; } else if (in_vars[i]->IsType()) { auto &in_t = in_vars[i]->Get(); - functor(context.device_context(), in_t, out); + functor(context.template device_context(), in_t, out); } else { PADDLE_THROW("Variable type must be LoDTensor/SelectedRows."); } @@ -79,14 +84,14 @@ class SumKernel : public framework::OpKernel { out_value->Resize(framework::make_ddim(in_dim_vec)); out_value->mutable_data(context.GetPlace()); - math::SelectedRowsAddTo functor; + math::SelectedRowsAddTo functor; int64_t offset = 0; for (int i = 0; i < N; i++) { PADDLE_ENFORCE_EQ(out->height(), in_vars[i]->Get().height()); - functor(context.device_context(), in_vars[i]->Get(), - offset, out); + functor(context.template device_context(), + in_vars[i]->Get(), offset, out); offset += in_vars[i]->Get().value().numel(); } } else if (out_var->IsType()) { @@ -109,7 +114,8 @@ class SumKernel : public framework::OpKernel { PADDLE_ENFORCE(out_array[i].lod() == in_array[i].lod()); auto in = EigenVector::Flatten(in_array[i]); auto result = EigenVector::Flatten(out_array[i]); - result.device(context.GetEigenDevice()) = result + in; + result.device(*context.template device_context() + .eigen_device()) = result + in; } } } diff --git a/paddle/operators/tensor_array_read_write_op.cc b/paddle/operators/tensor_array_read_write_op.cc index efde850143ce188300667b21e4b539b1d150d9ae..90cbc19d1b1bab2e639e3d6d5b28cd13b30542f6 100644 --- a/paddle/operators/tensor_array_read_write_op.cc +++ b/paddle/operators/tensor_array_read_write_op.cc @@ -27,7 +27,7 @@ class WriteToArrayOp : public ArrayOp { void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { auto *x = scope.FindVar(Input("X")); - PADDLE_ENFORCE(x != nullptr, "X must be set"); + if (x == nullptr) return; auto &x_tensor = x->Get(); size_t offset = GetOffset(scope, dev_ctx); auto *out = @@ -51,8 +51,7 @@ class WriteToArrayOp : public ArrayOp { class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker { public: - WriteToArrayOpProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + WriteToArrayOpProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(LoDTensor) the tensor will be written to tensor array"); AddInput( @@ -60,12 +59,16 @@ class WriteToArrayOpProtoMaker : public framework::OpProtoAndCheckerMaker { "(Tensor) the subscript index in tensor array. The number of element " "should be 1"); AddOutput("Out", "(TensorArray) the tensor array will be written"); - AddComment(R"DOC(Write a LoDTensor to a LoDTensor array. + AddComment(R"DOC( +WriteToArray Operator. + +This operator writes a LoDTensor to a LoDTensor array. -Assume T is LoDTensor, i is the subscript of the array, and A is the array. The +Assume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The equation is -A[i] = T +$$A[i] = T$$ + )DOC"); } }; @@ -76,7 +79,9 @@ class WriteToArrayInferShape : public framework::InferShapeBase { PADDLE_ENFORCE(context->HasInput("I"), "Must set the subscript index"); PADDLE_ENFORCE_EQ(framework::product(context->GetInputDim("I")), 1, "The number of element of subscript index must be 1"); - PADDLE_ENFORCE(context->HasInput("X"), NotHasXError()); + if (!context->HasInput("X")) { + return; + } PADDLE_ENFORCE(context->HasOutput("Out"), NotHasOutError()); context->SetOutputDim("Out", context->GetInputDim("X")); } @@ -91,17 +96,18 @@ class WriteToArrayInferShape : public framework::InferShapeBase { class WriteToArrayInferVarType : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind &op_desc, - framework::BlockDescBind *block) const override { + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { auto x_name = op_desc.Input("X")[0]; auto out_name = op_desc.Output("Out")[0]; VLOG(10) << "Set Variable " << out_name << " as LOD_TENSOR_ARRAY"; auto &out = detail::Ref(block->FindRecursiveOrCreateVar(out_name), "Cannot found %s", out_name); - out.SetType(framework::VarDesc::LOD_TENSOR_ARRAY); - auto &x = - detail::Ref(block->FindVarRecursive(x_name), "Cannot found %s", x_name); - out.SetDataType(x.GetDataType()); + out.SetType(framework::proto::VarDesc::LOD_TENSOR_ARRAY); + auto *x = block->FindVarRecursive(x_name); + if (x != nullptr) { + out.SetDataType(x->GetDataType()); + } } }; @@ -121,29 +127,35 @@ class ReadFromArrayOp : public ArrayOp { PADDLE_ENFORCE(out != nullptr, "Out must be set"); auto *out_tensor = out->GetMutable(); size_t offset = GetOffset(scope, dev_ctx); - PADDLE_ENFORCE_LT(offset, x_array.size()); - framework::CopyFrom(x_array[offset], dev_ctx.GetPlace(), dev_ctx, - out_tensor); - out_tensor->set_lod(x_array[offset].lod()); + if (offset < x_array.size()) { + framework::CopyFrom(x_array[offset], dev_ctx.GetPlace(), dev_ctx, + out_tensor); + out_tensor->set_lod(x_array[offset].lod()); + } else { + VLOG(10) << "offset " << offset << " >= " << x_array.size(); + } } }; class ReadFromArrayProtoMaker : public framework::OpProtoAndCheckerMaker { public: - ReadFromArrayProtoMaker(framework::OpProto *proto, - framework::OpAttrChecker *op_checker) + ReadFromArrayProtoMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(TensorArray) the array will be read from."); AddInput("I", "(Tensor) the subscript index in tensor array. The number of " "element should be 1"); AddOutput("Out", "(LoDTensor) the tensor will be read from."); - AddComment(R"DOC(Read a LoDTensor from a LoDTensor Array + AddComment(R"DOC( +ReadFromArray Operator. -Assume T is LoDTensor, i is th e subscript of the array, and A is the array. The +Read a LoDTensor from a LoDTensor Array. + +Assume $T$ is LoDTensor, $i$ is the subscript of the array, and $A$ is the array. The equation is -T = A[i] +$$T = A[i]$$ + )DOC"); } }; @@ -163,14 +175,14 @@ class WriteToArrayGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("read_from_array"); grad_op->SetInput("I", Input("I")); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; @@ -179,14 +191,14 @@ class ReadFromArrayGradMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - std::unique_ptr Apply() const override { - auto *grad_op = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad_op = new framework::OpDesc(); grad_op->SetType("write_to_array"); grad_op->SetInput("I", Input("I")); grad_op->SetInput("X", OutputGrad("Out")); grad_op->SetOutput("Out", InputGrad("X")); grad_op->SetAttrMap(Attrs()); - return std::unique_ptr(grad_op); + return std::unique_ptr(grad_op); } }; diff --git a/paddle/operators/top_k_op.cc b/paddle/operators/top_k_op.cc index 16ae925eb5cab1c05f3bc376972cabadc4367d20..bb72210bb67f925af3e450961069f0737dbde35e 100644 --- a/paddle/operators/top_k_op.cc +++ b/paddle/operators/top_k_op.cc @@ -46,7 +46,7 @@ class TopkOp : public framework::OperatorWithKernel { class TopkOpMaker : public framework::OpProtoAndCheckerMaker { public: - TopkOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + TopkOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput("X", "(Tensor) The input of Topk op"); AddOutput("Out", "(Tensor) The output tensor of Topk op"); diff --git a/paddle/operators/top_k_op.cu b/paddle/operators/top_k_op.cu index 7851c71bbe9fe73402968ce14f6db0df523cd6d3..453bd07267e3a6e33211117368dd9aff10a9e23f 100644 --- a/paddle/operators/top_k_op.cu +++ b/paddle/operators/top_k_op.cu @@ -317,4 +317,4 @@ class TopkOpCUDAKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel); +REGISTER_OP_CUDA_KERNEL(top_k, paddle::operators::TopkOpCUDAKernel); diff --git a/paddle/operators/top_k_op.h b/paddle/operators/top_k_op.h index bc8563717a21bd5b3d8fc87f689657990066957b..e9cd9bbd4d964c28f305fb4ab4c4733ed27ebfff 100644 --- a/paddle/operators/top_k_op.h +++ b/paddle/operators/top_k_op.h @@ -27,7 +27,7 @@ template using EigenMatrix = framework::EigenMatrix; -template +template class TopkKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { diff --git a/paddle/operators/transpose_op.cc b/paddle/operators/transpose_op.cc index 94de3d5069017a7ca818e246ad574c4db92d8006..0109b8bc5c30e0fe3e4ff9d741cd76b741e17926 100644 --- a/paddle/operators/transpose_op.cc +++ b/paddle/operators/transpose_op.cc @@ -55,8 +55,7 @@ class TransposeOp : public framework::OperatorWithKernel { class TransposeOpMaker : public framework::OpProtoAndCheckerMaker { public: - TransposeOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + TransposeOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -112,8 +111,8 @@ class TransposeOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(transpose, ops::TransposeOp, ops::TransposeOpMaker, transpose_grad, ops::TransposeOpGrad); -REGISTER_OP_CPU_KERNEL(transpose, - ops::TransposeKernel); +REGISTER_OP_CPU_KERNEL( + transpose, ops::TransposeKernel); REGISTER_OP_CPU_KERNEL( transpose_grad, - ops::TransposeGradKernel); + ops::TransposeGradKernel); diff --git a/paddle/operators/transpose_op.cu.cc b/paddle/operators/transpose_op.cu.cc index af3f581462c919bbd2dd1067e536cc638f9c267d..7d23f1493ec2d548438aeb2493fda8a4ff8c6e80 100644 --- a/paddle/operators/transpose_op.cu.cc +++ b/paddle/operators/transpose_op.cu.cc @@ -15,8 +15,9 @@ #include "paddle/operators/transpose_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(transpose, - ops::TransposeKernel); -REGISTER_OP_GPU_KERNEL( +REGISTER_OP_CUDA_KERNEL( + transpose, + ops::TransposeKernel); +REGISTER_OP_CUDA_KERNEL( transpose_grad, - ops::TransposeGradKernel); + ops::TransposeGradKernel); diff --git a/paddle/operators/transpose_op.h b/paddle/operators/transpose_op.h index e296032f4147f9f8338148f9e4fef100c7cf816f..d995271a6be3266e05c742ab18c34636da384e66 100644 --- a/paddle/operators/transpose_op.h +++ b/paddle/operators/transpose_op.h @@ -20,33 +20,33 @@ namespace paddle { namespace operators { -template -inline void TransCompute(const int dim, const platform::DeviceContext& dev_ctx, +template +inline void TransCompute(const int dim, const DeviceContext& dev_ctx, const framework::Tensor& in, framework::Tensor* out, const std::vector& axis) { switch (dim) { case 1: - math::Transpose trans1; + math::Transpose trans1; trans1(dev_ctx, in, out, axis); break; case 2: - math::Transpose trans2; + math::Transpose trans2; trans2(dev_ctx, in, out, axis); break; case 3: - math::Transpose trans3; + math::Transpose trans3; trans3(dev_ctx, in, out, axis); break; case 4: - math::Transpose trans4; + math::Transpose trans4; trans4(dev_ctx, in, out, axis); break; case 5: - math::Transpose trans5; + math::Transpose trans5; trans5(dev_ctx, in, out, axis); break; case 6: - math::Transpose trans6; + math::Transpose trans6; trans6(dev_ctx, in, out, axis); break; default: @@ -54,7 +54,7 @@ inline void TransCompute(const int dim, const platform::DeviceContext& dev_ctx, } } -template +template class TransposeKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -64,12 +64,12 @@ class TransposeKernel : public framework::OpKernel { std::vector axis = context.Attr>("axis"); int ndims = axis.size(); - auto& dev_ctx = context.device_context(); - TransCompute(ndims, dev_ctx, *x, out, axis); + auto& dev_ctx = context.template device_context(); + TransCompute(ndims, dev_ctx, *x, out, axis); } }; -template +template class TransposeGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -88,8 +88,9 @@ class TransposeGradKernel : public framework::OpKernel { } int ndims = axis.size(); - auto& dev_ctx = context.device_context(); - TransCompute(ndims, dev_ctx, *out_grad, x_grad, reversed_axis); + auto& dev_ctx = context.template device_context(); + TransCompute(ndims, dev_ctx, *out_grad, x_grad, + reversed_axis); } }; diff --git a/paddle/operators/uniform_random_op.cc b/paddle/operators/uniform_random_op.cc index fff1dc7ccddf1d8cee0c8311828fd38888283cd1..3c705cb3396f68f88882388675ab145660e13070 100644 --- a/paddle/operators/uniform_random_op.cc +++ b/paddle/operators/uniform_random_op.cc @@ -66,15 +66,14 @@ class UniformRandomOp : public framework::OperatorWithKernel { framework::OpKernelType GetKernelType( const framework::ExecutionContext& ctx) const override { return framework::OpKernelType( - static_cast(ctx.Attr("dtype")), - ctx.device_context()); + static_cast(ctx.Attr("dtype")), + ctx.GetPlace()); } }; class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker { public: - UniformRandomOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + UniformRandomOpMaker(OpProto* proto, OpAttrChecker* op_checker) : framework::OpProtoAndCheckerMaker(proto, op_checker) { AddOutput("Out", "(Tensor) The output tensor of uniform random op"); AddComment(R"DOC( @@ -100,7 +99,7 @@ uniform distribution. "0 means use a seed generated by the system.") .SetDefault(0); AddAttr("dtype", "(int, default 5(FP32)) Output tensor data type") - .SetDefault(framework::DataType::FP32); + .SetDefault(framework::proto::DataType::FP32); } }; } // namespace operators diff --git a/paddle/operators/uniform_random_op.cu b/paddle/operators/uniform_random_op.cu index 8b20bb8287807aca673817c503fee6db04b55753..cfe9d293cff2108cf25749d0e78e2e86e6e198a5 100644 --- a/paddle/operators/uniform_random_op.cu +++ b/paddle/operators/uniform_random_op.cu @@ -63,6 +63,6 @@ class GPUUniformRandomKernel : public framework::OpKernel { } // namespace operators } // namespace paddle -REGISTER_OP_GPU_KERNEL(uniform_random, - paddle::operators::GPUUniformRandomKernel, - paddle::operators::GPUUniformRandomKernel); +REGISTER_OP_CUDA_KERNEL(uniform_random, + paddle::operators::GPUUniformRandomKernel, + paddle::operators::GPUUniformRandomKernel); diff --git a/paddle/operators/unpool_op.cc b/paddle/operators/unpool_op.cc index 89c48e071cf351f7d7b9cf26a5d4989af291da57..7c035c0b48ebb0d7115e1499c03f8f40f2ca7282 100644 --- a/paddle/operators/unpool_op.cc +++ b/paddle/operators/unpool_op.cc @@ -18,8 +18,7 @@ namespace operators { class Unpool2dOpMaker : public framework::OpProtoAndCheckerMaker { public: - Unpool2dOpMaker(framework::OpProto* proto, - framework::OpAttrChecker* op_checker) + Unpool2dOpMaker(OpProto* proto, OpAttrChecker* op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput( "X", @@ -135,9 +134,10 @@ class UnpoolOpGrad : public framework::OperatorWithKernel { namespace ops = paddle::operators; REGISTER_OP(unpool, ops::UnpoolOp, ops::Unpool2dOpMaker, unpool_grad, ops::UnpoolOpGrad); -REGISTER_OP_CPU_KERNEL(unpool, - ops::UnpoolKernel, - ops::UnpoolKernel); REGISTER_OP_CPU_KERNEL( - unpool_grad, ops::UnpoolGradKernel, - ops::UnpoolGradKernel); + unpool, ops::UnpoolKernel, + ops::UnpoolKernel); +REGISTER_OP_CPU_KERNEL( + unpool_grad, + ops::UnpoolGradKernel, + ops::UnpoolGradKernel); diff --git a/paddle/operators/unpool_op.cu.cc b/paddle/operators/unpool_op.cu.cc index 18aafb7dc74ed474ed3ec5e8a388ecdb71b9a8f5..9b002e35c434db561114dbbafce2f3f934daaf6a 100644 --- a/paddle/operators/unpool_op.cu.cc +++ b/paddle/operators/unpool_op.cu.cc @@ -15,9 +15,10 @@ limitations under the License. */ #include "paddle/operators/unpool_op.h" namespace ops = paddle::operators; -REGISTER_OP_GPU_KERNEL(unpool, - ops::UnpoolKernel, - ops::UnpoolKernel); -REGISTER_OP_GPU_KERNEL( - unpool_grad, ops::UnpoolGradKernel, - ops::UnpoolGradKernel); +REGISTER_OP_CUDA_KERNEL( + unpool, ops::UnpoolKernel, + ops::UnpoolKernel); +REGISTER_OP_CUDA_KERNEL( + unpool_grad, + ops::UnpoolGradKernel, + ops::UnpoolGradKernel); diff --git a/paddle/operators/unpool_op.h b/paddle/operators/unpool_op.h index 243eb7e532c5149db4fb1b381fd8664ae4bdd81a..ee18b118c957c7933890000bbe934e6ffdc9e56f 100644 --- a/paddle/operators/unpool_op.h +++ b/paddle/operators/unpool_op.h @@ -20,7 +20,7 @@ limitations under the License. */ namespace paddle { namespace operators { -template +template class UnpoolKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -32,15 +32,16 @@ class UnpoolKernel : public framework::OpKernel { std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); T* output_data = out->mutable_data(context.GetPlace()); + auto& dev_ctx = context.template device_context(); if (output_data) { - math::SetConstant set_zero; - set_zero(context.device_context(), out, static_cast(0)); + math::SetConstant set_zero; + set_zero(dev_ctx, out, static_cast(0)); } - math::Unpool2dMaxFunctor unpool2d_max_forward; - unpool2d_max_forward(context.device_context(), *in_x, *in_y, out); + math::Unpool2dMaxFunctor unpool2d_max_forward; + unpool2d_max_forward(dev_ctx, *in_x, *in_y, out); } }; -template +template class UnpoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { @@ -56,15 +57,14 @@ class UnpoolGradKernel : public framework::OpKernel { std::vector strides = context.Attr>("strides"); std::vector paddings = context.Attr>("paddings"); - auto& device_ctx = context.device_context(); - math::SetConstant zero; + auto& device_ctx = context.template device_context(); + math::SetConstant zero; if (in_x_grad) { in_x_grad->mutable_data(context.GetPlace()); zero(device_ctx, in_x_grad, static_cast(0)); } - math::Unpool2dMaxGradFunctor unpool2d_max_backward; - unpool2d_max_backward(context.device_context(), *in_x, *in_y, *out, - *out_grad, in_x_grad); + math::Unpool2dMaxGradFunctor unpool2d_max_backward; + unpool2d_max_backward(device_ctx, *in_x, *in_y, *out, *out_grad, in_x_grad); } }; } // namespace operators diff --git a/paddle/operators/while_op.cc b/paddle/operators/while_op.cc index 59460f6c879cf2c14fd27e33ecb1ba45b21da485..324c8b98c4811328b2a89eadc3e3420c080bd7d1 100644 --- a/paddle/operators/while_op.cc +++ b/paddle/operators/while_op.cc @@ -25,7 +25,7 @@ namespace operators { using StepScopeVar = std::vector; using LoDTensor = framework::LoDTensor; -constexpr char kStepBlock[] = "step_block"; +constexpr char kStepBlock[] = "sub_block"; constexpr char kCondition[] = "Condition"; constexpr char kStepScopes[] = "StepScopes"; constexpr char kParameters[] = "X"; @@ -46,7 +46,7 @@ class WhileOp : public framework::OperatorBase { PADDLE_ENFORCE_EQ(cond.dims(), paddle::framework::make_ddim({1})); framework::Executor executor(dev_ctx); - auto *block = Attr(kStepBlock); + auto *block = Attr(kStepBlock); auto *program = block->Program(); auto step_scopes = @@ -64,7 +64,7 @@ class WhileOp : public framework::OperatorBase { class WhileOpMaker : public framework::OpProtoAndCheckerMaker { public: - WhileOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker) + WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker) : OpProtoAndCheckerMaker(proto, op_checker) { AddInput(kParameters, "A set of variables, which are required by operators inside the " @@ -82,8 +82,8 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker { "(StepScopeVar) A vector of local scope, which size equals the " "step number of While Op. The i'th scope storages temporary " "variables generated in the i'th step."); - AddAttr(kStepBlock, - "The step block inside WhileOp"); + AddAttr(kStepBlock, + "The step block inside WhileOp"); AddComment(R"DOC( )DOC"); } @@ -98,10 +98,8 @@ class WhileGradOp : public framework::OperatorBase { void Run(const framework::Scope &scope, const platform::DeviceContext &dev_ctx) const override { - // PADDLE_ENFORCE(...) - framework::Executor executor(dev_ctx); - auto *block = Attr(kStepBlock); + auto *block = Attr(kStepBlock); auto *program = block->Program(); auto *step_scopes = @@ -124,8 +122,12 @@ class WhileGradOp : public framework::OperatorBase { auto inside_og_name = inside_og_names[i]; VLOG(10) << "Linking outside " << outside_og_name << " --> inside " << inside_og_name; - auto &og_outside = detail::Ref(scope.FindVar(outside_og_name)); - auto &og_inside = detail::Ref(cur_scope.Var(inside_og_name)); + auto &og_outside = + detail::Ref(scope.FindVar(outside_og_name), + "Cannot find Outside Gradient %s", outside_og_name); + auto &og_inside = + detail::Ref(cur_scope.Var(inside_og_name), + "Cannot find inside gradient %s", inside_og_name); if (og_outside.Type().hash_code() == typeid(framework::LoDTensor).hash_code()) { auto &outside_tensor = og_outside.Get(); @@ -160,7 +162,7 @@ class WhileGradOp : public framework::OperatorBase { PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size()); for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) { if (pg_names[param_id] == framework::kEmptyVarName) { - continue; // iterator doesn't have gradient + continue; // parameter doesn't have gradient } auto inside_grad_name = framework::GradVarName(p_names[param_id]); @@ -185,16 +187,16 @@ class WhileGradOp : public framework::OperatorBase { attrs["value"] = 0.0f; auto zero_op = framework::OpRegistry::CreateOp( - "fill_constant", {}, {{"Out", {pg_names[param_id]}}}, attrs); + "fill_constant", framework::VariableNameMap{}, + {{"Out", {pg_names[param_id]}}}, attrs); zero_op->Run(scope, dev_ctx); } } - // sum gradient auto new_inside_name = cur_scope.Rename(inside_grad_name); auto sum_op = framework::OpRegistry::CreateOp( "sum", {{"X", {pg_names[param_id], new_inside_name}}}, - {{"Out", {pg_names[param_id]}}}, {}); + {{"Out", {pg_names[param_id]}}}, framework::AttributeMap{}); sum_op->Run(cur_scope, dev_ctx); cur_scope.Rename(new_inside_name, inside_grad_name); } @@ -207,18 +209,35 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { using framework::SingleGradOpDescMaker::SingleGradOpDescMaker; protected: - virtual std::unique_ptr Apply() const { - auto *grad = new framework::OpDescBind(); + std::unique_ptr Apply() const override { + auto *grad = new framework::OpDesc(); grad->SetType("while_grad"); grad->SetInput(kParameters, Input(kParameters)); - grad->SetOutput( - framework::GradVarName(kParameters), - InputGrad(kParameters, /*do not drop empty gradient*/ false)); + + // Not all of IGs will be generated by inner gradient operators of while op. + // Ignore IGs that is not generated by the inside block. + auto igs = InputGrad(kParameters, /*do not drop empty gradient*/ false); + std::unordered_set all_outs; + for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) { + for (auto &oname : grad_block_[0]->Op(i)->OutputArgumentNames()) { + all_outs.insert(oname); + } + } + for (auto &each_ig : igs) { + if (all_outs.find(each_ig) == all_outs.end()) { + VLOG(10) << "Ignore " << each_ig; + each_ig = framework::kEmptyVarName; + } + } + + grad->SetOutput(framework::GradVarName(kParameters), igs); + grad->SetInput(kOutputs, Output(kOutputs)); // OG should be re-calculated by step blocks, since many outputs of while op // do not need to calculate gradients. std::unordered_set block_ins; + auto *fwd_block = this->grad_block_[0]->ParentBlock(); { for (auto &p : Input(kParameters)) { block_ins.insert(p); @@ -233,6 +252,13 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { if (block_ins.find(input_name) != block_ins.end()) { continue; } + + // If the input of Op is generated by the forward block, do not make it + // as input again. + if (fwd_block->FindVar(input_name) != nullptr) { + continue; + } + extra_inputs.insert(input_name); } @@ -253,14 +279,14 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker { // while operator could be renamed. grad->SetAttr("original_output_grad", extra_inputs_list); - return std::unique_ptr(grad); + return std::unique_ptr(grad); } }; class WhileGradOpVarTypeInference : public framework::VarTypeInference { public: - void operator()(const framework::OpDescBind &op_desc, - framework::BlockDescBind *block) const override { + void operator()(const framework::OpDesc &op_desc, + framework::BlockDesc *block) const override { auto p_names = op_desc.Input(kParameters); auto pg_names = op_desc.Output(framework::GradVarName(kParameters)); @@ -295,10 +321,10 @@ class WhileGradOpShapeInference : public framework::InferShapeBase { continue; } auto dims = ctx->GetInputsElementDim(kParameters, i); - if (var_types[i] == framework::VarDesc::LOD_TENSOR) { + if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR) { names_to_set.push_back(pg_names[i]); dims_to_set.push_back(dims); - } else if (var_types[i] == framework::VarDesc::LOD_TENSOR_ARRAY) { + } else if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR_ARRAY) { // not sure how to set the dim of LOD_TENSOR_ARRAY names_to_set.push_back(pg_names[i]); dims_to_set.push_back(dims); diff --git a/paddle/parameter/FirstOrderOptimizer.h b/paddle/parameter/FirstOrderOptimizer.h index f157188a4f736319ea187052b90a17f8be9e9edb..5b0c52a30dfbc34f0db4a03366e31da54b86c9fc 100644 --- a/paddle/parameter/FirstOrderOptimizer.h +++ b/paddle/parameter/FirstOrderOptimizer.h @@ -38,7 +38,7 @@ public: real torch_learningRate = optConfig_.learning_method() == "torch_momentum" ? 1.0 - paraConfig.momentum() : 1.0; -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN sgdUpdate(learningRate_ * paraConfig.learning_rate() * (firstTime_ ? 1.0 : torch_learningRate), paraConfig.momentum(), diff --git a/paddle/parameter/ParameterUpdateFunctions.cpp b/paddle/parameter/ParameterUpdateFunctions.cpp index 1898598e49652a2829e57329bab6017304cec662..d60cb363830ff26a1f5054fb4cebf37afdfd1d03 100644 --- a/paddle/parameter/ParameterUpdateFunctions.cpp +++ b/paddle/parameter/ParameterUpdateFunctions.cpp @@ -30,7 +30,7 @@ void sgdUpdateCpu(real learningRate, const real* grad, real* momentumVec) { decayRate *= learningRate; -#ifdef PADDLE_USE_MKLML +#ifdef PADDLE_WITH_MKLML #pragma omp parallel for #endif for (size_t i = 0; i < size; ++i) { diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index 7afcdfce9371e29aad968a1729931173fb2309b5..dacee74fff369586c7ca2ff62cfe6aeebd8f39c7 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -15,17 +15,11 @@ limitations under the License. */ namespace paddle { namespace platform { -template <> -Eigen::DefaultDevice* DeviceContext::GetEigenDevice< - platform::CPUPlace, Eigen::DefaultDevice>() const { - return reinterpret_cast(this)->eigen_device(); -} - CPUDeviceContext::CPUDeviceContext() { eigen_device_.reset(new Eigen::DefaultDevice()); } -CPUDeviceContext::CPUDeviceContext(CPUPlace place) { +CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) { eigen_device_.reset(new Eigen::DefaultDevice()); } @@ -33,16 +27,10 @@ Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const { return eigen_device_.get(); } -Place CPUDeviceContext::GetPlace() const { return CPUPlace(); } +Place CPUDeviceContext::GetPlace() const { return place_; } #ifdef PADDLE_WITH_CUDA -template <> -Eigen::GpuDevice* -DeviceContext::GetEigenDevice() const { - return reinterpret_cast(this)->eigen_device(); -} - class EigenCudaStreamDevice : public Eigen::StreamInterface { public: EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) { @@ -122,10 +110,6 @@ Place CUDADeviceContext::GetPlace() const { return place_; } void CUDADeviceContext::Wait() const { PADDLE_ENFORCE(cudaStreamSynchronize(stream_)); -} - -void CUDADeviceContext::Finish() const { - Wait(); PADDLE_ENFORCE(cudaGetLastError()); } @@ -141,6 +125,22 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; } cudaStream_t CUDADeviceContext::stream() const { return stream_; } +CUDNNDeviceContext::CUDNNDeviceContext(CUDNNPlace place) + : CUDADeviceContext(place), place_(place) { + PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); + PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream())); +} + +CUDNNDeviceContext::~CUDNNDeviceContext() { + SetDeviceId(place_.device); + Wait(); + PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_)); +} + +Place CUDNNDeviceContext::GetPlace() const { return CUDNNPlace(); } + +cudnnHandle_t CUDNNDeviceContext::cudnn_handle() const { return cudnn_handle_; } + #endif } // namespace platform diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index 526d089e35da9c9f89a3852095ad3a4c82d4d85d..6cc0508522a97f3097b30e3340e7413a7093714a 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -27,27 +27,12 @@ limitations under the License. */ namespace paddle { namespace platform { -template -struct EigenDeviceConverter; - -template <> -struct EigenDeviceConverter { - using EigenDeviceType = Eigen::DefaultDevice; -}; - class DeviceContext { public: virtual ~DeviceContext() {} virtual Place GetPlace() const = 0; - template ::EigenDeviceType> - DeviceType* GetEigenDevice() const; - virtual void Wait() const {} - - virtual void Finish() const {} }; class CPUDeviceContext : public DeviceContext { @@ -60,14 +45,11 @@ class CPUDeviceContext : public DeviceContext { Place GetPlace() const override; private: + CPUPlace place_; std::unique_ptr eigen_device_; }; #ifdef PADDLE_WITH_CUDA -template <> -struct EigenDeviceConverter { - using EigenDeviceType = Eigen::GpuDevice; -}; class EigenCudaStreamDevice; @@ -79,9 +61,6 @@ class CUDADeviceContext : public DeviceContext { /*! \brief Wait for all operations completion in the stream. */ void Wait() const override; - /*! \brief Check potential errors for the cuda kernel calls. */ - void Finish() const override; - /*! \brief Return place in the device context. */ Place GetPlace() const override; @@ -108,6 +87,22 @@ class CUDADeviceContext : public DeviceContext { cublasHandle_t cublas_handle_; }; +class CUDNNDeviceContext : public CUDADeviceContext { + public: + explicit CUDNNDeviceContext(CUDNNPlace place); + virtual ~CUDNNDeviceContext(); + + /*! \brief Return place in the device context. */ + Place GetPlace() const final; + + /*! \brief Return cudnn handle in the device context. */ + cudnnHandle_t cudnn_handle() const; + + private: + cudnnHandle_t cudnn_handle_; + CUDNNPlace place_; +}; + #endif } // namespace platform diff --git a/paddle/platform/device_context_test.cc b/paddle/platform/device_context_test.cc index 8bf5174c4a5579f6f5602dd38e5a87ed3ef444a7..109c13a8812dffac10d202cbc9d85c4e601bf197 100644 --- a/paddle/platform/device_context_test.cc +++ b/paddle/platform/device_context_test.cc @@ -22,9 +22,8 @@ TEST(Device, Init) { int count = paddle::platform::GetCUDADeviceCount(); for (int i = 0; i < count; i++) { - DeviceContext* device_context = new CUDADeviceContext(GPUPlace(i)); - Eigen::GpuDevice* gpu_device = - device_context->template GetEigenDevice(); + CUDADeviceContext* device_context = new CUDADeviceContext(GPUPlace(i)); + Eigen::GpuDevice* gpu_device = device_context->eigen_device(); ASSERT_NE(nullptr, gpu_device); delete device_context; } @@ -47,3 +46,19 @@ TEST(Device, CUDADeviceContext) { delete device_context; } } + +TEST(Device, CUDNNDeviceContext) { + using paddle::platform::CUDNNDeviceContext; + using paddle::platform::CUDNNPlace; + if (paddle::platform::dynload::HasCUDNN()) { + int count = paddle::platform::GetCUDADeviceCount(); + for (int i = 0; i < count; ++i) { + CUDNNDeviceContext* device_context = + new CUDNNDeviceContext(CUDNNPlace(i)); + cudnnHandle_t cudnn_handle = device_context->cudnn_handle(); + ASSERT_NE(nullptr, cudnn_handle); + ASSERT_NE(nullptr, device_context->stream()); + delete device_context; + } + } +} diff --git a/paddle/platform/dynload/cudnn.cc b/paddle/platform/dynload/cudnn.cc index 761d9edd87f428ba140d29a566fc3401199bab15..76ec82e10840751a654c7d7f57da8d5570d2a9ce 100644 --- a/paddle/platform/dynload/cudnn.cc +++ b/paddle/platform/dynload/cudnn.cc @@ -12,7 +12,8 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ -#include +#include "paddle/platform/dynload/cudnn.h" +#include "paddle/platform/enforce.h" namespace paddle { namespace platform { @@ -41,6 +42,21 @@ CUDNN_DNN_ROUTINE_EACH_R5(DEFINE_WRAP); CUDNN_DNN_ROUTINE_EACH_R7(DEFINE_WRAP); #endif +#ifdef PADDLE_USE_DSO +bool HasCUDNN() { + std::call_once(cudnn_dso_flag, GetCudnnDsoHandle, &cudnn_dso_handle); + return cudnn_dso_handle != nullptr; +} + +void EnforceCUDNNLoaded(const char* fn_name) { + PADDLE_ENFORCE(cudnn_dso_handle != nullptr, + "Cannot load cudnn shared library. Cannot invoke method %s", + fn_name); +} +#else +bool HasCUDNN() { return true; } +#endif + } // namespace dynload } // namespace platform } // namespace paddle diff --git a/paddle/platform/dynload/cudnn.h b/paddle/platform/dynload/cudnn.h index 61caac545014db2a09e2ada0b508419578c49740..8c937b37d714a06c623f4e204bd572fdd200ea5d 100644 --- a/paddle/platform/dynload/cudnn.h +++ b/paddle/platform/dynload/cudnn.h @@ -25,9 +25,11 @@ namespace dynload { extern std::once_flag cudnn_dso_flag; extern void* cudnn_dso_handle; +extern bool HasCUDNN(); #ifdef PADDLE_USE_DSO +extern void EnforceCUDNNLoaded(const char* fn_name); #define DECLARE_DYNAMIC_LOAD_CUDNN_WRAP(__name) \ struct DynLoad__##__name { \ template \ @@ -36,6 +38,7 @@ extern void* cudnn_dso_handle; std::call_once(cudnn_dso_flag, \ paddle::platform::dynload::GetCudnnDsoHandle, \ &cudnn_dso_handle); \ + EnforceCUDNNLoaded(#__name); \ void* p_##__name = dlsym(cudnn_dso_handle, #__name); \ return reinterpret_cast(p_##__name)(args...); \ } \ diff --git a/paddle/platform/dynload/dynamic_loader.cc b/paddle/platform/dynload/dynamic_loader.cc index 6feba42c0d9d618d27da12e6a6752058b296995e..7a82d06a0acbfa44386d40df97f6b0e43ed46577 100644 --- a/paddle/platform/dynload/dynamic_loader.cc +++ b/paddle/platform/dynload/dynamic_loader.cc @@ -78,12 +78,11 @@ static inline void GetDsoHandleFromDefaultPath(std::string& dso_path, *dso_handle = dlopen(dso_path.c_str(), dynload_flags); if (nullptr == *dso_handle) { if (dso_path == "libcudnn.dylib") { - PADDLE_ENFORCE(true, - "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n " - "For instance, sudo tar -xzf " - "cudnn-7.5-osx-x64-v5.0-ga.tgz -C /usr/local \n sudo " - "chmod a+r /usr/local/cuda/include/cudnn.h " - "/usr/local/cuda/lib/libcudnn*"); + LOG(WARNING) << "Note: [Recommend] copy cudnn into /usr/local/cuda/ \n " + "For instance, sudo tar -xzf " + "cudnn-7.5-osx-x64-v5.0-ga.tgz -C /usr/local \n sudo " + "chmod a+r /usr/local/cuda/include/cudnn.h " + "/usr/local/cuda/lib/libcudnn*"; } } } @@ -92,7 +91,8 @@ static inline void GetDsoHandleFromDefaultPath(std::string& dso_path, static inline void GetDsoHandleFromSearchPath(const std::string& search_root, const std::string& dso_name, - void** dso_handle) { + void** dso_handle, + bool throw_on_error = true) { int dynload_flags = RTLD_LAZY | RTLD_LOCAL; *dso_handle = nullptr; @@ -111,15 +111,19 @@ static inline void GetDsoHandleFromSearchPath(const std::string& search_root, GetDsoHandleFromDefaultPath(dlPath, dso_handle, dynload_flags); } } - PADDLE_ENFORCE(nullptr != *dso_handle, - "Failed to find dynamic library: %s ( %s ) \n Please specify " - "its path correctly using following ways: \n Method. set " - "environment variable LD_LIBRARY_PATH on Linux or " - "DYLD_LIBRARY_PATH on Mac OS. \n For instance, issue command: " - "export LD_LIBRARY_PATH=... \n Note: After Mac OS 10.11, " - "using the DYLD_LIBRARY_PATH is impossible unless System " - "Integrity Protection (SIP) is disabled.", - dlPath, dlerror()); + auto error_msg = + "Failed to find dynamic library: %s ( %s ) \n Please specify " + "its path correctly using following ways: \n Method. set " + "environment variable LD_LIBRARY_PATH on Linux or " + "DYLD_LIBRARY_PATH on Mac OS. \n For instance, issue command: " + "export LD_LIBRARY_PATH=... \n Note: After Mac OS 10.11, " + "using the DYLD_LIBRARY_PATH is impossible unless System " + "Integrity Protection (SIP) is disabled."; + if (throw_on_error) { + PADDLE_ENFORCE(nullptr != *dso_handle, error_msg, dlPath, dlerror()); + } else if (nullptr == *dso_handle) { + LOG(WARNING) << string::Sprintf(error_msg, dlPath, dlerror()); + } } void GetCublasDsoHandle(void** dso_handle) { @@ -132,9 +136,10 @@ void GetCublasDsoHandle(void** dso_handle) { void GetCudnnDsoHandle(void** dso_handle) { #if defined(__APPLE__) || defined(__OSX__) - GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.dylib", dso_handle); + GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.dylib", dso_handle, + false); #else - GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.so", dso_handle); + GetDsoHandleFromSearchPath(FLAGS_cudnn_dir, "libcudnn.so", dso_handle, false); #endif } diff --git a/paddle/platform/dynload/nccl.cc b/paddle/platform/dynload/nccl.cc index 8f92b8d94d56047b7d3fb43b15e3c06575c8d57b..91168f37effff3f8b864b6bb2ede070cb0a976fa 100644 --- a/paddle/platform/dynload/nccl.cc +++ b/paddle/platform/dynload/nccl.cc @@ -25,6 +25,11 @@ void *nccl_dso_handle; NCCL_RAND_ROUTINE_EACH(DEFINE_WRAP); +void LoadNCCLDSO() { + platform::call_once(nccl_dso_flag, + [] { GetNCCLDsoHandle(&nccl_dso_handle); }); +} + } // namespace dynload } // namespace platform } // namespace paddle diff --git a/paddle/platform/dynload/nccl.h b/paddle/platform/dynload/nccl.h index 981b2ab258a34ce92f02ee12b5957f88ba61d1c0..11007c1031c6d224c475e9ef4f11e7797decd78e 100644 --- a/paddle/platform/dynload/nccl.h +++ b/paddle/platform/dynload/nccl.h @@ -28,18 +28,18 @@ extern std::once_flag nccl_dso_flag; extern void* nccl_dso_handle; #ifdef PADDLE_USE_DSO -#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \ - struct DynLoad__##__name { \ - template \ - auto operator()(Args... args) -> decltype(__name(args...)) { \ - using nccl_func = decltype(__name(args...)) (*)(Args...); \ - platform::call_once(nccl_dso_flag, \ - paddle::platform::dynload::GetNCCLDsoHandle, \ - &nccl_dso_handle); \ - void* p_##__name = dlsym(nccl_dso_handle, #__name); \ - return reinterpret_cast(p_##__name)(args...); \ - } \ - }; \ +extern void LoadNCCLDSO(); + +#define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \ + struct DynLoad__##__name { \ + template \ + auto operator()(Args... args) -> decltype(__name(args...)) { \ + using nccl_func = decltype(__name(args...)) (*)(Args...); \ + paddle::platform::dynload::LoadNCCLDSO(); \ + void* p_##__name = dlsym(nccl_dso_handle, #__name); \ + return reinterpret_cast(p_##__name)(args...); \ + } \ + }; \ extern DynLoad__##__name __name #else #define DECLARE_DYNAMIC_LOAD_NCCL_WRAP(__name) \ diff --git a/paddle/platform/gpu_info.cc b/paddle/platform/gpu_info.cc index 63a33517086ec96711e610b766d19431e084e047..7037551d7544d6fea54e2f4bf887309b7dc5a52e 100644 --- a/paddle/platform/gpu_info.cc +++ b/paddle/platform/gpu_info.cc @@ -18,8 +18,8 @@ limitations under the License. */ #include "paddle/platform/enforce.h" -DEFINE_double(fraction_of_gpu_memory_to_use, 0.95, - "Default use 95% of GPU memory for PaddlePaddle," +DEFINE_double(fraction_of_gpu_memory_to_use, 0.92, + "Default use 92% of GPU memory for PaddlePaddle," "reserve the rest for page tables, etc"); namespace paddle { @@ -73,19 +73,20 @@ size_t GpuMaxChunkSize() { size_t available = 0; GpuMemoryUsage(available, total); - - // Reserving the rest memory for page tables, etc. - size_t reserving = 0.05 * total; - + VLOG(10) << "GPU Usage " << available / 1024 / 1024 << "M/" + << total / 1024 / 1024 << "M"; + size_t reserving = static_cast(0.05 * total); // If available less than minimum chunk size, no usable memory exists. available = - std::max(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(), - reserving) - - reserving; + std::min(std::max(available, GpuMinChunkSize()) - GpuMinChunkSize(), + total - reserving); + + // Reserving the rest memory for page tables, etc. - size_t allocating = FLAGS_fraction_of_gpu_memory_to_use * total; + size_t allocating = static_cast(FLAGS_fraction_of_gpu_memory_to_use * + (total - reserving)); - PADDLE_ENFORCE_LT(allocating, available); + PADDLE_ENFORCE_LE(allocating, available); return allocating; } @@ -96,17 +97,6 @@ void GpuMemcpyAsync(void *dst, const void *src, size_t count, "cudaMemcpyAsync failed in paddle::platform::GpuMemcpyAsync"); } -void GpuMemcpySync(void *dst, const void *src, size_t count, - enum cudaMemcpyKind kind) { - PADDLE_ENFORCE(cudaMemcpy(dst, src, count, kind), - "cudaMemcpy failed in paddle::platform::GpuMemcpySync"); - // note: cudaMemcpy may actually be asynchronous with respect to the caller, - // block on stream 0 to make sure the copy has completed - PADDLE_ENFORCE( - cudaStreamSynchronize(0), - "cudaStreamSynchronize failed in paddle::platform::GpuMemcpySync"); -} - void GpuMemcpyPeer(void *dst, int dst_device, const void *src, int src_device, size_t count, cudaStream_t stream) { PADDLE_ENFORCE( diff --git a/paddle/platform/gpu_info.h b/paddle/platform/gpu_info.h index db961f3838af73855312d4cf6a80e2355306e08f..d05131fa4196057d19a8ae57bf4574c666e409cf 100644 --- a/paddle/platform/gpu_info.h +++ b/paddle/platform/gpu_info.h @@ -52,10 +52,6 @@ size_t GpuMaxChunkSize(); void GpuMemcpyAsync(void *dst, const void *src, size_t count, enum cudaMemcpyKind kind, cudaStream_t stream); -//! Copy memory from address src to dst synchronously. -void GpuMemcpySync(void *dst, const void *src, size_t count, - enum cudaMemcpyKind kind); - //! Copy memory from one device to another device. void GpuMemcpyPeer(void *dst, int dst_device, const void *src, int src_device, size_t count, cudaStream_t stream); diff --git a/paddle/platform/nccl_test.cu b/paddle/platform/nccl_test.cu index c99dae68bef67c58d3efea42fef45e84bb3d9255..94ab360a1967d22e73bc6aefc0301487537c97f7 100644 --- a/paddle/platform/nccl_test.cu +++ b/paddle/platform/nccl_test.cu @@ -31,7 +31,7 @@ namespace platform { TEST(NCCL, init) { std::vector comms; comms.resize(dev_count); - PADDLE_ENFORCE(dynload::ncclCommInitAll(comms.data(), dev_count, nullptr)); + dynload::ncclCommInitAll(comms.data(), dev_count, nullptr); for (int i = 0; i < dev_count; ++i) { dynload::ncclCommDestroy(comms[i]); } @@ -62,7 +62,7 @@ TEST(NCCL, all_reduce) { std::vector comms; comms.resize(dev_count); VLOG(1) << "Initializing ncclComm"; - PADDLE_ENFORCE(dynload::ncclCommInitAll(comms.data(), dev_count, nullptr)); + dynload::ncclCommInitAll(comms.data(), dev_count, nullptr); VLOG(1) << "ncclComm initialized"; VLOG(1) << "Creating thread data"; std::vector>> data; diff --git a/paddle/platform/place.cc b/paddle/platform/place.cc index 856e54df89c1c18ade040957188a2fbda0901473..25fe8d21b49b07a6afe2938245906dc1bdd90398 100644 --- a/paddle/platform/place.cc +++ b/paddle/platform/place.cc @@ -23,6 +23,7 @@ class PlacePrinter : public boost::static_visitor<> { public: explicit PlacePrinter(std::ostream &os) : os_(os) {} void operator()(const CPUPlace &) { os_ << "CPUPlace"; } + void operator()(const MKLDNNPlace &) { os_ << "MKLDNNPlace"; } void operator()(const GPUPlace &p) { os_ << "GPUPlace(" << p.device << ")"; } private: @@ -38,12 +39,17 @@ const Place &get_place() { return the_default_place; } const GPUPlace default_gpu() { return GPUPlace(0); } const CPUPlace default_cpu() { return CPUPlace(); } +const MKLDNNPlace default_mkldnn() { return MKLDNNPlace(); } bool is_gpu_place(const Place &p) { return boost::apply_visitor(IsGPUPlace(), p); } bool is_cpu_place(const Place &p) { - return !boost::apply_visitor(IsGPUPlace(), p); + return !is_gpu_place(p) && !is_mkldnn_place(p); +} + +bool is_mkldnn_place(const Place &p) { + return boost::apply_visitor(IsMKLDNNPlace(), p); } bool places_are_same_class(const Place &p1, const Place &p2) { diff --git a/paddle/platform/place.h b/paddle/platform/place.h index 5370360a7de26e409a1545182a12d3df1f37658b..ca98920d414bc87ce243995a42e5672d0e61e108 100644 --- a/paddle/platform/place.h +++ b/paddle/platform/place.h @@ -31,6 +31,14 @@ struct CPUPlace { inline bool operator!=(const CPUPlace &) const { return false; } }; +struct MKLDNNPlace { + MKLDNNPlace() {} + + // needed for variant equality comparison + inline bool operator==(const MKLDNNPlace &) const { return true; } + inline bool operator!=(const MKLDNNPlace &) const { return false; } +}; + struct GPUPlace { GPUPlace() : GPUPlace(0) {} explicit GPUPlace(int d) : device(d) {} @@ -43,16 +51,28 @@ struct GPUPlace { int device; }; +struct CUDNNPlace : public GPUPlace { + CUDNNPlace() : GPUPlace() {} + explicit CUDNNPlace(int d) : GPUPlace(d) {} +}; + struct IsGPUPlace : public boost::static_visitor { bool operator()(const CPUPlace &) const { return false; } + bool operator()(const MKLDNNPlace &) const { return false; } bool operator()(const GPUPlace &gpu) const { return true; } }; +struct IsMKLDNNPlace : public boost::static_visitor { + bool operator()(const MKLDNNPlace &) const { return true; } + bool operator()(const CPUPlace &) const { return false; } + bool operator()(const GPUPlace &) const { return false; } +}; + // Define the max number of Place in bit length. i.e., the max number of places // should be less equal than 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT) #define NUM_PLACE_TYPE_LIMIT_IN_BIT 4 -typedef boost::variant Place; +typedef boost::variant Place; // static check number of place types is less equal than // 2^(NUM_PLACE_TYPE_LIMIT_IN_BIT) @@ -65,9 +85,11 @@ const Place &get_place(); const GPUPlace default_gpu(); const CPUPlace default_cpu(); +const MKLDNNPlace default_mkldnn(); bool is_gpu_place(const Place &); bool is_cpu_place(const Place &); +bool is_mkldnn_place(const Place &); bool places_are_same_class(const Place &, const Place &); std::ostream &operator<<(std::ostream &, const Place &); diff --git a/paddle/platform/place_test.cc b/paddle/platform/place_test.cc index 33e2e5a439ce6801c02daba4bcbd462a74d7a614..c536b59ed8f71bd078bd09c5bd5afeab74c71b28 100644 --- a/paddle/platform/place_test.cc +++ b/paddle/platform/place_test.cc @@ -5,25 +5,37 @@ TEST(Place, Equality) { paddle::platform::CPUPlace cpu; paddle::platform::GPUPlace g0(0), g1(1), gg0(0); + paddle::platform::CUDNNPlace d0(0), d1(1), dd0(0); EXPECT_EQ(cpu, cpu); EXPECT_EQ(g0, g0); EXPECT_EQ(g1, g1); EXPECT_EQ(g0, gg0); + EXPECT_EQ(d0, dd0); EXPECT_NE(g0, g1); + EXPECT_NE(d0, d1); EXPECT_TRUE(paddle::platform::places_are_same_class(g0, gg0)); EXPECT_FALSE(paddle::platform::places_are_same_class(g0, cpu)); + + EXPECT_TRUE(paddle::platform::is_gpu_place(d0)); + EXPECT_FALSE(paddle::platform::places_are_same_class(g0, d0)); } TEST(Place, Default) { EXPECT_TRUE(paddle::platform::is_gpu_place(paddle::platform::get_place())); EXPECT_TRUE(paddle::platform::is_gpu_place(paddle::platform::default_gpu())); EXPECT_TRUE(paddle::platform::is_cpu_place(paddle::platform::default_cpu())); + EXPECT_TRUE( + paddle::platform::is_mkldnn_place(paddle::platform::default_mkldnn())); paddle::platform::set_place(paddle::platform::CPUPlace()); EXPECT_TRUE(paddle::platform::is_cpu_place(paddle::platform::get_place())); + + paddle::platform::set_place(paddle::platform::MKLDNNPlace()); + EXPECT_FALSE(paddle::platform::is_cpu_place(paddle::platform::get_place())); + EXPECT_TRUE(paddle::platform::is_mkldnn_place(paddle::platform::get_place())); } TEST(Place, Print) { diff --git a/paddle/platform/transform.h b/paddle/platform/transform.h index bb9d59ec0a18ce013632f128c9b5d230255f1ac4..148ebaed3d893cd03df8cf27b1309d07afd9aa4a 100644 --- a/paddle/platform/transform.h +++ b/paddle/platform/transform.h @@ -31,7 +31,7 @@ namespace paddle { namespace platform { // Transform on host or device. It provides the same API in std library. -template +template struct Transform { template void operator()(const DeviceContext& context, InputIter first, InputIter last, @@ -45,16 +45,16 @@ struct Transform { }; template <> -struct Transform { +struct Transform { template - void operator()(const DeviceContext& context, InputIter first, InputIter last, - OutputIter result, UnaryOperation op) { + void operator()(const platform::CPUDeviceContext& context, InputIter first, + InputIter last, OutputIter result, UnaryOperation op) { std::transform(first, last, result, op); } template - void operator()(const DeviceContext& context, InputIter1 first1, + void operator()(const platform::CPUDeviceContext& context, InputIter1 first1, InputIter1 last1, InputIter2 first2, OutputIter result, BinaryOperation op) { std::transform(first1, last1, first2, result, op); @@ -63,27 +63,25 @@ struct Transform { #ifdef __NVCC__ template <> -struct Transform { +struct Transform { template - void operator()(const DeviceContext& context, InputIter first, InputIter last, - OutputIter result, UnaryOperation op) { + void operator()(const platform::CUDADeviceContext& context, InputIter first, + InputIter last, OutputIter result, UnaryOperation op) { auto place = context.GetPlace(); PADDLE_ENFORCE(is_gpu_place(place), "It must use GPU place."); - auto& ctx = reinterpret_cast(context); - thrust::transform(thrust::cuda::par.on(ctx.stream()), + thrust::transform(thrust::cuda::par.on(context.stream()), details::DevPtrCast(first), details::DevPtrCast(last), details::DevPtrCast(result), op); } template - void operator()(const DeviceContext& context, InputIter1 first1, + void operator()(const platform::CUDADeviceContext& context, InputIter1 first1, InputIter1 last1, InputIter2 first2, OutputIter result, BinaryOperation op) { auto place = context.GetPlace(); PADDLE_ENFORCE(is_gpu_place(place), "It must use GPU place."); - auto& ctx = reinterpret_cast(context); - thrust::transform(thrust::cuda::par.on(ctx.stream()), + thrust::transform(thrust::cuda::par.on(context.stream()), details::DevPtrCast(first1), details::DevPtrCast(last1), details::DevPtrCast(first2), details::DevPtrCast(result), op); diff --git a/paddle/platform/transform_test.cu b/paddle/platform/transform_test.cu index c76cab80e4b0e8df98a7be15f86699cfb6f93af2..464096111e4a85b8d64d9223bfb85a1d1d42fad4 100644 --- a/paddle/platform/transform_test.cu +++ b/paddle/platform/transform_test.cu @@ -39,7 +39,7 @@ TEST(Transform, CPUUnary) { using namespace paddle::platform; CPUDeviceContext ctx; float buf[4] = {0.1, 0.2, 0.3, 0.4}; - Transform trans; + Transform trans; trans(ctx, buf, buf + 4, buf, Scale(10)); for (int i = 0; i < 4; ++i) { ASSERT_NEAR(buf[i], static_cast(i + 1), 1e-5); @@ -53,11 +53,11 @@ TEST(Transform, GPUUnary) { CUDADeviceContext ctx(gpu0); float cpu_buf[4] = {0.1, 0.2, 0.3, 0.4}; float* gpu_buf = static_cast(Alloc(gpu0, sizeof(float) * 4)); - Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf)); - Transform trans; + Copy(gpu0, gpu_buf, CPUPlace(), cpu_buf, sizeof(cpu_buf), ctx.stream()); + Transform trans; trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, Scale(10)); ctx.Wait(); - Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf)); + Copy(CPUPlace(), cpu_buf, gpu0, gpu_buf, sizeof(cpu_buf), ctx.stream()); Free(gpu0, gpu_buf); for (int i = 0; i < 4; ++i) { ASSERT_NEAR(cpu_buf[i], static_cast(i + 1), 1e-5); @@ -68,7 +68,7 @@ TEST(Transform, CPUBinary) { using namespace paddle::platform; using namespace paddle::memory; int buf[4] = {1, 2, 3, 4}; - Transform trans; + Transform trans; CPUDeviceContext ctx; trans(ctx, buf, buf + 4, buf, buf, Multiply()); for (int i = 0; i < 4; ++i) { @@ -83,11 +83,11 @@ TEST(Transform, GPUBinary) { GPUPlace gpu0(0); CUDADeviceContext ctx(gpu0); int* gpu_buf = static_cast(Alloc(gpu0, sizeof(buf))); - Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf)); - Transform trans; + Copy(gpu0, gpu_buf, CPUPlace(), buf, sizeof(buf), ctx.stream()); + Transform trans; trans(ctx, gpu_buf, gpu_buf + 4, gpu_buf, gpu_buf, Multiply()); ctx.Wait(); - Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf)); + Copy(CPUPlace(), buf, gpu0, gpu_buf, sizeof(buf), ctx.stream()); Free(gpu0, gpu_buf); for (int i = 0; i < 4; ++i) { ASSERT_EQ((i + 1) * (i + 1), buf[i]); diff --git a/paddle/platform/variant.h b/paddle/platform/variant.h index 619897ca19eb2e6f4dbfd9160edf8c4bc58c89a9..284b4c42ac068b23737c12d3f147bbceb135dacc 100644 --- a/paddle/platform/variant.h +++ b/paddle/platform/variant.h @@ -14,6 +14,19 @@ #pragma once +#ifdef __CUDACC__ +#ifdef __CUDACC_VER_MAJOR__ +// CUDA 9 define `__CUDACC_VER__` as a warning message, manually define +// __CUDACC_VER__ instead. +#undef __CUDACC_VER__ + +#define __CUDACC_VER__ \ + (__CUDACC_VER_MAJOR__ * 10000 + __CUDACC_VER_MINOR__ * 100 + \ + __CUDACC_VER_BUILD__) +#endif + +#endif + #include #ifdef PADDLE_WITH_CUDA diff --git a/paddle/pserver/CMakeLists.txt b/paddle/pserver/CMakeLists.txt index ccfc0e76020c7b4f54a493cc4048e7571379ec1a..f75475a88f7224ee3889827795088c8aa920b63b 100644 --- a/paddle/pserver/CMakeLists.txt +++ b/paddle/pserver/CMakeLists.txt @@ -49,7 +49,7 @@ if(WITH_TESTING) add_subdirectory(test) endif() -if(NOT WITH_C_API) +if(NOT MOBILE_INFERENCE) add_executable(paddle_pserver_main ${PSERVER_MAIN_SOURCES}) link_paddle_exe(paddle_pserver_main) diff --git a/paddle/pybind/CMakeLists.txt b/paddle/pybind/CMakeLists.txt index a54dc0d9fdb3c30391b01966ad493540c8ad1375..6afed7eec7001b646d55cef0bc3f59782b80b15f 100644 --- a/paddle/pybind/CMakeLists.txt +++ b/paddle/pybind/CMakeLists.txt @@ -1,8 +1,10 @@ if(WITH_PYTHON) cc_library(paddle_pybind SHARED - SRCS pybind.cc exception.cc protobuf.cc - DEPS pybind python backward proto_desc paddle_memory executor prune + SRCS pybind.cc exception.cc protobuf.cc const_value.cc + DEPS pybind python backward proto_desc paddle_memory executor prune init ${GLOB_OP_LIB}) endif(WITH_PYTHON) -cc_binary(print_operators_doc SRCS print_operators_doc.cc DEPS ${GLOB_OP_LIB}) +if(WITH_DOC) + cc_binary(print_operators_doc SRCS print_operators_doc.cc DEPS ${GLOB_OP_LIB}) +endif(WITH_DOC) diff --git a/paddle/pybind/const_value.cc b/paddle/pybind/const_value.cc new file mode 100644 index 0000000000000000000000000000000000000000..b13ad42ea29453354798d88bff8ef47339d1a614 --- /dev/null +++ b/paddle/pybind/const_value.cc @@ -0,0 +1,29 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "const_value.h" +#include "paddle/framework/operator.h" + +namespace paddle { +namespace pybind { + +void BindConstValue(pybind11::module& m) { + m.def("kEmptyVarName", [] { return framework::kEmptyVarName; }); + m.def("kTempVarName", [] { return framework::kTempVarName; }); + m.def("kGradVarSuffix", [] { return framework::kGradVarSuffix; }); + m.def("kZeroVarSuffix", [] { return framework::kZeroVarSuffix; }); +} + +} // namespace pybind +} // namespace paddle diff --git a/paddle/pybind/const_value.h b/paddle/pybind/const_value.h new file mode 100644 index 0000000000000000000000000000000000000000..3d57c972a9d5339c0e155fa1d6395af9face8744 --- /dev/null +++ b/paddle/pybind/const_value.h @@ -0,0 +1,26 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once +#include +#include "paddle/platform/enforce.h" +#include "pybind11/pybind11.h" + +namespace py = pybind11; + +namespace paddle { +namespace pybind { +extern void BindConstValue(pybind11::module& m); +} // namespace pybind +} // namespace paddle diff --git a/paddle/pybind/print_operators_doc.cc b/paddle/pybind/print_operators_doc.cc index 24f2a9383f7a069f1a8c7ed2bf3da46720470efa..f4f281229e611a6c9c8e9ecd54e0097ab683bbf3 100644 --- a/paddle/pybind/print_operators_doc.cc +++ b/paddle/pybind/print_operators_doc.cc @@ -31,31 +31,32 @@ std::string Escape(const std::string& s) { return r; } -std::string AttrType(paddle::framework::AttrType at) { +std::string AttrType(paddle::framework::proto::AttrType at) { switch (at) { - case paddle::framework::INT: + case paddle::framework::proto::INT: return "int"; - case paddle::framework::FLOAT: + case paddle::framework::proto::FLOAT: return "float"; - case paddle::framework::STRING: + case paddle::framework::proto::STRING: return "string"; - case paddle::framework::BOOLEAN: + case paddle::framework::proto::BOOLEAN: return "bool"; - case paddle::framework::INTS: + case paddle::framework::proto::INTS: return "int array"; - case paddle::framework::FLOATS: + case paddle::framework::proto::FLOATS: return "float array"; - case paddle::framework::STRINGS: + case paddle::framework::proto::STRINGS: return "string array"; - case paddle::framework::BOOLEANS: + case paddle::framework::proto::BOOLEANS: return "bool array"; - case paddle::framework::BLOCK: + case paddle::framework::proto::BLOCK: return "block id"; } return "UNKNOWN"; // not possible } -void PrintVar(const paddle::framework::OpProto::Var& v, std::stringstream& ss) { +void PrintVar(const paddle::framework::proto::OpProto::Var& v, + std::stringstream& ss) { ss << " { " << "\n" << " \"name\" : \"" << Escape(v.name()) << "\",\n" @@ -65,7 +66,7 @@ void PrintVar(const paddle::framework::OpProto::Var& v, std::stringstream& ss) { << " },"; } -void PrintAttr(const paddle::framework::OpProto::Attr& a, +void PrintAttr(const paddle::framework::proto::OpProto::Attr& a, std::stringstream& ss) { ss << " { " << "\n" @@ -81,7 +82,7 @@ void PrintOpProto(const std::string& type, std::stringstream& ss) { std::cerr << "Processing " << type << "\n"; - const paddle::framework::OpProto* p = opinfo.proto_; + const paddle::framework::proto::OpProto* p = opinfo.proto_; if (p == nullptr) { return; // It is possible that an operator doesn't have OpProto. } diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc index 6c8f06cccb92fa9cd22fdb89a9d410e6853895cc..f105370f226e2cceaac685f280d55134d4291028 100644 --- a/paddle/pybind/protobuf.cc +++ b/paddle/pybind/protobuf.cc @@ -108,21 +108,21 @@ static py::bytes SerializeMessage(T &self) { // Bind Methods void BindProgramDesc(py::module &m) { - py::class_(m, "ProgramDesc", "") + py::class_(m, "ProgramDesc", "") .def(py::init<>()) .def("__init__", - [](ProgramDescBind &self, const ProgramDescBind &other) { - new (&self) ProgramDescBind(other); + [](ProgramDesc &self, const ProgramDesc &other) { + new (&self) ProgramDesc(other); }) .def("__init__", - [](ProgramDescBind &self, const py::bytes &binary_str) { + [](ProgramDesc &self, const py::bytes &binary_str) { std::string str(binary_str); - new (&self) ProgramDescBind(str); + new (&self) ProgramDesc(str); }) - .def("append_block", &ProgramDescBind::AppendBlock, + .def("append_block", &ProgramDesc::AppendBlock, py::return_value_policy::reference) .def("append_backward", - [](ProgramDescBind &program_desc, const VarDescBind &target, + [](ProgramDesc &program_desc, const VarDesc &target, const std::unordered_set &no_grad_vars) { ParamGradInfoMap param_grad_map = AppendBackward(program_desc, target, no_grad_vars); @@ -138,13 +138,13 @@ void BindProgramDesc(py::module &m) { } return retv; }) - .def("block", &ProgramDescBind::MutableBlock, + .def("block", &ProgramDesc::MutableBlock, py::return_value_policy::reference) - .def("num_blocks", &ProgramDescBind::Size) - .def("serialize_to_string", SerializeMessage) + .def("num_blocks", &ProgramDesc::Size) + .def("serialize_to_string", SerializeMessage) .def("parse_from_string", - [](ProgramDescBind &program_desc, const std::string &data) { - ProgramDesc *desc = program_desc.Proto(); + [](ProgramDesc &program_desc, const std::string &data) { + proto::ProgramDesc *desc = program_desc.Proto(); PADDLE_ENFORCE(desc->ParseFromString(data), "Fail to parse ProgramDesc from string. This could " "be a bug of Paddle."); @@ -152,109 +152,115 @@ void BindProgramDesc(py::module &m) { } void BindBlockDesc(py::module &m) { - py::class_(m, "BlockDesc", "") - .def_property_readonly("id", &BlockDescBind::ID) - .def_property_readonly("parent", &BlockDescBind::Parent) - .def("append_op", &BlockDescBind::AppendOp, + py::class_(m, "BlockDesc", "") + .def_property_readonly("id", &BlockDesc::ID) + .def_property_readonly("parent", &BlockDesc::Parent) + .def("append_op", &BlockDesc::AppendOp, py::return_value_policy::reference) - .def("prepend_op", &BlockDescBind::PrependOp, + .def("prepend_op", &BlockDesc::PrependOp, py::return_value_policy::reference) + .def("remove_op", &BlockDesc::RemoveOp) .def("var", - [](BlockDescBind &self, py::bytes byte_name) { + [](BlockDesc &self, py::bytes byte_name) { std::string name = byte_name; return self.Var(name); }, py::return_value_policy::reference) .def("has_var", - [](BlockDescBind &self, py::bytes byte_name) { + [](BlockDesc &self, py::bytes byte_name) { std::string name = byte_name; return self.HasVar(name); }) .def("find_var", - [](BlockDescBind &self, py::bytes byte_name) { + [](BlockDesc &self, py::bytes byte_name) { std::string name = byte_name; return self.FindVar(name); }, py::return_value_policy::reference) - .def("all_vars", &BlockDescBind::AllVars, - py::return_value_policy::reference) - .def("op_size", &BlockDescBind::OpSize) - .def("op", &BlockDescBind::Op, py::return_value_policy::reference) - .def("serialize_to_string", SerializeMessage); + .def("all_vars", &BlockDesc::AllVars, py::return_value_policy::reference) + .def("op_size", &BlockDesc::OpSize) + .def("op", &BlockDesc::Op, py::return_value_policy::reference) + .def("serialize_to_string", SerializeMessage); } void BindVarDsec(py::module &m) { - py::enum_(m, "DataType", "") - .value("BOOL", DataType::BOOL) - .value("INT16", DataType::INT16) - .value("INT32", DataType::INT32) - .value("INT64", DataType::INT64) - .value("FP16", DataType::FP16) - .value("FP32", DataType::FP32) - .value("FP64", DataType::FP64); + py::enum_(m, "DataType", "") + .value("BOOL", proto::DataType::BOOL) + .value("INT16", proto::DataType::INT16) + .value("INT32", proto::DataType::INT32) + .value("INT64", proto::DataType::INT64) + .value("FP16", proto::DataType::FP16) + .value("FP32", proto::DataType::FP32) + .value("FP64", proto::DataType::FP64); - py::class_ var_desc(m, "VarDesc", ""); + py::class_ var_desc(m, "VarDesc", ""); var_desc .def("name", - [](const VarDescBind &self) { + [](const VarDesc &self) { py::bytes name = self.Name(); return name; }, py::return_value_policy::reference) - .def("set_shape", &VarDescBind::SetShape) - .def("set_dtype", &VarDescBind::SetDataType) - .def("shape", &VarDescBind::Shape, py::return_value_policy::reference) - .def("dtype", &VarDescBind::GetDataType) - .def("lod_level", &VarDescBind::GetLodLevel) - .def("set_lod_level", &VarDescBind::SetLoDLevel) - .def("type", &VarDescBind::GetType) - .def("set_type", &VarDescBind::SetType) - .def("serialize_to_string", SerializeMessage) - .def("persistable", &VarDescBind::Persistable) - .def("set_persistable", &VarDescBind::SetPersistable); + .def("set_shape", &VarDesc::SetShape) + .def("set_dtype", &VarDesc::SetDataType) + .def("shape", &VarDesc::Shape, py::return_value_policy::reference) + .def("dtype", &VarDesc::GetDataType) + .def("lod_level", &VarDesc::GetLodLevel) + .def("set_lod_level", &VarDesc::SetLoDLevel) + .def("type", &VarDesc::GetType) + .def("set_type", &VarDesc::SetType) + .def("serialize_to_string", SerializeMessage) + .def("persistable", &VarDesc::Persistable) + .def("set_persistable", &VarDesc::SetPersistable); - py::enum_(var_desc, "VarType", "") - .value("LOD_TENSOR", VarDesc::LOD_TENSOR) - .value("SELECTED_ROWS", VarDesc::SELECTED_ROWS) - .value("FEED_MINIBATCH", VarDesc::FEED_MINIBATCH) - .value("FETCH_LIST", VarDesc::FETCH_LIST) - .value("STEP_SCOPES", VarDesc::STEP_SCOPES) - .value("LOD_RANK_TABLE", VarDesc::LOD_RANK_TABLE) - .value("LOD_TENSOR_ARRAY", VarDesc::LOD_TENSOR_ARRAY); + py::enum_(var_desc, "VarType", "") + .value("LOD_TENSOR", proto::VarDesc::LOD_TENSOR) + .value("SELECTED_ROWS", proto::VarDesc::SELECTED_ROWS) + .value("FEED_MINIBATCH", proto::VarDesc::FEED_MINIBATCH) + .value("FETCH_LIST", proto::VarDesc::FETCH_LIST) + .value("STEP_SCOPES", proto::VarDesc::STEP_SCOPES) + .value("LOD_RANK_TABLE", proto::VarDesc::LOD_RANK_TABLE) + .value("LOD_TENSOR_ARRAY", proto::VarDesc::LOD_TENSOR_ARRAY); } void BindOpDesc(py::module &m) { - py::enum_(m, "AttrType", "") - .value("INT", AttrType::INT) - .value("INTS", AttrType::INTS) - .value("FLOAT", AttrType::FLOAT) - .value("FLOATS", AttrType::FLOATS) - .value("STRING", AttrType::STRING) - .value("STRINGS", AttrType::STRINGS) - .value("BOOL", AttrType::BOOLEAN) - .value("BOOLS", AttrType::BOOLEANS) - .value("BLOCK", AttrType::BLOCK); + py::enum_(m, "AttrType", "") + .value("INT", proto::AttrType::INT) + .value("INTS", proto::AttrType::INTS) + .value("FLOAT", proto::AttrType::FLOAT) + .value("FLOATS", proto::AttrType::FLOATS) + .value("STRING", proto::AttrType::STRING) + .value("STRINGS", proto::AttrType::STRINGS) + .value("BOOL", proto::AttrType::BOOLEAN) + .value("BOOLS", proto::AttrType::BOOLEANS) + .value("BLOCK", proto::AttrType::BLOCK); - py::class_ op_desc(m, "OpDesc", ""); - op_desc.def("type", &OpDescBind::Type) - .def("set_type", &OpDescBind::SetType) - .def("input", &OpDescBind::Input) - .def("input_names", &OpDescBind::InputNames) - .def("set_input", &OpDescBind::SetInput) - .def("output", &OpDescBind::Output) - .def("output_names", &OpDescBind::OutputNames) - .def("set_output", &OpDescBind::SetOutput) - .def("has_attr", &OpDescBind::HasAttr) - .def("attr_type", &OpDescBind::GetAttrType) - .def("attr_names", &OpDescBind::AttrNames) - .def("set_attr", &OpDescBind::SetAttr) - .def("attr", &OpDescBind::GetAttr) - .def("set_block_attr", &OpDescBind::SetBlockAttr) - .def("block_attr", &OpDescBind::GetBlockAttr) - .def("check_attrs", &OpDescBind::CheckAttrs) - .def("infer_shape", &OpDescBind::InferShape) - .def("infer_var_type", &OpDescBind::InferVarType) - .def("serialize_to_string", SerializeMessage); + py::class_ op_desc(m, "OpDesc", ""); + op_desc.def("type", &OpDesc::Type) + .def("set_type", &OpDesc::SetType) + .def("input", &OpDesc::Input) + .def("input_names", &OpDesc::InputNames) + .def("set_input", &OpDesc::SetInput) + .def("output", &OpDesc::Output) + .def("output_names", &OpDesc::OutputNames) + .def("set_output", &OpDesc::SetOutput) + .def("has_attr", &OpDesc::HasAttr) + .def("attr_type", &OpDesc::GetAttrType) + .def("attr_names", &OpDesc::AttrNames) + .def("set_attr", &OpDesc::SetAttr) + .def("attr", &OpDesc::GetAttr) + .def("set_block_attr", &OpDesc::SetBlockAttr) + .def("set_serialized_attr", + [](OpDesc &self, const std::string &name, + const py::bytes &seriralized) { + std::string ser(seriralized); + self.SetAttr(name, ser); + }) + .def("block_attr", &OpDesc::GetBlockAttr) + .def("check_attrs", &OpDesc::CheckAttrs) + .def("infer_shape", &OpDesc::InferShape) + .def("infer_var_type", &OpDesc::InferVarType) + .def("serialize_to_string", SerializeMessage); } } // namespace pybind diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc index c16d3e0cbe01f90a5aa9a5d7a523cd4e282e4771..2d7fe251416dce629dd0a2318aaa020ec9668d9b 100644 --- a/paddle/pybind/pybind.cc +++ b/paddle/pybind/pybind.cc @@ -16,11 +16,11 @@ limitations under the License. */ #include // for call_once #include -#include "gflags/gflags.h" #include "paddle/framework/backward.h" #include "paddle/framework/executor.h" #include "paddle/framework/feed_fetch_method.h" #include "paddle/framework/framework.pb.h" +#include "paddle/framework/init.h" #include "paddle/framework/lod_rank_table.h" #include "paddle/framework/lod_tensor.h" #include "paddle/framework/lod_tensor_array.h" @@ -30,6 +30,7 @@ limitations under the License. */ #include "paddle/operators/net_op.h" #include "paddle/platform/enforce.h" #include "paddle/platform/place.h" +#include "paddle/pybind/const_value.h" #include "paddle/pybind/exception.h" #include "paddle/pybind/pybind.h" #include "paddle/pybind/tensor_py.h" @@ -51,24 +52,6 @@ static size_t UniqueIntegerGenerator(const std::string &prefix) { return generators[prefix].fetch_add(1); } -std::once_flag gflags_init_flag; - -// TODO(qijun) move init gflags to init.cc -void InitGflags(std::vector &argv) { - std::call_once(gflags_init_flag, [&]() { - int argc = argv.size(); - char **arr = new char *[argv.size()]; - std::string line; - for (size_t i = 0; i < argv.size(); i++) { - arr[i] = &argv[i][0]; - line += argv[i]; - line += ' '; - } - google::ParseCommandLineFlags(&argc, &arr, true); - VLOG(1) << "Init commandline: " << line; - }); -} - bool IsCompileGPU() { #ifndef PADDLE_WITH_CUDA return false; @@ -282,20 +265,37 @@ All parameter, weight, gradient are variables in Paddle. } return ret_values; }); - m.def("prune", [](const ProgramDescBind &origin, + m.def("get_grad_op_descs", + [](const OpDesc &op_desc, + const std::unordered_set &no_grad_set, + std::unordered_map &grad_to_var, + const std::vector &grad_sub_block) { + std::vector> grad_op_descs = + framework::OpInfoMap::Instance() + .Get(op_desc.Type()) + .GradOpMaker()(op_desc, no_grad_set, &grad_to_var, + grad_sub_block); + std::vector grad_op_desc_ptrs(grad_op_descs.size()); + std::transform( + grad_op_descs.begin(), grad_op_descs.end(), + grad_op_desc_ptrs.begin(), + [](std::unique_ptr &p) { return p.release(); }); + return grad_op_desc_ptrs; + }); + m.def("prune", [](const ProgramDesc &origin, const std::vector> &targets) { - ProgramDescBind prog_with_targets(origin); + ProgramDesc prog_with_targets(origin); for (const auto &t : targets) { prog_with_targets.MutableBlock(t[0])->Op(t[1])->MarkAsTarget(); } - ProgramDesc pruned_desc; + proto::ProgramDesc pruned_desc; Prune(*prog_with_targets.Proto(), &pruned_desc); - return new ProgramDescBind(pruned_desc); + return new ProgramDesc(pruned_desc); }); - m.def("inference_optimize", [](ProgramDescBind &origin) { - ProgramDesc pruned_desc; + m.def("inference_optimize", [](ProgramDesc &origin) { + proto::ProgramDesc pruned_desc; InferenceOptimize(*(origin.Proto()), &pruned_desc); - return new ProgramDescBind(pruned_desc); + return new ProgramDesc(pruned_desc); }); m.def_submodule( "var_names", @@ -345,7 +345,7 @@ All parameter, weight, gradient are variables in Paddle. py::class_(m, "Operator") .def_static("create", [](py::bytes protobin) { - OpDesc desc; + proto::OpDesc desc; PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), "Cannot parse user input to OpDesc"); PADDLE_ENFORCE(desc.IsInitialized(), @@ -398,7 +398,7 @@ All parameter, weight, gradient are variables in Paddle. py::class_(m, "CondOp") .def_static("create", [](py::bytes protobin) -> operators::CondOp * { - OpDesc desc; + proto::OpDesc desc; PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), "Cannot parse user input to OpDesc"); PADDLE_ENFORCE(desc.IsInitialized(), @@ -421,7 +421,8 @@ All parameter, weight, gradient are variables in Paddle. .def("run", &Executor::Run); m.def("unique_integer", UniqueIntegerGenerator); - m.def("init_gflags", InitGflags); + m.def("init_gflags", framework::InitGflags); + m.def("init_devices", &framework::InitDevices); m.def("is_compile_gpu", IsCompileGPU); m.def("set_feed_variable", framework::SetFeedVariable); @@ -431,6 +432,7 @@ All parameter, weight, gradient are variables in Paddle. BindBlockDesc(m); BindVarDsec(m); BindOpDesc(m); + BindConstValue(m); py::class_(m, "LodRankTable") .def("items", [](framework::LoDRankTable &table) { diff --git a/paddle/pybind/tensor_py.h b/paddle/pybind/tensor_py.h index 41fa658502d341fe9653a3e99b58498fcaeada47..268a0f2fa386adf99f7ea1589ff1f301f943a68b 100644 --- a/paddle/pybind/tensor_py.h +++ b/paddle/pybind/tensor_py.h @@ -14,6 +14,7 @@ #pragma once #include +#include "paddle/framework/executor.h" #include "paddle/framework/tensor.h" #include "paddle/memory/memcpy.h" #include "pybind11/numpy.h" @@ -61,11 +62,15 @@ struct CastToPyBufferImpl { auto *src_ptr = static_cast(tensor.data()); auto *dst_ptr = static_cast(dst_tensor.mutable_data( tensor.dims(), platform::CPUPlace())); - // TODO(qijun): Here we use default CUDA stream to set GPU Tensor to - // a Python numpy array. It's better to manage CDUA stream unifiedly. - paddle::platform::GpuMemcpySync(dst_ptr, src_ptr, - sizeof(CUR_TYPE) * tensor.numel(), - cudaMemcpyDeviceToHost); + + framework::DeviceContextPool &pool = + framework::DeviceContextPool::Get(); + auto dev_ctx = static_cast( + pool.Borrow(tensor.place())); + + paddle::platform::GpuMemcpyAsync( + dst_ptr, src_ptr, sizeof(CUR_TYPE) * tensor.numel(), + cudaMemcpyDeviceToHost, dev_ctx->stream()); #else PADDLE_THROW("'GPUPlace' is not supported in CPU only device."); #endif @@ -132,10 +137,12 @@ void PyCUDATensorSetFromArray( self.Resize(framework::make_ddim(dims)); auto *dst = self.mutable_data(place); - // TODO(qijun): Here we use default CUDA stream to set a Python numpy - // array to a GPU Tensor. It's better to manage CDUA stream unifiedly. - paddle::platform::GpuMemcpySync(dst, array.data(), sizeof(T) * array.size(), - cudaMemcpyHostToDevice); + + framework::DeviceContextPool &pool = framework::DeviceContextPool::Get(); + auto dev_ctx = + static_cast(pool.Borrow(place)); + paddle::platform::GpuMemcpyAsync(dst, array.data(), sizeof(T) * array.size(), + cudaMemcpyHostToDevice, dev_ctx->stream()); } #endif diff --git a/paddle/scripts/check_env.sh b/paddle/scripts/check_env.sh new file mode 100755 index 0000000000000000000000000000000000000000..af16b84ca8a18151f0fa36d39fd201d3cab21a5f --- /dev/null +++ b/paddle/scripts/check_env.sh @@ -0,0 +1,261 @@ +#!/bin/bash + +if [ "`uname -s`" != "Linux" ]; then + echo "Current scenario only support in Linux yet!" + exit 0 +fi + +echo "========================= Hardware Information =========================" +sockets=`grep 'physical id' /proc/cpuinfo | sort -u | wc -l` +cores_per_socket=`grep 'core id' /proc/cpuinfo | sort -u | wc -l` +ht=`lscpu |grep "per core" |awk -F':' '{print $2}'|xargs` +physical_cores=$((sockets * cores_per_socket)) +virtual_cores=`grep 'processor' /proc/cpuinfo | sort -u | wc -l` +numa_nodes=`lscpu |grep "NUMA node(s)"|awk -F':' '{print $2}'|xargs` +echo "CPU Name : `cat /proc/cpuinfo |grep -i "model name" |uniq |awk -F ':' '{print $2}'|xargs`" +echo "CPU Family : `lscpu |grep \"CPU family\" |awk -F':' '{print $2}'|xargs`" +echo "Socket Number : $sockets" +echo "Cores Per Socket : $cores_per_socket" +echo "Total Physical Cores : $physical_cores" +echo "Total Virtual Cores : $virtual_cores" +if [ $ht -eq 1 ]; then + echo "Hyper Threading : OFF" + if [ $physical_cores -ne $virtual_cores ]; then + echo "Error: HT logical error" + fi +else + echo "Hyper Threading : ON" + if [ $physical_cores -ge $virtual_cores ]; then + echo "Error: HT logical error" + fi +fi +echo "NUMA Nodes : $numa_nodes" +if [ $numa_nodes -lt $sockets ]; then + echo "Warning: NUMA node is not enough for the best performance,\ + at least $sockets" +fi + +echo "-------------------------- Memory Information --------------------------" +# dmidecode support start from 2.11 +dmi_ver=`dmidecode --version|awk -F '.' '{print $1}'|xargs` +if [ $dmi_ver -lt 2 ]; then + echo "Error: dmidecode unknown or version is too old" + exit 0 +fi +if [ `dmidecode | grep -ic "Permission denied"` -ne 0 ]; then + echo "Error: need root to run dmidecode" + exit 0 +fi +max_dimms=0 +num_dimms_installed=0 +for dimm_id in `dmidecode |grep Locator|sort -u | awk -F ':' '{print $2}'`; do + num_refered=`dmidecode |grep -wc "$dimm_id"` + # the actual dimm id should be refered only once + if [ $num_refered -eq 1 ]; then + num_unknown=`dmidecode | awk '/'$dimm_id'/ {s=1; f=0}; + /Unknown/ {f=1}; + /Manufacturer/ {if (s==1) {print f; exit 0;}};'` + if [ $num_unknown -eq 0 ]; then + dimms_installed="$dimms_installed \n $dimm_id" + ((num_dimms_installed++)) + else + dimms_uninstalled="$dimms_uninstalled \n $dimm_id" + fi + ((max_dimms++)) + fi +done +echo "Installed DIMM number : $num_dimms_installed" +num_dimms_mapped=`dmidecode | grep "Memory Device Mapped" | wc -l` +if [ $num_dimms_installed -ne $num_dimms_mapped ]; then + echo "Error: The installed DIMMs number does ont match the mapped memory device: $num_dimms_mapped" +fi +num_clock_configed=`dmidecode | grep -i "Configured Clock Speed" |grep -ic "Hz"` +if [ $num_dimms_installed -ne $num_clock_configed ]; then + echo "Error: The installed DIMMs number does ont match configured clocks: $num_clock_configed" +fi +echo -e "Installed DIMMs Locator: $dimms_installed" +echo -e "Not installed DIMMs : $dimms_uninstalled" +max_dimm_slots=`dmidecode | grep -c "Bank Locator"` +echo "DIMMs max slots : $max_dimm_slots" +if [ $max_dimms -ne $max_dimm_slots ]; then + echo "Error: The max dimm slots do not match the max dimms: $max_dimms" +fi +free_ver_main=`free -V|awk -F ' ' '{print $NF}'|awk -F '.' '{print $1}'` +free_ver_sub=`free -V|awk -F ' ' '{print $NF}'|awk -F '.' '{print $2}'` +if [ $free_ver_main -lt 3 ] || [ $free_ver_sub -lt 3 ]; then + mem_sz=`free |grep -i mem |awk -F' ' '{print $2}'|xargs` + swap_sz=`free |grep -i swap |awk -F' ' '{print $2}'|xargs` + total_sz=`free -t |grep -i total |tail -n 1| awk -F' ' '{print $2}'|xargs` + mem_sz="`awk 'BEGIN{printf "%.1f\n",('$mem_sz'/1024/1024)}'` GB" + swap_sz="`awk 'BEGIN{printf "%.1f\n",('$swap_sz'/1024/1024)}'` GB" + total_sz="`awk 'BEGIN{printf "%.1f\n",('$total_sz'/1024/1024)}'` GB" +else + mem_sz=`free -h |grep -i mem |awk -F' ' '{print $2}'|xargs` + swap_sz=`free -h |grep -i swap |awk -F' ' '{print $2}'|xargs` + total_sz=`free -th |grep -i total |tail -n 1| awk -F' ' '{print $2}'|xargs` +fi +echo "Memory Size : $mem_sz" +echo "Swap Memory Size : $swap_sz" +echo "Total Memory Size : $total_sz" +echo "Max Memory Capacity : `dmidecode |grep -i \"maximum capacity\"|sort -u|awk -F':' '{print $2}'|xargs`" +# DIMMs fequency +clock_speeds=`dmidecode | grep -i "Configured Clock Speed" | grep -i "Hz" |sort -u | awk -F':' '{print $2}'|xargs` +echo "Configed Clock Speed : $clock_speeds" +num_clock_type=`dmidecode | grep -i "Configured Clock Speed" | grep -i "Hz" |sort -u | wc -l` +if [ $num_clock_type -ne 1 ]; then + echo "Warning: Have more than 1 speed type, all DIMMs should have same fequency: $clock_speeds" +fi + +echo "-------------------------- Turbo Information --------------------------" +scaling_drive=`cat /sys/devices/system/cpu/cpu0/cpufreq/scaling_driver` +echo "Scaling Driver : $scaling_drive" +if [ $scaling_drive == "intel_pstate" ] && [ -e /sys/devices/system/cpu/intel_pstate/no_turbo ]; then + turbo=`cat /sys/devices/system/cpu/intel_pstate/no_turbo` + if [ $turbo -eq 1 ]; then + echo "Turbo Status : OFF" + else + echo "Turbo Status : ON" + fi +else + echo "Warning: Scaling driver is not intel_pstarte, maybe should enable it in BIOS" + echo "Turbo Status : Unknown" +fi +# cpu frequency +num_max_freq=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq| sort -u |wc -l` +num_min_freq=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq| sort -u |wc -l` +if [ $num_max_freq -ne 1 ]; then + echo "Error: the max_frequency of all CPU should be equal" +fi +if [ $num_min_freq -ne 1 ]; then + echo "Error: the min_frequency of all CPU should be equal" +fi +max_freq=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_max_freq| uniq|xargs` # kHz +max_freq=`awk 'BEGIN{printf "%.2f",('$max_freq' / 1000000)}'` # GHz +min_freq=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_min_freq| uniq|xargs` # kHz +min_freq=`awk 'BEGIN{printf "%.2f",('$min_freq' / 1000000)}'` # GHz +echo "CPU Max Frequency : $max_freq GHz" +echo "CPU Min Frequency : $min_freq GHz" +# cpu governor +num_governor=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor| sort -u |wc -l` +if [ $num_governor -ne 1 ]; then + echo "Error: the governor of all CPU should be the same" +fi +governor=`cat /sys/devices/system/cpu/cpu*/cpufreq/scaling_governor| sort -u |uniq` +echo "CPU Freq Governor : $governor" + + +echo "========================= Software Information =========================" +echo "BIOS Release Date : `dmidecode | grep "Release Date"|awk -F ':' '{print $2}'|xargs`" +echo "OS Version : `cat /etc/redhat-release`" +echo "Kernel Release Version : `uname -r`" +echo "Kernel Patch Version : `uname -v`" +echo "GCC Version :`gcc --version | head -n 1|awk -F '\\\(GCC\\\)' '{print $2}'`" +if command -v cmake >/dev/null 2>&1; then + cmake_ver=`cmake --version | head -n 1 | awk -F 'version' '{print $2}'` +else + cmake_ver=" Not installed" +fi +echo "CMake Version :$cmake_ver" +echo "------------------ Environment Variables Information -------------------" +kmp_affinity=`env | grep KMP_AFFINITY` +omp_dynamic=`env | grep OMP_DYNAMIC` +omp_nested=`env | grep OMP_NESTED` +omp_num_threads=`env | grep OMP_NUM_THREADS` +mkl_num_threads=`env | grep MKL_NUM_THREADS` +mkl_dynamic=`env | grep MKL_DYNAMIC` +if [ ! $kmp_affinity ]; then kmp_affinity="unset"; fi +if [ ! $omp_dynamic ]; then omp_dynamic="unset"; fi +if [ ! $omp_nested ]; then omp_nested="unset"; fi +if [ ! $omp_num_threads ]; then omp_num_threads="unset"; fi +if [ ! $mkl_num_threads ]; then mkl_num_threads="unset"; fi +if [ ! $mkl_dynamic ]; then mkl_dynamic="unset"; fi +echo "KMP_AFFINITY : $kmp_affinity" +echo "OMP_DYNAMIC : $omp_dynamic" +echo "OMP_NESTED : $omp_nested" +echo "OMP_NUM_THREADS : $omp_num_threads" +echo "MKL_NUM_THREADS : $mkl_num_threads" +echo "MKL_DYNAMIC : $mkl_dynamic" +# Check if any MKL related libraries have been installed in LD_LIBRARY_PATH +for path in `echo $LD_LIBRARY_PATH | awk -F ':' '{for(i=1;i<=NF;++i)print $i}'`; do + mkldnn_found=`find $path -name "libmkldnn.so"` + if [ "$mkldnn_found" ]; then + echo "Found MKL-DNN : $mkldnn_found" + fi + mklml_found=`find $path -name "libmklml_intel.so"` + if [ "$mklml_found" ]; then + echo "Found MKLML : $mklml_found" + fi + iomp_found=`find $path -name "libiomp5.so"` + if [ "$iomp_found" ]; then + echo "Found IOMP : $iomp_found" + fi +done + +# dump all details for fully check +lscpu > lscpu.dump +dmidecode > dmidecode.dump + +# The expected result would be like: +# ========================= Hardware Information ========================= +# CPU Name : Intel(R) Xeon(R) Gold 6148M CPU @ 2.40GHz +# CPU Family : 6 +# Socket Number : 2 +# Cores Per Socket : 20 +# Total Physical Cores : 40 +# Total Virtual Cores : 40 +# Hyper Threading : OFF +# NUMA Nodes : 2 +# -------------------------- Memory Information -------------------------- +# Installed DIMM number : 12 +# Installed DIMMs Locator: +# CPU1_DIMM_A1 +# CPU1_DIMM_B1 +# CPU1_DIMM_C1 +# CPU1_DIMM_D1 +# CPU1_DIMM_E1 +# CPU1_DIMM_F1 +# CPU2_DIMM_A1 +# CPU2_DIMM_B1 +# CPU2_DIMM_C1 +# CPU2_DIMM_D1 +# CPU2_DIMM_E1 +# CPU2_DIMM_F1 +# Not installed DIMMs : +# CPU1_DIMM_A2 +# CPU1_DIMM_B2 +# CPU1_DIMM_C2 +# CPU1_DIMM_D2 +# CPU1_DIMM_E2 +# CPU1_DIMM_F2 +# CPU2_DIMM_A2 +# CPU2_DIMM_B2 +# CPU2_DIMM_C2 +# CPU2_DIMM_D2 +# CPU2_DIMM_E2 +# CPU2_DIMM_F2 +# DIMMs max slots : 24 +# Memory Size : 376G +# Swap Memory Size : 4.0G +# Total Memory Size : 380G +# Max Memory Capacity : 2304 GB +# Configed Clock Speed : 2666 MHz +# -------------------------- Turbo Information -------------------------- +# Scaling Driver : intel_pstate +# Turbo Status : ON +# CPU Max Frequency : 3.70 GHz +# CPU Min Frequency : 1.00 GHz +# CPU Freq Governor : performance +# ========================= Software Information ========================= +# BIOS Release Date : 03/10/2017 +# OS Version : CentOS Linux release 7.3.1611 (Core) +# Kernel Release Version : 3.10.0-514.el7.x86_64 +# Kernel Patch Version : #1 SMP Tue Nov 22 16:42:41 UTC 2016 +# GCC Version : 4.8.5 20150623 (Red Hat 4.8.5-11) +# CMake Version : 3.5.2 +# ------------------ Environment Variables Information ------------------- +# KMP_AFFINITY : unset +# OMP_DYNAMIC : unset +# OMP_NESTED : unset +# OMP_NUM_THREADS : unset +# MKL_NUM_THREADS : unset +# MKL_DYNAMIC : unset diff --git a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile index 1a2d19e823541750830fcaa25f65b2f8e1ea2b49..c2f631bdf4ed52a5dfa3fbcf1157d0abbdeadb9b 100644 --- a/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile +++ b/paddle/scripts/cluster_train_v2/openmpi/docker_cluster/Dockerfile @@ -1,7 +1,7 @@ # Build this image: docker build -t mpi . # -FROM paddledev/paddle:0.10.0rc3 +FROM paddlepaddle/paddle:0.10.0rc3 ENV DEBIAN_FRONTEND noninteractive diff --git a/paddle/scripts/docker/README.md b/paddle/scripts/docker/README.md index f3a6f1dba7588c6b29c1dcae26ec134c1a7f937d..f0620498cfa6775ce2949cc02fa9f6c9529dec2e 100644 --- a/paddle/scripts/docker/README.md +++ b/paddle/scripts/docker/README.md @@ -20,7 +20,7 @@ binaries. ## Run The Build -### Build Evironments +### Build Environments The pre-built build environment images are: @@ -192,7 +192,7 @@ For developers who are interested in the C++ source code, please use -e "WOBOQ=O - The following command builds PaddlePaddle, generates HTML pages from C++ source code, and writes HTML pages into `$HOME/woboq_out` on the host: ```bash -docker run -v $PWD:/paddle -v $HOME/woboq_out:/woboq_out -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TEST=ON" -e "WOBOQ=ON" paddlepaddle/paddle:latest-dev +docker run -v $PWD:/paddle -v $HOME/woboq_out:/woboq_out -e "WITH_GPU=OFF" -e "WITH_AVX=ON" -e "WITH_TESTING=ON" -e "WOBOQ=ON" paddlepaddle/paddle:latest-dev ``` - You can open the generated HTML files in your Web browser. Or, if you want to run a Nginx container to serve them for a wider audience, you can run: diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index fbd0b6b07876451ad973eb98bbff822a2a58db43..e43b9c218a3ecb9e7f20fb7e8b14a85a29947eef 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -113,7 +113,10 @@ EOF -DWITH_SWIG_PY=ON \ -DWITH_STYLE_CHECK=OFF make -j `nproc` gen_proto_py + make -j `nproc` paddle_python make -j `nproc` paddle_docs paddle_docs_cn + make -j `nproc` print_operators_doc + paddle/pybind/print_operators_doc > doc/en/html/operators.json popd fi @@ -175,7 +178,7 @@ EOF # run paddle version to install python packages first RUN apt-get update &&\ ${NCCL_DEPS}\ - apt-get install -y wget python-pip && pip install -U pip && \ + apt-get install -y wget python-pip dmidecode && pip install -U pip && \ pip install /*.whl; apt-get install -f -y && \ apt-get clean -y && \ rm -f /*.whl && \ @@ -185,7 +188,6 @@ EOF ${DOCKERFILE_GPU_ENV} ADD go/cmd/pserver/pserver /usr/bin/ ADD go/cmd/master/master /usr/bin/ - ADD paddle/pybind/print_operators_doc /usr/bin/ # default command shows the paddle version and exit CMD ["paddle", "version"] EOF diff --git a/paddle/scripts/submit_local.sh.in b/paddle/scripts/submit_local.sh.in index d71cb84df3785008ea5793519fc26a174e1b95f7..43d2d1b410fa86dc0ab213cba0c2a488770ea1c7 100755 --- a/paddle/scripts/submit_local.sh.in +++ b/paddle/scripts/submit_local.sh.in @@ -140,7 +140,11 @@ else: sys.exit(0) EOF -cpu_config +if [ "`uname -s`" == "Linux" ]; then + # only support on linux yet, with mac can use v2 + cpu_config +fi + # echo $KMP_AFFINITY $OMP_DYNAMIC case "$1" in diff --git a/paddle/scripts/tools/build_docs/build_docs.sh b/paddle/scripts/tools/build_docs/build_docs.sh index c6cbbc4eef94fb2e2fc3c1ce71734fbb23fc22d7..f9bc8bf63ae9afdfca1ff660bc83e62e71f03005 100755 --- a/paddle/scripts/tools/build_docs/build_docs.sh +++ b/paddle/scripts/tools/build_docs/build_docs.sh @@ -5,4 +5,4 @@ docker run --rm \ -e "WITH_AVX=ON" \ -e "WITH_DOC=ON" \ -e "WOBOQ=ON" \ - ${1:-"paddledev/paddle:dev"} + ${1:-"paddlepaddle/paddle:latest-dev"} diff --git a/paddle/scripts/travis/build_doc.sh b/paddle/scripts/travis/build_doc.sh index 7d54f0254c8ea9367a34233602293db5b8593f9a..0db8d33bbcb5278ed0dd5584b5822502b719ede9 100755 --- a/paddle/scripts/travis/build_doc.sh +++ b/paddle/scripts/travis/build_doc.sh @@ -8,12 +8,14 @@ cd $TRAVIS_BUILD_DIR/build # Compile Documentation only. cmake .. -DCMAKE_BUILD_TYPE=Debug -DWITH_GPU=OFF -DWITH_MKL=OFF -DWITH_DOC=ON make -j `nproc` gen_proto_py +make -j `nproc` paddle_python make -j `nproc` paddle_docs paddle_docs_cn +make -j `nproc` print_operators_doc +paddle/pybind/print_operators_doc > doc/en/html/operators.json # check websites for broken links -# It will be failed now! -#linkchecker doc/en/html/index.html -#linkchecker doc/cn/html/index.html +linkchecker doc/en/html/index.html +linkchecker doc/cn/html/index.html # Parse Github URL REPO=`git config remote.origin.url` diff --git a/paddle/trainer/CMakeLists.txt b/paddle/trainer/CMakeLists.txt index 3d471a0c01ca17cb98272159baf6d489c18824d5..72911695bd4959d73d783897b0c5e674454c30bc 100644 --- a/paddle/trainer/CMakeLists.txt +++ b/paddle/trainer/CMakeLists.txt @@ -54,7 +54,7 @@ if(WITH_TESTING) add_subdirectory(tests) endif() -if(NOT WITH_C_API) +if(NOT MOBILE_INFERENCE) add_paddle_exe(paddle_trainer TrainerMain.cpp) add_paddle_exe(paddle_merge_model MergeModel.cpp) @@ -74,7 +74,5 @@ endif() if(WITH_GOLANG) add_dependencies(paddle_trainer_lib paddle_pserver_cclient) target_link_libraries(paddle_trainer_lib paddle_pserver_cclient) - if(NOT WITH_C_API) - target_link_libraries(paddle_trainer paddle_pserver_cclient) - endif() + target_link_libraries(paddle_trainer paddle_pserver_cclient) endif(WITH_GOLANG) diff --git a/paddle/trainer/tests/CMakeLists.txt b/paddle/trainer/tests/CMakeLists.txt index 2739878b7f2936ea2da689da0b4caa780516ccc1..bd518d8598f5aa7c32298ed2110a96a2743536b3 100644 --- a/paddle/trainer/tests/CMakeLists.txt +++ b/paddle/trainer/tests/CMakeLists.txt @@ -1,19 +1,17 @@ -################# test_Compare ############################ -add_unittest_without_exec(test_Compare - test_Compare.cpp) -add_test(NAME test_Compare - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python - ${CMAKE_CURRENT_BINARY_DIR}/test_Compare - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) +set(PYTHON_PATH + ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d + ${PADDLE_SOURCE_DIR}/python/:${PADDLE_SOURCE_DIR}/paddle/trainer/tests) +function(trainer_test TARGET) + add_unittest_without_exec(${TARGET} ${TARGET}.cpp) + add_test(NAME ${TARGET} + COMMAND ${PYTHON_PATH} ${CMAKE_CURRENT_BINARY_DIR}/${TARGET} + WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) +endfunction() -################# test_Trainer ########################### -add_unittest_without_exec(test_Trainer - test_Trainer.cpp) -add_test(NAME test_Trainer - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ - ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ - ${CMAKE_CURRENT_BINARY_DIR}/test_Trainer - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) +trainer_test(test_Compare) +trainer_test(test_PyDataProviderWrapper) +trainer_test(test_recurrent_machine_generation) +trainer_test(test_Trainer) ############### test_TrainerOnePass ########################## if(WITH_PYTHON) @@ -22,32 +20,13 @@ if(WITH_PYTHON) add_unittest_without_exec(test_TrainerOnePass test_TrainerOnePass.cpp) add_test(NAME test_TrainerOnePass - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d - ${PADDLE_SOURCE_DIR}/python/:${PADDLE_SOURCE_DIR}/paddle/trainer/tests - ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port ${CMAKE_CURRENT_BINARY_DIR}/test_TrainerOnePass + COMMAND ${PYTHON_PATH} ${PADDLE_SOURCE_DIR}/paddle/.set_port.sh -p port + ${CMAKE_CURRENT_BINARY_DIR}/test_TrainerOnePass WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) endif() -################# test_recurrent_machine_generation ############### -add_unittest_without_exec(test_recurrent_machine_generation - test_recurrent_machine_generation.cpp) -add_test(NAME test_recurrent_machine_generation - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ - ${CMAKE_CURRENT_BINARY_DIR}/test_recurrent_machine_generation - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) - -#################### test_PyDataProviderWrapper ######################### -add_unittest_without_exec(test_PyDataProviderWrapper - test_PyDataProviderWrapper.cpp) - -add_test(NAME test_PyDataProviderWrapper - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d - ${PADDLE_SOURCE_DIR}/python/:${PADDLE_SOURCE_DIR}/paddle/trainer/tests - ${CMAKE_CURRENT_BINARY_DIR}/test_PyDataProviderWrapper - WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) - #################### test_config_parser ######################### add_test(NAME test_config_parser - COMMAND ${PADDLE_SOURCE_DIR}/paddle/.set_python_path.sh -d ${PADDLE_SOURCE_DIR}/python/ - ${PYTHON_EXECUTABLE} ${PADDLE_SOURCE_DIR}/paddle/trainer/tests/config_parser_test.py + COMMAND ${PYTHON_PATH} ${PYTHON_EXECUTABLE} + ${PADDLE_SOURCE_DIR}/paddle/trainer/tests/config_parser_test.py WORKING_DIRECTORY ${PADDLE_SOURCE_DIR}/paddle/) diff --git a/paddle/utils/Flags.cpp b/paddle/utils/Flags.cpp index 8f100f02e90bcbc7fdcf6f053aec6f95cfb09c1a..9a7dc0e35622383a190f8b3a80736e6b42c9c959 100644 --- a/paddle/utils/Flags.cpp +++ b/paddle/utils/Flags.cpp @@ -20,7 +20,7 @@ DEFINE_bool(use_gpu, false, "Only support CPU training"); DEFINE_bool(use_gpu, true, "Whether to use GPU for training"); #endif -#ifdef PADDLE_USE_MKLDNN +#ifdef PADDLE_WITH_MKLDNN // TODO(TJ): change to true when MKLDNN layers support multi-inputs DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training"); #else diff --git a/proto/ModelConfig.proto b/proto/ModelConfig.proto index 2fcdbbc8bd671f8ae911cf82c7a91091f252a82f..1fbdd5bbd82a0ae15f620fa11a14ac3126e52838 100644 --- a/proto/ModelConfig.proto +++ b/proto/ModelConfig.proto @@ -139,6 +139,8 @@ message PoolConfig { optional uint32 output_z = 16 [ default = 1 ]; optional uint32 img_size_z = 17 [ default = 1 ]; optional uint32 padding_z = 18 [ default = 1 ]; + + optional bool exclude_mode = 19; } message SppConfig { diff --git a/python/.gitignore b/python/.gitignore index cc7d0ece4acaba2a3fa38a89110587fe8dffb992..1ba1d4c9b0301ed920f5303089e75dd3a8e4e3fa 100644 --- a/python/.gitignore +++ b/python/.gitignore @@ -2,6 +2,7 @@ build dist paddle.egg-info +paddlepaddle_gpu.egg-info .idea paddle/proto/*.py paddle/proto/*.pyc diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index c8632295a25b160513a8e154bf1a5453c0005031..6f589e916979584897863db72924c885c258d4b2 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -33,6 +33,12 @@ if(WITH_MKLDNN) list(APPEND MKL_DEPENDS mkldnn) endif() +if(WITH_GPU) + SET(PACKAGE_NAME "paddlepaddle-gpu") +else() + SET(PACKAGE_NAME "paddlepaddle") +endif() + configure_file(${CMAKE_CURRENT_SOURCE_DIR}/setup.py.in ${CMAKE_CURRENT_BINARY_DIR}/setup.py) diff --git a/python/paddle/__init__.py b/python/paddle/__init__.py index f662d6826321eb840739382558f76327d27b5847..1030c94e16376c326cb8b32926b8c47625cd38f0 100644 --- a/python/paddle/__init__.py +++ b/python/paddle/__init__.py @@ -11,3 +11,11 @@ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. +try: + from version import full_version as __version__ + from version import commit as __git_commit__ +except ImportError: + import sys + sys.stderr.write('''Warning with import paddle: you should not + import paddle from the source directory; please install paddlepaddle*.whl firstly.''' + ) diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py index 5b173694dd0e4a52c0179f12f5edd74e2c41cb8c..239fe4204b20a37a0869ba1e0e99adf4293dac7e 100644 --- a/python/paddle/trainer/config_parser.py +++ b/python/paddle/trainer/config_parser.py @@ -1233,7 +1233,7 @@ def parse_bilinear(bilinear, input_layer_name, bilinear_conf): bilinear_conf.out_size_y = bilinear.out_size_y -def parse_pool(pool, input_layer_name, pool_conf, ceil_mode): +def parse_pool(pool, input_layer_name, pool_conf, ceil_mode, exclude_mode): pool_conf.pool_type = pool.pool_type config_assert(pool.pool_type in [ 'max-projection', 'avg-projection', 'max-pool-with-mask', 'cudnn-max-pool', 'cudnn-avg-pool' @@ -1262,6 +1262,8 @@ def parse_pool(pool, input_layer_name, pool_conf, ceil_mode): pool_conf.output_y = cnn_output_size(pool_conf.img_size_y, pool_conf.size_y, pool_conf.padding_y, pool_conf.stride_y, not ceil_mode) + if exclude_mode != None: + pool_conf.exclude_mode = exclude_mode def parse_pool3d(pool, input_layer_name, pool_conf, ceil_mode): @@ -2287,11 +2289,17 @@ class Conv3DLayer(Conv3DLayerBase): class NormLayer(LayerBase): def __init__(self, name, inputs, **xargs): super(NormLayer, self).__init__(name, 'norm', 0, inputs=inputs, **xargs) + use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0))) + use_mkldnn = True if use_mkldnn and self.inputs[ + 0].norm.norm_type == 'cmrnorm-projection' else False + self.config.type = 'mkldnn_lrn' if use_mkldnn else self.config.type for input_index in xrange(len(self.inputs)): input_layer = self.get_input_layer(input_index) norm_conf = self.config.inputs[input_index].norm_conf parse_norm(self.inputs[input_index].norm, input_layer.name, norm_conf) + norm_conf.scale = self.inputs[ + input_index].norm.scale if use_mkldnn else norm_conf.scale self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x, norm_conf.channels, False) if norm_conf.norm_type == "cross-channel-norm": @@ -2303,7 +2311,8 @@ class NormLayer(LayerBase): class PoolLayer(LayerBase): layer_type = 'pool' - def __init__(self, name, inputs, ceil_mode=True, **xargs): + def __init__(self, name, inputs, ceil_mode=True, exclude_mode=None, + **xargs): use_mkldnn = int(g_command_config_args.get("use_mkldnn", 0)) if self.layer_type == "mkldnn_pool": config_assert(use_mkldnn, "mkldnn_pool only support MKLDNN") @@ -2314,7 +2323,7 @@ class PoolLayer(LayerBase): input_layer = self.get_input_layer(input_index) pool_conf = self.config.inputs[input_index].pool_conf parse_pool(self.inputs[input_index].pool, input_layer.name, - pool_conf, ceil_mode) + pool_conf, ceil_mode, exclude_mode) self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x, pool_conf.channels) diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py index f6dc58b9c0ed0b14ad9db098892af14274aed0c1..7e118b24a4330af27ea6aa893fd87985b4443cdb 100644 --- a/python/paddle/trainer_config_helpers/layers.py +++ b/python/paddle/trainer_config_helpers/layers.py @@ -21,7 +21,7 @@ from .activations import LinearActivation, SigmoidActivation, TanhActivation, \ ReluActivation, IdentityActivation, SoftmaxActivation, BaseActivation from .evaluators import * from .poolings import MaxPooling, AvgPooling, MaxWithMaskPooling, BasePoolingType, \ - CudnnAvgPooling, CudnnMaxPooling + CudnnAvgPooling, CudnnAvgInclPadPooling, CudnnMaxPooling from .attrs import * from .default_decorators import * @@ -1519,34 +1519,33 @@ def lstmemory(input, NOTE: This is a low level user interface. You can use network.simple_lstm to config a simple plain lstm layer. - Please refer to **Generating Sequences With Recurrent Neural Networks** for - more details about LSTM. - - Link_ goes as below. - - .. _Link: http://arxiv.org/abs/1308.0850 + Reference: + `Generating Sequences With Recurrent Neural Networks + `_ - :param name: The lstmemory layer name. + :param name: The name of this layer. It is optional. :type name: basestring - :param size: DEPRECATED. size of the lstm cell + :param size: DEPRECATED. The dimension of the lstm cell. :type size: int :param input: The input of this layer. :type input: LayerOutput - :param reverse: is sequence process reversed or not. + :param reverse: Whether the input sequence is processed in a reverse order. :type reverse: bool :param act: Activation type. TanhActivation is the default activation. :type act: BaseActivation - :param gate_act: gate activation type, SigmoidActivation by default. + :param gate_act: Activation type of this layer's gates. SigmoidActivation is the + default activation. :type gate_act: BaseActivation - :param state_act: state activation type, TanhActivation by default. + :param state_act: Activation type of the state. TanhActivation is the default activation. :type state_act: BaseActivation :param bias_attr: The bias attribute. If the parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param param_attr: Parameter Attribute. - :type param_attr: ParameterAttribute | None | False - :param layer_attr: Extra Layer attribute + :param param_attr: The parameter attribute. See ParameterAttribute for details. + :type param_attr: ParameterAttribute + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute | None :return: LayerOutput object. :rtype: LayerOutput @@ -1635,14 +1634,14 @@ def grumemory(input, h_t = (1 - z_t) h_{t-1} + z_t {\\tilde{h_t}} NOTE: In PaddlePaddle's implementation, the multiplication operations - :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not computed in - gate_recurrent layer. Consequently, an additional mixed_layer with + :math:`W_{r}x_{t}`, :math:`W_{z}x_{t}` and :math:`W x_t` are not performed + in gate_recurrent layer. Consequently, an additional mixed_layer with full_matrix_projection or a fc_layer must be included before grumemory is called. - More details can be found by referring to `Empirical Evaluation of Gated - Recurrent Neural Networks on Sequence Modeling. - `_ + Reference: + `Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling + `_ The simple usage is: @@ -1650,28 +1649,29 @@ def grumemory(input, gru = grumemory(input) - :param name: The gru layer name. - :type name: None | basestring + :param name: The name of this layer. It is optional. + :type name: basestring :param input: The input of this layer. :type input: LayerOutput. - :param size: DEPRECATED. size of the gru cell + :param size: DEPRECATED. The dimension of the gru cell. :type size: int - :param reverse: Whether sequence process is reversed or not. + :param reverse: Whether the input sequence is processed in a reverse order. :type reverse: bool :param act: Activation type, TanhActivation is the default. This activation affects the :math:`{\\tilde{h_t}}`. :type act: BaseActivation - :param gate_act: gate activation type, SigmoidActivation by default. - This activation affects the :math:`z_t` and :math:`r_t`. It is the - :math:`\\sigma` in the above formula. + :param gate_act: Activation type of this layer's two gates. SigmoidActivation is + the default activation. This activation affects the :math:`z_t` + and :math:`r_t`. It is the :math:`\\sigma` in the above formula. :type gate_act: BaseActivation :param bias_attr: The bias attribute. If the parameter is set to False or an object whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param param_attr: Parameter Attribute. - :type param_attr: ParameterAttribute | None | False - :param layer_attr: Extra Layer attribute + :param param_attr: The parameter attribute. See ParameterAttribute for details. + :type param_attr: ParameterAttribute + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute | None :return: LayerOutput object. :rtype: LayerOutput @@ -1715,10 +1715,10 @@ def last_seq(input, """ Get Last Timestamp Activation of a sequence. - If stride > 0, this layer slides a window whose size is determined by stride, - and return the last value of the window as the output. Thus, a long sequence - will be shorten. Note that for sequence with sub-sequence, the default value - of stride is -1. + If stride > 0, this layer will slide a window whose size is determined by stride, + and return the last value of the sequence in the window as the output. Thus, a + long sequence will be shortened. Note that for sequence with sub-sequence, the + default value of stride is -1. The simple usage is: @@ -1727,14 +1727,16 @@ def last_seq(input, seq = last_seq(input=layer) :param agg_level: Aggregated level + :type agg_level: AggregateLevel :param name: The name of this layer. It is optional. :type name: basestring :param input: The input of this layer. :type input: LayerOutput :param stride: The step size between successive pooling regions. - :type stride: Int - :param layer_attr: extra layer attributes. - :type layer_attr: ExtraLayerAttribute. + :type stride: int + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. + :type layer_attr: ExtraLayerAttribute :return: LayerOutput object. :rtype: LayerOutput """ @@ -1771,10 +1773,10 @@ def first_seq(input, """ Get First Timestamp Activation of a sequence. - If stride > 0, this layer slides a window whose size is determined by stride, - and return the first value of the window as the output. Thus, a long sequence - will be shorten. Note that for sequence with sub-sequence, the default value - of stride is -1. + If stride > 0, this layer will slide a window whose size is determined by stride, + and return the first value of the sequence in the window as the output. Thus, a + long sequence will be shortened. Note that for sequence with sub-sequence, the + default value of stride is -1. The simple usage is: @@ -1783,13 +1785,15 @@ def first_seq(input, seq = first_seq(input=layer) :param agg_level: aggregation level + :type agg_level: AggregateLevel :param name: The name of this layer. It is optional. :type name: basestring :param input: The input of this layer. :type input: LayerOutput :param stride: The step size between successive pooling regions. - :type stride: Int - :param layer_attr: extra layer attributes. + :type stride: int + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput @@ -1847,8 +1851,8 @@ def expand_layer(input, expand_level=ExpandLevel.FROM_NO_SEQUENCE, layer_attr=None): """ - A layer for "Expand Dense data or (sequence data where the length of each - sequence is one) to sequence data." + A layer for expanding dense data or (sequence data where the length of each + sequence is one) to sequence data. The example usage is: @@ -1860,7 +1864,9 @@ def expand_layer(input, :param input: The input of this layer. :type input: LayerOutput - :param expand_as: Expand as this layer's sequence info. + :param expand_as: Expand the input according to this layer's sequence infomation. And + after the operation, the input expanded will have the same number of + elememts as this layer. :type expand_as: LayerOutput :param name: The name of this layer. It is optional. :type name: basestring @@ -1868,9 +1874,10 @@ def expand_layer(input, whose type is not ParameterAttribute, no bias is defined. If the parameter is set to True, the bias is initialized to zero. :type bias_attr: ParameterAttribute | None | bool | Any - :param expand_level: whether input layer is timestep(default) or sequence. + :param expand_level: Whether the input layer is a sequence or the element of a sequence. :type expand_level: ExpandLevel - :param layer_attr: extra layer attributes. + :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for + details. :type layer_attr: ExtraLayerAttribute. :return: LayerOutput object. :rtype: LayerOutput @@ -2709,7 +2716,8 @@ def img_pool_layer(input, pool_size_y=None, stride_y=None, padding_y=None, - ceil_mode=True): + ceil_mode=True, + exclude_mode=None): """ Image pooling Layer. @@ -2721,15 +2729,17 @@ def img_pool_layer(input, .. math:: - w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) - h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) + w & = 1 + \\frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} + + h & = 1 + \\frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} - ceil_mode=False: .. math:: - w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) - h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) + w & = 1 + \\frac{floor(input\_width + 2 * padding - pool\_size)}{stride} + + h & = 1 + \\frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} The example usage is: @@ -2773,10 +2783,15 @@ def img_pool_layer(input, :param layer_attr: The extra layer attribute. See ExtraLayerAttribute for details. :type layer_attr: ExtraLayerAttribute - :param ceil_mode: Wether to use the ceil function to calculate output height and width. + :param ceil_mode: Whether to use the ceil function to calculate output height and width. True is the default. If it is set to False, the floor function will be used. :type ceil_mode: bool + :param exclude_mode: Whether to exclude the padding cells when calculating, but only + work when pool_type is AvgPooling. If None, also exclude the padding + cells. If use cudnn, use CudnnAvgPooling or CudnnAvgInclPadPooling + as pool_type to identify the mode. + :type exclude_mode: bool :return: LayerOutput object. :rtype: LayerOutput """ @@ -2790,7 +2805,7 @@ def img_pool_layer(input, pool_type.name = 'avg' assert type(pool_type) in [AvgPooling, MaxPooling, MaxWithMaskPooling, CudnnAvgPooling, - CudnnMaxPooling], \ + CudnnMaxPooling, CudnnAvgInclPadPooling], \ "only (Cudnn)AvgPooling, (Cudnn)MaxPooling, MaxWithMaskPooling are supported" type_name = pool_type.name + '-projection' \ @@ -2819,6 +2834,7 @@ def img_pool_layer(input, padding_y=padding_y)) ], ceil_mode=ceil_mode, + exclude_mode=exclude_mode, **ExtraLayerAttribute.to_kwargs(layer_attr)) return LayerOutput( name, @@ -2856,17 +2872,21 @@ def img_pool3d_layer(input, .. math:: - w = 1 + int(ceil(input\_width + 2 * padding - pool\_size) / float(stride)) - h = 1 + int(ceil(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) - d = 1 + int(ceil(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z)) + w & = 1 + \\frac{ceil(input\_width + 2 * padding - pool\_size)}{stride} + + h & = 1 + \\frac{ceil(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} + + d & = 1 + \\frac{ceil(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z} - ceil_mode=False: .. math:: - w = 1 + int(floor(input\_width + 2 * padding - pool\_size) / float(stride)) - h = 1 + int(floor(input\_height + 2 * padding\_y - pool\_size\_y) / float(stride\_y)) - d = 1 + int(floor(input\_depth + 2 * padding\_z - pool\_size\_z) / float(stride\_z)) + w & = 1 + \\frac{floor(input\_width + 2 * padding - pool\_size)}{stride} + + h & = 1 + \\frac{floor(input\_height + 2 * padding\_y - pool\_size\_y)}{stride\_y} + + d & = 1 + \\frac{floor(input\_depth + 2 * padding\_z - pool\_size\_z)}{stride\_z} The example usage is: @@ -2989,7 +3009,7 @@ def spp_layer(input, Reference: `Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition - https://arxiv.org/abs/1406.4729`_ + `_ The example usage is: @@ -3091,7 +3111,7 @@ def img_cmrnorm_layer(input, Reference: `ImageNet Classification with Deep Convolutional Neural Networks - http://www.cs.toronto.edu/~fritz/absps/imagenet.pdf`_ + `_ The example usage is: @@ -3159,7 +3179,7 @@ def batch_norm_layer(input, Reference: `Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift - http://arxiv.org/abs/1502.03167`_ + `_ The example usage is: @@ -3297,7 +3317,7 @@ def row_l2_norm_layer(input, name=None, layer_attr=None): A layer for L2-normalization in each row. .. math:: - out[i] = \frac{in[i]}{\sqrt{\sum_{k=1}^N in[k]^{2}}} + out[i] = \\frac{in[i]} {\\sqrt{\\sum_{k=1}^N in[k]^{2}}} where the size of :math:`in` is (batchSize x dataDim) , and the size of :math:`out` is a (batchSize x dataDim) . @@ -5417,17 +5437,27 @@ def maxout_layer(input, groups, num_channels=None, name=None, layer_attr=None): Reference: `Maxout Networks - http://www.jmlr.org/proceedings/papers/v28/goodfellow13.pdf`_ + `_ `Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks - https://arxiv.org/pdf/1312.6082v4.pdf`_ + `_ + .. math:: - y_{si+j} = \max_k x_{gsi + sk + j} - g = groups - s = input.size / num_channels - 0 \le i < num_channels / groups - 0 \le j < s - 0 \le k < groups + + & out = \max_k (in[n, k, o_c , s]) + + & out_{i * s + j} = \max_k in_{ k * o_{c} * s + i * s + j} + + & s = \\frac{input.size}{ num\_channels} + + & o_{c} = \\frac{num\_channels}{groups} + + & 0 \le i < o_{c} + + & 0 \le j < s + + & 0 \le k < groups + The simple usage is: @@ -5486,7 +5516,7 @@ def ctc_layer(input, Reference: `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks - http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_ + `_ Note: Considering the 'blank' label needed by CTC, you need to use (num_classes + 1) @@ -5560,7 +5590,7 @@ def warp_ctc_layer(input, Reference: `Connectionist Temporal Classification: Labelling Unsegmented Sequence Data with Recurrent Neural Networks - http://machinelearning.wustl.edu/mlpapers/paper_files/icml2006_GravesFGS06.pdf`_ + `_ Note: - Let num_classes represents the category number. Considering the 'blank' @@ -5781,7 +5811,7 @@ def nce_layer(input, Reference: `A fast and simple algorithm for training neural probabilistic language - models. https://www.cs.toronto.edu/~amnih/papers/ncelm.pdf`_ + models. `_ The example usage is: @@ -5897,7 +5927,7 @@ def rank_cost(left, Reference: `Learning to Rank using Gradient Descent - http://research.microsoft.com/en-us/um/people/cburges/papers/ICML_ranking.pdf`_ + `_ .. math:: @@ -6164,9 +6194,11 @@ def huber_regression_cost(input, Given a prediction f(x), a label y and :math:`\delta`, the loss function is defined as: - .. math: - loss = 0.5*\left ( y-f(x) \right )^2, \left | y-f(x) \right |\leq \delta - loss = \delta \left | y-f(x) \right |-0.5\delta ^2, otherwise + .. math:: + + loss = 0.5*(y-f(x))^{2}, | y-f(x) | < \delta + + loss = \delta | y-f(x) | - 0.5 \delta ^2, otherwise The example usage is: @@ -6213,12 +6245,14 @@ def huber_classification_cost(input, """ For classification purposes, a variant of the Huber loss called modified Huber is sometimes used. Given a prediction f(x) (a real-valued classifier score) and - a true binary class label :math:`y\in \left \{-1, 1 \right \}`, the modified Huber + a true binary class label :math:`y\in \{-1, 1 \}`, the modified Huber loss is defined as: .. math: - loss = \max \left ( 0, 1-yf(x) \right )^2, yf(x)\geq 1 - loss = -4yf(x), \text{otherwise} + + loss = \max ( 0, 1-yf(x) )^2, yf(x) \geq -1 + + loss = -4yf(x), otherwise The example usage is: @@ -6433,7 +6467,7 @@ def smooth_l1_cost(input, label, name=None, coeff=1.0, layer_attr=None): Reference: `Fast R-CNN - https://arxiv.org/pdf/1504.08083v2.pdf`_ + `_ The example usage is: @@ -6640,7 +6674,7 @@ def prelu_layer(input, Reference: `Delving Deep into Rectifiers: Surpassing Human-Level Performance on - ImageNet Classification http://arxiv.org/pdf/1502.01852v1.pdf`_ + ImageNet Classification `_ .. math:: z_i &\\quad if \\quad z_i > 0 \\\\ @@ -6737,7 +6771,7 @@ def gated_unit_layer(input, Reference: `Language Modeling with Gated Convolutional Networks - https://arxiv.org/abs/1612.08083`_ + `_ .. math:: y=\\text{act}(X \cdot W + b)\otimes \sigma(X \cdot V + c) @@ -6963,7 +6997,7 @@ def clip_layer(input, min, max, name=None): .. math:: - out[i] = \min\left(\max\left(in[i],p_{1}\right),p_{2}\right) + out[i] = \min (\max (in[i],p_{1} ),p_{2} ) .. code-block:: python diff --git a/python/paddle/trainer_config_helpers/networks.py b/python/paddle/trainer_config_helpers/networks.py index 9776ae18057d57dd994fac8b62090258252922c6..b5cde7bac779ee1d54395b68941df2693e1ed0f5 100644 --- a/python/paddle/trainer_config_helpers/networks.py +++ b/python/paddle/trainer_config_helpers/networks.py @@ -25,10 +25,10 @@ from paddle.trainer.config_parser import * __all__ = [ 'sequence_conv_pool', 'simple_lstm', "simple_img_conv_pool", "img_conv_bn_pool", 'lstmemory_group', 'lstmemory_unit', 'small_vgg', - 'img_conv_group', 'vgg_16_network', 'gru_unit', 'gru_group', 'simple_gru', - 'simple_attention', 'dot_product_attention', 'multi_head_attention', - 'simple_gru2', 'bidirectional_gru', 'text_conv_pool', 'bidirectional_lstm', - 'inputs', 'outputs' + 'img_conv_group', 'img_separable_conv', 'vgg_16_network', 'gru_unit', + 'gru_group', 'simple_gru', 'simple_attention', 'dot_product_attention', + 'multi_head_attention', 'simple_gru2', 'bidirectional_gru', + 'text_conv_pool', 'bidirectional_lstm', 'inputs', 'outputs' ] ###################################################### @@ -251,13 +251,13 @@ def img_conv_bn_pool(input, pool_layer_attr=None): """ Convolution, batch normalization, pooling group. - + Img input => Conv => BN => Pooling => Output. :param name: group name. :type name: basestring :param input: input layer. - :type input: LayerOutput + :type input: LayerOutput :param filter_size: see img_conv_layer for details. :type filter_size: int :param num_filters: see img_conv_layer for details. @@ -435,6 +435,85 @@ def img_conv_group(input, input=tmp, stride=pool_stride, pool_size=pool_size, pool_type=pool_type) +@wrap_name_default("separable_conv") +def img_separable_conv(input, + num_channels, + num_out_channels, + filter_size, + stride=1, + padding=0, + depth_multiplier=1, + act=None, + bias_attr=None, + param_attr=None, + shared_bias=True, + layer_type='exconv', + name=None): + """ + Separable Convolution. + + The separable convolution module is consisted of a depthwise convolution + that acts separately on input channels, followed by a pointwise convolution + with 1*1 kernels that mixes channels. It is used for Xception: + https://arxiv.org/pdf/1610.02357.pdf + + :param input: input layer. + :type input: LayerOutput + :param num_channels: the number of input channels. + :type num_channels: int + :param num_out_channels: the number of output channels. + :type num_out_channels: int + :param filter_size: the filter size for the depthwise convolution. + :type filter_size: int|tuple + :param stride: the stride size for the depthwise convolution. + :type stride: int|tuple + :param padding: the padding size for the depthwise convolution. + :type padding: int|tuple + :param depth_multiplier: the number of filter for one channel in the + depthwize convolution. + :type depth_multiplier: int + :param act: the activation function for the output. + :type act: BaseActivation + :param bias_attr: see img_conv_layer for details. + :type bias_attr: ParameterAttribute + :param param_attr: see img_conv_layer for details. + :type param_attr: ParameterAttribute + :param shared_bias: see img_conv_layer for details. + :type shared_bias: bool + :param layer_type: see img_conv_layer for details. + :type layer_type: bool + :return: layer's output + :rtype: LayerOutput + """ + __depthwise_conv__ = img_conv_layer( + name="%s_depthwise_conv" % name, + input=input, + num_channels=num_channels, + num_filters=num_channels * depth_multiplier, + groups=num_channels, + filter_size=filter_size, + stride=stride, + padding=padding, + act=LinearActivation(), + bias_attr=bias_attr, + param_attr=param_attr, + shared_biases=shared_bias, + layer_type=layer_type) + __pointwise_conv__ = img_conv_layer( + name="%s_pointwise_conv" % name, + input=__depthwise_conv__, + num_channels=num_channels * depth_multiplier, + num_filters=num_out_channels, + filter_size=1, + stride=1, + padding=0, + act=act, + bias_attr=bias_attr, + param_attr=param_attr, + shared_biases=shared_bias) + return __pointwise_conv__ + + def small_vgg(input_image, num_channels, num_classes): def __vgg__(ipt, num_filter, times, dropouts, num_channels_=None): return img_conv_group( @@ -648,7 +727,7 @@ def lstmemory_unit(input, lstm_bias_attr=None, lstm_layer_attr=None): """ - lstmemory_unit defines the caculation process of a LSTM unit during a + lstmemory_unit defines the caculation process of a LSTM unit during a single time step. This function is not a recurrent layer, so it can not be directly used to process sequence input. This function is always used in recurrent_group (see layers.py for more details) to implement attention @@ -869,7 +948,7 @@ def gru_unit(input, gru_layer_attr=None, naive=False): """ - gru_unit defines the calculation process of a gated recurrent unit during a single + gru_unit defines the calculation process of a gated recurrent unit during a single time step. This function is not a recurrent layer, so it can not be directly used to process sequence input. This function is always used in the recurrent_group (see layers.py for more details) to implement attention @@ -1012,7 +1091,7 @@ def simple_gru(input, simple_gru in network.py. The reason why there are so many interfaces is that we have two ways to implement recurrent neural network. One way is to use one complete layer to implement rnn (including simple rnn, gru and lstm) - with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But + with multiple time steps, such as recurrent_layer, lstmemory, grumemory. But the multiplication operation :math:`W x_t` is not computed in these layers. See details in their interfaces in layers.py. The other implementation is to use an recurrent group which can ensemble a @@ -1116,11 +1195,12 @@ def simple_gru2(input, :type act: BaseActivation :param gate_act: gate activiation type of gru :type gate_act: BaseActivation - :param gru_bias_attr: bias parameter attribute of gru layer, + :param gru_bias_attr: bias parameter attribute of gru layer, False means no bias, None means default bias. :type gru_bias_attr: ParameterAttribute|False|None - :param gru_layer_attr: Extra attribute of the gru layer. - :type gru_layer_attr: ExtraLayerAttribute + :param gru_param_attr: param parameter attribute of gru layer, + None means default param. + :type gru_param_attr: ParameterAttribute|None :return: the gru group. :rtype: LayerOutput """ @@ -1188,7 +1268,7 @@ def bidirectional_gru(input, :type size: int :param return_seq: If set False, the last time step of output are concatenated and returned. - If set True, the entire output sequences in forward + If set True, the entire output sequences in forward and backward directions are concatenated and returned. :type return_seq: bool :return: LayerOutput object. @@ -1277,7 +1357,7 @@ def bidirectional_lstm(input, :type size: int :param return_seq: If set False, the last time step of output are concatenated and returned. - If set True, the entire output sequences in forward + If set True, the entire output sequences in forward and backward directions are concatenated and returned. :type return_seq: bool :return: LayerOutput object. diff --git a/python/paddle/trainer_config_helpers/poolings.py b/python/paddle/trainer_config_helpers/poolings.py index f45616551bcd4822c668234c3afaf6aa35cd2953..e0aeb311b3ae842aee337dbbf869e2f947d22bd9 100644 --- a/python/paddle/trainer_config_helpers/poolings.py +++ b/python/paddle/trainer_config_helpers/poolings.py @@ -16,7 +16,8 @@ __all__ = [ "BasePoolingType", "MaxPooling", "AvgPooling", "MaxWithMaskPooling", - "CudnnMaxPooling", "CudnnAvgPooling", "SumPooling", "SquareRootNPooling" + "CudnnMaxPooling", "CudnnAvgPooling", "CudnnAvgInclPadPooling", + "SumPooling", "SquareRootNPooling" ] @@ -88,6 +89,16 @@ class CudnnAvgPooling(BasePoolingType): BasePoolingType.__init__(self, "cudnn-avg-pool") +class CudnnAvgInclPadPooling(BasePoolingType): + """ + Cudnn average pooling only support GPU. Return the average value in the + pooling window taking into account the padding cells. + """ + + def __init__(self): + BasePoolingType.__init__(self, "cudnn-avg-incl-pad-pool") + + class AvgPooling(BasePoolingType): """ Average pooling. diff --git a/python/paddle/v2/dataset/common.py b/python/paddle/v2/dataset/common.py index e31e501ce93c5dc20693a8724ee7dd864f9aef55..191d9ecfb127c1851a392bc9ec83734d630d0ac4 100644 --- a/python/paddle/v2/dataset/common.py +++ b/python/paddle/v2/dataset/common.py @@ -71,7 +71,7 @@ def download(url, module_name, md5sum): if retry < retry_limit: retry += 1 else: - raise RuntimeError("Cannot download {0} within retry limit {2}". + raise RuntimeError("Cannot download {0} within retry limit {1}". format(url, retry_limit)) print "Cache file %s not found, downloading %s" % (filename, url) r = requests.get(url, stream=True) diff --git a/python/paddle/v2/fluid/__init__.py b/python/paddle/v2/fluid/__init__.py index dd25bc19ec5f4fd6eb3e04f304b1de488e988f41..471255ef50a3be4739a89efbd978cdb4304d992d 100644 --- a/python/paddle/v2/fluid/__init__.py +++ b/python/paddle/v2/fluid/__init__.py @@ -14,20 +14,23 @@ import optimizer import backward import regularizer from param_attr import ParamAttr - +from data_feeder import DataFeeder from core import LoDTensor, CPUPlace, GPUPlace +from distribute_transpiler import DistributeTranspiler +import clip Tensor = LoDTensor __all__ = framework.__all__ + executor.__all__ + [ 'io', 'initializer', 'layers', 'nets', 'optimizer', 'backward', 'regularizer', 'LoDTensor', 'CPUPlace', 'GPUPlace', 'Tensor', 'ParamAttr' + 'DataFeeder', 'clip', 'DistributeTranspiler' ] def __read_gflags_from_env__(): """ Enable reading gflags from environment variables. - + Returns: None """ diff --git a/python/paddle/v2/fluid/clip.py b/python/paddle/v2/fluid/clip.py new file mode 100644 index 0000000000000000000000000000000000000000..d7ec2fbe13fe6d9158345099b8668afc5c7d4571 --- /dev/null +++ b/python/paddle/v2/fluid/clip.py @@ -0,0 +1,61 @@ +import functools +import layers + +__all__ = ['GradientClipByValue', 'append_gradient_clip_ops'] + + +class BaseGradientClipAttr(object): + def process_context(self, context, p_g): + raise NotImplementedError() + + def create_operators(self, param, grad): + raise NotImplementedError() + + +class NullGradientClipAttr(BaseGradientClipAttr): + def process_context(self, context, p_g): + pass + + def create_operators(self, param, grad): + return param, grad + + +class GradientClipByValue(BaseGradientClipAttr): + def __init__(self, max, min=None): + max = float(max) + if min is None: + min = -max + else: + min = float(min) + self.max = max + self.min = min + + def process_context(self, context, p_g): + pass + + def create_operators(self, param, grad): + new_grad = layers.clip(x=grad, min=self.min, max=self.max) + return param, new_grad + + +def append_gradient_clip_ops(param_grad): + context = dict() + create_op_callbacks = [] + for p, g in param_grad: + clip_attr = getattr(p, 'clip_attr', NullGradientClipAttr()) + if clip_attr is None: + clip_attr = NullGradientClipAttr() + if not isinstance(clip_attr, BaseGradientClipAttr): + raise TypeError( + "clip attribute should be an instance of BaseGradientClippingAttr" + ) + + clip_attr.process_context(context=context, p_g=param_grad) + create_op_callbacks.append( + functools.partial( + clip_attr.create_operators, param=p, grad=g)) + + return [each_callback() for each_callback in create_op_callbacks] + + +ClipByValue = GradientClipByValue diff --git a/python/paddle/v2/fluid/data_feeder.py b/python/paddle/v2/fluid/data_feeder.py new file mode 100644 index 0000000000000000000000000000000000000000..30a542af212926c93381aade426e25f2117e4662 --- /dev/null +++ b/python/paddle/v2/fluid/data_feeder.py @@ -0,0 +1,97 @@ +from __future__ import print_function +import core +import numpy +import six.moves as six + +from framework import Variable + +__all__ = ['DataFeeder'] + + +class DataToLoDTensorConverter(object): + def __init__(self, place, lod_level, shape, dtype): + self.place = place + self.lod_level = lod_level + self.shape = shape + if dtype == core.DataType.FP32: + self.dtype = 'float32' + elif dtype == core.DataType.INT64: + self.dtype = 'int64' + elif dtype == core.DataType.FP64: + self.dtype = 'float64' + elif dtype == core.DataType.INT32: + self.dtype = 'int32' + else: + raise ValueError("dtype must be any of [int32, float32, int64, " + "float64]") + + self.data = [] + self.lod = [] + + for i in six.range(lod_level): + self.lod.append([0]) + + def feed(self, data): + self._feed_impl_(data, self.lod, self.lod_level) + + def _feed_impl_(self, data, lod, lod_level): + if lod_level == 0: + self.data.append(data) + else: + cur_lod_len = len(data) + lod[-1].append(lod[-1][-1] + cur_lod_len) + for each_data in data: + self._feed_impl_(each_data, lod[:-1], lod_level - 1) + + def done(self): + arr = numpy.array(self.data, dtype=self.dtype).reshape(self.shape) + t = core.LoDTensor() + t.set(arr, self.place) + if self.lod_level > 0: + t.set_lod(self.lod) + return t + + +class DataFeeder(object): + def __init__(self, feed_list, place): + self.feed_dtypes = [] + self.feed_names = [] + self.feed_shapes = [] + self.feed_lod_level = [] + for each_var in feed_list: + if not isinstance(each_var, Variable): + raise TypeError("Feed list should contain a list of variable") + self.feed_dtypes.append(each_var.dtype) + self.feed_names.append(each_var.name) + shape = each_var.shape + batch_size_dim = -1 + for i, s in enumerate(shape): + if s < 0: + batch_size_dim = i + break + if batch_size_dim == -1: + raise ValueError("Variable {0} must has a batch size dimension", + each_var.name) + self.feed_lod_level.append(each_var.lod_level) + self.feed_shapes.append(shape) + + self.place = place + + def feed(self, iterable): + converter = [] + for lod_level, shape, dtype in six.zip( + self.feed_lod_level, self.feed_shapes, self.feed_dtypes): + converter.append( + DataToLoDTensorConverter( + place=self.place, + lod_level=lod_level, + shape=shape, + dtype=dtype)) + + for each_sample in iterable: + for each_converter, each_slot in six.zip(converter, each_sample): + each_converter.feed(each_slot) + ret_dict = {} + for each_name, each_converter in six.zip(self.feed_names, converter): + ret_dict[each_name] = each_converter.done() + return ret_dict diff --git a/python/paddle/v2/fluid/distribute_transpiler.py b/python/paddle/v2/fluid/distribute_transpiler.py new file mode 100644 index 0000000000000000000000000000000000000000..50364c64bec46aabc7be4f4b4370a3ad5b0eb07c --- /dev/null +++ b/python/paddle/v2/fluid/distribute_transpiler.py @@ -0,0 +1,238 @@ +import framework +from framework import Program, default_main_program, Parameter, Variable +import optimizer +from layer_helper import LayerHelper + + +def hash_name_to_server(params_grads, pserver_endpoints): + """ + :param param_grads: + :return: a map of pserver endpoint -> + params -> [param list] + grads -> [grad list] + """ + + def _hash_param(param_name, total): + return hash(param_name) % total + + param_grad_map = dict() + for param, grad in params_grads: + if param.trainable is True and grad is not None: + server_id = _hash_param(param.name, len(pserver_endpoints)) + server_for_param = pserver_endpoints[server_id] + if not param_grad_map.has_key(server_for_param): + param_grad_map[server_for_param] = {"params": [], "grads": []} + param_grad_map[server_for_param]["params"].append(param) + param_grad_map[server_for_param]["grads"].append(grad) + + return param_grad_map + + +def round_robin(params_grads, pserver_endpoints): + assert (len(params_grads) > len(pserver_endpoints)) + + param_grad_map = dict() + pserver_idx = 0 + for param, grad in params_grads: + if param.trainable is True: + server_for_param = pserver_endpoints[pserver_idx] + if not param_grad_map.has_key(server_for_param): + param_grad_map[server_for_param] = {"params": [], "grads": []} + + param_grad_map[server_for_param]["params"].append(param) + param_grad_map[server_for_param]["grads"].append(grad) + + pserver_idx += 1 + if pserver_idx >= len(pserver_endpoints): + pserver_idx = 0 + return param_grad_map + + +class DistributeTranspiler: + def transpile(self, + optimize_ops, + params_grads, + program=None, + pservers="127.0.0.1:6174", + trainers=1, + split_method=round_robin): + """ + Transpile the program to a distributed data-parallelism programs. + + The main_program will be transform to use a remote parameter server + to do parameter optimization. And the optimization graph will be put + in to a parameter server program. + + Use different methods to split trainable varialbles to different + parameter servers. + + Example to run: + + exe = fluid.Executor(place) + t = fluid.DistributeTranspiler() + t.transpile(optimize_ops, params_grads, pservers="127.0.0.1:6174", trainers=1) + + pserver_endpoint = os.getenv("PSERVER") + if pserver_endpoint: + pserver_prog = t.get_pserver_program(pserver_endpoint, optimize_ops) + exe.run(fluid.default_startup_program()) + exe.run(pserver_prog) + else: + feeder = fluid.DataFeeder(feed_list=[images, label], place=place) + exe.run(fluid.default_startup_program()) + + for pass_id in range(PASS_NUM): + ... + + :param optimize_ops: op list of optimization, should be the + return value of Optimizer.minimize + :type optimize_ops: list + :param program: program to optimize, default default_main_program + :param pservers: parameter server endpoints like "m1:6174,m2:6174" + :type pservers: string + + :return: return a list of programs + """ + if program is None: + program = default_main_program() + self.trainers = trainers + self._optimize_distributed( + optimize_ops, + program, + params_grads, + pservers=pservers, + trainers=trainers, + split_method=split_method) + + def _clone_param(self, block, v): + assert isinstance(v, Parameter) + new_p = Parameter( + block=block, + shape=v.shape, + dtype=v.dtype, + type=v.type, + lod_level=v.lod_level, + stop_gradient=v.stop_gradient, + trainable=v.trainable, + optimize_attr=v.optimize_attr, + regularizer=v.regularizer, + name=v.name) + block.vars[new_p.name] = new_p + + def _clone_var(self, block, var): + assert isinstance(var, Variable) + return block.create_var( + name=var.name, + shape=var.shape, + dtype=var.dtype, + type=var.type, + lod_level=var.lod_level, + persistable=var.persistable) + + def _optimize_distributed(self, optimize_ops, program, params_and_grads, + **kwargs): + if kwargs.has_key("split_method"): + split_method = kwargs["split_method"] + else: + split_method = round_robin + + assert (callable(split_method)) + pserver_endpoints = kwargs["pservers"].split(",") + self.param_grad_map = split_method(params_and_grads, pserver_endpoints) + + send_op_ordered_inputs = [] + epmap = [] + for ep, v in self.param_grad_map.iteritems(): + send_op_ordered_inputs.extend(v["grads"]) + for i in v["grads"]: + epmap.append(ep) + send_op = program.global_block().append_op( + type="send", + inputs={"X": send_op_ordered_inputs + }, # inputs is a list of tensors to be send + outputs={}, + attrs={"endpoints": pserver_endpoints, + "epmap": epmap}) + + def get_trainer_program(optimize_ops, program): + # remove optimize ops and add a send op to main_program + program.global_block().delete_ops(optimize_ops) + + def _create_var_for_trainers(self, block, var, trainers): + var_list = [] + for i in xrange(trainers): + var_each = block.create_var( + name="%s.trainer_%d" % (var.name, i), + psersistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + var_list.append(var_each) + return var_list + + def get_pserver_program(self, endpoint, optimize_ops): + pserver_program = Program() + for v in self.param_grad_map[endpoint]["params"]: + self._clone_param(pserver_program.global_block(), v) + + optimize_sub_program = Program() + grad_var_names = [ + var.name for var in self.param_grad_map[endpoint]["grads"] + ] + for opt_op in optimize_ops: + for _, var in opt_op.inputs.iteritems(): + # NOTE: append operators to merge gradients from multiple + # trainers. If trainers == 1, this is not needed. + if self.trainers > 1 and var.name in grad_var_names: + vars2merge = self._create_var_for_trainers( + optimize_sub_program.global_block(), var, self.trainers) + merged_var = optimize_sub_program.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + optimize_sub_program.global_block().append_op( + type="sum", + inputs={"X": vars2merge}, + outputs={"Out": merged_var}) + optimize_sub_program.global_block().append_op( + type="scale", + inputs={"X": merged_var}, + outputs={"Out": merged_var}, + attrs={"scale": 1.0 / float(self.trainers)}) + else: + optimize_sub_program.global_block().create_var( + name=var.name, + persistable=var.persistable, + dtype=var.dtype, + shape=var.shape) + + if opt_op.inputs.has_key("Grad"): + if opt_op.inputs["Grad"].name in grad_var_names: + print "appending ", opt_op.type, opt_op.inputs + optimize_sub_program.global_block().append_op( + type=opt_op.type, + inputs=opt_op.inputs, + outputs=opt_op.outputs, + attrs=opt_op.attrs) + else: + optimize_sub_program.global_block().append_op( + type=opt_op.type, + inputs=opt_op.inputs, + outputs=opt_op.outputs, + attrs=opt_op.attrs) + pserver_program.global_block().append_op( + type="recv", + inputs={"RX": + self.param_grad_map[endpoint]["grads"]}, # grads to recv + outputs={}, + attrs={ + "OptimizeProgram": optimize_sub_program.desc, + "endpoint": endpoint, + "ParamList": + [p.name for p in self.param_grad_map[endpoint]["params"]], + "GradList": + [p.name for p in self.param_grad_map[endpoint]["grads"]], + "Trainers": self.trainers + }) + pserver_program.sync_with_cpp() + return pserver_program diff --git a/python/paddle/v2/fluid/evaluator.py b/python/paddle/v2/fluid/evaluator.py index 137c5736226b689340748d5098ca51659d5acff8..e186ee96c387acf24471d4e26ce020c4ecac8d19 100644 --- a/python/paddle/v2/fluid/evaluator.py +++ b/python/paddle/v2/fluid/evaluator.py @@ -1,10 +1,10 @@ import numpy as np import layers -from framework import Program, unique_name, Variable +from framework import Program, unique_name, Variable, program_guard from layer_helper import LayerHelper -__all__ = ['Accuracy'] +__all__ = ['Accuracy', 'ChunkEvaluator'] def _clone_var_(block, var): @@ -49,15 +49,12 @@ class Evaluator(object): if reset_program is None: reset_program = Program() - for var in self.states: - assert isinstance(var, Variable) - g_var = _clone_var_(reset_program.current_block(), var) - layers.fill_constant( - shape=g_var.shape, - value=0.0, - dtype=g_var.dtype, - out=g_var, - main_program=reset_program) + with program_guard(main_program=reset_program): + for var in self.states: + assert isinstance(var, Variable) + g_var = _clone_var_(reset_program.current_block(), var) + layers.fill_constant( + shape=g_var.shape, value=0.0, dtype=g_var.dtype, out=g_var) executor.run(reset_program) @@ -104,20 +101,14 @@ class Accuracy(Evaluator): self.total = self.create_state(dtype='int64', shape=[1], suffix='total') self.correct = self.create_state( dtype='int64', shape=[1], suffix='correct') - kwargs = {'main_program': main_program} total = self.helper.create_tmp_variable(dtype='int') correct = self.helper.create_tmp_variable(dtype='int') acc = layers.accuracy( - input=input, - label=label, - k=k, - total=total, - correct=correct, - **kwargs) - total = layers.cast(x=total, dtype='int64', **kwargs) - correct = layers.cast(x=correct, dtype='int64', **kwargs) - layers.sums(input=[self.total, total], out=self.total, **kwargs) - layers.sums(input=[self.correct, correct], out=self.correct, **kwargs) + input=input, label=label, k=k, total=total, correct=correct) + total = layers.cast(x=total, dtype='int64') + correct = layers.cast(x=correct, dtype='int64') + layers.sums(input=[self.total, total], out=self.total) + layers.sums(input=[self.correct, correct], out=self.correct) self.metrics.append(acc) @@ -125,10 +116,75 @@ class Accuracy(Evaluator): if eval_program is None: eval_program = Program() block = eval_program.current_block() - kwargs = {'main_program': eval_program} - total = _clone_var_(block, self.total) - correct = _clone_var_(block, self.correct) - total = layers.cast(total, dtype='float32', **kwargs) - correct = layers.cast(correct, dtype='float32', **kwargs) - out = layers.elementwise_div(x=correct, y=total, **kwargs) + with program_guard(main_program=eval_program): + total = _clone_var_(block, self.total) + correct = _clone_var_(block, self.correct) + total = layers.cast(total, dtype='float32') + correct = layers.cast(correct, dtype='float32') + out = layers.elementwise_div(x=correct, y=total) return np.array(executor.run(eval_program, fetch_list=[out])[0]) + + +class ChunkEvaluator(Evaluator): + """ + Accumulate counter numbers output by chunk_eval from mini-batches and + compute the precision recall and F1-score using the accumulated counter + numbers. + """ + + def __init__( + self, + input, + label, + chunk_scheme, + num_chunk_types, + excluded_chunk_types=None, ): + super(ChunkEvaluator, self).__init__("chunk_eval") + main_program = self.helper.main_program + if main_program.current_block().idx != 0: + raise ValueError("You can only invoke Evaluator in root block") + + self.num_infer_chunks = self.create_state( + dtype='int64', shape=[1], suffix='num_infer_chunks') + self.num_label_chunks = self.create_state( + dtype='int64', shape=[1], suffix='num_label_chunks') + self.num_correct_chunks = self.create_state( + dtype='int64', shape=[1], suffix='num_correct_chunks') + precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks = layers.chunk_eval( + input=input, + label=label, + chunk_scheme=chunk_scheme, + num_chunk_types=num_chunk_types, + excluded_chunk_types=excluded_chunk_types, ) + layers.sums( + input=[self.num_infer_chunks, num_infer_chunks], + out=self.num_infer_chunks) + layers.sums( + input=[self.num_label_chunks, num_label_chunks], + out=self.num_label_chunks) + layers.sums( + input=[self.num_correct_chunks, num_correct_chunks], + out=self.num_correct_chunks) + + self.metrics.extend([precision, recall, f1_score]) + + def eval(self, executor, eval_program=None): + if eval_program is None: + eval_program = Program() + block = eval_program.current_block() + num_infer_chunks, num_label_chunks, num_correct_chunks = executor.run( + eval_program, + fetch_list=[_clone_var_(block, state) for state in self.states]) + num_infer_chunks = num_infer_chunks[0] + num_label_chunks = num_label_chunks[0] + num_correct_chunks = num_correct_chunks[0] + precision = float( + num_correct_chunks) / num_infer_chunks if num_infer_chunks else 0 + recall = float( + num_correct_chunks) / num_label_chunks if num_label_chunks else 0 + f1_score = float(2 * precision * recall) / ( + precision + recall) if num_correct_chunks else 0 + return np.array( + [precision], dtype='float32'), np.array( + [recall], dtype='float32'), np.array( + [f1_score], dtype='float32') diff --git a/python/paddle/v2/fluid/executor.py b/python/paddle/v2/fluid/executor.py index bdc82eede9d93a7cf904999a6b869ce2d23c90dc..4b4a0820abb9a85f3e9936190c835c2f186107b3 100644 --- a/python/paddle/v2/fluid/executor.py +++ b/python/paddle/v2/fluid/executor.py @@ -1,6 +1,6 @@ import numpy as np from . import core -from framework import Program, default_main_program +from framework import Program, default_main_program, Parameter, Variable __all__ = ['Executor', 'g_scope'] @@ -46,6 +46,13 @@ class Executor(object): p.set_place(each) act_places.append(p) + # TODO(dzhwinter) : consider that our fluid tests all written in + # GPUPlace(gpu_id), this will be changed in next PR. + if core.is_compile_gpu(): + core.init_devices(["CPU", "GPU:0"]) + else: + core.init_devices(["CPU"]) + self.executor = core.Executor(act_places) self.places = places @@ -141,7 +148,7 @@ class Executor(object): outputs={'Out': [fetch_var]}, attrs={'col': i}) - self.executor.run(program.desc, scope, 0, True) + self.executor.run(program.desc, scope, 0, True, True) outs = [ core.get_fetch_variable(scope, fetch_var_name, i) for i in xrange(len(fetch_list)) diff --git a/python/paddle/v2/fluid/framework.py b/python/paddle/v2/fluid/framework.py index 49c6d8983457fa9c29451b8d020dd0c581481f9c..920a49b69c77ccb98214ab76b4ee2aa125e01f02 100644 --- a/python/paddle/v2/fluid/framework.py +++ b/python/paddle/v2/fluid/framework.py @@ -1,9 +1,10 @@ import collections +import contextlib import numpy as np -from . import core + import proto.framework_pb2 as framework_pb2 -import contextlib +from . import core __all__ = [ 'Block', 'Variable', 'Program', 'Operator', 'default_startup_program', @@ -11,13 +12,42 @@ __all__ = [ 'switch_main_program' ] +EMPTY_VAR_NAME = core.kEmptyVarName() +TEMP_VAR_NAME = core.kTempVarName() +GRAD_VAR_SUFFIX = core.kGradVarSuffix() +ZERO_VAR_SUFFIX = core.kZeroVarSuffix() + + +def grad_var_name(var_name): + """ + return gradient name for a certain var name + """ + return var_name + GRAD_VAR_SUFFIX + def unique_name(prefix): + """ + Generate unique names with prefix + + Args: + prefix(str): The prefix of return string + + Returns(str): A unique string with the prefix + + """ uid = core.unique_integer(prefix) # unique during whole process. return "_".join([prefix, str(uid)]) def convert_np_dtype_to_dtype_(np_dtype): + """ + Convert the data type in numpy to the data type in Paddle + Args: + np_dtype(np.dtype): the data type in numpy + + Returns(core.DataType): the data type in Paddle + + """ dtype = np.dtype(np_dtype) if dtype == np.float32: return core.DataType.FP32 @@ -38,17 +68,33 @@ def convert_np_dtype_to_dtype_(np_dtype): def dtype_is_floating(dtype): + """ + Check the data type is floating or not. + Args: + dtype(np.dtype|core.DataType): data type. + Could be numpy format or Paddle format + + Returns(bool): True if data type is a float value + + """ if not isinstance(dtype, core.DataType): dtype = convert_np_dtype_to_dtype_(dtype) - if (dtype == core.DataType.FP16 or dtype == core.DataType.FP32 or - dtype == core.DataType.FP64): - return True - else: - return False + return dtype in [core.DataType.FP16, core.DataType.FP32, core.DataType.FP64] def _debug_string_(proto, throw_on_error=True): + """ + Get the debug string of a protobuf message. The message could be not + initialized. + Args: + proto(google.protobuf.message.Message): The protobuf message + throw_on_error(bool): True if raise an error when the protobuf message + is not initialized. + + Returns(str): The debug string of the protobuf message + + """ error_fields = list() if not proto.IsInitialized(error_fields) and throw_on_error: raise ValueError("{0} are not initialized\nThe message is {1}".format( @@ -57,6 +103,38 @@ def _debug_string_(proto, throw_on_error=True): class Variable(object): + """ + Python variable. Every input and output of an operator is a variable. Every + variable belongs to a block. The variable has a name and two variables in + different blocks could have the same name. + + There are many kinds of variables. Please reference the framework.proto for + details. + + Notes: The constructor of Variable should not be invoked directly. Please + use `Block.create_var` to create a variable. + + >>> cur_program = Program() + >>> cur_block = cur_program.current_block() + >>> new_variable = cur_block.create_var( + >>> name="X", shape=[-1, 23, 48], dtype='float32') + + Args: + block(Block): The associated block. It will be passed by + `Block.create_var` automatically. + type(core.VarDesc.VarType): Variable type. Please reference the + framework.proto for details. + shape(tuple|list|None): The shape of variable. -1 means the batch size. + Some kinds of variable do not contain shape, just set it to None. + dtype(np.dtype|core.DataType|str): The data type of variable. + lod_level(int): The level of lod tensor. 0 means there is not a time + series data. + persistable(bool): True if the variable should be saved as check point. + Defaults to False. + stop_gradient(bool): True if the variable will stop to calculate + gradients when backward. Defaults to False. + """ + def __init__(self, block, type=core.VarDesc.VarType.LOD_TENSOR, @@ -140,6 +218,16 @@ class Variable(object): return self.to_string(True) def to_string(self, throw_on_error): + """ + Get debug string. + + Args: + throw_on_error(bool): True if raise an exception when self is not + intialized. + + Returns(str): The debug string. + + """ protostr = self.desc.serialize_to_string() proto = framework_pb2.VarDesc.FromString(str(protostr)) return _debug_string_(proto, throw_on_error) @@ -185,7 +273,9 @@ class Variable(object): def get_all_op_protos(): """ Get all registered op proto from PaddlePaddle C++ end. - :return: A list of registered OpProto. + + Returns(list): list of OpProto + """ protostrs = core.get_all_op_protos() ret_values = [] @@ -196,6 +286,10 @@ def get_all_op_protos(): class OpProtoHolder(object): + """ + A global variable to hold all OpProtos from C++ as a map + """ + @classmethod def instance(cls): if not hasattr(cls, '_instance'): @@ -212,12 +306,26 @@ class OpProtoHolder(object): self.op_proto_map[proto.type] = proto def get_op_proto(self, type): + """ + Get OpProto by a type string. + Args: + type(str): The type that operator registered in C++ side. + + Returns(framework_pb2.OpProto): The OpProto + + """ if type not in self.op_proto_map: raise ValueError("Operator \"%s\" has not been registered." % type) return self.op_proto_map[type] class Operator(object): + """ + Python Operator class. The operator represents the build in instructs in a + Block. Users can use the build in instructs to describe their neural + network. + """ + def __init__(self, block, desc, @@ -225,8 +333,36 @@ class Operator(object): inputs=None, outputs=None, attrs=None): + """ + Constructor. + + Notes: The constructor of operator should not be invoked directly. Use + Block.append_op or Block.prepend_op instead. + + >>> cur_program = Program() + >>> cur_block = cur_program.current_block() + >>> # var1 += var2 + var3 + >>> cur_block.append_op(type="sum", + >>> inputs={"X": [var1, var2, var3]}, + >>> outputs={"Out": [var1]}) + + Args: + block(Block): The block has the current operator + desc(core.OpDesc): The protobuf description + type(str): The type of operator. + inputs(dict): The input dictionary. Key is the input parameter name. + Value is a list of variables. + outputs(dict): The output dictionary. Has same format with inputs + attrs(dict): The attributes dictionary. Key is attribute name. Value + is the attribute value. The attribute type should be as same as + the type registered in C++ + """ self.block = block self.desc = desc + # for clone a new operator + self.inputs = inputs + self.outputs = outputs + self.attrs = attrs if len(self.desc.type()) != 0: return if type is None: @@ -237,7 +373,7 @@ class Operator(object): def find_name(var_list, name): for var_name in var_list: - if var_name == name: + if var_list[var_name] is not None and var_name == name: return True return False @@ -298,19 +434,33 @@ class Operator(object): continue if isinstance(attrs[attr_name], Block): self.desc.set_block_attr(attr_name, attrs[attr_name].desc) + elif isinstance(attrs[attr_name], core.BlockDesc) or \ + isinstance(attrs[attr_name], core.ProgramDesc): + self.desc.set_serialized_attr( + attr_name, attrs[attr_name].serialize_to_string()) else: self.desc.set_attr(attr_name, attrs[attr_name]) self.desc.check_attrs() no_kernel_op_set = { 'feed', 'fetch', 'save', 'load', 'recurrent', - 'rnn_memory_helper_grad', 'conditional_block', 'while' + 'rnn_memory_helper_grad', 'conditional_block', 'while', 'send', + 'recv' } if type not in no_kernel_op_set: self.desc.infer_var_type(self.block.desc) self.desc.infer_shape(self.block.desc) def to_string(self, throw_on_error): + """ + To debug string. + Args: + throw_on_error(bool): raise exception when self is not initialized + when throw_on_error is True + + Returns(str): The debug string. + + """ protostr = self.desc.serialize_to_string() proto = framework_pb2.OpDesc.FromString(str(protostr)) return _debug_string_(proto, throw_on_error) @@ -325,21 +475,55 @@ class Operator(object): return self.desc.type() def input(self, name): + """ + Get input arguments by the input parameter name + Args: + name(str): The input parameter name + + Returns(list): return the list of argument names associated with the + specific parameter name. + + """ return self.desc.input(name) @property def input_names(self): + """ + Get all input parameter names + Returns(list): return a list of input parameter names + + """ return self.desc.input_names() def output(self, name): + """ + Get output arguments by the output parameter name + Args: + name(str): The output parameter name + + Returns(list): return the list of argument names associated with the + specific parameter name. + + """ return self.desc.output(name) @property def output_names(self): + """ + Get all output parameter names + Returns(list): return a list of output parameter names + + """ return self.desc.output_names() @property def idx(self): + """ + Return the array index of current operator. + Returns(int): The array index in block.ops array + Raises: + ValueError: when the operator is not found. + """ for i, op in enumerate(self.block.ops): if op == self: return i @@ -347,19 +531,57 @@ class Operator(object): "Can't find op itself in it's block. It could be a bug of Paddle.") def has_attr(self, name): + """ + operator has the attribute with name or not. + Args: + name(str): the attribute name + + Returns(bool): True if has this attribute. + + """ return self.desc.has_attr(name) def attr_type(self, name): + """ + Get the type of attribute by attribute name + Args: + name(str): the attribute name + + Returns(core.AttrType): the attribute type + + """ return self.desc.attr_type(name) @property def attr_names(self): + """ + Get all attribute names + Returns(list): The list of attribute name + + """ return self.desc.attr_names() def attr(self, name): + """ + Get attribute by name + Args: + name(str): the attribute name + + Returns(bool|int|str|float|list): The attribute value. The return value + can be any valid attribute type. + + """ return self.desc.attr(name) def block_attr(self, name): + """ + Get the block attribute by name + Args: + name(str): the attribute name + + Returns(int): the block index + + """ return self.desc.block_attr(name) @@ -369,6 +591,7 @@ class Block(object): self.vars = dict() # var_name --> var self.ops = collections.deque() # operator list self.program = program + self.removed_vars = dict() def __str__(self): return self.to_string(True) @@ -425,6 +648,16 @@ class Block(object): self.ops.append(op) return op + def delete_ops(self, ops): + # remove from cpp + # FIXME(typhoonzero): remove only the first occuracy. + try: + start = list(self.ops).index(ops[0]) + end = list(self.ops).index(ops[-1]) + except Exception, e: + raise e + self.desc.remove_op(start, end) + def prepend_op(self, *args, **kwargs): op_desc = self.desc.prepend_op() op = Operator(self, op_desc, *args, **kwargs) @@ -479,7 +712,7 @@ class Block(object): """ Copy the information of parameters from other block Args: - other(Block): other block + other(Block): other block Returns: None @@ -503,6 +736,7 @@ class Block(object): trainable=p.trainable, optimize_attr=p.optimize_attr, regularizer=p.regularizer, + clip_attr=p.clip_attr, name=v.name) self.vars[new_p.name] = new_p @@ -512,6 +746,7 @@ class Program(object): self.desc = core.ProgramDesc() self.blocks = [Block(self, 0)] self.current_block_idx = 0 + self._seed = 0 def __str__(self): return self.to_string(True) @@ -564,6 +799,16 @@ class Program(object): p.sync_with_cpp() return p + @property + def random_seed(self): + return self._seed + + @random_seed.setter + def random_seed(self, seed): + if not isinstance(seed, int): + raise ValueError("Seed must be a integer.") + self._seed = seed + def __repr__(self): return str(self) @@ -612,7 +857,7 @@ class Program(object): def copy_param_info_from(self, other): """ - Copy the information of parameters from other program. + Copy the information of parameters from other program. Args: other(Program): Other program @@ -654,6 +899,8 @@ class Parameter(Variable): self.regularizer = kwargs.get('regularizer', None) + self.clip_attr = kwargs.get('clip_attr', None) + # program is a global instance. _main_program_ = Program() @@ -664,7 +911,7 @@ def default_startup_program(): """ Get default startup program. In startup program, Paddle will initialize parameters, initialize nccl handle, etc. - + Returns: Program: startup program """ @@ -674,7 +921,7 @@ def default_startup_program(): def default_main_program(): """ Get default main program. The main program is used for training or testing. - + Returns: Program: main program """ @@ -684,7 +931,7 @@ def default_main_program(): def switch_main_program(program): """ Switch the main program to a new program. - + Args: program(Program): The new main program @@ -699,7 +946,7 @@ def switch_main_program(program): def switch_startup_program(program): """ - Switch the startup program to a new program + Switch the startup program to a new program Args: program(Program): The new startup program @@ -716,15 +963,15 @@ def switch_startup_program(program): def program_guard(main_program, startup_program=None): """ Switch program with `with` statement - + Examples: >>> with program_guard(Program()): >>> data = fluid.layers.data(...) >>> hidden = fluid.layers.fc(...) - + Args: main_program(Program): New main program inside `with` statement - startup_program(Program): New startup program inside `with` statement. + startup_program(Program): New startup program inside `with` statement. None means do not change startup program. Returns: diff --git a/python/paddle/v2/fluid/initializer.py b/python/paddle/v2/fluid/initializer.py index d3f648f8460814a3f251d7aa9560d748af85235c..c0839caaf2bb5bc43a76a13b5782cc519a4afe63 100644 --- a/python/paddle/v2/fluid/initializer.py +++ b/python/paddle/v2/fluid/initializer.py @@ -132,6 +132,8 @@ class UniformInitializer(Initializer): assert isinstance(var, framework.Variable) assert isinstance(block, framework.Block) # Initialization Ops should be prepended and not appended + if self._seed == 0: + self._seed = block.program.random_seed op = block.prepend_op( type="uniform_random", outputs={"Out": var}, @@ -180,6 +182,8 @@ class NormalInitializer(Initializer): assert isinstance(var, framework.Variable) assert isinstance(block, framework.Block) # Initialization Ops should be prepended and not appended + if self._seed == 0: + self._seed = block.program.random_seed op = block.prepend_op( type="gaussian_random", outputs={"Out": var}, @@ -255,6 +259,9 @@ class XavierInitializer(Initializer): fan_in = f_in if self._fan_in is None else self._fan_in fan_out = f_out if self._fan_out is None else self._fan_out + if self._seed == 0: + self._seed = block.program.random_seed + if self._uniform: limit = np.sqrt(6.0 / float(fan_in + fan_out)) op = block.prepend_op( @@ -338,6 +345,9 @@ class MSRAInitializer(Initializer): # If fan_in is passed, use it fan_in = f_in if self._fan_in is None else self._fan_in + if self._seed == 0: + self._seed = block.program.random_seed + if self._uniform: limit = np.sqrt(6.0 / float(fan_in)) op = block.prepend_op( diff --git a/python/paddle/v2/fluid/layer_helper.py b/python/paddle/v2/fluid/layer_helper.py index 5b384e5cf5df5e5abc7f0ef81ff11cd8a31cfa2d..8df30ad76b0b5ff2140e28935c386bbb603d8bea 100644 --- a/python/paddle/v2/fluid/layer_helper.py +++ b/python/paddle/v2/fluid/layer_helper.py @@ -1,7 +1,7 @@ import copy import itertools -from framework import Variable, default_main_program, default_startup_program, \ +from framework import Variable, Parameter, default_main_program, default_startup_program, \ unique_name, dtype_is_floating from paddle.v2.fluid.initializer import Constant, Xavier from param_attr import ParamAttr @@ -21,19 +21,11 @@ class LayerHelper(object): @property def main_program(self): - prog = self.kwargs.get('main_program', None) - if prog is None: - return default_main_program() - else: - return prog + return default_main_program() @property def startup_program(self): - prog = self.kwargs.get('startup_program', None) - if prog is None: - return default_startup_program() - else: - return prog + return default_startup_program() def append_op(self, *args, **kwargs): return self.main_program.current_block().append_op(*args, **kwargs) @@ -122,6 +114,12 @@ class LayerHelper(object): return self.main_program.global_block().create_parameter( dtype=dtype, shape=shape, **attr.to_kwargs()) + def get_parameter(self, name): + param = self.main_program.global_block().var(name) + if not isinstance(param, Parameter): + raise ValueError("no Parameter name %s found" % name) + return param + def create_tmp_variable(self, dtype): return self.main_program.current_block().create_var( name=unique_name(".".join([self.name, 'tmp'])), diff --git a/python/paddle/v2/fluid/layers.py b/python/paddle/v2/fluid/layers.py deleted file mode 100644 index e41bfae285a5b8f711d3ea90d9341f0f3a938c1d..0000000000000000000000000000000000000000 --- a/python/paddle/v2/fluid/layers.py +++ /dev/null @@ -1,1842 +0,0 @@ -import core -import proto.framework_pb2 as framework_pb2 -from framework import OpProtoHolder, Variable, Program, Operator -from initializer import Constant, Normal, Xavier, Initializer -from paddle.v2.fluid.layer_helper import LayerHelper, unique_name -import re -import cStringIO -from param_attr import ParamAttr - -__all__ = [ - 'fc', 'data', 'cross_entropy', 'conv2d', 'pool2d', 'embedding', 'concat', - 'StaticRNN', 'cast', 'sequence_conv', 'sequence_pool', 'sums', 'cos_sim', - 'batch_norm', 'accuracy', 'split_lod_tensor' -] - - -def fc(input, - size, - num_flatten_dims=1, - param_attr=None, - bias_attr=None, - act=None, - name=None, - main_program=None, - startup_program=None): - """ - Fully Connected Layer. - - Args: - input: The input tensor to the function - size: The size of the layer - num_flatten_dims: Number of columns in input - param_attr: The parameters/weights to the FC Layer - param_initializer: Initializer used for the weight/parameter. - If None, XavierInitializer() is used - bias_attr: The bias parameter for the FC layer - bias_initializer: Initializer used for the bias. - If None, then ConstantInitializer() is used - act: Activation to be applied to the output of FC layer - name: Name/alias of the function - main_program: Name of the main program that calls this - startup_program: Name of the startup program - - This function can take in multiple inputs and performs the Fully Connected - function (linear transformation) on top of each of them. - So for input x, the output will be : Wx + b. Where W is the parameter, - b the bias and x is the input. - - The function also applies an activation (non-linearity) on top of the - output, if activation is passed in the input. - - All the input variables of this function are passed in as local variables - to the LayerHelper constructor. - - """ - helper = LayerHelper('fc', **locals()) - - dtype = helper.input_dtype() - - mul_results = [] - for input_var, param_attr in helper.iter_inputs_and_params(): - input_shape = input_var.shape - param_shape = [ - reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) - ] + [size] - w = helper.create_parameter( - attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False) - tmp = helper.create_tmp_variable(dtype) - helper.append_op( - type="mul", - inputs={ - "X": input_var, - "Y": w, - }, - outputs={"Out": tmp}, - attrs={'x_num_col_dims': num_flatten_dims, - 'y_num_col_dims': 1}) - mul_results.append(tmp) - - # sum - if len(mul_results) == 1: - pre_bias = mul_results[0] - else: - pre_bias = helper.create_tmp_variable(dtype) - helper.append_op( - type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}) - # add bias - pre_activation = helper.append_bias_op(pre_bias) - # add activation - return helper.append_activation(pre_activation) - - -def embedding(input, - size, - is_sparse=False, - param_attr=None, - dtype='float32', - main_program=None, - startup_program=None): - """ - Embedding Layer. - - Args: - param_initializer: - input: The input to the function - size: The size of the layer - is_sparse: A flag that decleares whether the input is sparse - param_attr: Parameters for this layer - dtype: The type of data : float32, float_16, int etc - main_program: Name of the main program that calls this - startup_program: Name of the startup program - - This function can take in the input (which is a vector of IDs) and - performs a lookup in the lookup_table using these IDs, to result into - the embedding of each ID in the input. - - All the input variables of this function are passed in as local variables - to the LayerHelper constructor. - - """ - - helper = LayerHelper('embedding', **locals()) - w = helper.create_parameter( - attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False) - tmp = helper.create_tmp_variable(dtype) - helper.append_op( - type='lookup_table', - inputs={'Ids': input, - 'W': w}, - outputs={'Out': tmp}, - attrs={'is_sparse': is_sparse}) - return tmp - - -# TODO(qijun): expose H0 and C0 -def dynamic_lstm(input, - size, - param_attr=None, - bias_attr=None, - use_peepholes=True, - is_reverse=False, - gate_activation='sigmoid', - cell_activation='tanh', - candidate_activation='tanh', - dtype='float32', - main_program=None, - startup_program=None): - helper = LayerHelper('lstm', **locals()) - size = size / 4 - weight = helper.create_parameter( - attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype) - bias_size = [1, 7 * size] - if not use_peepholes: - bias_size[1] = 4 * size - bias = helper.create_parameter( - attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) - - hidden = helper.create_tmp_variable(dtype) - cell = helper.create_tmp_variable(dtype) - batch_gate = helper.create_tmp_variable(dtype) - batch_cell_pre_act = helper.create_tmp_variable(dtype) - - helper.append_op( - type='lstm', - inputs={'Input': input, - 'Weight': weight, - 'Bias': bias}, - outputs={ - 'Hidden': hidden, - 'Cell': cell, - 'BatchGate': batch_gate, - 'BatchCellPreAct': batch_cell_pre_act - }, - attrs={ - 'use_peepholes': use_peepholes, - 'is_reverse': is_reverse, - 'gate_activation': gate_activation, - 'cell_activation': cell_activation, - 'candidate_activation': candidate_activation - }) - return hidden, cell - - -def data(name, - shape, - append_batch_size=True, - dtype='float32', - lod_level=0, - type=core.VarDesc.VarType.LOD_TENSOR, - main_program=None, - startup_program=None, - stop_gradient=True): - """ - Data Layer. - - Args: - name: The name/alias of the function - shape: Tuple declaring the shape. - append_batch_size: Whether or not to append the data as a batch. - dtype: The type of data : float32, float_16, int etc - type: The output type. By default it is LOD_TENSOR. - lod_level(int): The LoD Level. 0 means the input data is not a sequence. - main_program: Name of the main program that calls this - startup_program: Name of the startup program - stop_gradient: A boolean that mentions whether gradient should flow. - - This function takes in input and based on whether data has - to be returned back as a minibatch, it creates the global variable using - the helper functions. The global variables can be accessed by all the - following operations and layers in the graph. - - All the input variables of this function are passed in as local variables - to the LayerHelper constructor. - - """ - helper = LayerHelper('data', **locals()) - shape = list(shape) - for i in xrange(len(shape)): - if shape[i] is None: - shape[i] = -1 - append_batch_size = False - elif shape[i] < 0: - append_batch_size = False - - if append_batch_size: - shape = [-1] + shape # append batch size as -1 - - return helper.create_global_variable( - name=name, - shape=shape, - dtype=dtype, - type=type, - stop_gradient=stop_gradient, - lod_level=lod_level) - - -def create_tensor(dtype, name=None, main_program=None, startup_program=None): - helper = LayerHelper("create_tensor", **locals()) - return helper.create_variable(name=helper.name, dtype=dtype) - - -def _convert_(name): - """ - Formatting. - - Args: - name: The name/alias - - This function takes in a name and converts it to a standard format of - group1_group2. Where as per the regular expression, group1 can have - alphabets and numbers and group2 has capital alphabets. - - """ - s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) - return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() - - -def _generate_doc_string_(op_proto): - """ - Generate docstring by OpProto - - Args: - op_proto (framework_pb2.OpProto): a protobuf message typed OpProto - - Returns: - str: the document string - """ - - def _type_to_str_(tp): - return framework_pb2.AttrType.Name(tp) - - if not isinstance(op_proto, framework_pb2.OpProto): - raise TypeError("OpProto should be `framework_pb2.OpProto`") - - buf = cStringIO.StringIO() - buf.write(op_proto.comment) - buf.write('\nArgs:\n') - for each_input in op_proto.inputs: - line_begin = ' {0}: '.format(_convert_(each_input.name)) - buf.write(line_begin) - buf.write(each_input.comment) - buf.write('\n') - buf.write(' ' * len(line_begin)) - buf.write('Duplicable: ') - buf.write(str(each_input.duplicable)) - buf.write(' Optional: ') - buf.write(str(each_input.dispensable)) - buf.write('\n') - - for each_attr in op_proto.attrs: - buf.write(' ') - buf.write(each_attr.name) - buf.write(' (') - buf.write(_type_to_str_(each_attr.type)) - buf.write('): ') - buf.write(each_attr.comment) - buf.write('\n') - - if len(op_proto.outputs) != 0: - buf.write('\nReturns:\n') - buf.write(' ') - for each_opt in op_proto.outputs: - if not each_opt.intermediate: - break - buf.write(each_opt.comment) - - return buf.getvalue() - - -def _create_op_func_(op_type): - """ - Create an Operator for a Function. - - Args: - op_type: The name of the operator to be created - - This function takes in the operator type (sigmoid, mean , average etc) and - creates the operator functionality. - - """ - op_proto = OpProtoHolder.instance().get_op_proto(op_type) - not_intermediate_outputs = \ - filter(lambda output: not output.intermediate, op_proto.outputs) - intermediate_outputs = \ - filter(lambda output: output.intermediate, op_proto.outputs) - - if len(not_intermediate_outputs) != 1: - raise ValueError("Only one non intermediate output operator can be", - "automatically generated") - - if not_intermediate_outputs[0].duplicable: - raise ValueError( - "Only non duplicable op can be automatically generated") - - for output in intermediate_outputs: - if output.duplicable: - raise ValueError("The op can be automatically generated only when ", - "all intermediate ops are not duplicable") - - o_name = not_intermediate_outputs[0].name - intermediate_output_names = [output.name for output in intermediate_outputs] - - def infer_and_check_dtype(op_proto, **kwargs): - """ - This function performs the sanity check for dtype and - instance type. - """ - dtype = None - for ipt in op_proto.inputs: - name = _convert_(ipt.name) - val = kwargs.pop(name, []) - if not isinstance(val, list) and not isinstance(val, tuple): - val = [val] - for each in val: - if not isinstance(each, Variable): - raise ValueError("input of {0} must be variable".format( - op_type)) - - if dtype is None: - dtype = each.dtype - elif dtype != each.dtype: - raise ValueError( - "operator {0} must input same dtype".format(op_type)) - - return dtype - - def func(**kwargs): - helper = LayerHelper(op_type, **kwargs) - - dtype = infer_and_check_dtype(op_proto, **kwargs) - - inputs = dict() - for ipt in op_proto.inputs: - name = _convert_(ipt.name) - val = kwargs.pop(name, []) - if not isinstance(val, list) and not isinstance(val, tuple): - val = [val] - inputs[ipt.name] = val - - outputs = dict() - out = helper.create_tmp_variable(dtype=dtype) - outputs[o_name] = [out] - for name in intermediate_output_names: - outputs[name] = [helper.create_tmp_variable(dtype=dtype)] - helper.append_op( - type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs) - return helper.append_activation(out) - - func.__name__ = op_type - globals()[op_type] = func - func.__doc__ = _generate_doc_string_(op_proto) - global __all__ - __all__.append(op_type) - - -_create_op_func_('mean') -_create_op_func_('mul') -_create_op_func_('elementwise_add') -_create_op_func_('elementwise_div') -_create_op_func_('dropout') -_create_op_func_('reshape') -_create_op_func_('sigmoid') -_create_op_func_('scale') -_create_op_func_('reshape') -_create_op_func_('transpose') -_create_op_func_('sigmoid_cross_entropy_with_logits') - - -def cast(x, dtype, main_program=None): - """ - This function takes in the input with input_dtype - and casts it to the output_dtype as the output. - """ - helper = LayerHelper('cast', **locals()) - out = helper.create_tmp_variable(dtype=dtype) - helper.append_op( - type='cast', - inputs={'X': [x]}, - outputs={'Out': [out]}, - attrs={'in_dtype': x.dtype, - 'out_dtype': out.dtype}) - return out - - -def concat(input, axis, main_program=None, startup_program=None): - """ - This function concats the input along the axis mentioned - and returns that as the output. - """ - helper = LayerHelper('concat', **locals()) - out = helper.create_tmp_variable(dtype=helper.input_dtype()) - helper.append_op( - type='concat', - inputs={'X': input}, - outputs={'Out': [out]}, - attrs={'axis': axis}) - return out - - -def sums(input, out=None, main_program=None, startup_program=None): - """ - This function takes in the input and performs the sum operation on it - and returns that as the output. - """ - helper = LayerHelper('sum', **locals()) - if out is None: - out = helper.create_tmp_variable(dtype=helper.input_dtype()) - helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out}) - return out - - -def linear_chain_crf(input, - label, - param_attr=None, - main_program=None, - startup_program=None): - helper = LayerHelper('linear_chain_crf', **locals()) - size = input.shape[1] - transition = helper.create_parameter( - attr=helper.param_attr, - shape=[size + 2, size], - dtype=helper.input_dtype()) - alpha = helper.create_tmp_variable(dtype=helper.input_dtype()) - emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) - transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) - log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype()) - helper.append_op( - type='linear_chain_crf', - inputs={"Emission": [input], - "Transition": transition, - "Label": label}, - outputs={ - "Alpha": [alpha], - "EmissionExps": [emission_exps], - "TransitionExps": transition_exps, - "LogLikelihood": log_likelihood - }) - - return log_likelihood - - -def assign(input, output, main_program=None, startup_program=None): - helper = LayerHelper('assign', **locals()) - helper.append_op( - type='scale', - inputs={'X': [input]}, - outputs={'Out': [output]}, - attrs={'scale': 1.0}) - return output - - -def split_lod_tensor(input, - mask, - level=0, - main_program=None, - startup_program=None): - helper = LayerHelper('split_lod_tensor', **locals()) - out_true = helper.create_tmp_variable(dtype=input.dtype) - out_false = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='split_lod_tensor', - inputs={ - 'X': input, - 'Mask': mask, - }, - outputs={'OutTrue': out_true, - 'OutFalse': out_false}, - attrs={'level': level}) - return out_true, out_false - - -def merge_lod_tensor(in_true, - in_false, - x, - mask, - level=0, - main_program=None, - startup_program=None): - helper = LayerHelper('merge_lod_tensor', **locals()) - out = helper.create_tmp_variable(dtype=in_true.dtype) - helper.append_op( - type='merge_lod_tensor', - inputs={'X': x, - 'Mask': mask, - 'InTrue': in_true, - 'InFalse': in_false}, - outputs={'Out': out}, - attrs={'level': level}) - return out - - -def cos_sim(X, Y, **kwargs): - """ - This function performs the cosine similarity between two tensors - X and Y and returns that as the output. - """ - helper = LayerHelper('cos_sim', **kwargs) - out = helper.create_tmp_variable(dtype=X.dtype) - xnorm = helper.create_tmp_variable(dtype=X.dtype) - ynorm = helper.create_tmp_variable(dtype=X.dtype) - helper.append_op( - type='cos_sim', - inputs={'X': [X], - 'Y': [Y]}, - outputs={'Out': [out], - 'XNorm': [xnorm], - 'YNorm': [ynorm]}) - return out - - -def cross_entropy(input, label, **kwargs): - """ - This function computes cross_entropy using the input and label. - """ - helper = LayerHelper('cross_entropy', **kwargs) - out = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='cross_entropy', - inputs={'X': [input], - 'Label': [label]}, - outputs={'Y': [out]}, - attrs=kwargs) - return out - - -def square_error_cost(input, label, **kwargs): - """ - This functions returns the squared error cost using the input and label. - The output is appending the op to do the above. - """ - helper = LayerHelper('square_error_cost', **kwargs) - minus_out = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='elementwise_sub', - inputs={'X': [input], - 'Y': [label]}, - outputs={'Out': [minus_out]}) - - square_out = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]}) - return square_out - - -def accuracy(input, label, k=1, correct=None, total=None, **kwargs): - """ - This function computes the accuracy using the input and label. - The output is the top_k inputs and their indices. - """ - helper = LayerHelper("accuracy", **kwargs) - topk_out = helper.create_tmp_variable(dtype=input.dtype) - topk_indices = helper.create_tmp_variable(dtype="int64") - helper.append_op( - type="top_k", - inputs={"X": [input]}, - outputs={"Out": [topk_out], - "Indices": [topk_indices]}, - attrs={"k": k}) - acc_out = helper.create_tmp_variable(dtype="float32") - if correct is None: - correct = helper.create_tmp_variable(dtype="int64") - if total is None: - total = helper.create_tmp_variable(dtype="int64") - helper.append_op( - type="accuracy", - inputs={ - "Out": [topk_out], - "Indices": [topk_indices], - "Label": [label] - }, - outputs={ - "Accuracy": [acc_out], - "Correct": [correct], - "Total": [total], - }) - return acc_out - - -def sequence_conv(input, - num_filters, - filter_size=3, - filter_stride=1, - padding=None, - bias_attr=None, - param_attr=None, - act=None, - main_program=None, - startup_program=None): - """ - This function creates the op for sequence_conv, using the inputs and - other convolutional configurations for the filters and stride as given - in the input parameters to the function. - """ - - # FIXME(dzh) : want to unify the argument of python layer - # function. So we ignore some unecessary attributes. - # such as, padding_trainable, context_start. - - helper = LayerHelper('sequence_conv', **locals()) - dtype = helper.input_dtype() - filter_shape = [filter_size * input.shape[1], num_filters] - filter = helper.create_parameter( - attr=helper.param_attr, shape=filter_shape, dtype=dtype) - pre_bias = helper.create_tmp_variable(dtype) - - helper.append_op( - type='sequence_conv', - inputs={ - 'X': [input], - 'Filter': [filter], - }, - outputs={"Out": pre_bias}, - attrs={ - 'contextStride': filter_stride, - 'contextStart': -int(filter_size / 2), - 'contextLength': filter_size - }) - pre_act = helper.append_bias_op(pre_bias) - return helper.append_activation(pre_act) - - -def conv2d(input, - num_filters, - filter_size, - stride=[1, 1], - padding=None, - groups=None, - param_attr=None, - bias_attr=None, - act=None, - name=None, - main_program=None, - startup_program=None): - """ - This function creates the op for a 2-dimensional Convolution. - This is performed using the parameters of filters(size, dimensionality etc) - , stride and other configurations for a Convolution operation. - This funciton can also append an activation on top of the - conv-2d output, if mentioned in the input parameters. - """ - - helper = LayerHelper('conv2d', **locals()) - dtype = helper.input_dtype() - - num_channels = input.shape[1] - if groups is None: - num_filter_channels = num_channels - else: - if num_channels % groups != 0: - raise ValueError("num_channels must be divisible by groups.") - num_filter_channels = num_channels / groups - - if isinstance(filter_size, int): - filter_size = [filter_size, filter_size] - if isinstance(stride, int): - stride = [stride, stride] - if isinstance(padding, int): - padding = [padding, padding] - - input_shape = input.shape - filter_shape = [num_filters, num_filter_channels] + filter_size - - def _get_default_param_initializer(): - std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 - return Normal(0.0, std, 0) - - filter = helper.create_parameter( - attr=helper.param_attr, - shape=filter_shape, - dtype=dtype, - default_initializer=_get_default_param_initializer()) - - pre_bias = helper.create_tmp_variable(dtype) - - helper.append_op( - type='conv2d', - inputs={ - 'Input': input, - 'Filter': filter, - }, - outputs={"Output": pre_bias}, - attrs={'strides': stride, - 'paddings': padding, - 'groups': groups}) - - pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) - - return helper.append_activation(pre_act) - - -def sequence_pool(input, pool_type, **kwargs): - """ - This function add the operator for sequence pooling. - This is applied on top of the input using pool_type mentioned - in the parameters. - """ - helper = LayerHelper('sequence_pool', input=input, **kwargs) - dtype = helper.input_dtype() - pool_out = helper.create_tmp_variable(dtype) - max_index = helper.create_tmp_variable(dtype) - - helper.append_op( - type="sequence_pool", - inputs={"X": input}, - outputs={"Out": pool_out, - "MaxIndex": max_index}, - attrs={"pooltype": pool_type.upper()}) - - return pool_out - - -def pool2d(input, - pool_size, - pool_type, - pool_stride=[1, 1], - pool_padding=[0, 0], - global_pooling=False, - main_program=None, - startup_program=None): - """ - This function adds the operator for pooling in 2 dimensions, using the - pooling configurations mentioned in input parameters. - """ - if pool_type not in ["max", "avg"]: - raise ValueError( - "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", - str(pool_type)) - if isinstance(pool_size, int): - pool_size = [pool_size, pool_size] - if isinstance(pool_stride, int): - pool_stride = [pool_stride, pool_stride] - if isinstance(pool_padding, int): - pool_padding = [pool_padding, pool_padding] - - helper = LayerHelper('pool2d', **locals()) - dtype = helper.input_dtype() - pool_out = helper.create_tmp_variable(dtype) - - helper.append_op( - type="pool2d", - inputs={"X": input}, - outputs={"Out": pool_out}, - attrs={ - "pooling_type": pool_type, - "ksize": pool_size, - "global_pooling": global_pooling, - "strides": pool_stride, - "paddings": pool_padding - }) - - return pool_out - - -def batch_norm(input, - act=None, - is_test=False, - momentum=0.9, - epsilon=1e-05, - param_attr=None, - bias_attr=None, - data_layout='NCHW', - main_program=None, - startup_program=None): - """ - This function helps create an operator to implement - the BatchNorm layer using the configurations from the input parameters. - """ - helper = LayerHelper('batch_norm', **locals()) - dtype = helper.input_dtype() - - input_shape = input.shape - if data_layout == 'NCHW': - channel_num = input_shape[1] - else: - if data_layout == 'NHWC': - channel_num = input_shape[-1] - else: - raise ValueError("unsupported data layout:" + data_layout) - - param_shape = [channel_num] - - # create parameter - scale = helper.create_parameter( - attr=helper.param_attr, - shape=param_shape, - dtype=dtype, - default_initializer=Constant(1.0)) - - bias = helper.create_parameter( - attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True) - - mean = helper.create_global_variable( - dtype=input.dtype, shape=param_shape, persistable=True) - helper.set_variable_initializer(var=mean, initializer=Constant(0.0)) - - variance = helper.create_global_variable( - dtype=input.dtype, shape=param_shape, persistable=True) - helper.set_variable_initializer(var=variance, initializer=Constant(1.0)) - - # create output - # mean and mean_out share the same memory - mean_out = mean - # variance and variance out share the same memory - variance_out = variance - saved_mean = helper.create_tmp_variable(dtype) - saved_variance = helper.create_tmp_variable(dtype) - - batch_norm_out = helper.create_tmp_variable(dtype) - - helper.append_op( - type="batch_norm", - inputs={ - "X": input, - "Scale": scale, - "Bias": bias, - "Mean": mean, - "Variance": variance - }, - outputs={ - "Y": batch_norm_out, - "MeanOut": mean_out, - "VarianceOut": variance_out, - "SavedMean": saved_mean, - "SavedVariance": saved_variance - }, - attrs={"momentum": momentum, - "epsilon": epsilon, - "is_test": is_test}) - - return helper.append_activation(batch_norm_out) - - -def beam_search_decode(ids, scores, main_program=None, startup_program=None): - helper = LayerHelper('beam_search_decode', **locals()) - sentence_ids = helper.create_tmp_variable(dtype=ids.dtype) - sentence_scores = helper.create_tmp_variable(dtype=ids.dtype) - - helper.append_op( - type="beam_search_decode", - inputs={"Ids": ids, - "Scores": scores}, - outputs={ - "SentenceIds": sentence_ids, - "SentenceScores": sentence_scores - }) - - return sentence_ids, sentence_scores - - -class BlockGuard(object): - """ - BlockGuard class. - - BlockGuard class is used to create a sub-block in a program by - using the Python `with` keyword. - """ - - def __init__(self, main_program): - if not isinstance(main_program, Program): - raise TypeError("BlockGuard takes a program") - self.main_program = main_program - - def __enter__(self): - self.main_program.create_block() - - def __exit__(self, exc_type, exc_val, exc_tb): - self.main_program.rollback() - if exc_type is not None: - return False # re-raise exception - return True - - -class StaticRNNGuard(BlockGuard): - """ - StaticRNNGuard class. - - StaticRNNGuard class is used to create a StaticRNN block in a program. - """ - - def __init__(self, rnn): - if not isinstance(rnn, StaticRNN): - raise TypeError("StaticRNNGuard takes a StaticRNN") - super(StaticRNNGuard, self).__init__(rnn.helper.main_program) - self.rnn = rnn - - def __enter__(self): - self.rnn.status = StaticRNN.IN_RNN_BLOCK - return super(StaticRNNGuard, self).__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - if exc_type is not None: - return False - self.rnn.status = StaticRNN.AFTER_RNN_BLOCK - self.rnn.complete_rnn_op() - return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb) - - -class StaticRNNMemoryLink(object): - """ - StaticRNNMemoryLink class. - - Args: - init: the initial variable for Memory - init: Variable - pre_mem: the memory variable in previous time step - pre_mem: Variable - mem: the memory variable in current time step - mem: Variable - - StaticRNNMemoryLink class is used to create a link between two - memory cells of a StaticRNN. - """ - - def __init__(self, init, pre_mem, mem=None): - self.init = init - self.pre_mem = pre_mem - self.mem = mem - - -class StaticRNN(object): - """ - StaticRNN class. - - StaticRNN class is used to create a StaticRNN. The RNN will have its - own parameters like inputs, outputs, memories, status and length. - """ - BEFORE_RNN_BLOCK = 0 - IN_RNN_BLOCK = 1 - AFTER_RNN_BLOCK = 2 - - def __init__(self, name=None, main_program=None): - self.helper = LayerHelper( - "static_rnn", name=name, main_program=main_program) - self.memories = {} # memory map, from pre_mem.name --> MemoryLink - self.inputs = [] # input variable list in current block - self.outputs = [] # output variable list in parent block - self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. - # sequence length, since it is a static RNN, sequence length are fixed. - self.seq_len = None - - def step(self): - return StaticRNNGuard(self) - - def _assert_in_rnn_block_(self, method): - if self.status != StaticRNN.IN_RNN_BLOCK: - raise ValueError("You must invoke {0} in rnn block".format(method)) - - def memory(self, - init=None, - shape=None, - batch_ref=None, - init_value=0.0, - init_batch_dim_idx=0, - ref_batch_dim_idx=1): - """ - Args: - init: boot memory, if not set, a shape, batch_ref must be provided - shape: shape of the boot memory - batch_ref: batch size reference variable - init_value: the init value of boot memory - init_batch_dim_idx: the index of batch size in init's dimension - ref_batch_dim_idx: the index of batch size in batch_ref's dimension - """ - self._assert_in_rnn_block_('memory') - if init is None: - if shape is None or batch_ref is None: - raise ValueError( - "if init is None, memory at least need shape and batch_ref") - parent_block = self.parent_block() - var_name = unique_name("@".join([self.helper.name, "memory_boot"])) - boot_var = parent_block.create_var( - name=var_name, - shape=shape, - dtype=batch_ref.dtype, - persistable=False) - - parent_block.append_op( - type="fill_constant_batch_size_like", - inputs={'Input': [batch_ref]}, - outputs={'Out': [boot_var]}, - attrs={ - 'value': init_value, - 'shape': boot_var.shape, - 'dtype': boot_var.dtype, - 'input_dim_idx': ref_batch_dim_idx, - 'output_dim_idx': init_batch_dim_idx - }) - - return self.memory(init=boot_var) - else: - pre_mem = self.helper.create_variable( - name=unique_name("@".join([self.helper.name, "mem"])), - dtype=init.dtype, - shape=init.shape) - self.memories[pre_mem.name] = StaticRNNMemoryLink( - init=init, pre_mem=pre_mem) - return pre_mem - - def step_input(self, x): - self._assert_in_rnn_block_('step_input') - if not isinstance(x, Variable): - raise TypeError("step input takes a Variable") - if self.seq_len is None: - self.seq_len = x.shape[0] - elif self.seq_len != x.shape[0]: - raise ValueError("Static RNN only take fix seq_len input") - - ipt = self.helper.create_variable( - name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type) - self.inputs.append(ipt) - return ipt - - def step_output(self, o): - self._assert_in_rnn_block_('step_output') - if not isinstance(o, Variable): - raise TypeError("step output takes a Variable") - - tmp_o = self.helper.create_tmp_variable(dtype=o.dtype) - self.helper.append_op( - type='rnn_memory_helper', - inputs={'X': [o]}, - outputs={'Out': tmp_o}, - attrs={'dtype': o.dtype}) - - out_var = self.parent_block().create_var( - name=tmp_o.name, - shape=[self.seq_len] + list(tmp_o.shape), - dtype=tmp_o.dtype) - - self.outputs.append(out_var) - - def output(self, *outputs): - for each in outputs: - self.step_output(each) - - def update_memory(self, mem, var): - if not isinstance(mem, Variable) or not isinstance(var, Variable): - raise TypeError("update memory should take variables") - self.memories[mem.name].mem = var - - def parent_block(self): - prog = self.helper.main_program - parent_idx = prog.current_block().parent_idx - assert parent_idx >= 0 - parent_block = prog.block(parent_idx) - return parent_block - - def __call__(self, *args, **kwargs): - if self.status != StaticRNN.AFTER_RNN_BLOCK: - raise ValueError("RNN output can only be retrieved after rnn block") - if len(self.outputs) == 0: - raise ValueError("RNN has no output") - elif len(self.outputs) == 1: - return self.outputs[0] - else: - return self.outputs - - def complete_rnn_op(self): - main_program = self.helper.main_program - rnn_block = main_program.current_block() - parent_block = self.parent_block() - - local_inputs = set() - - for op in rnn_block.ops: - assert isinstance(op, Operator) - for oname in op.output_names: - for out_var_name in op.output(oname): - local_inputs.add(out_var_name) - - for var in self.inputs: - local_inputs.add(var.name) - for m in self.memories: - local_inputs.add(m) - - params = list() - for op in rnn_block.ops: - assert isinstance(op, Operator) - for iname in op.input_names: - for in_var_name in op.input(iname): - if in_var_name not in local_inputs: - params.append(in_var_name) - - parameters = [parent_block.var(name) for name in params] - - step_scope = parent_block.create_var( - type=core.VarDesc.VarType.STEP_SCOPES) - - inlinks = [parent_block.var(i.name) for i in self.inputs] - outlinks = self.outputs - - boot_memories = [] - pre_memories = [] - memories = [] - for _, mem in self.memories.iteritems(): - boot_memories.append(mem.init) - pre_memories.append(mem.pre_mem.name) - mem_var = rnn_block.var(mem.mem.name) - assert isinstance(mem_var, Variable) - new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype) - - rnn_block.append_op( - type='rnn_memory_helper', - inputs={'X': [mem_var]}, - outputs={'Out': [new_mem]}, - attrs={'dtype': mem_var.dtype}) - - memories.append(new_mem.name) - - parent_block.append_op( - type='recurrent', - inputs={ - 'inputs': inlinks, - 'initial_states': boot_memories, - 'parameters': parameters - }, - outputs={'outputs': outlinks, - 'step_scopes': [step_scope]}, - attrs={ - 'ex_states': pre_memories, - 'states': memories, - 'step_block': rnn_block - }) - - -class WhileGuard(BlockGuard): - def __init__(self, while_op): - if not isinstance(while_op, While): - raise TypeError("WhileGuard takes a while op") - super(WhileGuard, self).__init__(while_op.helper.main_program) - self.while_op = while_op - - def __enter__(self): - self.while_op.status = While.IN_WHILE_BLOCK - return super(WhileGuard, self).__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - if exc_type is not None: - return False - self.while_op.status = While.AFTER_WHILE_BLOCK - self.while_op.complete() - return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb) - - -class While(object): - BEFORE_WHILE_BLOCK = 0 - IN_WHILE_BLOCK = 1 - AFTER_WHILE_BLOCK = 2 - - def __init__(self, cond, name=None, main_program=None): - self.helper = LayerHelper("while", name=name, main_program=main_program) - self.status = While.BEFORE_WHILE_BLOCK - if not isinstance(cond, Variable): - raise TypeError("condition should be a variable") - assert isinstance(cond, Variable) - if cond.dtype != core.DataType.BOOL: - raise TypeError("condition should be a bool variable") - if reduce(lambda a, b: a * b, cond.shape, 1) != 1: - raise TypeError("condition should be a bool scalar") - self.cond_var = cond - - def block(self): - return WhileGuard(self) - - def complete(self): - main_program = self.helper.main_program - while_block = main_program.current_block() - parent_block = main_program.block(main_program.current_block() - .parent_idx) - - inner_outputs = {self.cond_var.name} - x_name_list = set() - for op in while_block.ops: - for iname in op.input_names: - for in_var_name in op.input(iname): - if in_var_name not in inner_outputs: - x_name_list.add(in_var_name) - - for oname in op.output_names: - for out_var_name in op.output(oname): - inner_outputs.add(out_var_name) - - out_vars = [] - for inner_out_name in inner_outputs: - if inner_out_name in parent_block.vars: - out_vars.append(parent_block.var(inner_out_name)) - - step_scope = parent_block.create_var( - type=core.VarDesc.VarType.STEP_SCOPES) - - parent_block.append_op( - type='while', - inputs={ - 'X': [parent_block.var(x_name) for x_name in x_name_list], - 'Condition': [self.cond_var] - }, - outputs={'Out': out_vars, - 'StepScopes': [step_scope]}, - attrs={'step_block': while_block}) - - -def lstm(x, - c_pre_init, - hidden_dim, - forget_bias=None, - main_program=None, - startup_program=None): - """ - This function helps create an operator for the LSTM (Long Short Term - Memory) cell that can be used inside an RNN. - """ - helper = LayerHelper('lstm_unit', **locals()) - rnn = StaticRNN() - with rnn.step(): - c_pre = rnn.memory(init=c_pre_init) - x_t = rnn.step_input(x) - - before_fc = concat( - input=[x_t, c_pre], - axis=1, - main_program=main_program, - startup_program=startup_program) - after_fc = fc(input=before_fc, - size=hidden_dim * 4, - main_program=main_program, - startup_program=startup_program) - - dtype = x.dtype - c = helper.create_tmp_variable(dtype) - h = helper.create_tmp_variable(dtype) - - helper.append_op( - type='lstm_unit', - inputs={"X": after_fc, - "C_prev": c_pre}, - outputs={"C": c, - "H": h}, - attrs={"forget_bias": forget_bias}) - - rnn.update_memory(c_pre, c) - rnn.output(h) - - return rnn() - - -def lod_rank_table(x, level=0, main_program=None): - """ - This function creates an operator for creating a LOD_RANK_TABLE - using the input x. - """ - helper = LayerHelper("lod_rank_table", **locals()) - table = helper.create_variable( - type=core.VarDesc.VarType.LOD_RANK_TABLE, - name=unique_name("lod_rank_table")) - helper.append_op( - type='lod_rank_table', - inputs={'X': x}, - outputs={'Out': table}, - attrs={'level': level}) - return table - - -def max_sequence_len(rank_table, main_program=None): - """ - This function creates an operator to calculate the length of - max seqence through input rank_table(should be a lod_rank_table) - """ - helper = LayerHelper("max_seqence_len", **locals()) - res = helper.create_tmp_variable(dtype="int64") - helper.append_op( - type="max_sequence_len", - inputs={"RankTable": rank_table}, - outputs={"Out": res}) - return res - - -def topk(input, k, main_program=None, startup_program=None): - helper = LayerHelper('topk', **locals()) - topk_out = helper.create_tmp_variable(dtype=input.data_type) - topk_indices = helper.create_tmp_variable(dtype='int64') - helper.append_op( - type='top_k', - inputs={'X': [input]}, - outputs={'Out': [topk_out], - 'Indices': [topk_indices]}, - attrs={'k': k}) - return topk_out, topk_indices - - -def lod_tensor_to_array(x, table, main_program=None): - """ - This function creates an operator to convert an LOD_Tensor to - an array. - """ - helper = LayerHelper("lod_tensor_to_array", **locals()) - array = helper.create_variable( - name=unique_name("lod_tensor_to_array"), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=x.dtype) - helper.append_op( - type='lod_tensor_to_array', - inputs={'X': x, - 'RankTable': table}, - outputs={'Out': array}) - return array - - -def array_to_lod_tensor(x, table, main_program=None): - """ - This function creates an operator to convert an array to a - LOD_Tensor. - """ - helper = LayerHelper("array_to_lod_tensor", **locals()) - tmp = helper.create_tmp_variable(dtype=x.dtype) - helper.append_op( - type="array_to_lod_tensor", - inputs={'X': x, - 'RankTable': table}, - outputs={'Out': tmp}) - return tmp - - -def fill_constant(shape, - dtype, - value, - out=None, - main_program=None, - startup_program=None): - """ - This function creates a tensor , with shape as mentioned in the input and - specified dtype and fills this up with a constant value that - comes in the input. It also sets the stop_gradient to be True. - """ - helper = LayerHelper("fill_constant", **locals()) - if out is None: - out = helper.create_tmp_variable(dtype=dtype) - helper.append_op( - type='fill_constant', - inputs={}, - outputs={'Out': [out]}, - attrs={'shape': shape, - 'dtype': out.dtype, - 'value': float(value)}) - out.stop_gradient = True - return out - - -def fill_constant_batch_size_like(input, - shape, - dtype, - value, - input_dim_idx=0, - output_dim_idx=0, - main_program=None, - startup_program=None): - helper = LayerHelper("fill_constant_batch_size_like", **locals()) - out = helper.create_tmp_variable(dtype=dtype) - helper.append_op( - type='fill_constant_batch_size_like', - inputs={'Input': input}, - outputs={'Out': [out]}, - attrs={ - 'shape': shape, - 'dtype': out.dtype, - 'value': float(value), - 'input_dim_idx': input_dim_idx, - 'output_dim_idx': output_dim_idx - }) - out.stop_gradient = True - return out - - -def ones(shape, dtype, main_program=None): - """ - This function performs the same function as fill_constant() declared above - with the constant value being 1.0. - """ - return fill_constant(value=1.0, **locals()) - - -def zeros(shape, dtype, main_program=None): - """ - This function performs the same function as fill_constant() declared above - with the constant value being 0.0. - """ - return fill_constant(value=0.0, **locals()) - - -def increment(x, value=1.0, in_place=True, main_program=None): - """ - This function creates an operator to increment each value in the input - `x` by an amount: `value` as mentioned in the input parameter. This - operation is performed in-place by default. - """ - helper = LayerHelper("increment", **locals()) - if not in_place: - out = helper.create_tmp_variable(dtype=x.dtype) - else: - out = x - helper.append_op( - type='increment', - inputs={'X': [x]}, - outputs={'Out': [out]}, - attrs={'step': value}) - return out - - -def array_write(x, i, array=None, main_program=None): - """ - This function creates an operator to write the data out as a - LOD_TENSOR_ARRAY. - """ - helper = LayerHelper('array_write', **locals()) - if array is None: - array = helper.create_variable( - name="{0}.out".format(helper.name), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=x.dtype) - helper.append_op( - type='write_to_array', - inputs={'X': [x], - 'I': [i]}, - outputs={'Out': [array]}) - return array - - -def create_array(dtype, main_program=None): - helper = LayerHelper("array", **locals()) - return helper.create_variable( - name="{0}.out".format(helper.name), - type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, - dtype=dtype) - - -def less_than(x, y, cond=None, main_program=None, **ignored): - helper = LayerHelper("less_than", **locals()) - if cond is None: - cond = helper.create_tmp_variable(dtype='bool') - cond.stop_gradient = True - - helper.append_op( - type='less_than', inputs={'X': [x], - 'Y': [y]}, outputs={'Out': [cond]}) - return cond - - -def array_read(array, i, main_program=None): - """ - This function creates an operator to read the data in as a - LOD_TENSOR_ARRAY. - """ - helper = LayerHelper('array_read', **locals()) - if not isinstance( - array, - Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: - raise TypeError("array should be tensor array vairable") - out = helper.create_tmp_variable(dtype=array.dtype) - helper.append_op( - type='read_from_array', - inputs={'X': [array], - 'I': [i]}, - outputs={'Out': [out]}) - return out - - -def shrink_memory(x, i, table, main_program=None): - """ - This function creates an operator to shrink_rnn_memory using the RankTable - as mentioned in the input parameter. - """ - helper = LayerHelper('shrink_memory', **locals()) - out = helper.create_tmp_variable(dtype=x.dtype) - helper.append_op( - type='shrink_rnn_memory', - inputs={'X': [x], - 'I': [i], - 'RankTable': [table]}, - outputs={'Out': [out]}, - attrs={}) - return out - - -def array_length(array, main_program=None): - """ - This function creates an operator to find the length of the - LOD_TENSOR_ARRAY. - """ - helper = LayerHelper('array_length', **locals()) - tmp = helper.create_tmp_variable(dtype='int64') - tmp.stop_gradient = True - helper.append_op( - type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) - return tmp - - -def conv2d_transpose(input, - num_filters, - output_size=None, - filter_size=None, - padding=None, - stride=None, - param_attr=None, - main_program=None, - startup_program=None): - """ - The transpose of conv2d layer. - - This layer is also known as deconvolution layer. - - Args: - input(Variable): The input image with [N, C, H, W] format. - num_filters(int): The number of filter. It is as same as the output - image channel. - output_size(int|tuple|None): The output image size. If output size is a - tuple, it must contain two integers, (image_H, image_W). This - parameter only works when filter_size is None. - filter_size(int|tuple|None): The filter size. If filter_size is a tuple, - it must contain two integers, (filter_size_H, filter_size_W). - Otherwise, the filter will be a square. None if use output size to - calculate filter_size - padding(int|tuple): The padding size. If padding is a tuple, it must - contain two integers, (padding_H, padding_W). Otherwise, the - padding_H = padding_W = padding. - stride(int|tuple): The stride size. If stride is a tuple, it must - contain two integers, (stride_H, stride_W). Otherwise, the - stride_H = stride_W = stride. - param_attr: Parameter Attribute. - main_program(Program): the main program - startup_program(Program): the startup program - - Returns: - Variable: Output image. - """ - helper = LayerHelper("conv2d_transpose", **locals()) - if not isinstance(input, Variable): - raise TypeError("Input of conv2d_transpose must be Variable") - input_channel = input.shape[1] - - op_attr = dict() - - if isinstance(padding, int): - op_attr['paddings'] = [padding, padding] - elif padding is not None: - op_attr['paddings'] = padding - - if isinstance(stride, int): - op_attr['strides'] = stride - elif stride is not None: - op_attr['strides'] = stride - - if filter_size is None: - if output_size is None: - raise ValueError("output_size must be set when filter_size is None") - if isinstance(output_size, int): - output_size = [output_size, output_size] - - padding = op_attr.get('paddings', [0, 0]) - stride = op_attr.get('strides', [1, 1]) - - h_in = input.shape[2] - w_in = input.shape[3] - filter_size_h = output_size[0] - (h_in - 1) * stride[0] + 2 * padding[0] - filter_size_w = output_size[1] - (w_in - 1) * stride[1] + 2 * padding[1] - filter_size = [filter_size_h, filter_size_w] - elif isinstance(filter_size, int): - filter_size = [filter_size, filter_size] - - filter_shape = [input_channel, num_filters] + filter_size - img_filter = helper.create_parameter( - dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) - - out = helper.create_tmp_variable(dtype=input.dtype) - helper.append_op( - type='conv2d_transpose', - inputs={'Input': [input], - 'Filter': [img_filter]}, - outputs={'Output': out}, - attrs=op_attr) - - return out - - -class ConditionalBlockGuard(BlockGuard): - def __init__(self, block): - if not isinstance(block, ConditionalBlock): - raise TypeError("block should be conditional block") - super(ConditionalBlockGuard, self).__init__(block.helper.main_program) - self.block = block - - def __enter__(self): - return super(ConditionalBlockGuard, self).__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - self.block.complete() - return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val, - exc_tb) - - -class ConditionalBlock(object): - def __init__(self, - inputs, - name=None, - main_program=None, - startup_program=None): - for each_input in inputs: - if not isinstance(each_input, Variable): - raise TypeError("Each input should be variable") - self.inputs = inputs - self.helper = LayerHelper( - 'conditional_block', - name=name, - main_program=main_program, - startup_program=startup_program) - - def block(self): - return ConditionalBlockGuard(self) - - def complete(self): - inside_block = self.helper.main_program.current_block() - parent_block = self.helper.main_program.block(inside_block.parent_idx) - - intermediate = set() - params = set() - - for each_op in inside_block.ops: - assert isinstance(each_op, Operator) - for iname in each_op.input_names: - for in_var_name in each_op.input(iname): - if in_var_name not in intermediate: - params.add(in_var_name) - - for oname in each_op.output_names: - for out_var_name in each_op.output(oname): - intermediate.add(out_var_name) - input_set = set([ipt.name for ipt in self.inputs]) - - param_list = [ - parent_block.var(each_name) for each_name in params - if each_name not in input_set - ] - - out_list = [ - parent_block.var(var_name) for var_name in parent_block.vars - if var_name not in intermediate - ] - - step_scope = parent_block.create_var( - type=core.VarDesc.VarType.STEP_SCOPES) - parent_block.append_op( - type='conditional_block', - inputs={ - 'X': self.inputs, - 'Params': param_list, - }, - outputs={'Out': out_list, - 'Scope': [step_scope]}, - attrs={'block': inside_block}) - - -class IfElseBlockGuard(object): - def __init__(self, is_true, ifelse): - if not isinstance(ifelse, IfElse): - raise TypeError("ifelse must be an instance of IfElse class") - - if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: - raise ValueError("You cannot invoke IfElse.block() inside a block") - - self.is_true = is_true - self.ie = ifelse - if is_true: - self.cond_block = ifelse.conditional_true_block - else: - self.cond_block = ifelse.conditional_false_block - - if not isinstance(self.cond_block, ConditionalBlock): - raise TypeError("Unexpected situation") - - self.cond_block = self.cond_block.block() - - def __enter__(self): - self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS - self.cond_block.__enter__() - - def __exit__(self, exc_type, exc_val, exc_tb): - if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): - # re-raise inside exception - return False - if len(self.ie.output_table[1 if self.is_true else 0]) == 0: - raise ValueError("Must set output inside block") - self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS - - -class IfElse(object): - OUT_IF_ELSE_BLOCKS = 0 - IN_IF_ELSE_TRUE_BLOCKS = 1 - IN_IF_ELSE_FALSE_BLOCKS = 2 - - def __init__(self, cond, name=None, main_program=None, - startup_program=None): - if not isinstance(cond, Variable): - raise TypeError("cond must be a Variable") - self.helper = LayerHelper( - 'ifelse', - name=name, - main_program=main_program, - startup_program=startup_program) - self.cond = cond - self.input_table = {} - self.status = IfElse.OUT_IF_ELSE_BLOCKS - self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) - self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) - self.output_table = ([], []) # (true_outs, false_outs) - - def input(self, x): - if self.status == IfElse.OUT_IF_ELSE_BLOCKS: - raise ValueError("input must in true/false blocks") - if id(x) not in self.input_table: - parent_block = self.parent_block() - out_true = parent_block.create_var( - name=unique_name('ifelse_input' + self.helper.name), - dtype=x.dtype) - - out_false = parent_block.create_var( - name=unique_name('ifelse_input' + self.helper.name), - dtype=x.dtype) - parent_block.append_op( - type='split_lod_tensor', - inputs={ - 'X': x, - 'Mask': self.cond, - }, - outputs={'OutTrue': out_true, - 'OutFalse': out_false}, - attrs={'level': 0}) - self.input_table[id(x)] = (out_true, out_false) - else: - out_true, out_false = self.input_table[id(x)] - - if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: - return out_true - else: - return out_false - - def parent_block(self): - current_block = self.helper.main_program.current_block() - return self.helper.main_program.block(current_block.parent_idx) - - def true_block(self): - return IfElseBlockGuard(True, self) - - def false_block(self): - return IfElseBlockGuard(False, self) - - def output(self, *outs): - if self.status == self.OUT_IF_ELSE_BLOCKS: - raise ValueError("output can only be invoked in the sub-block") - - out_table = self.output_table[1 if self.status == - self.IN_IF_ELSE_TRUE_BLOCKS else 0] - parent_block = self.parent_block() - for each_out in outs: - if not isinstance(each_out, Variable): - raise TypeError("Each output should be a variable") - # create outside tensor - outside_out = parent_block.create_var( - name=unique_name("_".join([self.helper.name, 'output'])), - dtype=each_out.dtype) - out_table.append(outside_out) - - # assign local var to outside - assign( - input=each_out, - output=outside_out, - main_program=self.helper.main_program, - startup_program=self.helper.startup_program) - - def __call__(self): - if self.status != self.OUT_IF_ELSE_BLOCKS: - raise ValueError("IfElse::__call__ must be out of sub-block") - false_len, true_len = map(len, self.output_table) - if false_len == 0 and true_len == 0: - raise ValueError("Must invoke true_block/false_block before " - "__call__") - elif false_len != true_len and false_len != 0 and true_len != 0: - raise ValueError("The output side must be same") - elif false_len == 0 or true_len == 0: - return self.output_table[0 if false_len != 0 else 1] - - # else none of false_len/true_len is zero - # merge together - rlist = [] - for false_var, true_var in zip(*self.output_table): - rlist.append( - merge_lod_tensor( - in_true=true_var, - in_false=false_var, - mask=self.cond, - x=self.cond, - level=0, - main_program=self.helper.main_program, - startup_program=self.helper.startup_program)) - return rlist diff --git a/python/paddle/v2/fluid/layers/__init__.py b/python/paddle/v2/fluid/layers/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..249f570e13b7a1b50397fb971d1c6f77e0359a5e --- /dev/null +++ b/python/paddle/v2/fluid/layers/__init__.py @@ -0,0 +1,17 @@ +import ops +from ops import * +import nn +from nn import * +import io +from io import * +import tensor +from tensor import * +import control_flow +from control_flow import * + +__all__ = [] +__all__ += nn.__all__ +__all__ += io.__all__ +__all__ += tensor.__all__ +__all__ += control_flow.__all__ +__all__ += ops.__all__ diff --git a/python/paddle/v2/fluid/layers/control_flow.py b/python/paddle/v2/fluid/layers/control_flow.py new file mode 100644 index 0000000000000000000000000000000000000000..5b7979f39ff9a661e1f127413e505b6499d01e7b --- /dev/null +++ b/python/paddle/v2/fluid/layers/control_flow.py @@ -0,0 +1,1084 @@ +from ..layer_helper import LayerHelper, unique_name +from ..framework import Program, Variable, Operator +from .. import core +from tensor import assign, fill_constant +import contextlib + +__all__ = [ + 'split_lod_tensor', 'merge_lod_tensor', 'BlockGuard', 'StaticRNNGuard', + 'StaticRNNMemoryLink', 'WhileGuard', 'While', 'lod_rank_table', + 'max_sequence_len', 'topk', 'lod_tensor_to_array', 'array_to_lod_tensor', + 'increment', 'array_write', 'create_array', 'less_than', 'array_read', + 'shrink_memory', 'array_length', 'IfElse', 'DynamicRNN', 'ConditionalBlock', + 'StaticRNN' +] + + +def split_lod_tensor(input, mask, level=0): + helper = LayerHelper('split_lod_tensor', **locals()) + out_true = helper.create_tmp_variable(dtype=input.dtype) + out_false = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='split_lod_tensor', + inputs={ + 'X': input, + 'Mask': mask, + }, + outputs={'OutTrue': out_true, + 'OutFalse': out_false}, + attrs={'level': level}) + return out_true, out_false + + +def merge_lod_tensor(in_true, in_false, x, mask, level=0): + helper = LayerHelper('merge_lod_tensor', **locals()) + out = helper.create_tmp_variable(dtype=in_true.dtype) + helper.append_op( + type='merge_lod_tensor', + inputs={'X': x, + 'Mask': mask, + 'InTrue': in_true, + 'InFalse': in_false}, + outputs={'Out': out}, + attrs={'level': level}) + return out + + +class BlockGuard(object): + """ + BlockGuard class. + + BlockGuard class is used to create a sub-block in a program by + using the Python `with` keyword. + """ + + def __init__(self, main_program): + if not isinstance(main_program, Program): + raise TypeError("BlockGuard takes a program") + self.main_program = main_program + + def __enter__(self): + self.main_program.create_block() + + def __exit__(self, exc_type, exc_val, exc_tb): + self.main_program.rollback() + if exc_type is not None: + return False # re-raise exception + return True + + +class StaticRNNGuard(BlockGuard): + """ + StaticRNNGuard class. + + StaticRNNGuard class is used to create a StaticRNN block in a program. + """ + + def __init__(self, rnn): + if not isinstance(rnn, StaticRNN): + raise TypeError("StaticRNNGuard takes a StaticRNN") + super(StaticRNNGuard, self).__init__(rnn.helper.main_program) + self.rnn = rnn + + def __enter__(self): + self.rnn.status = StaticRNN.IN_RNN_BLOCK + return super(StaticRNNGuard, self).__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + if exc_type is not None: + return False + self.rnn.status = StaticRNN.AFTER_RNN_BLOCK + self.rnn.complete_rnn_op() + return super(StaticRNNGuard, self).__exit__(exc_type, exc_val, exc_tb) + + +class StaticRNNMemoryLink(object): + """ + StaticRNNMemoryLink class. + + Args: + init: the initial variable for Memory + init: Variable + pre_mem: the memory variable in previous time step + pre_mem: Variable + mem: the memory variable in current time step + mem: Variable + + StaticRNNMemoryLink class is used to create a link between two + memory cells of a StaticRNN. + """ + + def __init__(self, init, pre_mem, mem=None): + self.init = init + self.pre_mem = pre_mem + self.mem = mem + + +class StaticRNN(object): + """ + StaticRNN class. + + StaticRNN class is used to create a StaticRNN. The RNN will have its + own parameters like inputs, outputs, memories, status and length. + """ + BEFORE_RNN_BLOCK = 0 + IN_RNN_BLOCK = 1 + AFTER_RNN_BLOCK = 2 + + def __init__(self, name=None): + self.helper = LayerHelper("static_rnn", name=name) + self.memories = {} # memory map, from pre_mem.name --> MemoryLink + self.inputs = [] # input variable list in current block + self.outputs = [] # output variable list in parent block + self.status = StaticRNN.BEFORE_RNN_BLOCK # status flag. + # sequence length, since it is a static RNN, sequence length are fixed. + self.seq_len = None + + def step(self): + return StaticRNNGuard(self) + + def _assert_in_rnn_block_(self, method): + if self.status != StaticRNN.IN_RNN_BLOCK: + raise ValueError("You must invoke {0} in rnn block".format(method)) + + def memory(self, + init=None, + shape=None, + batch_ref=None, + init_value=0.0, + init_batch_dim_idx=0, + ref_batch_dim_idx=1): + """ + Args: + init: boot memory, if not set, a shape, batch_ref must be provided + shape: shape of the boot memory + batch_ref: batch size reference variable + init_value: the init value of boot memory + init_batch_dim_idx: the index of batch size in init's dimension + ref_batch_dim_idx: the index of batch size in batch_ref's dimension + """ + self._assert_in_rnn_block_('memory') + if init is None: + if shape is None or batch_ref is None: + raise ValueError( + "if init is None, memory at least need shape and batch_ref") + parent_block = self.parent_block() + var_name = unique_name("@".join([self.helper.name, "memory_boot"])) + boot_var = parent_block.create_var( + name=var_name, + shape=shape, + dtype=batch_ref.dtype, + persistable=False) + + parent_block.append_op( + type="fill_constant_batch_size_like", + inputs={'Input': [batch_ref]}, + outputs={'Out': [boot_var]}, + attrs={ + 'value': init_value, + 'shape': boot_var.shape, + 'dtype': boot_var.dtype, + 'input_dim_idx': ref_batch_dim_idx, + 'output_dim_idx': init_batch_dim_idx + }) + + return self.memory(init=boot_var) + else: + pre_mem = self.helper.create_variable( + name=unique_name("@".join([self.helper.name, "mem"])), + dtype=init.dtype, + shape=init.shape) + self.memories[pre_mem.name] = StaticRNNMemoryLink( + init=init, pre_mem=pre_mem) + return pre_mem + + def step_input(self, x): + self._assert_in_rnn_block_('step_input') + if not isinstance(x, Variable): + raise TypeError("step input takes a Variable") + if self.seq_len is None: + self.seq_len = x.shape[0] + elif self.seq_len != x.shape[0]: + raise ValueError("Static RNN only take fix seq_len input") + + ipt = self.helper.create_variable( + name=x.name, dtype=x.dtype, shape=list(x.shape[1:]), type=x.type) + self.inputs.append(ipt) + return ipt + + def step_output(self, o): + self._assert_in_rnn_block_('step_output') + if not isinstance(o, Variable): + raise TypeError("step output takes a Variable") + + tmp_o = self.helper.create_tmp_variable(dtype=o.dtype) + self.helper.append_op( + type='rnn_memory_helper', + inputs={'X': [o]}, + outputs={'Out': tmp_o}, + attrs={'dtype': o.dtype}) + + out_var = self.parent_block().create_var( + name=tmp_o.name, + shape=[self.seq_len] + list(tmp_o.shape), + dtype=tmp_o.dtype) + + self.outputs.append(out_var) + + def output(self, *outputs): + for each in outputs: + self.step_output(each) + + def update_memory(self, mem, var): + if not isinstance(mem, Variable) or not isinstance(var, Variable): + raise TypeError("update memory should take variables") + self.memories[mem.name].mem = var + + def parent_block(self): + prog = self.helper.main_program + parent_idx = prog.current_block().parent_idx + assert parent_idx >= 0 + parent_block = prog.block(parent_idx) + return parent_block + + def __call__(self, *args, **kwargs): + if self.status != StaticRNN.AFTER_RNN_BLOCK: + raise ValueError("RNN output can only be retrieved after rnn block") + if len(self.outputs) == 0: + raise ValueError("RNN has no output") + elif len(self.outputs) == 1: + return self.outputs[0] + else: + return self.outputs + + def complete_rnn_op(self): + main_program = self.helper.main_program + rnn_block = main_program.current_block() + parent_block = self.parent_block() + + local_inputs = set() + + for op in rnn_block.ops: + assert isinstance(op, Operator) + for oname in op.output_names: + for out_var_name in op.output(oname): + local_inputs.add(out_var_name) + + for var in self.inputs: + local_inputs.add(var.name) + for m in self.memories: + local_inputs.add(m) + + params = list() + for op in rnn_block.ops: + assert isinstance(op, Operator) + for iname in op.input_names: + for in_var_name in op.input(iname): + if in_var_name not in local_inputs: + params.append(in_var_name) + + parameters = [parent_block.var(name) for name in params] + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + + inlinks = [parent_block.var(i.name) for i in self.inputs] + outlinks = self.outputs + + boot_memories = [] + pre_memories = [] + memories = [] + for _, mem in self.memories.iteritems(): + boot_memories.append(mem.init) + pre_memories.append(mem.pre_mem.name) + mem_var = rnn_block.var(mem.mem.name) + assert isinstance(mem_var, Variable) + new_mem = self.helper.create_tmp_variable(dtype=mem_var.dtype) + + rnn_block.append_op( + type='rnn_memory_helper', + inputs={'X': [mem_var]}, + outputs={'Out': [new_mem]}, + attrs={'dtype': mem_var.dtype}) + + memories.append(new_mem.name) + + parent_block.append_op( + type='recurrent', + inputs={ + 'inputs': inlinks, + 'initial_states': boot_memories, + 'parameters': parameters + }, + outputs={'outputs': outlinks, + 'step_scopes': [step_scope]}, + attrs={ + 'ex_states': pre_memories, + 'states': memories, + 'sub_block': rnn_block + }) + + +class WhileGuard(BlockGuard): + def __init__(self, while_op): + if not isinstance(while_op, While): + raise TypeError("WhileGuard takes a while op") + super(WhileGuard, self).__init__(while_op.helper.main_program) + self.while_op = while_op + + def __enter__(self): + self.while_op.status = While.IN_WHILE_BLOCK + return super(WhileGuard, self).__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + if exc_type is not None: + return False + self.while_op.status = While.AFTER_WHILE_BLOCK + self.while_op.complete() + return super(WhileGuard, self).__exit__(exc_type, exc_val, exc_tb) + + +class While(object): + BEFORE_WHILE_BLOCK = 0 + IN_WHILE_BLOCK = 1 + AFTER_WHILE_BLOCK = 2 + + def __init__(self, cond, name=None): + self.helper = LayerHelper("while", name=name) + self.status = While.BEFORE_WHILE_BLOCK + if not isinstance(cond, Variable): + raise TypeError("condition should be a variable") + assert isinstance(cond, Variable) + if cond.dtype != core.DataType.BOOL: + raise TypeError("condition should be a bool variable") + if reduce(lambda a, b: a * b, cond.shape, 1) != 1: + raise TypeError("condition should be a bool scalar") + self.cond_var = cond + + def block(self): + return WhileGuard(self) + + def complete(self): + main_program = self.helper.main_program + while_block = main_program.current_block() + parent_block = main_program.block(main_program.current_block() + .parent_idx) + + inner_outputs = {self.cond_var.name} + x_name_list = set() + for op in while_block.ops: + for iname in op.input_names: + for in_var_name in op.input(iname): + if in_var_name not in inner_outputs: + x_name_list.add(in_var_name) + + for oname in op.output_names: + for out_var_name in op.output(oname): + inner_outputs.add(out_var_name) + + out_vars = [] + for inner_out_name in inner_outputs: + if inner_out_name in parent_block.vars: + out_vars.append(parent_block.var(inner_out_name)) + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + + parent_block.append_op( + type='while', + inputs={ + 'X': [parent_block.var(x_name) for x_name in x_name_list], + 'Condition': [self.cond_var] + }, + outputs={'Out': out_vars, + 'StepScopes': [step_scope]}, + attrs={'sub_block': while_block}) + + +def lod_rank_table(x, level=0): + """ + This function creates an operator for creating a LOD_RANK_TABLE + using the input x. + """ + helper = LayerHelper("lod_rank_table", **locals()) + table = helper.create_variable( + type=core.VarDesc.VarType.LOD_RANK_TABLE, + name=unique_name("lod_rank_table")) + helper.append_op( + type='lod_rank_table', + inputs={'X': x}, + outputs={'Out': table}, + attrs={'level': level}) + return table + + +def max_sequence_len(rank_table): + """ + This function creates an operator to calculate the length of + max seqence through input rank_table(should be a lod_rank_table) + """ + helper = LayerHelper("max_seqence_len", **locals()) + res = helper.create_tmp_variable(dtype="int64") + helper.append_op( + type="max_sequence_len", + inputs={"RankTable": rank_table}, + outputs={"Out": res}) + return res + + +def topk(input, k): + helper = LayerHelper('topk', **locals()) + topk_out = helper.create_tmp_variable(dtype=input.data_type) + topk_indices = helper.create_tmp_variable(dtype='int64') + helper.append_op( + type='top_k', + inputs={'X': [input]}, + outputs={'Out': [topk_out], + 'Indices': [topk_indices]}, + attrs={'k': k}) + return topk_out, topk_indices + + +def lod_tensor_to_array(x, table): + """This function performs the operation that converts an LOD_Tensor to + an array. + + Args: + x (Variable|list): The tensor that needs to be converted to an array. + table (ParamAttr|list): The variable that stores the level of lod + which is ordered by sequence length in + descending order. + + Returns: + Variable: The variable of type array that has been converted from a + tensor. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10]) + table = fluid.layers.lod_rank_table(x, level=0) + array = fluid.layers.lod_tensor_to_array(x, table) + """ + helper = LayerHelper("lod_tensor_to_array", **locals()) + array = helper.create_variable( + name=unique_name("lod_tensor_to_array"), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=x.dtype) + helper.append_op( + type='lod_tensor_to_array', + inputs={'X': x, + 'RankTable': table}, + outputs={'Out': array}) + return array + + +def array_to_lod_tensor(x, table): + """This function performs the operations that converts an array to + an LOD_Tensor. + + Args: + x (Variable|list): The array that needs to be converted to a tensor. + table (ParamAttr|list): The variable that stores the level of lod + which is ordered by sequence length in + descending order. + + Returns: + Variable: The variable of type tensor that has been converted + from an array. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10]) + table = fluid.layers.lod_rank_table(x, level=0) + array = fluid.layers.lod_tensor_to_array(x, table) + lod_tensor = fluid.layers.array_to_lod_tensor(array, table) + """ + helper = LayerHelper("array_to_lod_tensor", **locals()) + tmp = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type="array_to_lod_tensor", + inputs={'X': x, + 'RankTable': table}, + outputs={'Out': tmp}) + return tmp + + +def increment(x, value=1.0, in_place=True): + """This function performs an operation that increments each value in the + input :math:`x` by an amount: :math:`value` as mentioned in the input + parameter. This operation is performed in-place by default. + + Args: + x (Variable|list): The tensor that has the input values. + value (float): The amount by which the values should be incremented. + in_place (bool): If the increment should be performed in-place. + + Returns: + Variable: The tensor variable storing the transformation of + element-wise increment of each value in the input. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='data', shape=[32, 32], dtype='float32') + data = fluid.layers.increment(x=data, value=3.0, in_place=True) + """ + helper = LayerHelper("increment", **locals()) + if not in_place: + out = helper.create_tmp_variable(dtype=x.dtype) + else: + out = x + helper.append_op( + type='increment', + inputs={'X': [x]}, + outputs={'Out': [out]}, + attrs={'step': float(value)}) + return out + + +def array_write(x, i, array=None): + """This function performs the operation to write the data out as an + LOD_TENSOR_ARRAY. + + Args: + x (Variable|list): The input tensor from which the data will be read. + i (Variable|list): The subscript index in tensor array, that points the + place from which data will be read. + array (Variable|list): The data can be read into this variable if + this is assigned. + Returns: + Variable: The tensor type variable that has the data written to it. + + Examples: + .. code-block::python + + tmp = fluid.layers.zeros(shape=[10], dtype='int32') + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) + arr = layers.array_write(tmp, i=i) + """ + helper = LayerHelper('array_write', **locals()) + if array is None: + array = helper.create_variable( + name="{0}.out".format(helper.name), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=x.dtype) + helper.append_op( + type='write_to_array', + inputs={'X': [x], + 'I': [i]}, + outputs={'Out': [array]}) + return array + + +def create_array(dtype): + """This function creates an array of type :math:`LOD_TENSOR_ARRAY` using the + LayerHelper. + + Args: + dtype (int|float): The data type of the elements in the array. + + Returns: + Variable: The tensor variable storing the elements of data type. + + Examples: + .. code-block:: python + + data = fluid.layers.create_array(dtype='float32') + + """ + helper = LayerHelper("array", **locals()) + return helper.create_variable( + name="{0}.out".format(helper.name), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=dtype) + + +def less_than(x, y, cond=None, **ignored): + """ + **Less than** + + This layer returns the truth value of :math:`x < y` elementwise. + + Args: + x(Variable): First operand of *less_than* + y(Variable): Second operand of *less_than* + cond(Variable|None): Optional output variable to store the result of *less_than* + + Returns: + Variable: The tensor variable storing the output of *less_than*. + + Examples: + .. code-block:: python + + less = fluid.layers.less_than(x=label, y=limit) + """ + helper = LayerHelper("less_than", **locals()) + if cond is None: + cond = helper.create_tmp_variable(dtype='bool') + cond.stop_gradient = True + + helper.append_op( + type='less_than', inputs={'X': [x], + 'Y': [y]}, outputs={'Out': [cond]}) + return cond + + +def array_read(array, i): + """This function performs the operation to read the data in as an + LOD_TENSOR_ARRAY. + Args: + array (Variable|list): The input tensor that will be written to an array. + i (Variable|list): The subscript index in tensor array, that points the + place where data will be written to. + Returns: + Variable: The tensor type variable that has the data written to it. + Examples: + .. code-block::python + tmp = fluid.layers.zeros(shape=[10], dtype='int32') + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) + arr = layers.array_read(tmp, i=i) + """ + helper = LayerHelper('array_read', **locals()) + if not isinstance( + array, + Variable) or array.type != core.VarDesc.VarType.LOD_TENSOR_ARRAY: + raise TypeError("array should be tensor array vairable") + out = helper.create_tmp_variable(dtype=array.dtype) + helper.append_op( + type='read_from_array', + inputs={'X': [array], + 'I': [i]}, + outputs={'Out': [out]}) + return out + + +def shrink_memory(x, i, table): + """ + This function creates an operator to shrink_rnn_memory using the RankTable + as mentioned in the input parameter. + """ + helper = LayerHelper('shrink_memory', **locals()) + out = helper.create_tmp_variable(dtype=x.dtype) + helper.append_op( + type='shrink_rnn_memory', + inputs={'X': [x], + 'I': [i], + 'RankTable': [table]}, + outputs={'Out': [out]}, + attrs={}) + return out + + +def array_length(array): + """This function performs the operation to find the length of the input + LOD_TENSOR_ARRAY. + + Args: + array (LOD_TENSOR_ARRAY): The input array that will be used + to compute the length. + + Returns: + Variable: The length of the input LoDTensorArray. + + Examples: + .. code-block::python + + tmp = fluid.layers.zeros(shape=[10], dtype='int32') + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) + arr = fluid.layers.array_write(tmp, i=i) + arr_len = fluid.layers.array_length(arr) + """ + helper = LayerHelper('array_length', **locals()) + tmp = helper.create_tmp_variable(dtype='int64') + tmp.stop_gradient = True + helper.append_op( + type='lod_array_length', inputs={'X': [array]}, outputs={'Out': [tmp]}) + return tmp + + +class ConditionalBlockGuard(BlockGuard): + def __init__(self, block): + if not isinstance(block, ConditionalBlock): + raise TypeError("block should be conditional block") + super(ConditionalBlockGuard, self).__init__(block.helper.main_program) + self.block = block + + def __enter__(self): + return super(ConditionalBlockGuard, self).__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + self.block.complete() + return super(ConditionalBlockGuard, self).__exit__(exc_type, exc_val, + exc_tb) + + +class ConditionalBlock(object): + def __init__(self, inputs, name=None): + for each_input in inputs: + if not isinstance(each_input, Variable): + raise TypeError("Each input should be variable") + self.inputs = inputs + self.helper = LayerHelper('conditional_block', name=name) + + def block(self): + return ConditionalBlockGuard(self) + + def complete(self): + inside_block = self.helper.main_program.current_block() + parent_block = self.helper.main_program.block(inside_block.parent_idx) + + intermediate = set() + params = set() + + for each_op in inside_block.ops: + assert isinstance(each_op, Operator) + for iname in each_op.input_names: + for in_var_name in each_op.input(iname): + if in_var_name not in intermediate: + params.add(in_var_name) + + for oname in each_op.output_names: + for out_var_name in each_op.output(oname): + intermediate.add(out_var_name) + input_set = set([ipt.name for ipt in self.inputs]) + + param_list = [ + parent_block.var(each_name) for each_name in params + if each_name not in input_set + ] + + out_list = [ + parent_block.var(var_name) for var_name in parent_block.vars + if var_name not in intermediate + ] + + step_scope = parent_block.create_var( + type=core.VarDesc.VarType.STEP_SCOPES) + parent_block.append_op( + type='conditional_block', + inputs={ + 'X': self.inputs, + 'Params': param_list, + }, + outputs={'Out': out_list, + 'Scope': [step_scope]}, + attrs={'sub_block': inside_block}) + + +class IfElseBlockGuard(object): + def __init__(self, is_true, ifelse): + if not isinstance(ifelse, IfElse): + raise TypeError("ifelse must be an instance of IfElse class") + + if ifelse.status != IfElse.OUT_IF_ELSE_BLOCKS: + raise ValueError("You cannot invoke IfElse.block() inside a block") + + self.is_true = is_true + self.ie = ifelse + if is_true: + self.cond_block = ifelse.conditional_true_block + else: + self.cond_block = ifelse.conditional_false_block + + if not isinstance(self.cond_block, ConditionalBlock): + raise TypeError("Unexpected situation") + + self.cond_block = self.cond_block.block() + + def __enter__(self): + self.ie.status = IfElse.IN_IF_ELSE_TRUE_BLOCKS if self.is_true else IfElse.IN_IF_ELSE_FALSE_BLOCKS + self.cond_block.__enter__() + + def __exit__(self, exc_type, exc_val, exc_tb): + if not self.cond_block.__exit__(exc_type, exc_val, exc_tb): + # re-raise inside exception + return False + if len(self.ie.output_table[1 if self.is_true else 0]) == 0: + raise ValueError("Must set output inside block") + self.ie.status = IfElse.OUT_IF_ELSE_BLOCKS + + +class IfElse(object): + OUT_IF_ELSE_BLOCKS = 0 + IN_IF_ELSE_TRUE_BLOCKS = 1 + IN_IF_ELSE_FALSE_BLOCKS = 2 + + def __init__(self, cond, name=None): + if not isinstance(cond, Variable): + raise TypeError("cond must be a Variable") + self.helper = LayerHelper('ifelse', name=name) + self.cond = cond + self.input_table = {} + self.status = IfElse.OUT_IF_ELSE_BLOCKS + self.conditional_true_block = ConditionalBlock(inputs=[self.cond]) + self.conditional_false_block = ConditionalBlock(inputs=[self.cond]) + self.output_table = ([], []) # (true_outs, false_outs) + + def input(self, x): + if self.status == IfElse.OUT_IF_ELSE_BLOCKS: + raise ValueError("input must in true/false blocks") + if id(x) not in self.input_table: + parent_block = self.parent_block() + out_true = parent_block.create_var( + name=unique_name('ifelse_input' + self.helper.name), + dtype=x.dtype) + + out_false = parent_block.create_var( + name=unique_name('ifelse_input' + self.helper.name), + dtype=x.dtype) + parent_block.append_op( + type='split_lod_tensor', + inputs={ + 'X': x, + 'Mask': self.cond, + }, + outputs={'OutTrue': out_true, + 'OutFalse': out_false}, + attrs={'level': 0}) + self.input_table[id(x)] = (out_true, out_false) + else: + out_true, out_false = self.input_table[id(x)] + + if self.status == IfElse.IN_IF_ELSE_TRUE_BLOCKS: + return out_true + else: + return out_false + + def parent_block(self): + current_block = self.helper.main_program.current_block() + return self.helper.main_program.block(current_block.parent_idx) + + def true_block(self): + return IfElseBlockGuard(True, self) + + def false_block(self): + return IfElseBlockGuard(False, self) + + def output(self, *outs): + if self.status == self.OUT_IF_ELSE_BLOCKS: + raise ValueError("output can only be invoked in the sub-block") + + out_table = self.output_table[1 if self.status == + self.IN_IF_ELSE_TRUE_BLOCKS else 0] + parent_block = self.parent_block() + for each_out in outs: + if not isinstance(each_out, Variable): + raise TypeError("Each output should be a variable") + # create outside tensor + outside_out = parent_block.create_var( + name=unique_name("_".join([self.helper.name, 'output'])), + dtype=each_out.dtype) + out_table.append(outside_out) + + # assign local var to outside + assign(input=each_out, output=outside_out) + + def __call__(self): + if self.status != self.OUT_IF_ELSE_BLOCKS: + raise ValueError("IfElse::__call__ must be out of sub-block") + false_len, true_len = map(len, self.output_table) + if false_len == 0 and true_len == 0: + raise ValueError("Must invoke true_block/false_block before " + "__call__") + elif false_len != true_len and false_len != 0 and true_len != 0: + raise ValueError("The output side must be same") + elif false_len == 0 or true_len == 0: + return self.output_table[0 if false_len != 0 else 1] + + # else none of false_len/true_len is zero + # merge together + rlist = [] + for false_var, true_var in zip(*self.output_table): + rlist.append( + merge_lod_tensor( + in_true=true_var, + in_false=false_var, + mask=self.cond, + x=self.cond, + level=0)) + return rlist + + +class DynamicRNN(object): + BEFORE_RNN = 0 + IN_RNN = 1 + AFTER_RNN = 2 + + def __init__(self, name=None): + self.helper = LayerHelper('dynamic_rnn', name=name) + self.status = DynamicRNN.BEFORE_RNN + self.lod_rank_table = None + self.max_seq_len = None + self.step_idx = None + self.zero_idx = fill_constant(shape=[1], value=0, dtype='int64') + self.mem_dict = dict() + self.output_array = [] + self.outputs = [] + self.cond = self.helper.create_tmp_variable(dtype='bool') + self.cond.stop_gradient = False + self.while_op = While(self.cond) + self.input_array = [] + self.mem_link = [] + + def step_input(self, x): + self._assert_in_rnn_block_("step_input") + if not isinstance(x, Variable): + raise TypeError( + "step_input() can only take a Variable as its input") + parent_block = self._parent_block_() + if self.lod_rank_table is None: + self.lod_rank_table = parent_block.create_var( + name=unique_name('lod_rank_table'), + type=core.VarDesc.VarType.LOD_RANK_TABLE) + self.lod_rank_table.stop_gradient = True + parent_block.append_op( + type='lod_rank_table', + inputs={"X": x}, + outputs={"Out": self.lod_rank_table}) + self.max_seq_len = parent_block.create_var( + name=unique_name('dynamic_rnn_max_seq_len'), dtype='int64') + self.max_seq_len.stop_gradient = False + parent_block.append_op( + type='max_sequence_len', + inputs={'RankTable': self.lod_rank_table}, + outputs={"Out": self.max_seq_len}) + self.cond.stop_gradient = True + parent_block.append_op( + type='less_than', + inputs={'X': self.step_idx, + 'Y': self.max_seq_len}, + outputs={'Out': self.cond}) + + input_array = parent_block.create_var( + name=unique_name('dynamic_rnn_input_array'), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=x.dtype) + self.input_array.append((input_array, x.dtype)) + parent_block.append_op( + type='lod_tensor_to_array', + inputs={'X': x, + 'RankTable': self.lod_rank_table}, + outputs={'Out': input_array}) + return array_read(array=input_array, i=self.step_idx) + + @contextlib.contextmanager + def block(self): + if self.status != DynamicRNN.BEFORE_RNN: + raise ValueError("rnn.block() can only be invoke once") + self.step_idx = fill_constant(shape=[1], dtype='int64', value=0) + self.step_idx.stop_gradient = False + self.status = DynamicRNN.IN_RNN + with self.while_op.block(): + yield + increment(x=self.step_idx, value=1.0, in_place=True) + + for new_mem, mem_array in self.mem_link: + array_write(x=new_mem, i=self.step_idx, array=mem_array) + + less_than(x=self.step_idx, y=self.max_seq_len, cond=self.cond) + + self.status = DynamicRNN.AFTER_RNN + for each_array in self.output_array: + self.outputs.append( + array_to_lod_tensor( + x=each_array, table=self.lod_rank_table)) + + def __call__(self, *args, **kwargs): + if self.status != DynamicRNN.AFTER_RNN: + raise ValueError( + "Dynamic RNN outputs can only be retrieved after rnn block") + if len(self.outputs) == 1: + return self.outputs[0] + else: + return self.outputs + + def memory(self, init=None, shape=None, value=0.0, dtype='float32'): + self._assert_in_rnn_block_('memory') + if init is not None: + if not isinstance(init, Variable): + raise TypeError( + "The input arg `init` of memory() must be a Variable") + parent_block = self._parent_block_() + mem_array = parent_block.create_var( + name=unique_name('dynamic_rnn_mem_array'), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=init.dtype) + parent_block.append_op( + type='write_to_array', + inputs={'X': init, + 'I': self.zero_idx}, + outputs={'Out': mem_array}) + retv = array_read(array=mem_array, i=self.step_idx) + retv = shrink_memory( + x=retv, i=self.step_idx, table=self.lod_rank_table) + self.mem_dict[retv.name] = mem_array + return retv + else: + if len(self.input_array) == 0: + raise ValueError( + "step_input should be invoked before memory(shape=..., value=...)" + ) + parent_block = self._parent_block_() + init = parent_block.create_var( + name=unique_name('mem_init'), dtype=dtype) + arr, dtype = self.input_array[0] + in0 = parent_block.create_var(name=unique_name('in0'), dtype=dtype) + parent_block.append_op( + type='read_from_array', + inputs={'X': [arr], + 'I': [self.zero_idx]}, + outputs={'Out': [in0]}) + parent_block.append_op( + type='fill_constant_batch_size_like', + inputs={'Input': [in0]}, + outputs={'Out': [init]}, + attrs={ + 'shape': [-1] + shape, + 'value': float(value), + 'dtype': init.dtype + }) + return self.memory(init=init) + + def update_memory(self, ex_mem, new_mem): + self._assert_in_rnn_block_('update_memory') + if not isinstance(ex_mem, Variable): + raise TypeError("The input arg `ex_mem` of update_memory() must " + "be a Variable") + if not isinstance(new_mem, Variable): + raise TypeError("The input arg `new_mem` of update_memory() must " + "be a Variable") + + mem_array = self.mem_dict.get(ex_mem.name, None) + if mem_array is None: + raise ValueError("Please invoke memory before update_memory") + if self.lod_rank_table is None: + raise ValueError("Please invoke step_input before update_memory") + + self.mem_link.append((new_mem, mem_array)) + + def output(self, *outputs): + self._assert_in_rnn_block_('output') + parent_block = self._parent_block_() + for each in outputs: + outside_array = parent_block.create_var( + name=unique_name("_".join( + [self.helper.name, "output_array", each.name])), + type=core.VarDesc.VarType.LOD_TENSOR_ARRAY, + dtype=each.dtype) + array_write(x=each, i=self.step_idx, array=outside_array) + self.output_array.append(outside_array) + + def _parent_block_(self): + prog = self.helper.main_program + parent_idx = prog.current_block().parent_idx + assert parent_idx >= 0 + parent_block = prog.block(parent_idx) + + return parent_block + + def _assert_in_rnn_block_(self, method): + if self.status != DynamicRNN.IN_RNN: + raise ValueError("{0} can only be invoked inside rnn block.".format( + method)) diff --git a/python/paddle/v2/fluid/layers/io.py b/python/paddle/v2/fluid/layers/io.py new file mode 100644 index 0000000000000000000000000000000000000000..56c3f7b7b7f174338bb56bc5785423ca634650a6 --- /dev/null +++ b/python/paddle/v2/fluid/layers/io.py @@ -0,0 +1,62 @@ +from .. import core +from ..layer_helper import LayerHelper + +__all__ = ['data'] + + +def data(name, + shape, + append_batch_size=True, + dtype='float32', + lod_level=0, + type=core.VarDesc.VarType.LOD_TENSOR, + stop_gradient=True): + """ + **Data Layer** + + This function takes in the input and based on whether data has + to be returned back as a minibatch, it creates the global variable using + the helper functions. The global variables can be accessed by all the + following operations and layers in the graph. + + All the input variables of this function are passed in as local variables + to the LayerHelper constructor. + + Args: + name(str): The name/alias of the function + shape(list): Tuple declaring the shape. + append_batch_size(bool): Whether or not to append the data as a batch. + dtype(int|float): The type of data : float32, float_16, int etc + type(VarType): The output type. By default it is LOD_TENSOR. + lod_level(int): The LoD Level. 0 means the input data is not a sequence. + main_program(Program): Name of the main program that calls this + startup_program(Program): Name of the startup program + stop_gradient(bool): A boolean that mentions whether gradient should flow. + + Returns: + Variable: The global variable that gives access to the data. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='x', shape=[784], dtype='float32') + """ + helper = LayerHelper('data', **locals()) + shape = list(shape) + for i in xrange(len(shape)): + if shape[i] is None: + shape[i] = -1 + append_batch_size = False + elif shape[i] < 0: + append_batch_size = False + + if append_batch_size: + shape = [-1] + shape # append batch size as -1 + + return helper.create_global_variable( + name=name, + shape=shape, + dtype=dtype, + type=type, + stop_gradient=stop_gradient, + lod_level=lod_level) diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py new file mode 100644 index 0000000000000000000000000000000000000000..20d44f0ea2d04b66fb5855d3fc8a158c08b008bb --- /dev/null +++ b/python/paddle/v2/fluid/layers/nn.py @@ -0,0 +1,1091 @@ +""" +All layers just related to the neural network. +""" + +from ..layer_helper import LayerHelper +from ..initializer import Normal, Constant +from ..framework import Variable +from ..param_attr import ParamAttr +from tensor import concat + +__all__ = [ + 'fc', 'embedding', 'dynamic_lstm', 'gru_unit', 'linear_chain_crf', + 'crf_decoding', 'cos_sim', 'cross_entropy', 'square_error_cost', 'accuracy', + 'chunk_eval', 'sequence_conv', 'conv2d', 'sequence_pool', 'pool2d', + 'batch_norm', 'beam_search_decode', 'conv2d_transpose', 'sequence_expand', + 'lstm_unit', 'reduce_sum', 'reduce_mean' +] + + +def fc(input, + size, + num_flatten_dims=1, + param_attr=None, + bias_attr=None, + act=None, + name=None): + """ + **Fully Connected Layer** + + The fully connected layer can take multiple tensors as its inputs. It + creates a variable (one for each input tensor) called weights for each input + tensor, which represents a fully connected weight matrix from each input + unit to each output unit. The fully connected layer multiplies each input + tensor with its coresponding weight to produce an output Tensor. If + multiple input tensors are given, the results of multiple multiplications + will be sumed up. If bias_attr is not None, a biases variable will be + created and added to the output. Finally, if activation is not None, + it will be applied to the output as well. + + This process can be formulated as follows: + + .. math:: + + Out = Act({\sum_{i=0}^{N-1}W_iX_i + b}) + + In the above equation: + + * :math:`N`: Number of the input. + * :math:`X_i`: The input tensor. + * :math:`W`: The weights created by this layer. + * :math:`b`: The bias parameter created by this layer (if needed). + * :math:`Act`: The activation funtion. + * :math:`Out`: The output tensor. + + Args: + input(Variable|list): The input tensor(s) to the fully connected layer. + size(int): The number of output units in the fully connected layer. + num_flatten_dims(int): The fc layer can accept an input tensor with more + than two dimensions. If this happens, the + multidimensional tensor will first be flattened + into a 2-dimensional matrix. The parameter + `num_flatten_dims` determines how the input tensor + is flattened: the first `num_flatten_dims` + dimensions will be flatten to form the first + dimension of the final matrix (height of the + matrix), and the rest `rank(X) - num_col_dims` + dimensions are flattened to form the second + dimension of the final matrix (width of the matrix). + For example, suppose `X` is a 6-dimensional tensor + with a shape [2, 3, 4, 5, 6], and + `x_num_col_dims` = 3. Then, the flattened matrix + will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. + By default, `x_num_col_dims` is set to 1. + param_attr(ParamAttr|list): The parameter attribute for learnable + parameters/weights of the fully connected + layer. + param_initializer(ParamAttr|list): The initializer used for the + weight/parameter. If set None, + XavierInitializer() will be used. + bias_attr(ParamAttr|list): The parameter attribute for the bias parameter + for this layer. If set None, no bias will be + added to the output units. + bias_initializer(ParamAttr|list): The initializer used for the bias. + If set None, then ConstantInitializer() + will be used. + act(str): Activation to be applied to the output of the fully connected + layer. + name(str): Name/alias of the fully connected layer. + + + Returns: + Variable: The output tensor variable. + + Raises: + ValueError: If rank of the input tensor is less than 2. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name="data", shape=[32, 32], dtype="float32") + fc = fluid.layers.fc(input=data, size=1000, act="tanh") + """ + + helper = LayerHelper("fc", **locals()) + + dtype = helper.input_dtype() + + mul_results = [] + for input_var, param_attr in helper.iter_inputs_and_params(): + input_shape = input_var.shape + param_shape = [ + reduce(lambda a, b: a * b, input_shape[num_flatten_dims:], 1) + ] + [size] + w = helper.create_parameter( + attr=param_attr, shape=param_shape, dtype=dtype, is_bias=False) + tmp = helper.create_tmp_variable(dtype) + helper.append_op( + type="mul", + inputs={ + "X": input_var, + "Y": w, + }, + outputs={"Out": tmp}, + attrs={"x_num_col_dims": num_flatten_dims, + "y_num_col_dims": 1}) + mul_results.append(tmp) + + # sum + if len(mul_results) == 1: + pre_bias = mul_results[0] + else: + pre_bias = helper.create_tmp_variable(dtype) + helper.append_op( + type="sum", inputs={"X": mul_results}, outputs={"Out": pre_bias}) + # add bias + pre_activation = helper.append_bias_op(pre_bias) + # add activation + return helper.append_activation(pre_activation) + + +def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'): + """ + **Embedding Layer** + + This layer is used to lookup a vector of IDs, provided by *input*, in a lookup table. + The result of this lookup is the embedding of each ID in the *input*. + + All the input variables are passed in as local variables to the LayerHelper + constructor. + + Args: + input(Variable): Input to the function + size(tuple|list|None): Shape of the look up table parameter + is_sparse(bool): Boolean flag that specifying whether the input is sparse + param_attr(ParamAttr): Parameters for this layer + dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc + + Returns: + Variable: The tensor variable storing the embeddings of the \ + supplied inputs. + + Examples: + .. code-block:: python + + data = fluid.layers.data(name='ids', shape=[32, 32], dtype='float32') + fc = fluid.layers.embedding(input=data, size=16) + """ + + helper = LayerHelper('embedding', **locals()) + w = helper.create_parameter( + attr=helper.param_attr, shape=size, dtype=dtype, is_bias=False) + tmp = helper.create_tmp_variable(dtype) + helper.append_op( + type='lookup_table', + inputs={'Ids': input, + 'W': w}, + outputs={'Out': tmp}, + attrs={'is_sparse': is_sparse}) + return tmp + + +# TODO(qijun): expose H0 and C0 +def dynamic_lstm(input, + size, + param_attr=None, + bias_attr=None, + use_peepholes=True, + is_reverse=False, + gate_activation='sigmoid', + cell_activation='tanh', + candidate_activation='tanh', + dtype='float32'): + helper = LayerHelper('lstm', **locals()) + size = size / 4 + weight = helper.create_parameter( + attr=helper.param_attr, shape=[size, 4 * size], dtype=dtype) + bias_size = [1, 7 * size] + if not use_peepholes: + bias_size[1] = 4 * size + bias = helper.create_parameter( + attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) + + hidden = helper.create_tmp_variable(dtype) + cell = helper.create_tmp_variable(dtype) + batch_gate = helper.create_tmp_variable(dtype) + batch_cell_pre_act = helper.create_tmp_variable(dtype) + + helper.append_op( + type='lstm', + inputs={'Input': input, + 'Weight': weight, + 'Bias': bias}, + outputs={ + 'Hidden': hidden, + 'Cell': cell, + 'BatchGate': batch_gate, + 'BatchCellPreAct': batch_cell_pre_act + }, + attrs={ + 'use_peepholes': use_peepholes, + 'is_reverse': is_reverse, + 'gate_activation': gate_activation, + 'cell_activation': cell_activation, + 'candidate_activation': candidate_activation + }) + return hidden, cell + + +def gru_unit(input, + hidden, + size, + weight=None, + bias=None, + activation='tanh', + gate_activation='sigmoid'): + """ + GRUUnit Operator implements partial calculations of the GRU unit as following: + + $$ + update \ gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\ + reset \ gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r) \\ + output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\ + output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t) + $$ + + which is same as one time step of GRU Operator. + + @note To implement the complete GRU unit, fully-connected operator must be + used before to feed xu, xr and xc as the Input of GRUUnit operator. + + TODO(ChunweiYan) add more document here + """ + activation_dict = dict( + identity=0, + sigmoid=1, + tanh=2, + relu=3, ) + activation = activation_dict[activation] + gate_activation = activation_dict[gate_activation] + + helper = LayerHelper('gru_unit', **locals()) + dtype = helper.input_dtype() + size = size / 3 + + # create weight + if weight is None: + weight = helper.create_parameter( + attr=helper.param_attr, shape=[size, 3 * size], dtype=dtype) + + # create bias + if bias is None: + bias_size = [1, 3 * size] + bias = helper.create_parameter( + attr=helper.bias_attr, shape=bias_size, dtype=dtype, is_bias=True) + + gate = helper.create_tmp_variable(dtype) + reset_hidden_pre = helper.create_tmp_variable(dtype) + updated_hidden = helper.create_tmp_variable(dtype) + + helper.append_op( + type='gru_unit', + inputs={'Input': input, + 'HiddenPrev': hidden, + 'Weight': weight}, + outputs={ + 'Gate': gate, + 'ResetHiddenPrev': reset_hidden_pre, + 'Hidden': updated_hidden, + }, + attrs={ + 'activation': 0, + 'gate_activation': 1, + }) + + return updated_hidden, reset_hidden_pre, gate + + +def linear_chain_crf(input, label, param_attr=None): + helper = LayerHelper('linear_chain_crf', **locals()) + size = input.shape[1] + transition = helper.create_parameter( + attr=helper.param_attr, + shape=[size + 2, size], + dtype=helper.input_dtype()) + alpha = helper.create_tmp_variable(dtype=helper.input_dtype()) + emission_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) + transition_exps = helper.create_tmp_variable(dtype=helper.input_dtype()) + log_likelihood = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='linear_chain_crf', + inputs={"Emission": [input], + "Transition": transition, + "Label": label}, + outputs={ + "Alpha": [alpha], + "EmissionExps": [emission_exps], + "TransitionExps": transition_exps, + "LogLikelihood": log_likelihood + }) + + return log_likelihood + + +def crf_decoding(input, param_attr, label=None): + helper = LayerHelper('crf_decoding', **locals()) + transition = helper.get_parameter(param_attr.name) + viterbi_path = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='crf_decoding', + inputs={"Emission": [input], + "Transition": transition, + "Label": label}, + outputs={"ViterbiPath": [viterbi_path]}) + + return viterbi_path + + +def cos_sim(X, Y, **kwargs): + """ + This function performs the cosine similarity between two tensors + X and Y and returns that as the output. + """ + helper = LayerHelper('cos_sim', **kwargs) + out = helper.create_tmp_variable(dtype=X.dtype) + xnorm = helper.create_tmp_variable(dtype=X.dtype) + ynorm = helper.create_tmp_variable(dtype=X.dtype) + helper.append_op( + type='cos_sim', + inputs={'X': [X], + 'Y': [Y]}, + outputs={'Out': [out], + 'XNorm': [xnorm], + 'YNorm': [ynorm]}) + return out + + +def cross_entropy(input, label, **kwargs): + """ + This function computes cross_entropy using the input and label. + """ + helper = LayerHelper('cross_entropy', **kwargs) + out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='cross_entropy', + inputs={'X': [input], + 'Label': [label]}, + outputs={'Y': [out]}, + attrs=kwargs) + return out + + +def square_error_cost(input, label, **kwargs): + """ + This functions returns the squared error cost using the input and label. + The output is appending the op to do the above. + """ + helper = LayerHelper('square_error_cost', **kwargs) + minus_out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='elementwise_sub', + inputs={'X': [input], + 'Y': [label]}, + outputs={'Out': [minus_out]}) + + square_out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='square', inputs={'X': [minus_out]}, outputs={'Y': [square_out]}) + return square_out + + +def accuracy(input, label, k=1, correct=None, total=None, **kwargs): + """ + This function computes the accuracy using the input and label. + The output is the top_k inputs and their indices. + """ + helper = LayerHelper("accuracy", **kwargs) + topk_out = helper.create_tmp_variable(dtype=input.dtype) + topk_indices = helper.create_tmp_variable(dtype="int64") + helper.append_op( + type="top_k", + inputs={"X": [input]}, + outputs={"Out": [topk_out], + "Indices": [topk_indices]}, + attrs={"k": k}) + acc_out = helper.create_tmp_variable(dtype="float32") + if correct is None: + correct = helper.create_tmp_variable(dtype="int64") + if total is None: + total = helper.create_tmp_variable(dtype="int64") + helper.append_op( + type="accuracy", + inputs={ + "Out": [topk_out], + "Indices": [topk_indices], + "Label": [label] + }, + outputs={ + "Accuracy": [acc_out], + "Correct": [correct], + "Total": [total], + }) + return acc_out + + +def chunk_eval(input, + label, + chunk_scheme, + num_chunk_types, + excluded_chunk_types=None, + **kwargs): + """ + This function computes and outputs the precision, recall and + F1-score of chunk detection. + """ + helper = LayerHelper("chunk_eval", **kwargs) + + # prepare output + precision = helper.create_tmp_variable(dtype="float32") + recall = helper.create_tmp_variable(dtype="float32") + f1_score = helper.create_tmp_variable(dtype="float32") + num_infer_chunks = helper.create_tmp_variable(dtype="int64") + num_label_chunks = helper.create_tmp_variable(dtype="int64") + num_correct_chunks = helper.create_tmp_variable(dtype="int64") + + helper.append_op( + type="chunk_eval", + inputs={"Inference": [input], + "Label": [label]}, + outputs={ + "Precision": [precision], + "Recall": [recall], + "F1-Score": [f1_score], + "NumInferChunks": [num_infer_chunks], + "NumLabelChunks": [num_label_chunks], + "NumCorrectChunks": [num_correct_chunks] + }, + attrs={ + "num_chunk_types": num_chunk_types, + "chunk_scheme": chunk_scheme, + "excluded_chunk_types": excluded_chunk_types or [] + }) + return precision, recall, f1_score, num_infer_chunks, num_label_chunks, num_correct_chunks + + +def sequence_conv(input, + num_filters, + filter_size=3, + filter_stride=1, + padding=None, + bias_attr=None, + param_attr=None, + act=None): + """ + This function creates the op for sequence_conv, using the inputs and + other convolutional configurations for the filters and stride as given + in the input parameters to the function. + """ + + # FIXME(dzh) : want to unify the argument of python layer + # function. So we ignore some unecessary attributes. + # such as, padding_trainable, context_start. + + helper = LayerHelper('sequence_conv', **locals()) + dtype = helper.input_dtype() + filter_shape = [filter_size * input.shape[1], num_filters] + filter_param = helper.create_parameter( + attr=helper.param_attr, shape=filter_shape, dtype=dtype) + pre_bias = helper.create_tmp_variable(dtype) + + helper.append_op( + type='sequence_conv', + inputs={ + 'X': [input], + 'Filter': [filter_param], + }, + outputs={"Out": pre_bias}, + attrs={ + 'contextStride': filter_stride, + 'contextStart': -int(filter_size / 2), + 'contextLength': filter_size + }) + pre_act = helper.append_bias_op(pre_bias) + return helper.append_activation(pre_act) + + +def conv2d(input, + num_filters, + filter_size, + stride=None, + padding=None, + groups=None, + param_attr=None, + bias_attr=None, + act=None, + name=None): + """ + This function creates the op for a 2-dimensional Convolution. + This is performed using the parameters of filters(size, dimensionality etc) + , stride and other configurations for a Convolution operation. + This funciton can also append an activation on top of the + conv-2d output, if mentioned in the input parameters. + """ + + if stride is None: + stride = [1, 1] + helper = LayerHelper('conv2d', **locals()) + dtype = helper.input_dtype() + + num_channels = input.shape[1] + if groups is None: + num_filter_channels = num_channels + else: + if num_channels % groups != 0: + raise ValueError("num_channels must be divisible by groups.") + num_filter_channels = num_channels / groups + + if isinstance(filter_size, int): + filter_size = [filter_size, filter_size] + if isinstance(stride, int): + stride = [stride, stride] + if isinstance(padding, int): + padding = [padding, padding] + + input_shape = input.shape + filter_shape = [num_filters, num_filter_channels] + filter_size + + def _get_default_param_initializer(): + std = (2.0 / (filter_size[0]**2 * num_channels))**0.5 + return Normal(0.0, std, 0) + + filter_param = helper.create_parameter( + attr=helper.param_attr, + shape=filter_shape, + dtype=dtype, + default_initializer=_get_default_param_initializer()) + + pre_bias = helper.create_tmp_variable(dtype) + + helper.append_op( + type='conv2d_cudnn', + inputs={ + 'Input': input, + 'Filter': filter_param, + }, + outputs={"Output": pre_bias}, + attrs={'strides': stride, + 'paddings': padding, + 'groups': groups}) + + pre_act = helper.append_bias_op(pre_bias, dim_start=1, dim_end=2) + + return helper.append_activation(pre_act) + + +def sequence_pool(input, pool_type, **kwargs): + """ + This function add the operator for sequence pooling. + This is applied on top of the input using pool_type mentioned + in the parameters. + """ + helper = LayerHelper('sequence_pool', input=input, **kwargs) + dtype = helper.input_dtype() + pool_out = helper.create_tmp_variable(dtype) + max_index = helper.create_tmp_variable(dtype) + + helper.append_op( + type="sequence_pool", + inputs={"X": input}, + outputs={"Out": pool_out, + "MaxIndex": max_index}, + attrs={"pooltype": pool_type.upper()}) + + return pool_out + + +def pool2d(input, + pool_size, + pool_type, + pool_stride=None, + pool_padding=None, + global_pooling=False): + """ + This function adds the operator for pooling in 2 dimensions, using the + pooling configurations mentioned in input parameters. + """ + if pool_padding is None: + pool_padding = [0, 0] + if pool_stride is None: + pool_stride = [1, 1] + if pool_type not in ["max", "avg"]: + raise ValueError( + "Unknown pool_type: '%s'. It can only be 'max' or 'avg'.", + str(pool_type)) + if isinstance(pool_size, int): + pool_size = [pool_size, pool_size] + if isinstance(pool_stride, int): + pool_stride = [pool_stride, pool_stride] + if isinstance(pool_padding, int): + pool_padding = [pool_padding, pool_padding] + + helper = LayerHelper('pool2d', **locals()) + dtype = helper.input_dtype() + pool_out = helper.create_tmp_variable(dtype) + + helper.append_op( + type="pool2d", + inputs={"X": input}, + outputs={"Out": pool_out}, + attrs={ + "pooling_type": pool_type, + "ksize": pool_size, + "global_pooling": global_pooling, + "strides": pool_stride, + "paddings": pool_padding + }) + + return pool_out + + +def batch_norm(input, + act=None, + is_test=False, + momentum=0.9, + epsilon=1e-05, + param_attr=None, + bias_attr=None, + data_layout='NCHW'): + """ + This function helps create an operator to implement + the BatchNorm layer using the configurations from the input parameters. + """ + helper = LayerHelper('batch_norm', **locals()) + dtype = helper.input_dtype() + + input_shape = input.shape + if data_layout == 'NCHW': + channel_num = input_shape[1] + else: + if data_layout == 'NHWC': + channel_num = input_shape[-1] + else: + raise ValueError("unsupported data layout:" + data_layout) + + param_shape = [channel_num] + + # create parameter + scale = helper.create_parameter( + attr=helper.param_attr, + shape=param_shape, + dtype=dtype, + default_initializer=Constant(1.0)) + + bias = helper.create_parameter( + attr=helper.param_attr, shape=param_shape, dtype=dtype, is_bias=True) + + mean = helper.create_global_variable( + dtype=input.dtype, shape=param_shape, persistable=True) + helper.set_variable_initializer(var=mean, initializer=Constant(0.0)) + + variance = helper.create_global_variable( + dtype=input.dtype, shape=param_shape, persistable=True) + helper.set_variable_initializer(var=variance, initializer=Constant(1.0)) + + # create output + # mean and mean_out share the same memory + mean_out = mean + # variance and variance out share the same memory + variance_out = variance + saved_mean = helper.create_tmp_variable(dtype) + saved_variance = helper.create_tmp_variable(dtype) + + batch_norm_out = helper.create_tmp_variable(dtype) + + helper.append_op( + type="batch_norm", + inputs={ + "X": input, + "Scale": scale, + "Bias": bias, + "Mean": mean, + "Variance": variance + }, + outputs={ + "Y": batch_norm_out, + "MeanOut": mean_out, + "VarianceOut": variance_out, + "SavedMean": saved_mean, + "SavedVariance": saved_variance + }, + attrs={"momentum": momentum, + "epsilon": epsilon, + "is_test": is_test}) + + return helper.append_activation(batch_norm_out) + + +def beam_search_decode(ids, scores): + helper = LayerHelper('beam_search_decode', **locals()) + sentence_ids = helper.create_tmp_variable(dtype=ids.dtype) + sentence_scores = helper.create_tmp_variable(dtype=ids.dtype) + + helper.append_op( + type="beam_search_decode", + inputs={"Ids": ids, + "Scores": scores}, + outputs={ + "SentenceIds": sentence_ids, + "SentenceScores": sentence_scores + }) + + return sentence_ids, sentence_scores + + +def conv2d_transpose(input, + num_filters, + output_size=None, + filter_size=None, + padding=None, + stride=None, + dilation=None, + param_attr=None): + """ + The transpose of conv2d layer. + + This layer is also known as deconvolution layer. + + Args: + input(Variable): The input image with [N, C, H, W] format. + num_filters(int): The number of filter. It is as same as the output + image channel. + output_size(int|tuple|None): The output image size. If output size is a + tuple, it must contain two integers, (image_H, image_W). This + parameter only works when filter_size is None. + filter_size(int|tuple|None): The filter size. If filter_size is a tuple, + it must contain two integers, (filter_size_H, filter_size_W). + Otherwise, the filter will be a square. None if use output size to + calculate filter_size + padding(int|tuple): The padding size. If padding is a tuple, it must + contain two integers, (padding_H, padding_W). Otherwise, the + padding_H = padding_W = padding. + stride(int|tuple): The stride size. If stride is a tuple, it must + contain two integers, (stride_H, stride_W). Otherwise, the + stride_H = stride_W = stride. + dilation(int|tuple): The dilation size. If dilation is a tuple, it must + contain two integers, (dilation_H, dilation_W). Otherwise, the + dilation_H = dilation_W = dilation. + param_attr: Parameter Attribute. + main_program(Program): the main program + startup_program(Program): the startup program + + Returns: + Variable: Output image. + """ + helper = LayerHelper("conv2d_transpose", **locals()) + if not isinstance(input, Variable): + raise TypeError("Input of conv2d_transpose must be Variable") + input_channel = input.shape[1] + + op_attr = dict() + + if isinstance(padding, int): + op_attr['paddings'] = [padding, padding] + elif padding is not None: + op_attr['paddings'] = padding + + if isinstance(stride, int): + op_attr['strides'] = [stride, stride] + elif stride is not None: + op_attr['strides'] = stride + + if isinstance(dilation, int): + op_attr['dilations'] = [dilation, dilation] + elif dilation is not None: + op_attr['dilations'] = dilation + + if filter_size is None: + if output_size is None: + raise ValueError("output_size must be set when filter_size is None") + if isinstance(output_size, int): + output_size = [output_size, output_size] + + padding = op_attr.get('paddings', [0, 0]) + stride = op_attr.get('strides', [1, 1]) + dilation = op_attr.get('dilations', [1, 1]) + + h_in = input.shape[2] + w_in = input.shape[3] + + filter_size_h = (output_size[0] - (h_in - 1) * stride[0] + 2 * + padding[0] - 1) / dilation[0] + 1 + filter_size_w = (output_size[1] - (w_in - 1) * stride[1] + 2 * + padding[1] - 1) / dilation[1] + 1 + filter_size = [filter_size_h, filter_size_w] + + elif isinstance(filter_size, int): + filter_size = [filter_size, filter_size] + + filter_shape = [input_channel, num_filters] + filter_size + img_filter = helper.create_parameter( + dtype=input.dtype, shape=filter_shape, attr=helper.param_attr) + + out = helper.create_tmp_variable(dtype=input.dtype) + helper.append_op( + type='conv2d_transpose', + inputs={'Input': [input], + 'Filter': [img_filter]}, + outputs={'Output': out}, + attrs=op_attr) + + return out + + +def sequence_expand(x, y): + """Sequence Expand Layer. This layer will expand the input variable **x** + according to LoD information of **y**. And the following examples will + explain how sequence_expand works: + + .. code-block:: text + + * Case 1 + x is a LoDTensor: + x.lod = [[0, 2, 3], + [0, 1, 3, 4]] + x.data = [a, b, c, d] + x.dims = [4, 1] + + y is a LoDTensor: + y.lod = [[0, 2, 4], + [0, 3, 6, 7, 8]] + + with condition len(y.lod[-1]) - 1 == x.dims[0] + + then output is a 2-level LoDTensor: + out.lod = [[0, 2, 4], + [0, 3, 6, 7, 8]] + out.data = [a, a, a, b, b, b, c, d] + out.dims = [8, 1] + + * Case 2 + x is a Tensor: + x.data = [a, b, c] + x.dims = [3, 1] + + y is a LoDTensor: + y.lod = [[0, 2, 3, 6]] + + with condition len(y.lod[-1]) - 1 == x.dims[0] + + then output is a 1-level LoDTensor: + out.lod = [[0, 2, 3, 6]] + out.data = [a, a, b, c, c, c] + out.dims = [6, 1] + + Args: + x (Variable): The input variable which is a Tensor or LoDTensor. + y (Variable): The input variable which is a LoDTensor. + + Returns: + Variable: The expanded variable which is a LoDTensor. + + Examples: + .. code-block:: python + + x = fluid.layers.data(name='x', shape=[10], dtype='float32') + y = fluid.layers.data(name='y', shape=[10, 20], + dtype='float32', lod_level=1) + out = layers.sequence_expand(x=x, y=y) + """ + helper = LayerHelper('sequence_expand', input=x, **locals()) + dtype = helper.input_dtype() + tmp = helper.create_tmp_variable(dtype) + helper.append_op( + type='sequence_expand', inputs={'X': x, + 'Y': y}, outputs={'Out': tmp}) + return tmp + + +def lstm_unit(x_t, + hidden_t_prev, + cell_t_prev, + forget_bias=0.0, + param_attr=None, + bias_attr=None): + """Lstm unit layer. The equation of a lstm step is: + + .. math:: + + i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i) + + f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f) + + c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c) + + o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o) + + h_t & = o_t tanh(c_t) + + The inputs of lstm unit includes :math:`x_t`, :math:`h_{t-1}` and + :math:`c_{t-1}`. The implementation separates the linear transformation + and non-linear transformation apart. Here, we take :math:`i_t` as an + example. The linear transformation is applied by calling a `fc` layer and + the equation is: + + .. math:: + + L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i + + The non-linear transformation is applied by calling `lstm_unit_op` and the + equation is: + + .. math:: + + i_t = \sigma(L_{i_t}) + + This layer has two outputs including :math:`h_t` and :math:`o_t`. + + Args: + x_t (Variable): The input value of current step. + hidden_t_prev (Variable): The hidden value of lstm unit. + cell_t_prev (Variable): The cell value of lstm unit. + forget_bias (float): The forget bias of lstm unit. + param_attr (ParamAttr): The attributes of parameter weights, used to set + initializer, name etc. + bias_attr (ParamAttr): The attributes of bias weights, if not False, + bias weights will be created and be set to default value. + + Returns: + tuple: The hidden value and cell value of lstm unit. + + Raises: + ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\ + not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \ + and **cell_t_prev** not be the same. + + Examples: + + .. code-block:: python + + x_t = fluid.layers.fc(input=x_t_data, size=10) + prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=20) + prev_cell = fluid.layers.fc(input=prev_cell_data, size=30) + hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t, + hidden_t_prev=prev_hidden, + cell_t_prev=prev_cell) + """ + helper = LayerHelper('lstm_unit', **locals()) + + if len(x_t.shape) != 2: + raise ValueError("Rank of x_t must be 2.") + + if len(hidden_t_prev.shape) != 2: + raise ValueError("Rank of hidden_t_prev must be 2.") + + if len(cell_t_prev.shape) != 2: + raise ValueError("Rank of cell_t_prev must be 2.") + + if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[ + 0] != cell_t_prev.shape[0]: + raise ValueError("The 1s dimension of x_t, hidden_t_prev and " + "cell_t_prev must be the same.") + + if bias_attr is None: + bias_attr = ParamAttr() + + size = cell_t_prev.shape[1] + concat_out = concat(input=[x_t, hidden_t_prev], axis=1) + fc_out = fc(input=concat_out, + size=4 * size, + param_attr=param_attr, + bias_attr=bias_attr) + dtype = x_t.dtype + c = helper.create_tmp_variable(dtype) + h = helper.create_tmp_variable(dtype) + + helper.append_op( + type='lstm_unit', + inputs={"X": fc_out, + "C_prev": cell_t_prev}, + outputs={"C": c, + "H": h}, + attrs={"forget_bias": forget_bias}) + + return h, c + + +def reduce_sum(input, dim=None, keep_dim=False): + """ + Computes the sum of tensor elements over the given dimension. + + Args: + input (Variable): The input variable which is a Tensor or LoDTensor. + dim (int|None): The dimension along which the sum is performed. If + :attr:`None`, sum all elements of :attr:`input` and return a + Tensor variable with a single element, otherwise must be in the + range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`, + the dimension to reduce is :math:`rank + dim`. + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension + than the :attr:`input` unless :attr:`keep_dim` is true. + + Returns: + Variable: The reduced Tensor variable. + + Examples: + .. code-block:: python + + # x is a Tensor variable with following elements: + # [[0.2, 0.3, 0.5, 0.9] + # [0.1, 0.2, 0.6, 0.7]] + # Each example is followed by the correspending output tensor. + fluid.layers.reduce_sum(x) # [3.5] + fluid.layers.reduce_sum(x, dim=0) # [0.3, 0.5, 1.1, 1.6] + fluid.layers.reduce_sum(x, dim=-1) # [1.9, 1.6] + fluid.layers.reduce_sum(x, dim=1, keep_dim=True) # [[1.9], [1.6]] + """ + helper = LayerHelper('reduce_sum', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='reduce_sum', + inputs={'X': input}, + outputs={'Out': out}, + attrs={ + 'dim': dim if dim != None else 0, + 'keep_dim': keep_dim, + 'reduce_all': True if dim == None else False + }) + return out + + +def reduce_mean(input, dim=None, keep_dim=False): + """ + Computes the mean of tensor elements over the given dimension. + + Args: + input (Variable): The input variable which is a Tensor or LoDTensor. + dim (int|None): The dimension along which the mean is computed. If + :attr:`None`, compute the mean over all elements of :attr:`input` + and return a Tensor variable with a single element, otherwise + must be in the range :math:`[-rank(input), rank(input))`. If + :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`. + keep_dim (bool): Whether to reserve the reduced dimension in the + output Tensor. The result tensor will have one fewer dimension + than the :attr:`input` unless :attr:`keep_dim` is true. + + Returns: + Variable: The reduced Tensor variable. + + Examples: + .. code-block:: python + + # x is a Tensor variable with following elements: + # [[0.2, 0.3, 0.5, 0.9] + # [0.1, 0.2, 0.6, 0.7]] + # Each example is followed by the correspending output tensor. + fluid.layers.reduce_mean(x) # [0.4375] + fluid.layers.reduce_mean(x, dim=0) # [0.15, 0.25, 0.55, 0.8] + fluid.layers.reduce_mean(x, dim=-1) # [0.475, 0.4] + fluid.layers.reduce_mean(x, dim=1, keep_dim=True) # [[0.475], [0.4]] + """ + helper = LayerHelper('reduce_mean', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='reduce_mean', + inputs={'X': input}, + outputs={'Out': out}, + attrs={ + 'dim': dim if dim != None else 0, + 'keep_dim': keep_dim, + 'reduce_all': True if dim == None else False + }) + return out diff --git a/python/paddle/v2/fluid/layers/ops.py b/python/paddle/v2/fluid/layers/ops.py new file mode 100644 index 0000000000000000000000000000000000000000..d2ff6841a317aaf6903edadc9213f69ef6c41216 --- /dev/null +++ b/python/paddle/v2/fluid/layers/ops.py @@ -0,0 +1,9 @@ +from ..registry import register_layer +__all__ = [ + 'mean', 'mul', 'dropout', 'reshape', 'sigmoid', 'scale', 'transpose', + 'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div', + 'elementwise_sub', 'elementwise_mul', 'clip', 'abs', 'sequence_softmax' +] + +for _OP in set(__all__): + globals()[_OP] = register_layer(_OP) diff --git a/python/paddle/v2/fluid/layers/tensor.py b/python/paddle/v2/fluid/layers/tensor.py new file mode 100644 index 0000000000000000000000000000000000000000..e5820d24cd2b34ef53cbb91e2be66efc1b74d315 --- /dev/null +++ b/python/paddle/v2/fluid/layers/tensor.py @@ -0,0 +1,215 @@ +from ..layer_helper import LayerHelper + +__all__ = [ + 'create_tensor', 'cast', 'concat', 'sums', 'assign', + 'fill_constant_batch_size_like', 'fill_constant', 'ones', 'zeros' +] + + +def create_tensor(dtype, name=None): + helper = LayerHelper("create_tensor", **locals()) + return helper.create_variable(name=helper.name, dtype=dtype) + + +def cast(x, dtype): + """ + This function takes in the input with input_dtype + and casts it to the output_dtype as the output. + """ + helper = LayerHelper('cast', **locals()) + out = helper.create_tmp_variable(dtype=dtype) + helper.append_op( + type='cast', + inputs={'X': [x]}, + outputs={'Out': [out]}, + attrs={'in_dtype': x.dtype, + 'out_dtype': out.dtype}) + return out + + +def concat(input, axis=0): + """ + **Concat** + + This function concatenates the input along the axis mentioned + and returns that as the output. + + Args: + input(list): List of tensors to be concatenated + axis(int): Integer axis along which the tensors will be concatenated + + Returns: + Variable: Output variable of the concatenation + + Examples: + .. code-block:: python + out = fluid.layers.concat(input=[Efirst, Esecond, Ethird, Efourth]) + """ + helper = LayerHelper('concat', **locals()) + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op( + type='concat', + inputs={'X': input}, + outputs={'Out': [out]}, + attrs={'axis': axis}) + return out + + +def sums(input, out=None): + """This function performs the sum operation on the input and returns the + result as the output. + + Args: + input (Variable|list): The input tensor that has the elements + that need to be summed up. + + Returns: + Variable: The tensor type variable that has the sum of input + written to it. + + Examples: + .. code-block::python + + tmp = fluid.layers.zeros(shape=[10], dtype='int32') + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=10) + a0 = layers.array_read(array=tmp, i=i) + i = layers.increment(x=i) + a1 = layers.array_read(array=tmp, i=i) + mean_a0 = layers.mean(x=a0) + mean_a1 = layers.mean(x=a1) + a_sum = layers.sums(input=[mean_a0, mean_a1]) + """ + helper = LayerHelper('sum', **locals()) + if out is None: + out = helper.create_tmp_variable(dtype=helper.input_dtype()) + helper.append_op(type='sum', inputs={'X': input}, outputs={'Out': out}) + return out + + +def assign(input, output): + """ + **Assign** + + This function copies the *input* Variable to the *output* Variable. + + Args: + input(Variable): The source variable + output(Variable): The destination variable + + Returns: + Variable: The destination variable that was supplied as the *output*. + + Examples: + .. code-block:: python + out = fluid.layers.create_tensor(dtype='float32') + hidden = fluid.layers.fc(input=data, size=10) + fluid.layers.assign(hidden, out) + """ + helper = LayerHelper('assign', **locals()) + helper.append_op( + type='scale', + inputs={'X': [input]}, + outputs={'Out': [output]}, + attrs={'scale': 1.0}) + return output + + +def fill_constant(shape, dtype, value, out=None): + """ + **fill_constant** + + This function creates a tensor of specified *shape* and + *dtype*, and initializes this with a constant supplied in *value*. + + It also sets *stop_gradient* to True. + + Args: + shape(tuple|list|None): Shape of output tensor + dtype(np.dtype|core.DataType|str): Data type of output tensor + value(float): Constant value to initialize the output tensor + out(Variable): Output Variable to initialize + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64') + """ + helper = LayerHelper("fill_constant", **locals()) + if out is None: + out = helper.create_tmp_variable(dtype=dtype) + helper.append_op( + type='fill_constant', + inputs={}, + outputs={'Out': [out]}, + attrs={'shape': shape, + 'dtype': out.dtype, + 'value': float(value)}) + out.stop_gradient = True + return out + + +def fill_constant_batch_size_like(input, + shape, + dtype, + value, + input_dim_idx=0, + output_dim_idx=0): + """ + **fill_constant_batch_size_like** + + This function creates a tensor of specified *shape*, *dtype* and batch size, + and initializes this with a constant supplied in *value*. The batch size is + obtained from the `input` tensor. + + It also sets *stop_gradient* to True. + + Args: + input(Variable): Tensor whose dimensions will be used to get batch size + shape(tuple|list|None): Shape of output tensor + dtype(np.dtype|core.DataType|str): Data type of output tensor + value(float): Constant value to initialize the output tensor + input_dim_idx(int): Index of input's batch size dimension + output_dim_idx(int): Index of output's batch size dimension + + Returns: + Variable: The tensor variable storing the output + + Examples: + .. code-block:: python + + data = fluid.layers.fill_constant(shape=[1], value=0, dtype='int64') + """ + helper = LayerHelper("fill_constant_batch_size_like", **locals()) + out = helper.create_tmp_variable(dtype=dtype) + helper.append_op( + type='fill_constant_batch_size_like', + inputs={'Input': input}, + outputs={'Out': [out]}, + attrs={ + 'shape': shape, + 'dtype': out.dtype, + 'value': float(value), + 'input_dim_idx': input_dim_idx, + 'output_dim_idx': output_dim_idx + }) + out.stop_gradient = True + return out + + +def ones(shape, dtype): + """ + This function performs the same function as fill_constant() declared above + with the constant value being 1.0. + """ + return fill_constant(value=1.0, **locals()) + + +def zeros(shape, dtype): + """ + This function performs the same function as fill_constant() declared above + with the constant value being 0.0. + """ + return fill_constant(value=0.0, **locals()) diff --git a/python/paddle/v2/fluid/nets.py b/python/paddle/v2/fluid/nets.py index 05728ad75a5bd1e87aa3c75ffcc4eac34b6b956c..54886a8f2cc63474fe82290c0a12771b4cbdba72 100644 --- a/python/paddle/v2/fluid/nets.py +++ b/python/paddle/v2/fluid/nets.py @@ -9,24 +9,20 @@ def simple_img_conv_pool(input, pool_size, pool_stride, act, - pool_type='max', - main_program=None, - startup_program=None): + param_attr=None, + pool_type='max'): conv_out = layers.conv2d( input=input, num_filters=num_filters, filter_size=filter_size, - act=act, - main_program=main_program, - startup_program=startup_program) + param_attr=param_attr, + act=act) pool_out = layers.pool2d( input=conv_out, pool_size=pool_size, pool_type=pool_type, - pool_stride=pool_stride, - main_program=main_program, - startup_program=startup_program) + pool_stride=pool_stride) return pool_out @@ -36,12 +32,11 @@ def img_conv_group(input, conv_padding=1, conv_filter_size=3, conv_act=None, + param_attr=None, conv_with_batchnorm=False, conv_batchnorm_drop_rate=None, pool_stride=1, - pool_type=None, - main_program=None, - startup_program=None): + pool_type=None): """ Image Convolution Group, Used for vgg net. """ @@ -57,6 +52,7 @@ def img_conv_group(input, conv_padding = __extend_list__(conv_padding) conv_filter_size = __extend_list__(conv_filter_size) + param_attr = __extend_list__(param_attr) conv_with_batchnorm = __extend_list__(conv_with_batchnorm) conv_batchnorm_drop_rate = __extend_list__(conv_batchnorm_drop_rate) @@ -70,52 +66,35 @@ def img_conv_group(input, num_filters=conv_num_filter[i], filter_size=conv_filter_size[i], padding=conv_padding[i], - act=local_conv_act, - main_program=main_program, - startup_program=startup_program) + param_attr=param_attr[i], + act=local_conv_act) if conv_with_batchnorm[i]: - tmp = layers.batch_norm( - input=tmp, - act=conv_act, - main_program=main_program, - startup_program=startup_program) + tmp = layers.batch_norm(input=tmp, act=conv_act) drop_rate = conv_batchnorm_drop_rate[i] if abs(drop_rate) > 1e-5: - tmp = layers.dropout( - x=tmp, - dropout_prob=drop_rate, - main_program=main_program, - startup_program=startup_program) + tmp = layers.dropout(x=tmp, dropout_prob=drop_rate) pool_out = layers.pool2d( input=tmp, pool_size=pool_size, pool_type=pool_type, - pool_stride=pool_stride, - main_program=main_program, - startup_program=startup_program) + pool_stride=pool_stride) return pool_out def sequence_conv_pool(input, num_filters, filter_size, + param_attr=None, act="sigmoid", - pool_type="max", - main_program=None, - startup_program=None): + pool_type="max"): conv_out = layers.sequence_conv( input=input, num_filters=num_filters, filter_size=filter_size, - act=act, - main_program=main_program, - startup_program=startup_program) + param_attr=param_attr, + act=act) - pool_out = layers.sequence_pool( - input=conv_out, - pool_type=pool_type, - main_program=main_program, - startup_program=startup_program) + pool_out = layers.sequence_pool(input=conv_out, pool_type=pool_type) return pool_out diff --git a/python/paddle/v2/fluid/optimizer.py b/python/paddle/v2/fluid/optimizer.py index 934e024742fd00bf05cc0d7caaaa870c18a68074..c56a531ed531cf0219e94854ba66c7399e003292 100644 --- a/python/paddle/v2/fluid/optimizer.py +++ b/python/paddle/v2/fluid/optimizer.py @@ -2,10 +2,11 @@ from collections import defaultdict import framework from backward import append_backward_ops -from framework import unique_name +from framework import unique_name, program_guard from initializer import Constant from layer_helper import LayerHelper from regularizer import append_regularization_ops +from clip import append_gradient_clip_ops __all__ = ['SGD', 'Momentum', 'Adagrad', 'Adam', 'Adamax', 'DecayedAdagrad'] @@ -18,8 +19,9 @@ class Optimizer(object): but need to use one of it's implementation. """ - def __init__(self, global_step=None): + def __init__(self, global_step=None, regularization=None): self._global_step = global_step + self.regularization = regularization # Dictionary of accumulators. Some optimizer subclasses need to # allocate and manage extra variables associated with the parameters # to train. These variables are called accumulators. @@ -158,34 +160,32 @@ class Optimizer(object): # Create any accumulators program = loss.block.program - self.helper = LayerHelper( - self.__class__.__name__, - main_program=program, - startup_program=startup_program) - self._create_accumulators(loss.block, - [p[0] for p in parameters_and_grads]) - - optimize_ops = [] - for param_and_grad in parameters_and_grads: - if param_and_grad[0].trainable is True and param_and_grad[ - 1] is not None: - optimize_op = self._append_optimize_op(loss.block, - param_and_grad) - optimize_ops.append(optimize_op) - - # Returned list of ops can include more ops in addition - # to optimization ops - return_ops = optimize_ops - - # Get custom finish ops for subclasses - # FIXME: Need to fix this once we figure out how to handle dependencies - finish_ops = self._finish_update(loss.block) - if finish_ops is not None: - return_ops += finish_ops - - if self._global_step is not None: - return_ops.append(self._increment_global_step(loss.block)) - return return_ops + with program_guard(program, startup_program): + self.helper = LayerHelper(self.__class__.__name__) + self._create_accumulators(loss.block, + [p[0] for p in parameters_and_grads]) + + optimize_ops = [] + for param_and_grad in parameters_and_grads: + if param_and_grad[0].trainable is True and param_and_grad[ + 1] is not None: + optimize_op = self._append_optimize_op(loss.block, + param_and_grad) + optimize_ops.append(optimize_op) + + # Returned list of ops can include more ops in addition + # to optimization ops + return_ops = optimize_ops + + # Get custom finish ops for subclasses + # FIXME: Need to fix this once we figure out how to handle dependencies + finish_ops = self._finish_update(loss.block) + if finish_ops is not None: + return_ops += finish_ops + + if self._global_step is not None: + return_ops.append(self._increment_global_step(loss.block)) + return return_ops def minimize(self, loss, @@ -197,22 +197,26 @@ class Optimizer(object): This method combines interface `append_backward_ops()` and `create_optimization_pass()` into one. """ - params_grads = append_backward_ops(loss, parameter_list, no_grad_set or - set()) + params_grads = append_backward_ops(loss, parameter_list, no_grad_set) + + params_grads = append_gradient_clip_ops(params_grads) + # Add regularization if any - params_grads = append_regularization_ops(params_grads) + params_grads = append_regularization_ops(params_grads, + self.regularization) + optimize_ops = self.create_optimization_pass(params_grads, loss, startup_program) - return optimize_ops + return optimize_ops, params_grads class SGDOptimizer(Optimizer): """ Simple SGD optimizer without any state. """ - def __init__(self, learning_rate, global_step=None): + def __init__(self, learning_rate, **kwargs): assert learning_rate is not None - super(SGDOptimizer, self).__init__(global_step) + super(SGDOptimizer, self).__init__(**kwargs) self.type = "sgd" self._learning_rate = learning_rate @@ -237,14 +241,10 @@ class MomentumOptimizer(Optimizer): """ _velocity_acc_str = "velocity" - def __init__(self, - learning_rate, - momentum, - use_nesterov=False, - global_step=None): + def __init__(self, learning_rate, momentum, use_nesterov=False, **kwargs): assert learning_rate is not None assert momentum is not None - super(MomentumOptimizer, self).__init__(global_step) + super(MomentumOptimizer, self).__init__(**kwargs) self.type = "momentum" self._learning_rate = learning_rate self._momentum = momentum @@ -285,10 +285,10 @@ class AdagradOptimizer(Optimizer): """ _moment_acc_str = "moment" - def __init__(self, learning_rate, epsilon=1.0e-6, global_step=None): + def __init__(self, learning_rate, epsilon=1.0e-6, **kwargs): assert learning_rate is not None assert epsilon is not None - super(AdagradOptimizer, self).__init__(global_step) + super(AdagradOptimizer, self).__init__(**kwargs) self.type = "adagrad" self._learning_rate = learning_rate self._epsilon = epsilon @@ -332,12 +332,12 @@ class AdamOptimizer(Optimizer): beta1=0.9, beta2=0.999, epsilon=1e-8, - global_step=None): + **kwargs): assert learning_rate is not None assert beta1 is not None assert beta2 is not None assert epsilon is not None - super(AdamOptimizer, self).__init__(global_step) + super(AdamOptimizer, self).__init__(**kwargs) self.type = "adam" self._learning_rate = learning_rate self._beta1 = beta1 @@ -437,12 +437,12 @@ class AdamaxOptimizer(Optimizer): beta1=0.9, beta2=0.999, epsilon=1e-8, - global_step=None): + **kwargs): assert learning_rate is not None assert beta1 is not None assert beta2 is not None assert epsilon is not None - super(AdamaxOptimizer, self).__init__() + super(AdamaxOptimizer, self).__init__(**kwargs) self.type = "adamax" self._learning_rate = learning_rate self._beta1 = beta1 @@ -515,16 +515,12 @@ class DecayedAdagradOptimizer(Optimizer): """ _moment_acc_str = "moment" - def __init__(self, - learning_rate, - decay=0.95, - epsilon=1.0e-6, - global_step=None): + def __init__(self, learning_rate, decay=0.95, epsilon=1.0e-6, **kwargs): assert learning_rate is not None assert decay is not None assert epsilon is not None - super(DecayedAdagradOptimizer, self).__init__(global_step) + super(DecayedAdagradOptimizer, self).__init__(**kwargs) self.type = "decayed_adagrad" self._learning_rate = learning_rate self._decay = decay diff --git a/python/paddle/v2/fluid/param_attr.py b/python/paddle/v2/fluid/param_attr.py index 86088fdd7ce17b8b7a9688dc838e69b2aa754013..ab4561b0423dd73c8c0d529cbf34b52876b1b77c 100644 --- a/python/paddle/v2/fluid/param_attr.py +++ b/python/paddle/v2/fluid/param_attr.py @@ -1,6 +1,8 @@ from initializer import Initializer, Xavier, Constant from regularizer import WeightDecayRegularizer +__all__ = ['ParamAttr'] + class ParamAttr(object): def __init__(self, @@ -8,12 +10,14 @@ class ParamAttr(object): initializer=None, learning_rate=1.0, regularizer=None, - trainable=True): + trainable=True, + clip=None): self.name = name self.initializer = initializer self.learning_rate = learning_rate self.regularizer = regularizer self.trainable = trainable + self.clip = clip def set_default_initializer(self, initializer): if initializer is None: @@ -36,6 +40,8 @@ class ParamAttr(object): def to_attr(arg): if arg is None: return ParamAttr() + elif isinstance(arg, list) or isinstance(arg, tuple): + return [ParamAttr.to_attr(a) for a in arg] elif isinstance(arg, ParamAttr): return arg elif isinstance(arg, str) or isinstance(arg, unicode): @@ -52,9 +58,12 @@ class ParamAttr(object): def to_kwargs(self, with_initializer=False): kwargs = { 'name': self.name, - 'learning_rate': self.learning_rate, + 'optimize_attr': { + 'learning_rate': self.learning_rate + }, 'regularizer': self.regularizer, - 'trainable': self.trainable + 'trainable': self.trainable, + 'clip_attr': self.clip } if with_initializer: kwargs['initializer'] = self.initializer diff --git a/python/paddle/v2/fluid/registry.py b/python/paddle/v2/fluid/registry.py new file mode 100644 index 0000000000000000000000000000000000000000..6f5dd365ded628ad49800f0a04f208ec49cca4c5 --- /dev/null +++ b/python/paddle/v2/fluid/registry.py @@ -0,0 +1,186 @@ +import re +import cStringIO +import warnings +import functools +import inspect + +import proto.framework_pb2 as framework_pb2 +from framework import OpProtoHolder, Variable, Program, Operator +from paddle.v2.fluid.layer_helper import LayerHelper, unique_name + +__all__ = ['deprecated', 'register_layer'] + + +def _convert_(name): + """ + Formatting. + + Args: + name: The name/alias + + This function takes in a name and converts it to a standard format of + group1_group2. Where as per the regular expression, group1 can have + alphabets and numbers and group2 has capital alphabets. + + """ + s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', name) + return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).lower() + + +def _generate_doc_string_(op_proto): + """ + Generate docstring by OpProto + + Args: + op_proto (framework_pb2.OpProto): a protobuf message typed OpProto + + Returns: + str: the document string + """ + + def _type_to_str_(tp): + return framework_pb2.AttrType.Name(tp) + + if not isinstance(op_proto, framework_pb2.OpProto): + raise TypeError("OpProto should be `framework_pb2.OpProto`") + + buf = cStringIO.StringIO() + buf.write(op_proto.comment) + buf.write('\nArgs:\n') + for each_input in op_proto.inputs: + line_begin = ' {0}: '.format(_convert_(each_input.name)) + buf.write(line_begin) + buf.write(each_input.comment) + buf.write('\n') + buf.write(' ' * len(line_begin)) + buf.write('Duplicable: ') + buf.write(str(each_input.duplicable)) + buf.write(' Optional: ') + buf.write(str(each_input.dispensable)) + buf.write('\n') + + for each_attr in op_proto.attrs: + buf.write(' ') + buf.write(each_attr.name) + buf.write(' (') + buf.write(_type_to_str_(each_attr.type)) + buf.write('): ') + buf.write(each_attr.comment) + buf.write('\n') + + if len(op_proto.outputs) != 0: + buf.write('\nReturns:\n') + buf.write(' ') + for each_opt in op_proto.outputs: + if not each_opt.intermediate: + break + buf.write(each_opt.comment) + + return buf.getvalue() + + +def register_layer(op_type): + """ + Register an Python layer for an Operator + + Args: + op_type: The name of the operator to be created + + This function takes in the operator type (sigmoid, mean , average etc) and + creates the operator functionality. + + """ + op_proto = OpProtoHolder.instance().get_op_proto(op_type) + not_intermediate_outputs = \ + filter(lambda output: not output.intermediate, op_proto.outputs) + intermediate_outputs = \ + filter(lambda output: output.intermediate, op_proto.outputs) + + if len(not_intermediate_outputs) != 1: + raise ValueError("Only one non intermediate output operator can be", + "automatically generated") + + if not_intermediate_outputs[0].duplicable: + raise ValueError( + "Only non duplicable op can be automatically generated") + + for output in intermediate_outputs: + if output.duplicable: + raise ValueError("The op can be automatically generated only when ", + "all intermediate ops are not duplicable") + + o_name = not_intermediate_outputs[0].name + intermediate_output_names = [output.name for output in intermediate_outputs] + + def infer_and_check_dtype(op_proto, **kwargs): + """ + This function performs the sanity check for dtype and + instance type. + """ + dtype = None + for ipt in op_proto.inputs: + name = _convert_(ipt.name) + val = kwargs.pop(name, []) + if not isinstance(val, list) and not isinstance(val, tuple): + val = [val] + for each in val: + if not isinstance(each, Variable): + raise ValueError("input of {0} must be variable".format( + op_type)) + + if dtype is None: + dtype = each.dtype + elif dtype != each.dtype: + raise ValueError( + "operator {0} must input same dtype. {1} vs {2}".format( + op_type, dtype, each.dtype)) + + return dtype + + def func(**kwargs): + helper = LayerHelper(op_type, **kwargs) + + dtype = infer_and_check_dtype(op_proto, **kwargs) + + inputs = dict() + for ipt in op_proto.inputs: + name = _convert_(ipt.name) + val = kwargs.pop(name, []) + if not isinstance(val, list) and not isinstance(val, tuple): + val = [val] + inputs[ipt.name] = val + + outputs = dict() + out = helper.create_tmp_variable(dtype=dtype) + outputs[o_name] = [out] + for name in intermediate_output_names: + outputs[name] = [helper.create_tmp_variable(dtype=dtype)] + helper.append_op( + type=op_type, inputs=inputs, outputs=outputs, attrs=kwargs) + return helper.append_activation(out) + + func.__name__ = op_type + func.__doc__ = _generate_doc_string_(op_proto) + return func + + +def deprecated(func_or_class): + """ + Deprecated warning decorator. It will result a warning message. + Should be used before class or function, member function + """ + + @functools.wraps(func) + def func_wrapper(*args, **kwargs): + """ + Wrap func with deprecated warning + """ + warnings.simplefilter('always', DeprecationWarning) #turn off filter + warnings.warn( + "Call to deprecated function {}.".format(func.__name__), + category=DeprecationWarning, + stacklevel=2) + warnings.simplefilter('default', DeprecationWarning) #reset filter + return func(*args, **kwargs) + + return func_wrapper diff --git a/python/paddle/v2/fluid/regularizer.py b/python/paddle/v2/fluid/regularizer.py index c2c18e1951234f7160ff9f92d6dd6922a56683dd..d1955b00479676448d99603a31249aa7ac6a0d3f 100644 --- a/python/paddle/v2/fluid/regularizer.py +++ b/python/paddle/v2/fluid/regularizer.py @@ -3,7 +3,7 @@ import framework __all__ = ['append_regularization_ops', 'L1Decay', 'L2Decay'] -def append_regularization_ops(parameters_and_grads): +def append_regularization_ops(parameters_and_grads, regularization=None): """Create and add backward regularization Operators Creates and adds backward regularization operators in the BlockDesc. @@ -14,6 +14,8 @@ def append_regularization_ops(parameters_and_grads): Args: parameters_and_grads: A list of (parameters, gradients) pairs that need to be regularized. + regularization: A global regularizer. If the parameter is not + set. It will be applied with regularizer. Returns: list of (parameters, gradients) pair with the regularized gradient @@ -23,14 +25,19 @@ def append_regularization_ops(parameters_and_grads): """ params_and_grads = [] for param, grad in parameters_and_grads: + regularization_term = None + if param.regularizer is not None: + # Add variable for regularization term in grad block + regularization_term = param.regularizer(param, grad.block) + elif regularization is not None: + regularization_term = regularization(param, grad.block) + # If no gradient or no regularization specified, # then we don't need to do anything - if grad is None or param.regularizer is None: + if grad is None or regularization_term is None: params_and_grads.append((param, grad)) continue - # Add variable for regularization term in grad block - regularization_term = param.regularizer(param, grad.block) assert grad.shape == regularization_term.shape grad.block.append_op( @@ -145,7 +152,7 @@ class L1DecayRegularizer(WeightDecayRegularizer): # import paddle.fluid as fluid # # hidden = fluid.layers.fc(..., -# param_attr=ParamAttr(fluid.regularizer.Xavier())) +# param_attr=fluid.regularizer.Xavier()) # # It is no need to add a `Regularizer` as the class suffix L1Decay = L1DecayRegularizer diff --git a/python/paddle/v2/fluid/tests/.gitignore b/python/paddle/v2/fluid/tests/.gitignore index a648f2b387c2c7b9422eea6749e43e7b8871f60f..62f82151eb42342cd90657b1e4dfc93410950e62 100644 --- a/python/paddle/v2/fluid/tests/.gitignore +++ b/python/paddle/v2/fluid/tests/.gitignore @@ -1,3 +1,4 @@ image/ fit_a_line.model/ tmp +cuda_profiler.txt diff --git a/python/paddle/v2/fluid/tests/book/notest_recognize_digits_conv_dist.py b/python/paddle/v2/fluid/tests/book/notest_recognize_digits_conv_dist.py new file mode 100644 index 0000000000000000000000000000000000000000..2680502efb91061be37a77fbe5b451960fdd15f7 --- /dev/null +++ b/python/paddle/v2/fluid/tests/book/notest_recognize_digits_conv_dist.py @@ -0,0 +1,72 @@ +from __future__ import print_function +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import os + +images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype='float32') +label = fluid.layers.data(name='label', shape=[1], dtype='int64') +conv_pool_1 = fluid.nets.simple_img_conv_pool( + input=images, + filter_size=5, + num_filters=20, + pool_size=2, + pool_stride=2, + act="relu") +conv_pool_2 = fluid.nets.simple_img_conv_pool( + input=conv_pool_1, + filter_size=5, + num_filters=50, + pool_size=2, + pool_stride=2, + act="relu") + +predict = fluid.layers.fc(input=conv_pool_2, size=10, act="softmax") +cost = fluid.layers.cross_entropy(input=predict, label=label) +avg_cost = fluid.layers.mean(x=cost) +optimizer = fluid.optimizer.Adam(learning_rate=0.01) +optimize_ops, params_grads = optimizer.minimize(avg_cost) + +accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + +BATCH_SIZE = 50 +PASS_NUM = 3 +train_reader = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.mnist.train(), buf_size=500), + batch_size=BATCH_SIZE) + +place = fluid.CPUPlace() +exe = fluid.Executor(place) +t = fluid.DistributeTranspiler() +pserver_endpoints = os.getenv("PSERVERS") +training_role = os.getenv("TRAINING_ROLE", + "TRAINER") # get the training role: trainer/pserver +t.transpile(optimize_ops, params_grads, pservers=pserver_endpoints, trainers=1) + +if training_role == "PSERVER": + pserver_prog = t.get_pserver_program(pserver_endpoints, optimize_ops) + exe.run(fluid.default_startup_program()) + exe.run(pserver_prog) +elif training_role == "TRAINER": + feeder = fluid.DataFeeder(feed_list=[images, label], place=place) + exe.run(fluid.default_startup_program()) + + for pass_id in range(PASS_NUM): + accuracy.reset(exe) + for data in train_reader(): + loss, acc = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost] + accuracy.metrics) + pass_acc = accuracy.eval(exe) + # print loss, acc + if loss < 10.0 and pass_acc > 0.9: + # if avg cost less than 10.0 and accuracy is larger than 0.9, we think our code is good. + exit(0) + + pass_acc = accuracy.eval(exe) + print("pass_id=" + str(pass_id) + " pass_acc=" + str(pass_acc)) +else: + print("environment var TRAINER_ROLE should be TRAINER os PSERVER") + +exit(1) diff --git a/python/paddle/v2/fluid/tests/book/test_fit_a_line.py b/python/paddle/v2/fluid/tests/book/test_fit_a_line.py index 9f98493adb21a03b8efde0f88c490e77c9d303e7..fbf46ac6cba8fa4981cc8a6e8f5434a510c52d7d 100644 --- a/python/paddle/v2/fluid/tests/book/test_fit_a_line.py +++ b/python/paddle/v2/fluid/tests/book/test_fit_a_line.py @@ -22,6 +22,7 @@ train_reader = paddle.batch( batch_size=BATCH_SIZE) place = fluid.CPUPlace() +feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) @@ -31,12 +32,8 @@ for pass_id in range(PASS_NUM): fluid.io.save_persistables(exe, "./fit_a_line.model/") fluid.io.load_persistables(exe, "./fit_a_line.model/") for data in train_reader(): - x_data = np.array(map(lambda _: _[0], data)).astype("float32") - y_data = np.array(map(lambda _: _[1], data)).astype("float32") - avg_loss_value, = exe.run(fluid.default_main_program(), - feed={'x': x_data, - 'y': y_data}, + feed=feeder.feed(data), fetch_list=[avg_cost]) if avg_loss_value[0] < 10.0: diff --git a/python/paddle/v2/fluid/tests/book/test_image_classification_train.py b/python/paddle/v2/fluid/tests/book/test_image_classification_train.py index 0f0cc5b5406ef51ac3504a95ea716056ae8730af..3d336ffe9582ddd9a2031e7aa7e2c26a772820f8 100644 --- a/python/paddle/v2/fluid/tests/book/test_image_classification_train.py +++ b/python/paddle/v2/fluid/tests/book/test_image_classification_train.py @@ -1,9 +1,9 @@ from __future__ import print_function -import numpy as np +import sys + import paddle.v2 as paddle import paddle.v2.fluid as fluid -import sys def resnet_cifar10(input, depth=32): @@ -113,23 +113,14 @@ train_reader = paddle.batch( place = fluid.CPUPlace() exe = fluid.Executor(place) - +feeder = fluid.DataFeeder(place=place, feed_list=[images, label]) exe.run(fluid.default_startup_program()) for pass_id in range(PASS_NUM): accuracy.reset(exe) for data in train_reader(): - img_data = np.array(map(lambda x: x[0].reshape(data_shape), - data)).astype("float32") - y_data = np.array(map(lambda x: x[1], data)).astype("int64") - batch_size = 1 - for i in y_data.shape: - batch_size = batch_size * i - y_data = y_data.reshape([batch_size, 1]) - loss, acc = exe.run(fluid.default_main_program(), - feed={"pixel": img_data, - "label": y_data}, + feed=feeder.feed(data), fetch_list=[avg_cost] + accuracy.metrics) pass_acc = accuracy.eval(exe) print("loss:" + str(loss) + " acc:" + str(acc) + " pass_acc:" + str( diff --git a/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py b/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py index bcd6f4d6bc66fd01406332bd1d6d7a5c4b0ddb5a..c3591a613acafb268a5bd70618cd4555450bac29 100644 --- a/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py +++ b/python/paddle/v2/fluid/tests/book/test_label_semantic_roles.py @@ -1,3 +1,5 @@ +import math + import numpy as np import paddle.v2 as paddle import paddle.v2.dataset.conll05 as conll05 @@ -28,17 +30,9 @@ def load_parameter(file_name, h, w): return np.fromfile(f, dtype=np.float32).reshape(h, w) -def db_lstm(): +def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, + **ignored): # 8 features - word = fluid.layers.data(name='word_data', shape=[1], dtype='int64') - predicate = fluid.layers.data(name='verb_data', shape=[1], dtype='int64') - ctx_n2 = fluid.layers.data(name='ctx_n2_data', shape=[1], dtype='int64') - ctx_n1 = fluid.layers.data(name='ctx_n1_data', shape=[1], dtype='int64') - ctx_0 = fluid.layers.data(name='ctx_0_data', shape=[1], dtype='int64') - ctx_p1 = fluid.layers.data(name='ctx_p1_data', shape=[1], dtype='int64') - ctx_p2 = fluid.layers.data(name='ctx_p2_data', shape=[1], dtype='int64') - mark = fluid.layers.data(name='mark_data', shape=[1], dtype='int64') - predicate_embedding = fluid.layers.embedding( input=predicate, size=[pred_len, word_dim], @@ -120,25 +114,58 @@ def to_lodtensor(data, place): def main(): # define network topology - feature_out = db_lstm() - target = fluid.layers.data(name='target', shape=[1], dtype='int64') + word = fluid.layers.data( + name='word_data', shape=[1], dtype='int64', lod_level=1) + predicate = fluid.layers.data( + name='verb_data', shape=[1], dtype='int64', lod_level=1) + ctx_n2 = fluid.layers.data( + name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1) + ctx_n1 = fluid.layers.data( + name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1) + ctx_0 = fluid.layers.data( + name='ctx_0_data', shape=[1], dtype='int64', lod_level=1) + ctx_p1 = fluid.layers.data( + name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1) + ctx_p2 = fluid.layers.data( + name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1) + mark = fluid.layers.data( + name='mark_data', shape=[1], dtype='int64', lod_level=1) + feature_out = db_lstm(**locals()) + target = fluid.layers.data( + name='target', shape=[1], dtype='int64', lod_level=1) crf_cost = fluid.layers.linear_chain_crf( input=feature_out, label=target, param_attr=fluid.ParamAttr( name='crfw', learning_rate=mix_hidden_lr)) avg_cost = fluid.layers.mean(x=crf_cost) + # TODO(qiao) - # 1. add crf_decode_layer and evaluator - # 2. use other optimizer and check why out will be NAN + # check other optimizers and check why out will be NAN sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.0001) sgd_optimizer.minimize(avg_cost) + # TODO(qiao) + # add dependency track and move this config before optimizer + crf_decode = fluid.layers.crf_decoding( + input=feature_out, param_attr=fluid.ParamAttr(name='crfw')) + + chunk_evaluator = fluid.evaluator.ChunkEvaluator( + input=crf_decode, + label=target, + chunk_scheme="IOB", + num_chunk_types=int(math.ceil((label_dict_len - 1) / 2.0))) + train_data = paddle.batch( paddle.reader.shuffle( paddle.dataset.conll05.test(), buf_size=8192), batch_size=BATCH_SIZE) place = fluid.CPUPlace() + feeder = fluid.DataFeeder( + feed_list=[ + word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate, mark, target + ], + place=place) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) @@ -149,34 +176,21 @@ def main(): batch_id = 0 for pass_id in xrange(PASS_NUM): + chunk_evaluator.reset(exe) for data in train_data(): - word_data = to_lodtensor(map(lambda x: x[0], data), place) - ctx_n2_data = to_lodtensor(map(lambda x: x[1], data), place) - ctx_n1_data = to_lodtensor(map(lambda x: x[2], data), place) - ctx_0_data = to_lodtensor(map(lambda x: x[3], data), place) - ctx_p1_data = to_lodtensor(map(lambda x: x[4], data), place) - ctx_p2_data = to_lodtensor(map(lambda x: x[5], data), place) - verb_data = to_lodtensor(map(lambda x: x[6], data), place) - mark_data = to_lodtensor(map(lambda x: x[7], data), place) - target = to_lodtensor(map(lambda x: x[8], data), place) - - outs = exe.run(fluid.default_main_program(), - feed={ - 'word_data': word_data, - 'ctx_n2_data': ctx_n2_data, - 'ctx_n1_data': ctx_n1_data, - 'ctx_0_data': ctx_0_data, - 'ctx_p1_data': ctx_p1_data, - 'ctx_p2_data': ctx_p2_data, - 'verb_data': verb_data, - 'mark_data': mark_data, - 'target': target - }, - fetch_list=[avg_cost]) - avg_cost_val = np.array(outs[0]) + cost, precision, recall, f1_score = exe.run( + fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost] + chunk_evaluator.metrics) + pass_precision, pass_recall, pass_f1_score = chunk_evaluator.eval( + exe) if batch_id % 10 == 0: - print("avg_cost=" + str(avg_cost_val)) + print("avg_cost:" + str(cost) + " precision:" + str( + precision) + " recall:" + str(recall) + " f1_score:" + str( + f1_score) + " pass_precision:" + str( + pass_precision) + " pass_recall:" + str(pass_recall) + + " pass_f1_score:" + str(pass_f1_score)) # exit early for CI exit(0) diff --git a/python/paddle/v2/fluid/tests/book/test_machine_translation.py b/python/paddle/v2/fluid/tests/book/test_machine_translation.py new file mode 100644 index 0000000000000000000000000000000000000000..80ffc5a544c201ed45a6de46b5a2addff82246b7 --- /dev/null +++ b/python/paddle/v2/fluid/tests/book/test_machine_translation.py @@ -0,0 +1,119 @@ +import numpy as np +import paddle.v2 as paddle +import paddle.v2.fluid as fluid +import paddle.v2.fluid.core as core +import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers +from paddle.v2.fluid.executor import Executor + +dict_size = 30000 +source_dict_dim = target_dict_dim = dict_size +src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size) +hidden_dim = 32 +word_dim = 16 +IS_SPARSE = True +batch_size = 10 +max_length = 50 +topk_size = 50 +trg_dic_size = 10000 + +decoder_size = hidden_dim + + +def encoder_decoder(): + # encoder + src_word_id = layers.data( + name="src_word_id", shape=[1], dtype='int64', lod_level=1) + src_embedding = layers.embedding( + input=src_word_id, + size=[dict_size, word_dim], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr=fluid.ParamAttr(name='vemb')) + + fc1 = fluid.layers.fc(input=src_embedding, size=hidden_dim * 4, act='tanh') + lstm_hidden0, lstm_0 = layers.dynamic_lstm(input=fc1, size=hidden_dim * 4) + encoder_out = layers.sequence_pool(input=lstm_hidden0, pool_type="last") + + # decoder + trg_language_word = layers.data( + name="target_language_word", shape=[1], dtype='int64', lod_level=1) + trg_embedding = layers.embedding( + input=trg_language_word, + size=[dict_size, word_dim], + dtype='float32', + is_sparse=IS_SPARSE, + param_attr=fluid.ParamAttr(name='vemb')) + + rnn = fluid.layers.DynamicRNN() + with rnn.block(): + current_word = rnn.step_input(trg_embedding) + mem = rnn.memory(init=encoder_out) + fc1 = fluid.layers.fc(input=[current_word, mem], + size=decoder_size, + act='tanh') + out = fluid.layers.fc(input=fc1, size=target_dict_dim, act='softmax') + rnn.update_memory(mem, fc1) + rnn.output(out) + + return rnn() + + +def to_lodtensor(data, place): + seq_lens = [len(seq) for seq in data] + cur_len = 0 + lod = [cur_len] + for l in seq_lens: + cur_len += l + lod.append(cur_len) + flattened_data = np.concatenate(data, axis=0).astype("int64") + flattened_data = flattened_data.reshape([len(flattened_data), 1]) + res = core.LoDTensor() + res.set(flattened_data, place) + res.set_lod([lod]) + return res + + +def main(): + rnn_out = encoder_decoder() + label = layers.data( + name="target_language_next_word", shape=[1], dtype='int64', lod_level=1) + cost = layers.cross_entropy(input=rnn_out, label=label) + avg_cost = fluid.layers.mean(x=cost) + + optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4) + optimizer.minimize(avg_cost) + + train_data = paddle.batch( + paddle.reader.shuffle( + paddle.dataset.wmt14.train(dict_size), buf_size=1000), + batch_size=batch_size) + + place = core.CPUPlace() + exe = Executor(place) + + exe.run(framework.default_startup_program()) + + batch_id = 0 + for pass_id in xrange(2): + for data in train_data(): + word_data = to_lodtensor(map(lambda x: x[0], data), place) + trg_word = to_lodtensor(map(lambda x: x[1], data), place) + trg_word_next = to_lodtensor(map(lambda x: x[2], data), place) + outs = exe.run(framework.default_main_program(), + feed={ + 'src_word_id': word_data, + 'target_language_word': trg_word, + 'target_language_next_word': trg_word_next + }, + fetch_list=[avg_cost]) + avg_cost_val = np.array(outs[0]) + print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) + + " avg_cost=" + str(avg_cost_val)) + if batch_id > 3: + exit(0) + batch_id += 1 + + +if __name__ == '__main__': + main() diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py index ba686b56f8603834c12f5ed24e0ef7308c78585d..35bf8da924dc76475df9bd5e6a4c04f4d204426a 100644 --- a/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py +++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits_conv.py @@ -37,20 +37,14 @@ train_reader = paddle.batch( place = fluid.CPUPlace() exe = fluid.Executor(place) - +feeder = fluid.DataFeeder(feed_list=[images, label], place=place) exe.run(fluid.default_startup_program()) for pass_id in range(PASS_NUM): accuracy.reset(exe) for data in train_reader(): - img_data = np.array(map(lambda x: x[0].reshape([1, 28, 28]), - data)).astype("float32") - y_data = np.array(map(lambda x: x[1], data)).astype("int64") - y_data = y_data.reshape([BATCH_SIZE, 1]) - loss, acc = exe.run(fluid.default_main_program(), - feed={"pixel": img_data, - "label": y_data}, + feed=feeder.feed(data), fetch_list=[avg_cost] + accuracy.metrics) pass_acc = accuracy.eval(exe) print("pass_id=" + str(pass_id) + " acc=" + str(acc) + " pass_acc=" + diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py index fa18965aac667c0829b9e6ee56ece585564f9060..fc073f6be8563a363c0f98b9235ae267fa68562d 100644 --- a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py +++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py @@ -11,7 +11,9 @@ regularizer = fluid.regularizer.L2Decay(0.0005 * BATCH_SIZE) hidden1 = fluid.layers.fc(input=image, size=128, act='relu', - param_attr=regularizer) + param_attr=fluid.ParamAttr( + regularizer=regularizer, + clip=fluid.clip.ClipByValue(10))) hidden2 = fluid.layers.fc(input=hidden1, size=64, act='relu', @@ -33,11 +35,10 @@ opts = optimizer.minimize(avg_cost) accuracy = fluid.evaluator.Accuracy(input=predict, label=label) inference_program = fluid.default_main_program().clone() -test_accuracy = fluid.evaluator.Accuracy( - input=predict, label=label, main_program=inference_program) -test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states -inference_program = fluid.io.get_inference_program( - test_target, main_program=inference_program) +with fluid.program_guard(inference_program): + test_accuracy = fluid.evaluator.Accuracy(input=predict, label=label) + test_target = [avg_cost] + test_accuracy.metrics + test_accuracy.states + inference_program = fluid.io.get_inference_program(test_target) train_reader = paddle.batch( paddle.reader.shuffle( @@ -48,40 +49,22 @@ test_reader = paddle.batch(paddle.dataset.mnist.test(), batch_size=128) place = fluid.CPUPlace() exe = fluid.Executor(place) - +feeder = fluid.DataFeeder(feed_list=[image, label], place=place) exe.run(fluid.default_startup_program()) PASS_NUM = 100 for pass_id in range(PASS_NUM): accuracy.reset(exe) for data in train_reader(): - x_data = np.array(map(lambda x: x[0], data)).astype("float32") - y_data = np.array(map(lambda x: x[1], data)).astype("int64") - y_data = np.expand_dims(y_data, axis=1) - - tensor_x = fluid.LoDTensor() - tensor_x.set(x_data, place) - - tensor_y = fluid.LoDTensor() - tensor_y.set(y_data, place) - - outs = exe.run(fluid.default_main_program(), - feed={'x': tensor_x, - 'y': tensor_y}, - fetch_list=[avg_cost] + accuracy.metrics) - out = np.array(outs[0]) - acc = np.array(outs[1]) + out, acc = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[avg_cost] + accuracy.metrics) pass_acc = accuracy.eval(exe) test_accuracy.reset(exe) for data in test_reader(): - x_data = np.array(map(lambda x: x[0], data)).astype("float32") - y_data = np.array(map(lambda x: x[1], data)).astype("int64") - y_data = np.expand_dims(y_data, axis=1) - out, acc = exe.run(inference_program, - feed={'x': x_data, - 'y': y_data}, + feed=feeder.feed(data), fetch_list=[avg_cost] + test_accuracy.metrics) test_pass_acc = test_accuracy.eval(exe) diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py index be875a952b7086ee64984525d70ffd3f1ecb5fae..f103358edca9bbd2e28c99afd249f97b1d8069ae 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_conv.py @@ -4,10 +4,8 @@ import paddle.v2 as paddle import paddle.v2.fluid as fluid -def convolution_net(input_dim, class_dim=2, emb_dim=32, hid_dim=32): - data = fluid.layers.data(name="words", shape=[1], dtype="int64") - label = fluid.layers.data(name="label", shape=[1], dtype="int64") - +def convolution_net(data, label, input_dim, class_dim=2, emb_dim=32, + hid_dim=32): emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim]) conv_3 = fluid.nets.sequence_conv_pool( input=emb, @@ -55,8 +53,11 @@ def main(): dict_dim = len(word_dict) class_dim = 2 + data = fluid.layers.data( + name="words", shape=[1], dtype="int64", lod_level=1) + label = fluid.layers.data(name="label", shape=[1], dtype="int64") cost, accuracy, acc_out = convolution_net( - input_dim=dict_dim, class_dim=class_dim) + data, label, input_dim=dict_dim, class_dim=class_dim) train_data = paddle.batch( paddle.reader.shuffle( @@ -64,25 +65,16 @@ def main(): batch_size=BATCH_SIZE) place = fluid.CPUPlace() exe = fluid.Executor(place) + feeder = fluid.DataFeeder(feed_list=[data, label], place=place) exe.run(fluid.default_startup_program()) for pass_id in xrange(PASS_NUM): accuracy.reset(exe) for data in train_data(): - tensor_words = to_lodtensor(map(lambda x: x[0], data), place) - - label = np.array(map(lambda x: x[1], data)).astype("int64") - label = label.reshape([BATCH_SIZE, 1]) - - tensor_label = fluid.LoDTensor() - tensor_label.set(label, place) - - cost_val, acc_val = exe.run( - fluid.default_main_program(), - feed={"words": tensor_words, - "label": tensor_label}, - fetch_list=[cost, acc_out]) + cost_val, acc_val = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[cost, acc_out]) pass_acc = accuracy.eval(exe) print("cost=" + str(cost_val) + " acc=" + str(acc_val) + " pass_acc=" + str(pass_acc)) diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py index 094a3cdcda12eaee351476e99a388c44b3c81cd6..cd28f04b8574778316d70e7d8a03026f807c3e52 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_dynamic_lstm.py @@ -3,14 +3,14 @@ import paddle.v2 as paddle import paddle.v2.fluid as fluid -def stacked_lstm_net(input_dim, +def stacked_lstm_net(data, + label, + input_dim, class_dim=2, emb_dim=128, hid_dim=512, stacked_num=3): assert stacked_num % 2 == 1 - data = fluid.layers.data(name="words", shape=[1], dtype="int64") - label = fluid.layers.data(name="label", shape=[1], dtype="int64") emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim]) # add bias attr @@ -65,8 +65,11 @@ def main(): dict_dim = len(word_dict) class_dim = 2 + data = fluid.layers.data( + name="words", shape=[1], dtype="int64", lod_level=1) + label = fluid.layers.data(name="label", shape=[1], dtype="int64") cost, accuracy, acc_out = stacked_lstm_net( - input_dim=dict_dim, class_dim=class_dim) + data, label, input_dim=dict_dim, class_dim=class_dim) train_data = paddle.batch( paddle.reader.shuffle( @@ -74,25 +77,16 @@ def main(): batch_size=BATCH_SIZE) place = fluid.CPUPlace() exe = fluid.Executor(place) + feeder = fluid.DataFeeder(feed_list=[data, label], place=place) exe.run(fluid.default_startup_program()) for pass_id in xrange(PASS_NUM): accuracy.reset(exe) for data in train_data(): - tensor_words = to_lodtensor(map(lambda x: x[0], data), place) - - label = np.array(map(lambda x: x[1], data)).astype("int64") - label = label.reshape([BATCH_SIZE, 1]) - - tensor_label = fluid.LoDTensor() - tensor_label.set(label, place) - - cost_val, acc_val = exe.run( - fluid.default_main_program(), - feed={"words": tensor_words, - "label": tensor_label}, - fetch_list=[cost, acc_out]) + cost_val, acc_val = exe.run(fluid.default_main_program(), + feed=feeder.feed(data), + fetch_list=[cost, acc_out]) pass_acc = accuracy.eval(exe) print("cost=" + str(cost_val) + " acc=" + str(acc_val) + " pass_acc=" + str(pass_acc)) diff --git a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py index b2479320330bde5771c3d4a8e2923b5ab1eecf2e..633de66bea2af7404ab0d325b425e7b9e63d3e43 100644 --- a/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py +++ b/python/paddle/v2/fluid/tests/book/test_understand_sentiment_lstm.py @@ -1,6 +1,39 @@ import numpy as np import paddle.v2 as paddle import paddle.v2.fluid as fluid +from paddle.v2.fluid.layer_helper import LayerHelper + + +def lstm(x, c_pre_init, hidden_dim, forget_bias=None): + """ + This function helps create an operator for the LSTM (Long Short Term + Memory) cell that can be used inside an RNN. + """ + helper = LayerHelper('lstm_unit', **locals()) + rnn = fluid.layers.StaticRNN() + with rnn.step(): + c_pre = rnn.memory(init=c_pre_init) + x_t = rnn.step_input(x) + + before_fc = fluid.layers.concat(input=[x_t, c_pre], axis=1) + after_fc = fluid.layers.fc(input=before_fc, size=hidden_dim * 4) + + dtype = x.dtype + c = helper.create_tmp_variable(dtype) + h = helper.create_tmp_variable(dtype) + + helper.append_op( + type='lstm_unit', + inputs={"X": after_fc, + "C_prev": c_pre}, + outputs={"C": c, + "H": h}, + attrs={"forget_bias": forget_bias}) + + rnn.update_memory(c_pre, c) + rnn.output(h) + + return rnn() def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): @@ -8,7 +41,8 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): name="words", shape=[seq_len * batch_size, 1], append_batch_size=False, - dtype="int64") + dtype="int64", + lod_level=1) label = fluid.layers.data( name="label", shape=[batch_size, 1], @@ -21,8 +55,8 @@ def lstm_net(dict_dim, class_dim=2, emb_dim=32, seq_len=80, batch_size=50): c_pre_init = fluid.layers.fill_constant( dtype=emb.dtype, shape=[batch_size, emb_dim], value=0.0) - layer_1_out = fluid.layers.lstm( - emb, c_pre_init=c_pre_init, hidden_dim=emb_dim) + c_pre_init.stop_gradient = False + layer_1_out = lstm(emb, c_pre_init=c_pre_init, hidden_dim=emb_dim) layer_1_out = fluid.layers.transpose(x=layer_1_out, axis=[1, 0, 2]) prediction = fluid.layers.fc(input=layer_1_out, diff --git a/python/paddle/v2/fluid/tests/book/test_word2vec.py b/python/paddle/v2/fluid/tests/book/test_word2vec.py index 1b441e15c72c85c3d44c39b0f685a88db2304eef..8b928ff9eed41f8945c749058b4177fd023452ba 100644 --- a/python/paddle/v2/fluid/tests/book/test_word2vec.py +++ b/python/paddle/v2/fluid/tests/book/test_word2vec.py @@ -57,23 +57,16 @@ train_reader = paddle.batch( place = fluid.CPUPlace() exe = fluid.Executor(place) +feeder = fluid.DataFeeder( + feed_list=[first_word, second_word, third_word, forth_word, next_word], + place=place) exe.run(fluid.default_startup_program()) for pass_id in range(PASS_NUM): for data in train_reader(): - input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)] - input_data = map(lambda x: np.array(x).astype("int64"), input_data) - input_data = map(lambda x: np.expand_dims(x, axis=1), input_data) - avg_cost_np = exe.run(fluid.default_main_program(), - feed={ - 'firstw': input_data[0], - 'secondw': input_data[1], - 'thirdw': input_data[2], - 'forthw': input_data[3], - 'nextw': input_data[4] - }, + feed=feeder.feed(data), fetch_list=[avg_cost]) if avg_cost_np[0] < 5.0: exit(0) # if avg cost less than 10.0, we think our code is good. diff --git a/python/paddle/v2/fluid/tests/test_activation_op.py b/python/paddle/v2/fluid/tests/test_activation_op.py index bd52bef2605874d26e880fb09e589891fc1934d5..b052374dc7ec3c5684d6adfda6b9d000c5e19fe0 100644 --- a/python/paddle/v2/fluid/tests/test_activation_op.py +++ b/python/paddle/v2/fluid/tests/test_activation_op.py @@ -1,6 +1,7 @@ import unittest import numpy as np from op_test import OpTest +from scipy.special import expit class TestExp(OpTest): @@ -455,5 +456,20 @@ class TestHardSigmoid(OpTest): self.check_grad(['X'], 'Y', max_relative_error=0.002) +class TestSwish(OpTest): + def setUp(self): + self.op_type = "swish" + X = np.random.uniform(0.1, 1, [11, 17]).astype("float32") + self.inputs = {'X': X} + self.attrs = {'beta': 2.3} + self.outputs = {'Y': X * expit(self.attrs['beta'] * X)} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Y', max_relative_error=0.008) + + if __name__ == "__main__": unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_batch_norm_op.py b/python/paddle/v2/fluid/tests/test_batch_norm_op.py index e766a68c0e338b07e47260e40edc544c98555382..a9c0b1cfd3417d0583fa9d4e15550e7543a6bd19 100644 --- a/python/paddle/v2/fluid/tests/test_batch_norm_op.py +++ b/python/paddle/v2/fluid/tests/test_batch_norm_op.py @@ -3,10 +3,7 @@ import numpy as np from op_test import OpTest import paddle.v2.fluid.core as core from paddle.v2.fluid.op import Operator - - -def grad_var_name(var_name): - return var_name + "@GRAD" +from paddle.v2.fluid.framework import grad_var_name def get_backward_op(scope, op, no_grad_set): @@ -211,7 +208,7 @@ class TestBatchNormOp(OpTest): print 'python: NHWC, NCHW, backward checking passed' def test_forward_backward(self): - def test_with_place(place, tensor_format, shape): + def test_with_place(place, data_layout, shape): # attr epsilon = 0.00001 momentum = 0.9 @@ -295,7 +292,7 @@ class TestBatchNormOp(OpTest): SavedVariance="saved_variance", # attrs is_test=False, - tensor_format=tensor_format, + data_layout=data_layout, momentum=momentum, epsilon=epsilon) @@ -314,7 +311,7 @@ class TestBatchNormOp(OpTest): atol = 1e-4 self.__assert_close(variance_out_tensor, variance_out, "variance_out", atol) - print "op test forward passed: ", str(place), tensor_format + print "op test forward passed: ", str(place), data_layout # run backward batch_norm_op_grad = get_backward_op(scope, batch_norm_op, set()) @@ -339,11 +336,15 @@ class TestBatchNormOp(OpTest): self.__assert_close(x_grad_tensor, x_grad_ref, "x_grad") self.__assert_close(scale_grad_tensor, scale_grad_ref, "scale_grad") self.__assert_close(bias_grad_tensor, bias_grad_ref, "bias_grad") - print "op test backward passed: ", str(place), tensor_format + print "op test backward passed: ", str(place), data_layout places = [core.CPUPlace()] if core.is_compile_gpu() and core.op_support_gpu("batch_norm"): places.append(core.GPUPlace(0)) + + core.init_devices(["CPU", "GPU:0"]) + else: + core.init_devices(["CPU"]) for place in places: for data_format in ["NCHW", "NHWC"]: test_with_place(place, data_format, [2, 3, 4, 5]) diff --git a/python/paddle/v2/fluid/tests/test_chunk_eval_op.py b/python/paddle/v2/fluid/tests/test_chunk_eval_op.py index 48673296a67716c4de804da533f0fd2567f10e2e..53bf6f815b8c7baf4c92d9fd488b69722ab0bef5 100644 --- a/python/paddle/v2/fluid/tests/test_chunk_eval_op.py +++ b/python/paddle/v2/fluid/tests/test_chunk_eval_op.py @@ -120,7 +120,7 @@ class TestChunkEvalOp(OpTest): self.num_correct_chunks, self.num_infer_chunks, self.num_label_chunks = 4, 5, 9 def set_data(self): - infer = np.zeros((self.batch_size, )).astype('int32') + infer = np.zeros((self.batch_size, )).astype('int64') infer.fill(self.num_chunk_types * self.num_tag_types) label = np.copy(infer) starts = np.random.choice( @@ -147,7 +147,13 @@ class TestChunkEvalOp(OpTest): 'Recall': np.asarray( [recall], dtype='float32'), 'F1-Score': np.asarray( - [f1], dtype='float32') + [f1], dtype='float32'), + 'NumInferChunks': np.asarray( + [self.num_infer_chunks], dtype='int64'), + 'NumLabelChunks': np.asarray( + [self.num_label_chunks], dtype='int64'), + 'NumCorrectChunks': np.asarray( + [self.num_correct_chunks], dtype='int64') } def setUp(self): diff --git a/python/paddle/v2/fluid/tests/test_const_value.py b/python/paddle/v2/fluid/tests/test_const_value.py new file mode 100644 index 0000000000000000000000000000000000000000..f8c17c2c98674fa67458efa090e166e37f5a6a8a --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_const_value.py @@ -0,0 +1,14 @@ +import unittest +import paddle.v2.fluid.framework as framework + + +class ConditionalBlock(unittest.TestCase): + def test_const_value(self): + self.assertEqual(framework.GRAD_VAR_SUFFIX, "@GRAD") + self.assertEqual(framework.TEMP_VAR_NAME, "@TEMP@") + self.assertEqual(framework.GRAD_VAR_SUFFIX, "@GRAD") + self.assertEqual(framework.ZERO_VAR_SUFFIX, "@ZERO") + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py b/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py index d7b1f2f2a3abf6335998742dbbef8e17794170fa..d59537b924d57d40f7d740d99eb814c95f528e5f 100644 --- a/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py +++ b/python/paddle/v2/fluid/tests/test_conv2d_transpose_op.py @@ -3,14 +3,17 @@ import numpy as np from op_test import OpTest -def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): +def conv2dtranspose_forward_naive(input_, filter_, attrs): in_n, in_c, in_h, in_w = input_.shape f_c, out_c, f_h, f_w = filter_.shape assert in_c == f_c - stride, pad = conv2dtranspose_param['stride'], conv2dtranspose_param['pad'] - out_h = (in_h - 1) * stride[0] + f_h - out_w = (in_w - 1) * stride[1] + f_w + stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[ + 'dilations'] + d_bolck_h = dilations[0] * (f_h - 1) + 1 + d_bolck_w = dilations[1] * (f_w - 1) + 1 + out_h = (in_h - 1) * stride[0] + d_bolck_h + out_w = (in_w - 1) * stride[1] + d_bolck_w out = np.zeros((in_n, out_c, out_h, out_w)) @@ -23,9 +26,9 @@ def conv2dtranspose_forward_naive(input_, filter_, conv2dtranspose_param): for k in range(out_c): tmp_out = np.sum(input_masked * filter_[:, k, :, :], axis=0) - i1, i2 = i * stride[0], i * stride[0] + f_h - j1, j2 = j * stride[0], j * stride[0] + f_w - out[n, k, i1:i2, j1:j2] += tmp_out + i1, i2 = i * stride[0], i * stride[0] + d_bolck_h + j1, j2 = j * stride[0], j * stride[0] + d_bolck_h + out[n, k, i1:i2:dilations[0], j1:j2:dilations[1]] += tmp_out out = out[:, :, pad[0]:out_h - pad[0], pad[1]:out_w - pad[1]] return out @@ -37,11 +40,8 @@ class TestConv2dTransposeOp(OpTest): self.init_op_type() self.init_test_case() - conv2dtranspose_param = {'stride': self.stride, 'pad': self.pad} input_ = np.random.random(self.input_size).astype("float32") filter_ = np.random.random(self.filter_size).astype("float32") - output = conv2dtranspose_forward_naive( - input_, filter_, conv2dtranspose_param).astype('float32') self.inputs = {'Input': input_, 'Filter': filter_} self.attrs = { @@ -49,6 +49,10 @@ class TestConv2dTransposeOp(OpTest): 'paddings': self.pad, 'dilations': self.dilations } + + output = conv2dtranspose_forward_naive(input_, filter_, + self.attrs).astype('float32') + self.outputs = {'Output': output} def test_check_output(self): @@ -104,11 +108,60 @@ class TestWithStride(TestConv2dTransposeOp): self.filter_size = [f_c, 6, 3, 3] +class TestWithDilation(TestConv2dTransposeOp): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [1, 1] + self.dilations = [2, 2] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + # ------------ test_cudnn ------------ class TestCudnn(TestConv2dTransposeOp): def init_op_type(self): self.op_type = "conv2d_transpose_cudnn" +class TestCudnnWithPad(TestWithPad): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [1, 1] + self.dilations = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + def init_op_type(self): + self.op_type = "conv2d_transpose_cudnn" + + +class TestCudnnWithStride(TestWithStride): + def init_test_case(self): + self.pad = [1, 1] + self.stride = [2, 2] + self.dilations = [1, 1] + self.input_size = [2, 3, 5, 5] # NCHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3] + + def init_op_type(self): + self.op_type = "conv2d_transpose_cudnn" + + +# #cudnn v5 does not support dilation conv. +# class TestCudnnWithDilation(TestWithDilation): +# def init_test_case(self): +# self.pad = [1, 1] +# self.stride = [2, 2] +# self.dilations = [2, 2] +# self.input_size = [2, 3, 5, 5] # NCHW +# f_c = self.input_size[1] +# self.filter_size = [f_c, 6, 3, 3] +# +# def init_op_type(self): +# self.op_type = "conv2d_transpose_cudnn" + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py b/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py index 8fd34b87bfea91307f52fdcbb9f71f2e1a9c6c56..a353f9b4d40233de46237005138f21430f4d865a 100644 --- a/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py +++ b/python/paddle/v2/fluid/tests/test_conv3d_transpose_op.py @@ -3,15 +3,20 @@ import numpy as np from op_test import OpTest -def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param): +def conv3dtranspose_forward_naive(input_, filter_, attrs): in_n, in_c, in_d, in_h, in_w = input_.shape f_c, out_c, f_d, f_h, f_w = filter_.shape assert in_c == f_c - stride, pad = conv3dtranspose_param['stride'], conv3dtranspose_param['pad'] - out_d = (in_d - 1) * stride[0] + f_d - out_h = (in_h - 1) * stride[1] + f_h - out_w = (in_w - 1) * stride[2] + f_w + stride, pad, dilations = attrs['strides'], attrs['paddings'], attrs[ + 'dilations'] + + d_bolck_d = dilations[0] * (f_d - 1) + 1 + d_bolck_h = dilations[1] * (f_h - 1) + 1 + d_bolck_w = dilations[2] * (f_w - 1) + 1 + out_d = (in_d - 1) * stride[0] + d_bolck_d + out_h = (in_h - 1) * stride[1] + d_bolck_h + out_w = (in_w - 1) * stride[2] + d_bolck_w out = np.zeros((in_n, out_c, out_d, out_h, out_w)) for n in range(in_n): @@ -25,10 +30,11 @@ def conv3dtranspose_forward_naive(input_, filter_, conv3dtranspose_param): for k in range(out_c): tmp_out = np.sum(input_masked * filter_[:, k, :, :, :], axis=0) - d1, d2 = d * stride[0], d * stride[0] + f_d - i1, i2 = i * stride[1], i * stride[1] + f_h - j1, j2 = j * stride[2], j * stride[2] + f_w - out[n, k, d1:d2, i1:i2, j1:j2] += tmp_out + d1, d2 = d * stride[0], d * stride[0] + d_bolck_d + i1, i2 = i * stride[1], i * stride[1] + d_bolck_h + j1, j2 = j * stride[2], j * stride[2] + d_bolck_w + out[n, k, d1:d2:dilations[0], i1:i2:dilations[1], j1:j2: + dilations[2]] += tmp_out out = out[:, :, pad[0]:out_d - pad[0], pad[1]:out_h - pad[1], pad[2]:out_w - pad[2]] @@ -41,18 +47,19 @@ class TestConv3dTransposeOp(OpTest): self.init_op_type() self.init_test_case() - conv3dtranspose_param = {'stride': self.stride, 'pad': self.pad} input_ = np.random.random(self.input_size).astype("float32") filter_ = np.random.random(self.filter_size).astype("float32") - output = conv3dtranspose_forward_naive( - input_, filter_, conv3dtranspose_param).astype("float32") self.inputs = {'Input': input_, 'Filter': filter_} self.attrs = { 'strides': self.stride, 'paddings': self.pad, - # 'dilations': self.dilations + 'dilations': self.dilations } + + output = conv3dtranspose_forward_naive(input_, filter_, + self.attrs).astype("float32") + self.outputs = {'Output': output} def test_check_output(self): @@ -108,11 +115,60 @@ class TestWithStride(TestConv3dTransposeOp): self.filter_size = [f_c, 6, 3, 3, 3] +class TestWithDilation(TestConv3dTransposeOp): + def init_test_case(self): + self.pad = [1, 1, 1] + self.stride = [1, 1, 1] + self.dilations = [2, 2, 2] + self.input_size = [2, 3, 5, 5, 5] # NCDHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3, 3] + + # ------------ test_cudnn ------------ class TestCudnn(TestConv3dTransposeOp): def init_op_type(self): self.op_type = "conv3d_transpose_cudnn" +class TestCudnnWithPad(TestWithPad): + def init_test_case(self): + self.pad = [1, 1, 1] + self.stride = [1, 1, 1] + self.dilations = [1, 1, 1] + self.input_size = [2, 3, 5, 5, 5] # NCDHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3, 3] + + def init_op_type(self): + self.op_type = "conv3d_transpose_cudnn" + + +class TestCudnnWithStride(TestWithStride): + def init_test_case(self): + self.pad = [1, 1, 1] + self.stride = [2, 2, 2] + self.dilations = [1, 1, 1] + self.input_size = [2, 3, 5, 5, 5] # NCDHW + f_c = self.input_size[1] + self.filter_size = [f_c, 6, 3, 3, 3] + + def init_op_type(self): + self.op_type = "conv3d_transpose_cudnn" + + +# #cudnn v5 does not support dilation conv. +# class TestCudnnWithDilation(TestWithDilation): +# def init_test_case(self): +# self.pad = [1, 1, 1] +# self.stride = [2, 2, 2] +# self.dilations = [2, 2, 2] +# self.input_size = [2, 3, 5, 5, 5] # NCDHW +# f_c = self.input_size[1] +# self.filter_size = [f_c, 6, 3, 3, 3] +# +# def init_op_type(self): +# self.op_type = "conv3d_transpose_cudnn" + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_crf_decoding_op.py b/python/paddle/v2/fluid/tests/test_crf_decoding_op.py index ee2b996bf430d5a0edaa0de459a937adffd9f8f6..ab573da31dfb9d7b40e44a79465a61cdc6b62a46 100644 --- a/python/paddle/v2/fluid/tests/test_crf_decoding_op.py +++ b/python/paddle/v2/fluid/tests/test_crf_decoding_op.py @@ -20,14 +20,14 @@ class CRFDecoding(object): self.w = transition_weights[2:, :] self.track = np.zeros( - (seq_start_positions[-1], self.tag_num), dtype="int32") + (seq_start_positions[-1], self.tag_num), dtype="int64") self.decoded_path = np.zeros( - (seq_start_positions[-1], 1), dtype="int32") + (seq_start_positions[-1], 1), dtype="int64") def _decode_one_sequence(self, decoded_path, x): seq_len, tag_num = x.shape alpha = np.zeros((seq_len, tag_num), dtype="float64") - track = np.zeros((seq_len, tag_num), dtype="int32") + track = np.zeros((seq_len, tag_num), dtype="int64") for i in range(tag_num): alpha[0, i] = self.a[i] + x[0, i] @@ -125,10 +125,10 @@ class TestCRFDecodingOp2(OpTest): axis=0) labels = np.random.randint( - low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int32") + low=0, high=TAG_NUM, size=(lod[-1][-1], 1), dtype="int64") predicted_labels = np.ones( - (lod[-1][-1], 1), dtype="int32") * (TAG_NUM - 1) - expected_output = (labels == predicted_labels).astype("int32") + (lod[-1][-1], 1), dtype="int64") * (TAG_NUM - 1) + expected_output = (labels == predicted_labels).astype("int64") self.inputs = { "Emission": (emission, lod), diff --git a/python/paddle/v2/fluid/tests/test_data_feeder.py b/python/paddle/v2/fluid/tests/test_data_feeder.py new file mode 100644 index 0000000000000000000000000000000000000000..454969320321b72342803f507f0054f79f276669 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_data_feeder.py @@ -0,0 +1,13 @@ +import paddle.v2.fluid as fluid + + +def test_converter(): + img = fluid.layers.data(name='image', shape=[1, 28, 28]) + label = fluid.layers.data(name='label', shape=[1], dtype='int64') + feeder = fluid.DataFeeder([img, label], fluid.CPUPlace()) + result = feeder.feed([[[0] * 784, [9]], [[1] * 784, [1]]]) + print(result) + + +if __name__ == '__main__': + test_converter() diff --git a/python/paddle/v2/fluid/tests/test_dropout_op.py b/python/paddle/v2/fluid/tests/test_dropout_op.py index 4f5ea836b44102e5599a2302efd669291ebe920b..2483200212686caf9c46f9c1129b5d8ffdcc9145 100644 --- a/python/paddle/v2/fluid/tests/test_dropout_op.py +++ b/python/paddle/v2/fluid/tests/test_dropout_op.py @@ -47,7 +47,9 @@ class TestDropoutOp4(OpTest): self.op_type = "dropout" self.inputs = {'X': np.random.random((32, 64)).astype("float32")} self.attrs = {'dropout_prob': 0.35, 'is_test': True} - self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']} + self.outputs = { + 'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob']) + } def test_check_output(self): self.check_output() @@ -58,7 +60,9 @@ class TestDropoutOp5(OpTest): self.op_type = "dropout" self.inputs = {'X': np.random.random((32, 64, 3)).astype("float32")} self.attrs = {'dropout_prob': 0.75, 'is_test': True} - self.outputs = {'Out': self.inputs['X'] * self.attrs['dropout_prob']} + self.outputs = { + 'Out': self.inputs['X'] * (1.0 - self.attrs['dropout_prob']) + } def test_check_output(self): self.check_output() diff --git a/python/paddle/v2/fluid/tests/test_dyn_rnn.py b/python/paddle/v2/fluid/tests/test_dyn_rnn.py new file mode 100644 index 0000000000000000000000000000000000000000..034266c26f48197872a3419135d45b30a8120e8a --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_dyn_rnn.py @@ -0,0 +1,130 @@ +import paddle.v2.fluid as fluid +import paddle.v2 as paddle +import unittest +import numpy + + +class TestDynRNN(unittest.TestCase): + def setUp(self): + self.word_dict = paddle.dataset.imdb.word_dict() + self.BATCH_SIZE = 2 + self.train_data = paddle.batch( + paddle.dataset.imdb.train(self.word_dict), + batch_size=self.BATCH_SIZE) + + def test_plain_while_op(self): + main_program = fluid.Program() + startup_program = fluid.Program() + + with fluid.program_guard(main_program, startup_program): + sentence = fluid.layers.data( + name='word', shape=[1], dtype='int64', lod_level=1) + sent_emb = fluid.layers.embedding( + input=sentence, size=[len(self.word_dict), 32], dtype='float32') + + label = fluid.layers.data(name='label', shape=[1], dtype='float32') + + rank_table = fluid.layers.lod_rank_table(x=sent_emb) + + sent_emb_array = fluid.layers.lod_tensor_to_array( + x=sent_emb, table=rank_table) + + seq_len = fluid.layers.max_sequence_len(rank_table=rank_table) + i = fluid.layers.fill_constant(shape=[1], dtype='int64', value=0) + i.stop_gradient = False + + boot_mem = fluid.layers.fill_constant_batch_size_like( + input=fluid.layers.array_read( + array=sent_emb_array, i=i), + value=0, + shape=[-1, 100], + dtype='float32') + boot_mem.stop_gradient = False + + mem_array = fluid.layers.array_write(x=boot_mem, i=i) + + cond = fluid.layers.less_than(x=i, y=seq_len) + cond.stop_gradient = False + while_op = fluid.layers.While(cond=cond) + out = fluid.layers.create_array(dtype='float32') + + with while_op.block(): + mem = fluid.layers.array_read(array=mem_array, i=i) + ipt = fluid.layers.array_read(array=sent_emb_array, i=i) + + mem = fluid.layers.shrink_memory(x=mem, i=i, table=rank_table) + + hidden = fluid.layers.fc(input=[mem, ipt], size=100, act='tanh') + + fluid.layers.array_write(x=hidden, i=i, array=out) + fluid.layers.increment(x=i, in_place=True) + fluid.layers.array_write(x=hidden, i=i, array=mem_array) + fluid.layers.less_than(x=i, y=seq_len, cond=cond) + + all_timesteps = fluid.layers.array_to_lod_tensor( + x=out, table=rank_table) + last = fluid.layers.sequence_pool( + input=all_timesteps, pool_type='last') + logits = fluid.layers.fc(input=last, size=1, act=None) + loss = fluid.layers.sigmoid_cross_entropy_with_logits( + x=logits, label=label) + loss = fluid.layers.mean(x=loss) + sgd = fluid.optimizer.SGD(1e-4) + sgd.minimize(loss=loss) + cpu = fluid.CPUPlace() + exe = fluid.Executor(cpu) + exe.run(startup_program) + feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu) + + data = next(self.train_data()) + val = exe.run(main_program, feed=feeder.feed(data), + fetch_list=[loss])[0] + self.assertEqual((1, ), val.shape) + print(val) + self.assertFalse(numpy.isnan(val)) + + def test_train_dyn_rnn(self): + main_program = fluid.Program() + startup_program = fluid.Program() + with fluid.program_guard(main_program, startup_program): + sentence = fluid.layers.data( + name='word', shape=[1], dtype='int64', lod_level=1) + sent_emb = fluid.layers.embedding( + input=sentence, size=[len(self.word_dict), 32], dtype='float32') + + rnn = fluid.layers.DynamicRNN() + + with rnn.block(): + in_ = rnn.step_input(sent_emb) + mem = rnn.memory(shape=[100], dtype='float32') + out_ = fluid.layers.fc(input=[in_, mem], size=100, act='tanh') + rnn.update_memory(mem, out_) + rnn.output(out_) + + last = fluid.layers.sequence_pool(input=rnn(), pool_type='last') + logits = fluid.layers.fc(input=last, size=1, act=None) + label = fluid.layers.data(name='label', shape=[1], dtype='float32') + loss = fluid.layers.sigmoid_cross_entropy_with_logits( + x=logits, label=label) + loss = fluid.layers.mean(x=loss) + sgd = fluid.optimizer.Adam(1e-3) + sgd.minimize(loss=loss) + + cpu = fluid.CPUPlace() + exe = fluid.Executor(cpu) + exe.run(startup_program) + feeder = fluid.DataFeeder(feed_list=[sentence, label], place=cpu) + data = next(self.train_data()) + loss_0 = exe.run(main_program, + feed=feeder.feed(data), + fetch_list=[loss])[0] + for _ in xrange(100): + val = exe.run(main_program, + feed=feeder.feed(data), + fetch_list=[loss])[0] + # loss should be small after 100 mini-batch + self.assertLess(val[0], loss_0[0]) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_fill_op.py b/python/paddle/v2/fluid/tests/test_fill_op.py new file mode 100644 index 0000000000000000000000000000000000000000..88337598c895a5a663ef45fd0800fa950fee1253 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_fill_op.py @@ -0,0 +1,24 @@ +import unittest +import numpy as np +from op_test import OpTest +import paddle.v2.fluid.core as core + + +class TestFillOp(OpTest): + def setUp(self): + self.op_type = "fill" + val = np.random.random(size=[100, 200]) + self.inputs = {} + self.attrs = { + 'value': val.flatten().tolist(), + 'shape': [100, 200], + 'dtype': int(core.DataType.FP64) + } + self.outputs = {'Out': val.astype('float64')} + + def test_check_output(self): + self.check_output() + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_fill_zeros_like_op.py b/python/paddle/v2/fluid/tests/test_fill_zeros_like_op.py index eff8fa87d9c0dafc6935604101e94ee6c8b081ce..cd91769a22f8d6af193efabd8d997913676fbba6 100644 --- a/python/paddle/v2/fluid/tests/test_fill_zeros_like_op.py +++ b/python/paddle/v2/fluid/tests/test_fill_zeros_like_op.py @@ -7,7 +7,7 @@ class TestFillZerosLikeOp(OpTest): def setUp(self): self.op_type = "fill_zeros_like" self.inputs = {'X': np.random.random((219, 232)).astype("float32")} - self.outputs = {'Y': np.zeros_like(self.inputs["X"])} + self.outputs = {'Out': np.zeros_like(self.inputs["X"])} def test_check_output(self): self.check_output() diff --git a/python/paddle/v2/fluid/tests/test_gaussian_random_op.py b/python/paddle/v2/fluid/tests/test_gaussian_random_op.py index 627ab4e23562f14538d85f2e21edeb7d72d940bb..a9d943b8b7f7d9bc0dec89c5360769e0328527ba 100644 --- a/python/paddle/v2/fluid/tests/test_gaussian_random_op.py +++ b/python/paddle/v2/fluid/tests/test_gaussian_random_op.py @@ -1,32 +1,47 @@ import unittest +import numpy + +import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core from paddle.v2.fluid.op import Operator -import numpy +from paddle.v2.fluid.executor import Executor class TestGaussianRandomOp(unittest.TestCase): + def setUp(self): + self.op_type = "gaussian_random" + self.inputs = {} + self.attrs = {"shape": [1000, 784], "mean": .0, "std": 1., "seed": 10} + + self.outputs = ["Out"] + def test_cpu(self): - self.gaussian_random_test(place=core.CPUPlace()) + self.gaussian_random_test(place=fluid.CPUPlace()) def test_gpu(self): if core.is_compile_gpu(): - self.gaussian_random_test(place=core.GPUPlace(0)) + self.gaussian_random_test(place=fluid.GPUPlace(0)) def gaussian_random_test(self, place): - scope = core.Scope() - scope.var('Out').get_tensor() - - op = Operator( - "gaussian_random", - Out='Out', - shape=[1000, 784], - mean=.0, - std=1., - seed=10) context = core.DeviceContext.create(place) - op.run(scope, context) - tensor = numpy.array(scope.find_var('Out').get_tensor()) + program = fluid.Program() + block = program.global_block() + vout = block.create_var(name="Out") + op = block.append_op( + type=self.op_type, outputs={"Out": vout}, attrs=self.attrs) + + op.desc.infer_var_type(block.desc) + op.desc.infer_shape(block.desc) + + fetch_list = [] + for var_name in self.outputs: + fetch_list.append(block.var(var_name)) + + exe = Executor(place) + outs = exe.run(program, fetch_list=fetch_list) + tensor = outs[0] + self.assertAlmostEqual(numpy.mean(tensor), .0, delta=0.1) self.assertAlmostEqual(numpy.std(tensor), 1., delta=0.1) diff --git a/python/paddle/v2/fluid/tests/test_hinge_loss_op.py b/python/paddle/v2/fluid/tests/test_hinge_loss_op.py new file mode 100644 index 0000000000000000000000000000000000000000..a8757a891faa01413dc6858451f1a988a3e030b5 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_hinge_loss_op.py @@ -0,0 +1,28 @@ +import unittest +import numpy as np +from op_test import OpTest + + +class TestHingeLossOp(OpTest): + def setUp(self): + self.op_type = 'hinge_loss' + samples_num = 64 + logits = np.random.uniform(-10, 10, (samples_num, 1)).astype('float32') + labels = np.random.randint(0, 2, (samples_num, 1)).astype('float32') + + self.inputs = { + 'Logits': logits, + 'Labels': labels, + } + loss = np.maximum(1.0 - (2 * labels - 1) * logits, 0) + self.outputs = {'Loss': loss} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['Logits'], 'Loss', max_relative_error=0.008) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_image_classification_layer.py b/python/paddle/v2/fluid/tests/test_image_classification_layer.py index 2fd609d4474e97ecd96adcd146f2f550e0772740..b621d1525e33693869e24e2bb233bc8e257b077f 100644 --- a/python/paddle/v2/fluid/tests/test_image_classification_layer.py +++ b/python/paddle/v2/fluid/tests/test_image_classification_layer.py @@ -5,12 +5,7 @@ import paddle.v2.fluid.nets as nets from paddle.v2.fluid.framework import Program -def conv_block(input, - num_filter, - groups, - dropouts, - main_program=None, - startup_program=None): +def conv_block(input, num_filter, groups, dropouts): return nets.img_conv_group( input=input, pool_size=2, @@ -20,90 +15,54 @@ def conv_block(input, conv_act='relu', conv_with_batchnorm=True, conv_batchnorm_drop_rate=dropouts, - pool_type='max', - main_program=main_program, - startup_program=startup_program) + pool_type='max') class TestLayer(unittest.TestCase): def test_batch_norm_layer(self): main_program = Program() startup_program = Program() - images = fluid.layers.data( - name='pixel', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program) - hidden1 = fluid.layers.batch_norm( - input=images, - main_program=main_program, - startup_program=startup_program) - hidden2 = fluid.layers.fc(input=hidden1, - size=128, - act='relu', - main_program=main_program) - hidden3 = fluid.layers.batch_norm( - input=hidden2, - main_program=main_program, - startup_program=startup_program) + with fluid.program_guard(main_program, startup_program): + images = fluid.layers.data( + name='pixel', shape=[3, 48, 48], dtype='float32') + hidden1 = fluid.layers.batch_norm(input=images) + hidden2 = fluid.layers.fc(input=hidden1, size=128, act='relu') + fluid.layers.batch_norm(input=hidden2) print str(main_program) def test_dropout_layer(self): main_program = Program() startup_program = Program() - images = fluid.layers.data( - name='pixel', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program) - fluid.layers.dropout( - x=images, - dropout_prob=0.5, - main_program=main_program, - startup_program=startup_program) + with fluid.program_guard(main_program, startup_program): + images = fluid.layers.data( + name='pixel', shape=[3, 48, 48], dtype='float32') + fluid.layers.dropout(x=images, dropout_prob=0.5) - # print str(main_program) + print str(main_program) def test_img_conv_group(self): main_program = Program() startup_program = Program() - images = fluid.layers.data( - name='pixel', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program, - startup_program=startup_program) - conv1 = conv_block(images, 64, 2, [0.3, 0], main_program, - startup_program) - conv2 = conv_block(conv1, 256, 3, [0.4, 0.4, 0], main_program, - startup_program) + with fluid.program_guard(main_program, startup_program): + images = fluid.layers.data( + name='pixel', shape=[3, 48, 48], dtype='float32') + conv1 = conv_block(images, 64, 2, [0.3, 0]) + conv_block(conv1, 256, 3, [0.4, 0.4, 0]) - # print str(main_program) + print str(main_program) def test_elementwise_add_with_act(self): main_program = Program() startup_program = Program() - image1 = fluid.layers.data( - name='pixel1', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program, - startup_program=startup_program) - image2 = fluid.layers.data( - name='pixel2', - shape=[3, 48, 48], - dtype='float32', - main_program=main_program, - startup_program=startup_program) - out = fluid.layers.elementwise_add( - x=image1, - y=image2, - act='relu', - main_program=main_program, - startup_program=startup_program) - # print(main_program) + with fluid.program_guard(main_program, startup_program): + image1 = fluid.layers.data( + name='pixel1', shape=[3, 48, 48], dtype='float32') + image2 = fluid.layers.data( + name='pixel2', shape=[3, 48, 48], dtype='float32') + fluid.layers.elementwise_add(x=image1, y=image2, act='relu') + print(main_program) if __name__ == '__main__': diff --git a/python/paddle/v2/fluid/tests/test_inference_model_io.py b/python/paddle/v2/fluid/tests/test_inference_model_io.py index 60aed62ead83dedbeb9438c431ec292558d88ce5..71ca3e6c105c4437470f8e9f596e723d879b65e4 100644 --- a/python/paddle/v2/fluid/tests/test_inference_model_io.py +++ b/python/paddle/v2/fluid/tests/test_inference_model_io.py @@ -6,7 +6,7 @@ import paddle.v2.fluid.core as core import paddle.v2.fluid.executor as executor import paddle.v2.fluid.layers as layers import paddle.v2.fluid.optimizer as optimizer -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, program_guard from paddle.v2.fluid.io import save_inference_model, load_inference_model @@ -16,35 +16,18 @@ class TestBook(unittest.TestCase): init_program = Program() program = Program() - x = layers.data( - name='x', - shape=[2], - dtype='float32', - main_program=program, - startup_program=init_program) - y = layers.data( - name='y', - shape=[1], - dtype='float32', - main_program=program, - startup_program=init_program) - - y_predict = layers.fc(input=x, - size=1, - act=None, - main_program=program, - startup_program=init_program) - - cost = layers.square_error_cost( - input=y_predict, - label=y, - main_program=program, - startup_program=init_program) - avg_cost = layers.mean( - x=cost, main_program=program, startup_program=init_program) - - sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) - sgd_optimizer.minimize(avg_cost, init_program) + + with program_guard(program, init_program): + x = layers.data(name='x', shape=[2], dtype='float32') + y = layers.data(name='y', shape=[1], dtype='float32') + + y_predict = layers.fc(input=x, size=1, act=None) + + cost = layers.square_error_cost(input=y_predict, label=y) + avg_cost = layers.mean(x=cost) + + sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001) + sgd_optimizer.minimize(avg_cost, init_program) place = core.CPUPlace() exe = executor.Executor(place) diff --git a/python/paddle/v2/fluid/tests/test_initializer.py b/python/paddle/v2/fluid/tests/test_initializer.py index 6c20203f8eca02b3f68ed2aa8664bed29551c070..3175010f48229d04421fc0068af0f0ed90e63af4 100644 --- a/python/paddle/v2/fluid/tests/test_initializer.py +++ b/python/paddle/v2/fluid/tests/test_initializer.py @@ -60,6 +60,29 @@ class TestUniformInitializer(unittest.TestCase): self.assertAlmostEqual(init_op.attr('max'), 1.0, delta=DELTA) self.assertEqual(init_op.attr('seed'), 0) + def test_uniform_initializer_random_seed(self): + """Test the uniform initializer with manually setting seed + """ + program = framework.Program() + program.random_seed = 123 + block = program.global_block() + block.create_parameter( + dtype="float32", + shape=[5, 10], + lod_level=0, + name="param", + initializer=initializer.UniformInitializer()) + block.create_parameter( + dtype="float32", + shape=[5, 10], + lod_level=0, + name="param", + initializer=initializer.UniformInitializer(seed=456)) + init_op = block.ops[1] + self.assertEqual(init_op.attr("seed"), 123) + init_op1 = block.ops[0] + self.assertEqual(init_op1.attr("seed"), 456) + def test_uniform_initializer(self): """Test uniform initializer with supplied attributes """ diff --git a/python/paddle/v2/fluid/tests/test_layers.py b/python/paddle/v2/fluid/tests/test_layers.py index a9d9d369c7377e8c758b7eea5aacdbfcee269f18..9d2dcca56dd1361b9e2448be9f1d5403f8ee17e3 100644 --- a/python/paddle/v2/fluid/tests/test_layers.py +++ b/python/paddle/v2/fluid/tests/test_layers.py @@ -4,6 +4,7 @@ import unittest import paddle.v2.fluid.layers as layers import paddle.v2.fluid.nets as nets from paddle.v2.fluid.framework import Program, program_guard +from paddle.v2.fluid.param_attr import ParamAttr class TestBook(unittest.TestCase): @@ -28,7 +29,10 @@ class TestBook(unittest.TestCase): label = layers.data(name='label', shape=[1], dtype='int32') hidden1 = layers.fc(input=images, size=128, act='relu') hidden2 = layers.fc(input=hidden1, size=64, act='relu') - predict = layers.fc(input=hidden2, size=10, act='softmax') + predict = layers.fc(input=[hidden2, hidden1], + size=10, + act='softmax', + param_attr=["sftmax.w1", "sftmax.w2"]) cost = layers.cross_entropy(input=predict, label=label) avg_cost = layers.mean(x=cost) self.assertIsNotNone(avg_cost) @@ -129,11 +133,21 @@ class TestBook(unittest.TestCase): def test_linear_chain_crf(self): program = Program() with program_guard(program, startup_program=Program()): + label_dict_len = 10 images = layers.data(name='pixel', shape=[784], dtype='float32') label = layers.data(name='label', shape=[1], dtype='int32') hidden = layers.fc(input=images, size=128) - crf = layers.linear_chain_crf(input=hidden, label=label) + crf = layers.linear_chain_crf( + input=hidden, label=label, param_attr=ParamAttr(name="crfw")) + crf_decode = layers.crf_decoding( + input=hidden, param_attr=ParamAttr(name="crfw")) + layers.chunk_eval( + input=crf_decode, + label=label, + chunk_scheme="IOB", + num_chunk_types=(label_dict_len - 1) / 2) self.assertNotEqual(crf, None) + self.assertNotEqual(crf_decode, None) print(str(program)) @@ -147,6 +161,41 @@ class TestBook(unittest.TestCase): x=dat, label=lbl)) print(str(program)) + def test_sequence_expand(self): + program = Program() + with program_guard(program): + x = layers.data(name='x', shape=[10], dtype='float32') + y = layers.data( + name='y', shape=[10, 20], dtype='float32', lod_level=1) + self.assertIsNotNone(layers.sequence_expand(x=x, y=y)) + print(str(program)) + + def test_lstm_unit(self): + program = Program() + with program_guard(program): + x_t_data = layers.data( + name='x_t_data', shape=[10, 10], dtype='float32') + x_t = layers.fc(input=x_t_data, size=10) + prev_hidden_data = layers.data( + name='prev_hidden_data', shape=[10, 20], dtype='float32') + prev_hidden = layers.fc(input=prev_hidden_data, size=20) + prev_cell_data = layers.data( + name='prev_cell', shape=[10, 30], dtype='float32') + prev_cell = layers.fc(input=prev_cell_data, size=30) + self.assertIsNotNone( + layers.lstm_unit( + x_t=x_t, hidden_t_prev=prev_hidden, cell_t_prev=prev_cell)) + print(str(program)) + + def test_sequence_softmax(self): + program = Program() + with program_guard(program): + seq_data = layers.data( + name='seq_data', shape=[10, 10], dtype='float32', lod_level=1) + seq = layers.fc(input=seq_data, size=20) + self.assertIsNotNone(layers.sequence_softmax(x=seq)) + print(str(program)) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py b/python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py index 0a916a55bc3d097e17fb504b0d6b2f2818f030c9..5fdabbcf889448114ac4e55e7944cb6c57ba5f3c 100644 --- a/python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py +++ b/python/paddle/v2/fluid/tests/test_lod_tensor_array_ops.py @@ -2,7 +2,7 @@ import unittest import paddle.v2.fluid.core as core import numpy import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, program_guard from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.backward import append_backward_ops @@ -118,16 +118,17 @@ class TestCPULoDTensorArrayOps(unittest.TestCase): def main(self, tensor, expect_array, expect_lod, expect_max_len, level=0): place = self.place() program = Program() - x = layers.data(name='x', shape=[10], main_program=program) - x.persistable = True - table = layers.lod_rank_table(x, level=level, main_program=program) - max_len = layers.max_sequence_len(table, main_program=program) - max_len.persistable = True - array = layers.lod_tensor_to_array(x, table, main_program=program) - array.persistable = True - - result = layers.array_to_lod_tensor(array, table, main_program=program) - result.persistable = True + with program_guard(program): + x = layers.data(name='x', shape=[10]) + x.persistable = True + table = layers.lod_rank_table(x, level=level) + max_len = layers.max_sequence_len(table) + max_len.persistable = True + array = layers.lod_tensor_to_array(x, table) + array.persistable = True + + result = layers.array_to_lod_tensor(array, table) + result.persistable = True exe = Executor(place) scope = core.Scope() exe.run(program, feed={'x': tensor}, scope=scope) @@ -160,19 +161,16 @@ class TestCPULoDTensorArrayOpGrad(unittest.TestCase): place = core.CPUPlace() program = Program() - x = layers.data( - name='x', - shape=[1], - dtype='float32', - main_program=program, - stop_gradient=False) - table = layers.lod_rank_table(x, level=0, main_program=program) - array = layers.lod_tensor_to_array(x, table, main_program=program) - result = layers.array_to_lod_tensor(array, table, main_program=program) + with program_guard(program): + x = layers.data( + name='x', shape=[1], dtype='float32', stop_gradient=False) + table = layers.lod_rank_table(x, level=0) + array = layers.lod_tensor_to_array(x, table) + result = layers.array_to_lod_tensor(array, table) - mean = layers.mean(x=result, main_program=program) + mean = layers.mean(x=result) - append_backward_ops(mean) + append_backward_ops(mean) tensor = core.LoDTensor() tensor.set(numpy.arange(10).reshape(10, 1).astype('float32'), place) diff --git a/python/paddle/v2/fluid/tests/test_lrn_op.py b/python/paddle/v2/fluid/tests/test_lrn_op.py index 7e34b3c91c16c440f12c51415c509400e1f315dc..9abb09e53a7af8eec69f9bd501c6883dd9df9930 100644 --- a/python/paddle/v2/fluid/tests/test_lrn_op.py +++ b/python/paddle/v2/fluid/tests/test_lrn_op.py @@ -23,7 +23,7 @@ class TestLRNOp(OpTest): start = -(self.n - 1) / 2 end = start + self.n - mid = np.empty((self.N, self.C, self.H, self.W), dtype=float) + mid = np.empty((self.N, self.C, self.H, self.W)).astype("float32") mid.fill(self.k) for m in range(0, self.N): for i in range(0, self.C): @@ -74,5 +74,4 @@ class TestLRNOp(OpTest): if __name__ == "__main__": - exit(0) # LRN grad implement wrong unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py b/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py index 50fcc4a72ddbd6d7a3d3b73434c6ac8de5a006e2..33558c6105442b169b2e26abc7f39e15b7fe7322 100644 --- a/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py +++ b/python/paddle/v2/fluid/tests/test_mnist_if_else_op.py @@ -1,5 +1,5 @@ import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, program_guard, default_main_program, default_startup_program from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.optimizer import MomentumOptimizer import paddle.v2.fluid.core as core @@ -10,44 +10,42 @@ import numpy as np class TestMNISTIfElseOp(unittest.TestCase): def test_raw_api(self): - kwargs = {'startup_program': Program(), 'main_program': Program()} - image = layers.data(name='x', shape=[784], dtype='float32', **kwargs) + prog = Program() + startup_prog = Program() + with program_guard(prog, startup_prog): + image = layers.data(name='x', shape=[784], dtype='float32') - label = layers.data(name='y', shape=[1], dtype='int64', **kwargs) + label = layers.data(name='y', shape=[1], dtype='int64') - limit = layers.fill_constant_batch_size_like( - input=label, dtype='int64', shape=[1], value=5.0, **kwargs) + limit = layers.fill_constant_batch_size_like( + input=label, dtype='int64', shape=[1], value=5.0) + cond = layers.less_than(x=label, y=limit) + true_image, false_image = layers.split_lod_tensor( + input=image, mask=cond) - cond = layers.less_than(x=label, y=limit, **kwargs) - true_image, false_image = layers.split_lod_tensor( - input=image, mask=cond, **kwargs) + true_out = layers.create_tensor(dtype='float32') + true_cond = layers.ConditionalBlock([true_image]) - true_out = layers.create_tensor(dtype='float32', **kwargs) - true_cond = layers.ConditionalBlock([true_image], **kwargs) + with true_cond.block(): + hidden = layers.fc(input=true_image, size=100, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + layers.assign(input=prob, output=true_out) - with true_cond.block(): - hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs) - prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) - layers.assign(input=prob, output=true_out, **kwargs) + false_out = layers.create_tensor(dtype='float32') + false_cond = layers.ConditionalBlock([false_image]) - false_out = layers.create_tensor(dtype='float32', **kwargs) - false_cond = layers.ConditionalBlock([false_image], **kwargs) + with false_cond.block(): + hidden = layers.fc(input=false_image, size=200, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + layers.assign(input=prob, output=false_out) - with false_cond.block(): - hidden = layers.fc(input=false_image, - size=200, - act='tanh', - **kwargs) - prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) - layers.assign(input=prob, output=false_out, **kwargs) + prob = layers.merge_lod_tensor( + in_true=true_out, in_false=false_out, mask=cond, x=image) + loss = layers.cross_entropy(input=prob, label=label) + avg_loss = layers.mean(x=loss) - prob = layers.merge_lod_tensor( - in_true=true_out, in_false=false_out, mask=cond, x=image, **kwargs) - loss = layers.cross_entropy(input=prob, label=label, **kwargs) - avg_loss = layers.mean(x=loss, **kwargs) - - optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) - optimizer.minimize(avg_loss, kwargs['startup_program']) + optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) + optimizer.minimize(avg_loss, startup_prog) train_reader = paddle.batch( paddle.reader.shuffle( @@ -57,7 +55,7 @@ class TestMNISTIfElseOp(unittest.TestCase): place = core.CPUPlace() exe = Executor(place) - exe.run(kwargs['startup_program']) + exe.run(startup_prog) PASS_NUM = 100 for pass_id in range(PASS_NUM): for data in train_reader(): @@ -65,7 +63,7 @@ class TestMNISTIfElseOp(unittest.TestCase): y_data = np.array(map(lambda x: x[1], data)).astype("int64") y_data = np.expand_dims(y_data, axis=1) - outs = exe.run(kwargs['main_program'], + outs = exe.run(prog, feed={'x': x_data, 'y': y_data}, fetch_list=[avg_loss]) @@ -75,39 +73,36 @@ class TestMNISTIfElseOp(unittest.TestCase): self.assertFalse(True) def test_ifelse(self): - kwargs = {'startup_program': Program(), 'main_program': Program()} - image = layers.data(name='x', shape=[784], dtype='float32', **kwargs) - - label = layers.data(name='y', shape=[1], dtype='int64', **kwargs) - - limit = layers.fill_constant_batch_size_like( - input=label, dtype='int64', shape=[1], value=5.0, **kwargs) - - cond = layers.less_than(x=label, y=limit, **kwargs) - - ie = layers.IfElse(cond, **kwargs) - - with ie.true_block(): - true_image = ie.input(image) - hidden = layers.fc(input=true_image, size=100, act='tanh', **kwargs) - prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) - ie.output(prob) - - with ie.false_block(): - false_image = ie.input(image) - hidden = layers.fc(input=false_image, - size=200, - act='tanh', - **kwargs) - prob = layers.fc(input=hidden, size=10, act='softmax', **kwargs) - ie.output(prob) - - prob = ie() - loss = layers.cross_entropy(input=prob[0], label=label, **kwargs) - avg_loss = layers.mean(x=loss, **kwargs) - - optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) - optimizer.minimize(avg_loss, kwargs['startup_program']) + prog = Program() + startup_prog = Program() + with program_guard(prog, startup_prog): + image = layers.data(name='x', shape=[784], dtype='float32') + + label = layers.data(name='y', shape=[1], dtype='int64') + + limit = layers.fill_constant_batch_size_like( + input=label, dtype='int64', shape=[1], value=5.0) + cond = layers.less_than(x=label, y=limit) + ie = layers.IfElse(cond) + + with ie.true_block(): + true_image = ie.input(image) + hidden = layers.fc(input=true_image, size=100, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + ie.output(prob) + + with ie.false_block(): + false_image = ie.input(image) + hidden = layers.fc(input=false_image, size=200, act='tanh') + prob = layers.fc(input=hidden, size=10, act='softmax') + ie.output(prob) + + prob = ie() + loss = layers.cross_entropy(input=prob[0], label=label) + avg_loss = layers.mean(x=loss) + + optimizer = MomentumOptimizer(learning_rate=0.001, momentum=0.9) + optimizer.minimize(avg_loss, startup_prog) train_reader = paddle.batch( paddle.reader.shuffle( paddle.dataset.mnist.train(), buf_size=8192), @@ -135,4 +130,5 @@ class TestMNISTIfElseOp(unittest.TestCase): if __name__ == '__main__': - unittest.main() + # temp disable if else unittest since it could be buggy. + exit(0) diff --git a/python/paddle/v2/fluid/tests/test_operator.py b/python/paddle/v2/fluid/tests/test_operator.py index 4aa022ef90159cd96eed4e4dbe30cf5d1e8a41a7..c059a2b88b1324935f871b6e9c11efd5652ddd65 100644 --- a/python/paddle/v2/fluid/tests/test_operator.py +++ b/python/paddle/v2/fluid/tests/test_operator.py @@ -1,6 +1,6 @@ import unittest + import paddle.v2.fluid.op as op -import paddle.v2.fluid.core as core import paddle.v2.fluid.proto.framework_pb2 as framework_pb2 diff --git a/python/paddle/v2/fluid/tests/test_optimizer.py b/python/paddle/v2/fluid/tests/test_optimizer.py index 2459dfd664300d405edb36c4ca906c1769b5e7d2..29694be58bce0eb41b05439da35ef07a542ef12a 100644 --- a/python/paddle/v2/fluid/tests/test_optimizer.py +++ b/python/paddle/v2/fluid/tests/test_optimizer.py @@ -27,7 +27,7 @@ class TestOptimizer(unittest.TestCase): block.append_op( type="mean", inputs={"X": mul_out}, outputs={"Out": mean_out}) sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.01) - opts = sgd_optimizer.minimize(mean_out, init_program) + opts, _ = sgd_optimizer.minimize(mean_out, init_program) self.assertEqual(len(opts), 1) sgd_op = opts[0] self.assertEqual(sgd_op.type, "sgd") @@ -57,7 +57,7 @@ class TestOptimizer(unittest.TestCase): learning_rate = 0.01 sgd_optimizer = optimizer.SGDOptimizer( learning_rate=learning_rate, global_step=global_step) - opts = sgd_optimizer.minimize(mean_out, init_program) + opts, _ = sgd_optimizer.minimize(mean_out, init_program) self.assertEqual(len(opts), 2) sgd_op = opts[0] self.assertEqual(sgd_op.type, "sgd") diff --git a/python/paddle/v2/fluid/tests/test_program.py b/python/paddle/v2/fluid/tests/test_program.py index 1a9313c68aab165d85ae29051faeacb4927ac2c9..447c746aacc1c9455d7a023bca625d548ab2638b 100644 --- a/python/paddle/v2/fluid/tests/test_program.py +++ b/python/paddle/v2/fluid/tests/test_program.py @@ -1,7 +1,7 @@ from __future__ import print_function import unittest -from paddle.v2.fluid.framework import Program, default_main_program +from paddle.v2.fluid.framework import Program, default_main_program, program_guard, grad_var_name import paddle.v2.fluid.layers as layers main_program = default_main_program() @@ -109,12 +109,10 @@ class TestProgram(unittest.TestCase): self.assertEqual(add_op.idx, 1) param_to_grad = prog.append_backward(mean_out, set()) - def grad_name(name): - return name + "@GRAD" - for var_name in ("mul.x", "mul.y", "mul.out", "add.y", "add.out", "mean.out"): - self.assertEqual(param_to_grad[var_name][0], grad_name(var_name)) + self.assertEqual(param_to_grad[var_name][0], + grad_var_name(var_name)) self.assertEqual(param_to_grad[var_name][1], 0) expect_ops = [ @@ -129,13 +127,10 @@ class TestProgram(unittest.TestCase): def test_program_clone_with_parameter(self): main_program = Program() startup_program = Program() - kwargs = { - 'main_program': main_program, - 'startup_program': startup_program - } - d = layers.data(name='x', shape=[784], dtype='float32', **kwargs) - hidden = layers.fc(input=d, size=100, **kwargs) - layers.fc(input=hidden, size=100, **kwargs) + with program_guard(main_program, startup_program): + d = layers.data(name='x', shape=[784], dtype='float32') + hidden = layers.fc(input=d, size=100) + layers.fc(input=hidden, size=100) new_program = main_program.clone() self.assertNotEqual(0, len(new_program.blocks[0].all_parameters())) diff --git a/python/paddle/v2/fluid/tests/test_recurrent_op.py b/python/paddle/v2/fluid/tests/test_recurrent_op.py index 694ff0d8dd794111aff51bb7d503a56b87514342..e38c763ddbcc5c8410f41d062c05499333a3ee55 100644 --- a/python/paddle/v2/fluid/tests/test_recurrent_op.py +++ b/python/paddle/v2/fluid/tests/test_recurrent_op.py @@ -1,7 +1,7 @@ import unittest import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, grad_var_name from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.backward import append_backward_ops import numpy as np @@ -164,7 +164,7 @@ class RecurrentOpTest1(unittest.TestCase): for x in self.data_field } fetch_list = [ - self.main_program.global_block().var(x + "@GRAD") + self.main_program.global_block().var(grad_var_name(x)) for x in self.data_field ] diff --git a/python/paddle/v2/fluid/tests/test_reduce_op.py b/python/paddle/v2/fluid/tests/test_reduce_op.py index 70359d60cbe656150877673c63e81eae92d8ab9a..a021d4dd91bb9cc1e5d85411b3813b966ef5b296 100644 --- a/python/paddle/v2/fluid/tests/test_reduce_op.py +++ b/python/paddle/v2/fluid/tests/test_reduce_op.py @@ -85,5 +85,19 @@ class Test1DReduce(OpTest): self.check_grad(['X'], 'Out') +class TestReduceAll(OpTest): + def setUp(self): + self.op_type = "reduce_sum" + self.inputs = {'X': np.random.random((5, 6, 2, 10)).astype("float32")} + self.attrs = {'reduce_all': True} + self.outputs = {'Out': self.inputs['X'].sum()} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out') + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_registry.py b/python/paddle/v2/fluid/tests/test_registry.py new file mode 100644 index 0000000000000000000000000000000000000000..f8328f31cf8203f5ea8af2c14417879616ccab71 --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_registry.py @@ -0,0 +1,22 @@ +import unittest +import warnings + +import paddle.v2.fluid as fluid +import paddle.v2.fluid.framework as framework +import paddle.v2.fluid.layers as layers +import paddle.v2.fluid.registry as registry + + +class TestRegistry(unittest.TestCase): + def test_registry_layer(self): + self.layer_type = "mean" + program = framework.Program() + + x = fluid.layers.data(name='X', shape=[10, 10], dtype='float32') + output = layers.mean(x) + place = fluid.CPUPlace() + exe = fluid.Executor(place) + + X = np.random.random((10, 10)).astype("float32") + mean_out = exe.run(program, feed={"X": X}, fetch_list=[output]) + self.assertAlmostEqual(np.mean(X), mean_out) diff --git a/python/paddle/v2/fluid/tests/test_reshape_op.py b/python/paddle/v2/fluid/tests/test_reshape_op.py index 16bb6bb2af67f7d32a2fafc1cb37412084ec0829..18ee3aece656276fec9671df9baf298b7fd3c9b1 100644 --- a/python/paddle/v2/fluid/tests/test_reshape_op.py +++ b/python/paddle/v2/fluid/tests/test_reshape_op.py @@ -17,5 +17,19 @@ class TestReshapeOp(OpTest): self.check_grad(["X"], "Out") +class TestReshapeOpDimInfer(OpTest): + def setUp(self): + self.op_type = "reshape" + self.inputs = {'X': np.random.random((10, 20)).astype("float32")} + self.attrs = {'shape': [4, -1, 5]} + self.outputs = {'Out': self.inputs['X'].reshape(self.attrs['shape'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(["X"], "Out") + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_row_conv_op.py b/python/paddle/v2/fluid/tests/test_row_conv_op.py new file mode 100644 index 0000000000000000000000000000000000000000..1ed86e23ac28a575cdc3388e9da547918eb8a1be --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_row_conv_op.py @@ -0,0 +1,95 @@ +import unittest +import numpy as np +from op_test import OpTest + + +def row_conv_forward(x, lod, wt): + out = np.zeros_like(x) + seq_info = lod[0] + num_sequences = len(seq_info) - 1 + context_length = wt.shape[0] + + for i in range(num_sequences): # loop over number of sequences + start = seq_info[i] + end = seq_info[i + 1] + curinput = x[start:end, :] + curoutput = out[start:end, :] + + cur_timesteps = end - start + for j in range(cur_timesteps): # loop over different timesteps + for k in range(context_length): + + if j + k >= cur_timesteps: + continue + curoutput[j, :] += curinput[j + k, :] * wt[k, :] + + return out + + +class TestRowConvOp1(OpTest): + def setUp(self): + + self.op_type = "row_conv" + lod = [[0, 2, 5, 7]] + T = lod[0][-1] + D = 16 + context_length = 2 + + x = np.random.random((T, D)).astype("float32") + wt = np.random.random((context_length, D)).astype("float32") + self.inputs = {'X': (x, lod), 'Filter': wt} + + out = row_conv_forward(x, lod, wt) + self.outputs = {'Out': (out, lod)} + + def test_check_output(self): + self.check_output() + + def test_check_grad_normal(self): + self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.05) + + def test_check_grad_ignore_x(self): + self.check_grad( + ['Filter'], 'Out', max_relative_error=0.05, no_grad_set=set('X')) + + def test_check_grad_ignore_wt(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.05, no_grad_set=set('Filter')) + + +class TestRowConvOp2(OpTest): + def setUp(self): + + self.op_type = "row_conv" + lod = [[0, 20, 50, 100]] + T = lod[0][-1] + D = 35 + context_length = 35 + + x = np.random.random((T, D)).astype("float32") + wt = np.random.random((context_length, D)).astype("float32") + self.inputs = {'X': (x, lod), 'Filter': wt} + + out = row_conv_forward(x, lod, wt) + self.outputs = {'Out': (out, lod)} + + def test_check_output(self): + self.check_output() + + #max_relative_error is increased from 0.05 to 0.06 as for higher + #dimensional input, the dX on CPU for some values has max_rel_error + #slightly more than 0.05 + def test_check_grad_normal(self): + self.check_grad(['X', 'Filter'], 'Out', max_relative_error=0.06) + + def test_check_grad_ignore_x(self): + self.check_grad( + ['Filter'], 'Out', max_relative_error=0.06, no_grad_set=set('X')) + + def test_check_grad_ignore_wt(self): + self.check_grad( + ['X'], 'Out', max_relative_error=0.06, no_grad_set=set('Filter')) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_seq_expand.py b/python/paddle/v2/fluid/tests/test_sequence_expand.py similarity index 89% rename from python/paddle/v2/fluid/tests/test_seq_expand.py rename to python/paddle/v2/fluid/tests/test_sequence_expand.py index ff17edd04bfd34ab8449a0ae05aacf66632dabc8..0f22612d3dbe483e4d5a8638636e44e172160156 100644 --- a/python/paddle/v2/fluid/tests/test_seq_expand.py +++ b/python/paddle/v2/fluid/tests/test_sequence_expand.py @@ -3,7 +3,7 @@ import numpy as np from op_test import OpTest -class TestSeqExpand(OpTest): +class TestSequenceExpand(OpTest): def set_data(self): x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32') y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32') @@ -21,7 +21,7 @@ class TestSeqExpand(OpTest): self.outputs = {'Out': out} def setUp(self): - self.op_type = 'seq_expand' + self.op_type = 'sequence_expand' self.set_data() self.compute() @@ -32,7 +32,7 @@ class TestSeqExpand(OpTest): self.check_grad(["X"], "Out") -class TestSeqExpandCase1(TestSeqExpand): +class TestSequenceExpandCase1(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32') x_lod = [[0, 2, 5]] @@ -41,7 +41,7 @@ class TestSeqExpandCase1(TestSeqExpand): self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} -class TestSeqExpandCase2(TestSeqExpand): +class TestSequenceExpandCase2(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32') x_lod = [[0, 1]] @@ -50,7 +50,7 @@ class TestSeqExpandCase2(TestSeqExpand): self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} -class TestSeqExpandCase3(TestSeqExpand): +class TestSequenceExpandCase3(TestSequenceExpand): def set_data(self): x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32') x_lod = [[0, 1, 2, 3, 4]] diff --git a/python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py b/python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py index f5da4e408f0a83dbf6da530b478e91bbf9cd5ab2..8cdd59ff3cc7deb57252fc5218d239f86016cb9c 100644 --- a/python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py +++ b/python/paddle/v2/fluid/tests/test_split_and_merge_lod_tensor_op.py @@ -2,7 +2,7 @@ import unittest import paddle.v2.fluid.core as core import numpy as np import paddle.v2.fluid.layers as layers -from paddle.v2.fluid.framework import Program +from paddle.v2.fluid.framework import Program, program_guard from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.backward import append_backward_ops @@ -75,26 +75,22 @@ class TestCPULoDTensorArrayOps(unittest.TestCase): level=0): place = self.place() program = Program() - x = layers.data(name='x', shape=[1], main_program=program) - x.persistable = True + with program_guard(program): + x = layers.data(name='x', shape=[1]) + x.persistable = True - y = layers.data(name='y', shape=[1], main_program=program) - y.persistable = True + y = layers.data(name='y', shape=[1]) + y.persistable = True - out_true, out_false = layers.split_lod_tensor( - input=x, mask=y, level=level, main_program=program) - out_true.persistable = True - out_false.persistable = True + out_true, out_false = layers.split_lod_tensor( + input=x, mask=y, level=level) + out_true.persistable = True + out_false.persistable = True - out = layers.merge_lod_tensor( - in_true=out_true, - in_false=out_false, - mask=y, - x=x, - level=level, - main_program=program) + out = layers.merge_lod_tensor( + in_true=out_true, in_false=out_false, mask=y, x=x, level=level) - out.persistable = True + out.persistable = True exe = Executor(place) scope = core.Scope() @@ -123,34 +119,21 @@ class TestCPUSplitMergeLoDTensorGrad(unittest.TestCase): def test_grad(self): place = core.CPUPlace() program = Program() + with program_guard(program): + x = layers.data( + name='x', shape=[1], dtype='float32', stop_gradient=False) + y = layers.data( + name='y', shape=[1], dtype='bool', stop_gradient=False) - x = layers.data( - name='x', - shape=[1], - dtype='float32', - main_program=program, - stop_gradient=False) - y = layers.data( - name='y', - shape=[1], - dtype='bool', - main_program=program, - stop_gradient=False) - - level = 0 - - out_true, out_false = layers.split_lod_tensor( - input=x, mask=y, level=level, main_program=program) - out = layers.merge_lod_tensor( - in_true=out_true, - in_false=out_false, - mask=y, - x=x, - level=level, - main_program=program) - mean = layers.mean(x=out, main_program=program) - - append_backward_ops(mean) + level = 0 + + out_true, out_false = layers.split_lod_tensor( + input=x, mask=y, level=level) + out = layers.merge_lod_tensor( + in_true=out_true, in_false=out_false, mask=y, x=x, level=level) + mean = layers.mean(x=out) + + append_backward_ops(mean) tensor = core.LoDTensor() tensor.set(np.arange(10).reshape(10, 1).astype('float32'), place) diff --git a/python/paddle/v2/fluid/tests/test_spp_op.py b/python/paddle/v2/fluid/tests/test_spp_op.py new file mode 100644 index 0000000000000000000000000000000000000000..007723f0e35ad194c427401337bc9b13756576de --- /dev/null +++ b/python/paddle/v2/fluid/tests/test_spp_op.py @@ -0,0 +1,68 @@ +import unittest +import numpy as np +from op_test import OpTest +from test_pool2d_op import max_pool2D_forward_naive +from test_pool2d_op import avg_pool2D_forward_naive + + +class TestSppOp(OpTest): + def setUp(self): + self.op_type = "spp" + self.init_test_case() + input = np.random.random(self.shape).astype("float32") + nsize, csize, hsize, wsize = input.shape + out_level_flatten = [] + for i in xrange(self.pyramid_height): + bins = np.power(2, i) + kernel_size = [0, 0] + padding = [0, 0] + kernel_size[0] = np.ceil(hsize / + bins.astype("double")).astype("int32") + padding[0] = ( + (kernel_size[0] * bins - hsize + 1) / 2).astype("int32") + + kernel_size[1] = np.ceil(wsize / + bins.astype("double")).astype("int32") + padding[1] = ( + (kernel_size[1] * bins - wsize + 1) / 2).astype("int32") + out_level = self.pool2D_forward_naive(input, kernel_size, + kernel_size, padding) + out_level_flatten.append( + out_level.reshape(nsize, bins * bins * csize)) + if i == 0: + output = out_level_flatten[i] + else: + output = np.concatenate((output, out_level_flatten[i]), 1) + # output = np.concatenate(out_level_flatten.tolist(), 0); + self.inputs = {'X': input.astype('float32'), } + self.attrs = { + 'pyramid_height': self.pyramid_height, + 'pooling_type': self.pool_type + } + + self.outputs = {'Out': output.astype('float32')} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + if self.pool_type != "avg": + self.check_grad(['X'], 'Out', max_relative_error=0.05) + + def init_test_case(self): + self.shape = [3, 2, 4, 4] + self.pyramid_height = 3 + self.pool2D_forward_naive = max_pool2D_forward_naive + self.pool_type = "max" + + +class TestCase2(TestSppOp): + def init_test_case(self): + self.shape = [3, 2, 4, 4] + self.pyramid_height = 3 + self.pool2D_forward_naive = avg_pool2D_forward_naive + self.pool_type = "avg" + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/fluid/tests/test_uniform_random_op.py b/python/paddle/v2/fluid/tests/test_uniform_random_op.py index f736dfb2e85552b321403c961da517f3b3efb100..00b4f196209a6414f1063a33c0e31093e33ca39d 100644 --- a/python/paddle/v2/fluid/tests/test_uniform_random_op.py +++ b/python/paddle/v2/fluid/tests/test_uniform_random_op.py @@ -1,32 +1,50 @@ import unittest +import numpy + from paddle.v2.fluid.op import Operator import paddle.v2.fluid.core as core -import numpy +import paddle.v2.fluid as fluid class TestUniformRandomOp(unittest.TestCase): - def test_uniform_random_cpu(self): + def setUp(self): + self.op_type = "uniform_random" + self.inputs = {} + self.attrs = { + "shape": [1000, 784], + "min": -5.0, + "max": 10.0, + "seed": 10 + } + self.outputs = ["Out"] + + def test_cpu(self): self.uniform_random_test(place=core.CPUPlace()) - def test_uniform_random_gpu(self): + def test_gpu(self): if core.is_compile_gpu(): self.uniform_random_test(place=core.GPUPlace(0)) def uniform_random_test(self, place): - scope = core.Scope() - scope.var('X').get_tensor() - - op = Operator( - "uniform_random", - Out='X', - shape=[1000, 784], - min=-5.0, - max=10.0, - seed=10) - - ctx = core.DeviceContext.create(place) - op.run(scope, ctx) - tensor = numpy.array(scope.find_var('X').get_tensor()) + context = core.DeviceContext.create(place) + program = fluid.Program() + block = program.global_block() + vout = block.create_var(name="Out") + op = block.append_op( + type=self.op_type, outputs={"Out": vout}, attrs=self.attrs) + + op.desc.infer_var_type(block.desc) + op.desc.infer_shape(block.desc) + + fetch_list = [] + for var_name in self.outputs: + fetch_list.append(block.var(var_name)) + + exe = fluid.Executor(place) + outs = exe.run(program, fetch_list=fetch_list) + + tensor = outs[0] + self.assertAlmostEqual(tensor.mean(), 2.5, delta=0.1) diff --git a/python/paddle/v2/parameters.py b/python/paddle/v2/parameters.py index bd97dc1199fedc8ac91c1c6086957e8cce88bdc4..7b7d1a1d1672802e0e91a857100604758683224e 100644 --- a/python/paddle/v2/parameters.py +++ b/python/paddle/v2/parameters.py @@ -383,19 +383,22 @@ class Parameters(object): params.deserialize(param_name, f) return params - def init_from_tar(self, f): + def init_from_tar(self, f, exclude_params=[]): """ Different from `from_tar`, this interface can be used to init partial network parameters from another saved model. :param f: the initialized model file. :type f: tar file + :param exclude_params: the names of parameters that should + not be initialized from the model file. + :type exclude_params: list of strings :return: Nothing. """ tar_param = Parameters.from_tar(f) for pname in tar_param.names(): - if pname in self.names(): + if pname in self.names() and pname not in exclude_params: self.set(pname, tar_param.get(pname)) diff --git a/python/paddle/v2/reader/decorator.py b/python/paddle/v2/reader/decorator.py index 45a4288751e37b99dd1005ec78f30a98044926ff..27c82c95f79e0a3e3129627bfa33d85e0d3cd862 100644 --- a/python/paddle/v2/reader/decorator.py +++ b/python/paddle/v2/reader/decorator.py @@ -14,13 +14,16 @@ __all__ = [ 'map_readers', 'buffered', 'compose', 'chain', 'shuffle', - 'ComposeNotAligned', 'firstn', 'xmap_readers' + 'ComposeNotAligned', 'firstn', 'xmap_readers', 'pipe_reader' ] +from threading import Thread +import subprocess + +from Queue import Queue import itertools import random -from Queue import Queue -from threading import Thread +import zlib def map_readers(func, *readers): @@ -323,3 +326,101 @@ def xmap_readers(mapper, reader, process_num, buffer_size, order=False): yield sample return xreader + + +def _buf2lines(buf, line_break="\n"): + # FIXME: line_break should be automatically configured. + lines = buf.split(line_break) + return lines[:-1], lines[-1] + + +def pipe_reader(left_cmd, + parser, + bufsize=8192, + file_type="plain", + cut_lines=True, + line_break="\n"): + """ + pipe_reader read data by stream from a command, take it's + stdout into a pipe buffer and redirect it to the parser to + parse, then yield data as your desired format. + + You can using standard linux command or call another program + to read data, from HDFS, Ceph, URL, AWS S3 etc: + + cmd = "hadoop fs -cat /path/to/some/file" + cmd = "cat sample_file.tar.gz" + cmd = "curl http://someurl" + cmd = "python print_s3_bucket.py" + + A sample parser: + + def sample_parser(lines): + # parse each line as one sample data, + # return a list of samples as batches. + ret = [] + for l in lines: + ret.append(l.split(" ")[1:5]) + return ret + + :param left_cmd: command to excute to get stdout from. + :type left_cmd: string + :param parser: parser function to parse lines of data. + if cut_lines is True, parser will receive list + of lines. + if cut_lines is False, parser will receive a + raw buffer each time. + parser should return a list of parsed values. + :type parser: callable + :param bufsize: the buffer size used for the stdout pipe. + :type bufsize: int + :param file_type: can be plain/gzip, stream buffer data type. + :type file_type: string + :param cut_lines: whether to pass lines instead of raw buffer + to the parser + :type cut_lines: bool + :param line_break: line break of the file, like \n or \r + :type line_break: string + + :return: the reader generator. + :rtype: callable + """ + if not isinstance(left_cmd, str): + raise TypeError("left_cmd must be a string") + if not callable(parser): + raise TypeError("parser must be a callable object") + + # TODO(typhoonzero): add a thread to read stderr + + # Always init a decompress object is better than + # create in the loop. + dec = zlib.decompressobj( + 32 + zlib.MAX_WBITS) # offset 32 to skip the header + + def reader(): + process = subprocess.Popen( + left_cmd.split(" "), bufsize=bufsize, stdout=subprocess.PIPE) + remained = "" + while True: + buff = process.stdout.read(bufsize) + if buff: + if file_type == "gzip": + decomp_buff = dec.decompress(buff) + elif file_type == "plain": + decomp_buff = buff + else: + raise TypeError("file_type %s is not allowed" % file_type) + + if cut_lines: + lines, remained = _buf2lines(''.join( + [remained, decomp_buff]), line_break) + parsed_list = parser(lines) + for ret in parsed_list: + yield ret + else: + for ret in parser(decomp_buff): + yield ret + else: + break + + return reader diff --git a/python/paddle/v2/reader/tests/decorator_test.py b/python/paddle/v2/reader/tests/decorator_test.py index 5a92951b100fa51ab6df7039d9c6b54d1f9d963e..06e14796daf27812b9aeb1e4b024f294c7609991 100644 --- a/python/paddle/v2/reader/tests/decorator_test.py +++ b/python/paddle/v2/reader/tests/decorator_test.py @@ -145,5 +145,35 @@ class TestXmap(unittest.TestCase): self.assertEqual(e, mapper(idx)) +class TestPipeReader(unittest.TestCase): + def test_pipe_reader(self): + def simple_parser(lines): + return lines + + import tempfile + + records = [str(i) for i in xrange(5)] + temp = tempfile.NamedTemporaryFile() + try: + with open(temp.name, 'w') as f: + for r in records: + f.write('%s\n' % r) + + cmd = "cat %s" % temp.name + reader = paddle.v2.reader.pipe_reader( + cmd, simple_parser, bufsize=128) + for i in xrange(4): + result = [] + for r in reader(): + result.append(r) + + for idx, e in enumerate(records): + print e, result[idx] + self.assertEqual(e, result[idx]) + finally: + # delete the temporary file + temp.close() + + if __name__ == '__main__': unittest.main() diff --git a/python/setup.py.in b/python/setup.py.in index fe91df10daf303bb14d1e5f28817984d261e0880..8396fb44cfcee28211b5d3db7684a4adce1fb1f6 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -1,8 +1,61 @@ from setuptools import setup, Distribution, Extension +import subprocess class BinaryDistribution(Distribution): def has_ext_modules(foo): return True +MAJOR = 0 +MINOR = 11 +PATCH = 0 +RC = 0 +ISTAGED = False + + + +def git_commit(): + try: + cmd = ['git', 'rev-parse', 'HEAD'] + git_commit = subprocess.Popen(cmd, stdout = subprocess.PIPE).communicate()[0].strip() + except: + git_commit = 'Unknown' + return git_commit + +def write_version_py(filename='paddle/version.py'): + cnt = ''' +# THIS FILE IS GENERATED FROM PADDLEPADDLE SETUP.PY +# +full_version = '%(major)d.%(minor)d.%(patch)d' +major = '%(major)d' +minor = '%(minor)d' +patch = '%(patch)d' +rc = '%(rc)d' +istaged = %(istaged)s +commit = '%(commit)s' + +def show(): + if istaged: + print 'full_version:', full_version + print 'major:', major + print 'minor:', minor + print 'patch:', patch + print 'rc:', rc + else: + print 'commit:', commit +''' + commit = git_commit() + with open(filename, 'w') as f: + f.write(cnt % { + 'major': MAJOR, + 'minor': MINOR, + 'patch': PATCH, + 'rc': RC, + 'version': '${PADDLE_VERSION}', + 'commit': commit, + 'istaged': ISTAGED}) + +write_version_py(filename='@PADDLE_SOURCE_DIR@/python/paddle/version.py') + + packages=['paddle', 'paddle.proto', 'paddle.trainer', @@ -15,13 +68,14 @@ packages=['paddle', 'paddle.v2.plot', 'paddle.v2.fluid', 'paddle.v2.fluid.proto', + 'paddle.v2.fluid.layers', 'py_paddle'] with open('@PADDLE_SOURCE_DIR@/python/requirements.txt') as f: setup_requires = f.read().splitlines() if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: - setup_requires+=["opencv-python"] + setup_requires+=['opencv-python'] # the prefix is sys.prefix which should always be usr paddle_bin_dir = 'opt/paddle/bin' @@ -36,7 +90,7 @@ paddle_rt_libs = ['${WARPCTC_LIBRARIES}'] if '${MKL_SHARED_LIBS}'!= '': paddle_rt_libs += '${MKL_SHARED_LIBS}'.split(';') -setup(name='paddlepaddle', +setup(name='${PACKAGE_NAME}', version='${PADDLE_VERSION}', description='Parallel Distributed Deep Learning', install_requires=setup_requires,