Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
98522dcb
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
98522dcb
编写于
3月 05, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
optimizer wmt14 dataset
上级
a4bd4147
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
174 addition
and
264 deletion
+174
-264
demo/seqToseq/api_train_v2.py
demo/seqToseq/api_train_v2.py
+95
-66
demo/seqToseq/seqToseq_net_v2.py
demo/seqToseq/seqToseq_net_v2.py
+0
-92
python/paddle/v2/dataset/wmt14.py
python/paddle/v2/dataset/wmt14.py
+79
-106
未找到文件。
demo/seqToseq/api_train_v2.py
浏览文件 @
98522dcb
import
os
import
paddle.v2
as
paddle
from
seqToseq_net_v2
import
seqToseq_net_v2
# Data Definiation.
# TODO:This code should be merged to dataset package.
data_dir
=
"./data/pre-wmt14"
src_lang_dict
=
os
.
path
.
join
(
data_dir
,
'src.dict'
)
trg_lang_dict
=
os
.
path
.
join
(
data_dir
,
'trg.dict'
)
source_dict_dim
=
len
(
open
(
src_lang_dict
,
"r"
).
readlines
())
target_dict_dim
=
len
(
open
(
trg_lang_dict
,
"r"
).
readlines
())
def
read_to_dict
(
dict_path
):
with
open
(
dict_path
,
"r"
)
as
fin
:
out_dict
=
{
line
.
strip
():
line_count
for
line_count
,
line
in
enumerate
(
fin
)
}
return
out_dict
src_dict
=
read_to_dict
(
src_lang_dict
)
trg_dict
=
read_to_dict
(
trg_lang_dict
)
train_list
=
os
.
path
.
join
(
data_dir
,
'train.list'
)
test_list
=
os
.
path
.
join
(
data_dir
,
'test.list'
)
UNK_IDX
=
2
START
=
"<s>"
END
=
"<e>"
def
_get_ids
(
s
,
dictionary
):
words
=
s
.
strip
().
split
()
return
[
dictionary
[
START
]]
+
\
[
dictionary
.
get
(
w
,
UNK_IDX
)
for
w
in
words
]
+
\
[
dictionary
[
END
]]
def
train_reader
(
file_name
):
def
reader
():
with
open
(
file_name
,
'r'
)
as
f
:
for
line_count
,
line
in
enumerate
(
f
):
line_split
=
line
.
strip
().
split
(
'
\t
'
)
if
len
(
line_split
)
!=
2
:
continue
src_seq
=
line_split
[
0
]
# one source sequence
src_ids
=
_get_ids
(
src_seq
,
src_dict
)
trg_seq
=
line_split
[
1
]
# one target sequence
trg_words
=
trg_seq
.
split
()
trg_ids
=
[
trg_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
trg_words
]
# remove sequence whose length > 80 in training mode
if
len
(
src_ids
)
>
80
or
len
(
trg_ids
)
>
80
:
continue
trg_ids_next
=
trg_ids
+
[
trg_dict
[
END
]]
trg_ids
=
[
trg_dict
[
START
]]
+
trg_ids
yield
src_ids
,
trg_ids
,
trg_ids_next
return
reader
def
seqToseq_net
(
source_dict_dim
,
target_dict_dim
):
### Network Architecture
word_vector_dim
=
512
# dimension of word vector
decoder_size
=
512
# dimension of hidden unit in GRU Decoder network
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
paddle
.
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
def
main
():
paddle
.
init
(
use_gpu
=
False
,
trainer_count
=
1
)
# source and target dict dim.
dict_size
=
30000
source_dict_dim
=
target_dict_dim
=
dict_size
# define network topology
cost
=
seqToseq_net
_v2
(
source_dict_dim
,
target_dict_dim
)
cost
=
seqToseq_net
(
source_dict_dim
,
target_dict_dim
)
parameters
=
paddle
.
parameters
.
create
(
cost
)
# define optimize method and trainer
...
...
@@ -85,10 +115,9 @@ def main():
'target_language_word'
:
1
,
'target_language_next_word'
:
2
}
wmt14_reader
=
paddle
.
reader
.
batched
(
paddle
.
reader
.
shuffle
(
train_reader
(
"data/pre-wmt14/train/train"
),
buf_size
=
8192
),
paddle
.
dataset
.
wmt14
.
train
(
dict_size
=
dict_size
),
buf_size
=
8192
),
batch_size
=
5
)
# define event_handler callback
...
...
demo/seqToseq/seqToseq_net_v2.py
已删除
100644 → 0
浏览文件 @
a4bd4147
import
paddle.v2
as
paddle
def
seqToseq_net_v2
(
source_dict_dim
,
target_dict_dim
):
### Network Architecture
word_vector_dim
=
512
# dimension of word vector
decoder_size
=
512
# dimension of hidden unit in GRU Decoder network
encoder_size
=
512
# dimension of hidden unit in GRU Encoder network
#### Encoder
src_word_id
=
paddle
.
layer
.
data
(
name
=
'source_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
source_dict_dim
))
src_embedding
=
paddle
.
layer
.
embedding
(
input
=
src_word_id
,
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_source_language_embedding'
))
src_forward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
)
src_backward
=
paddle
.
networks
.
simple_gru
(
input
=
src_embedding
,
size
=
encoder_size
,
reverse
=
True
)
encoded_vector
=
paddle
.
layer
.
concat
(
input
=
[
src_forward
,
src_backward
])
#### Decoder
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
)
as
encoded_proj
:
encoded_proj
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
encoded_vector
)
backward_first
=
paddle
.
layer
.
first_seq
(
input
=
src_backward
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
,
act
=
paddle
.
activation
.
Tanh
())
as
decoder_boot
:
decoder_boot
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
backward_first
)
def
gru_decoder_with_attention
(
enc_vec
,
enc_proj
,
current_word
):
decoder_mem
=
paddle
.
layer
.
memory
(
name
=
'gru_decoder'
,
size
=
decoder_size
,
boot_layer
=
decoder_boot
)
context
=
paddle
.
networks
.
simple_attention
(
encoded_sequence
=
enc_vec
,
encoded_proj
=
enc_proj
,
decoder_state
=
decoder_mem
)
with
paddle
.
layer
.
mixed
(
size
=
decoder_size
*
3
)
as
decoder_inputs
:
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
context
)
decoder_inputs
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
current_word
)
gru_step
=
paddle
.
layer
.
gru_step
(
name
=
'gru_decoder'
,
input
=
decoder_inputs
,
output_mem
=
decoder_mem
,
size
=
decoder_size
)
with
paddle
.
layer
.
mixed
(
size
=
target_dict_dim
,
bias_attr
=
True
,
act
=
paddle
.
activation
.
Softmax
())
as
out
:
out
+=
paddle
.
layer
.
full_matrix_projection
(
input
=
gru_step
)
return
out
decoder_group_name
=
"decoder_group"
group_input1
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_vector
,
is_seq
=
True
)
group_input2
=
paddle
.
layer
.
StaticInputV2
(
input
=
encoded_proj
,
is_seq
=
True
)
group_inputs
=
[
group_input1
,
group_input2
]
trg_embedding
=
paddle
.
layer
.
embedding
(
input
=
paddle
.
layer
.
data
(
name
=
'target_language_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
)),
size
=
word_vector_dim
,
param_attr
=
paddle
.
attr
.
ParamAttr
(
name
=
'_target_language_embedding'
))
group_inputs
.
append
(
trg_embedding
)
# For decoder equipped with attention mechanism, in training,
# target embeding (the groudtruth) is the data input,
# while encoded source sequence is accessed to as an unbounded memory.
# Here, the StaticInput defines a read-only memory
# for the recurrent_group.
decoder
=
paddle
.
layer
.
recurrent_group
(
name
=
decoder_group_name
,
step
=
gru_decoder_with_attention
,
input
=
group_inputs
)
lbl
=
paddle
.
layer
.
data
(
name
=
'target_language_next_word'
,
type
=
paddle
.
data_type
.
integer_value_sequence
(
target_dict_dim
))
cost
=
paddle
.
layer
.
classification_cost
(
input
=
decoder
,
label
=
lbl
)
return
cost
python/paddle/v2/dataset/wmt14.py
浏览文件 @
98522dcb
...
...
@@ -14,129 +14,102 @@
"""
wmt14 dataset
"""
import
paddle.v2.dataset.common
import
tarfile
import
os
import
os.path
import
itertools
import
tarfile
import
paddle.v2.dataset.common
from
wmt14_util
import
SeqToSeqDatasetCreater
__all__
=
[
'train'
,
'test'
,
'build_dict'
]
URL_DEV_TEST
=
'http://www-lium.univ-lemans.fr/~schwenk/cslm_joint_paper/data/dev+test.tgz'
MD5_DEV_TEST
=
'7d7897317ddd8ba0ae5c5fa7248d3ff5'
URL_TRAIN
=
'http://localhost:8000/train.tgz'
MD5_TRAIN
=
'72de99da2830ea5a3a2c4eb36092bbc7'
def
word_count
(
f
,
word_freq
=
None
):
add
=
paddle
.
v2
.
dataset
.
common
.
dict_add
if
word_freq
==
None
:
word_freq
=
{}
for
l
in
f
:
for
w
in
l
.
strip
().
split
():
add
(
word_freq
,
w
)
add
(
word_freq
,
'<s>'
)
add
(
word_freq
,
'<e>'
)
return
word_freq
def
get_word_dix
(
word_freq
):
TYPO_FREQ
=
50
word_freq
=
filter
(
lambda
x
:
x
[
1
]
>
TYPO_FREQ
,
word_freq
.
items
())
word_freq_sorted
=
sorted
(
word_freq
,
key
=
lambda
x
:
(
-
x
[
1
],
x
[
0
]))
words
,
_
=
list
(
zip
(
*
word_freq_sorted
))
word_idx
=
dict
(
zip
(
words
,
xrange
(
len
(
words
))))
word_idx
[
'<unk>'
]
=
len
(
words
)
return
word_idx
def
get_word_freq
(
train
,
dev
):
word_freq
=
word_count
(
train
,
word_count
(
dev
))
if
'<unk>'
in
word_freq
:
# remove <unk> for now, since we will set it as last index
del
word_freq
[
'<unk>'
]
return
word_freq
def
build_dict
():
base_dir
=
'./wmt14-data'
train_en_filename
=
base_dir
+
'/train/train.en'
train_fr_filename
=
base_dir
+
'/train/train.fr'
dev_en_filename
=
base_dir
+
'/dev/ntst1213.en'
dev_fr_filename
=
base_dir
+
'/dev/ntst1213.fr'
if
not
os
.
path
.
exists
(
train_en_filename
)
or
not
os
.
path
.
exists
(
train_fr_filename
):
URL_TRAIN
=
'http://localhost:8989/wmt14.tgz'
MD5_TRAIN
=
'7373473f86016f1f48037c9c340a2d5b'
START
=
"<s>"
END
=
"<e>"
UNK
=
"<unk>"
UNK_IDX
=
2
DEFAULT_DATA_DIR
=
"./data"
ORIGIN_DATA_DIR
=
"wmt14"
INNER_DATA_DIR
=
"pre-wmt14"
SRC_DICT
=
INNER_DATA_DIR
+
"/src.dict"
TRG_DICT
=
INNER_DATA_DIR
+
"/trg.dict"
TRAIN_FILE
=
INNER_DATA_DIR
+
"/train/train"
def
__process_data__
(
data_path
,
dict_size
=
None
):
downloaded_data
=
os
.
path
.
join
(
data_path
,
ORIGIN_DATA_DIR
)
if
not
os
.
path
.
exists
(
downloaded_data
):
# 1. download and extract tgz.
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL_TRAIN
,
'wmt14'
,
MD5_TRAIN
))
as
tf
:
tf
.
extractall
(
base_dir
)
if
not
os
.
path
.
exists
(
dev_en_filename
)
or
not
os
.
path
.
exists
(
dev_fr_filename
):
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL_DEV_TEST
,
'wmt14'
,
MD5_DEV_TEST
))
as
tf
:
tf
.
extractall
(
base_dir
)
f_en
=
open
(
train_en_filename
)
f_fr
=
open
(
train_fr_filename
)
f_en_dev
=
open
(
dev_en_filename
)
f_fr_dev
=
open
(
dev_fr_filename
)
word_freq_en
=
get_word_freq
(
f_en
,
f_en_dev
)
word_freq_fr
=
get_word_freq
(
f_fr
,
f_fr_dev
)
f_en
.
close
()
f_fr
.
close
()
f_en_dev
.
close
()
f_fr_dev
.
close
()
return
get_word_dix
(
word_freq_en
),
get_word_dix
(
word_freq_fr
)
def
reader_creator
(
directory
,
path_en
,
path_fr
,
URL
,
MD5
,
dict_en
,
dict_fr
):
def
reader
():
if
not
os
.
path
.
exists
(
path_en
)
or
not
os
.
path
.
exists
(
path_fr
):
with
tarfile
.
open
(
paddle
.
v2
.
dataset
.
common
.
download
(
URL
,
'wmt14'
,
MD5
))
as
tf
:
tf
.
extractall
(
directory
)
f_en
=
open
(
path_en
)
f_fr
=
open
(
path_fr
)
UNK_en
=
dict_en
[
'<unk>'
]
UNK_fr
=
dict_fr
[
'<unk>'
]
for
en
,
fr
in
itertools
.
izip
(
f_en
,
f_fr
):
src_ids
=
[
dict_en
.
get
(
w
,
UNK_en
)
for
w
in
en
.
strip
().
split
()]
tar_ids
=
[
dict_fr
.
get
(
w
,
UNK_fr
)
for
w
in
[
'<s>'
]
+
fr
.
strip
().
split
()
+
[
'<e>'
]
tf
.
extractall
(
data_path
)
# 2. process data file to intermediate format.
processed_data
=
os
.
path
.
join
(
data_path
,
INNER_DATA_DIR
)
if
not
os
.
path
.
exists
(
processed_data
):
dict_size
=
dict_size
or
-
1
data_creator
=
SeqToSeqDatasetCreater
(
downloaded_data
,
processed_data
)
data_creator
.
create_dataset
(
dict_size
,
mergeDict
=
False
)
def
__read_to_dict__
(
dict_path
,
count
):
with
open
(
dict_path
,
"r"
)
as
fin
:
out_dict
=
dict
()
for
line_count
,
line
in
enumerate
(
fin
):
if
line_count
<=
count
:
out_dict
[
line
.
strip
()]
=
line_count
else
:
break
return
out_dict
def
__reader__
(
file_name
,
src_dict
,
trg_dict
):
with
open
(
file_name
,
'r'
)
as
f
:
for
line_count
,
line
in
enumerate
(
f
):
line_split
=
line
.
strip
().
split
(
'
\t
'
)
if
len
(
line_split
)
!=
2
:
continue
src_seq
=
line_split
[
0
]
# one source sequence
src_words
=
src_seq
.
split
()
src_ids
=
[
src_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
[
START
]
+
src_words
+
[
END
]
]
trg_seq
=
line_split
[
1
]
# one target sequence
trg_words
=
trg_seq
.
split
()
trg_ids
=
[
trg_dict
.
get
(
w
,
UNK_IDX
)
for
w
in
trg_words
]
# remove sequence whose length > 80 in training mode
if
len
(
src_ids
)
==
0
or
len
(
tar_ids
)
<=
1
or
len
(
src_ids
)
>
80
or
len
(
tar_ids
)
>
80
:
if
len
(
src_ids
)
>
80
or
len
(
trg_ids
)
>
80
:
continue
trg_ids_next
=
trg_ids
+
[
trg_dict
[
END
]]
trg_ids
=
[
trg_dict
[
START
]]
+
trg_ids
yield
src_ids
,
trg_ids
,
trg_ids_next
yield
src_ids
,
tar_ids
[:
-
1
],
tar_ids
[
1
:]
f_en
.
close
()
f_fr
.
close
()
def
train
(
data_dir
=
None
,
dict_size
=
None
):
data_dir
=
data_dir
or
DEFAULT_DATA_DIR
__process_data__
(
data_dir
,
dict_size
)
src_lang_dict
=
os
.
path
.
join
(
data_dir
,
SRC_DICT
)
trg_lang_dict
=
os
.
path
.
join
(
data_dir
,
TRG_DICT
)
train_file_name
=
os
.
path
.
join
(
data_dir
,
TRAIN_FILE
)
return
reader
default_dict_size
=
len
(
open
(
src_lang_dict
,
"r"
).
readlines
())
if
dict_size
>
default_dict_size
:
raise
ValueError
(
"dict_dim should not be larger then the "
"length of word dict"
)
def
train
(
dict_en
,
dict_fr
):
directory
=
'./wmt14-data'
return
reader_creator
(
directory
,
directory
+
'/train/train.en'
,
directory
+
'/train/train.fr'
,
URL_TRAIN
,
MD5_TRAIN
,
dict_en
,
dict_fr
)
real_dict_dim
=
dict_size
or
default_dict_size
src_dict
=
__read_to_dict__
(
src_lang_dict
,
real_dict_dim
)
trg_dict
=
__read_to_dict__
(
trg_lang_dict
,
real_dict_dim
)
def
test
(
dict_en
,
dict_fr
):
directory
=
'./wmt14-data'
return
reader_creator
(
directory
,
directory
+
'/dev/ntst1213.en'
,
directory
+
'/dev/ntst1213.fr'
,
URL_DEV_TEST
,
MD5_DEV_TEST
,
dict_en
,
dict_fr
)
return
lambda
:
__reader__
(
train_file_name
,
src_dict
,
trg_dict
)
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录