提交 97cb5479 编写于 作者: C chengduoZH

change PE strategy

上级 303277f0
......@@ -37,20 +37,26 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
const std::string &loss_var_name,
const std::unordered_set<std::string> &params,
const std::vector<Scope *> &local_scopes,
platform::NCCLContextMap *nccl_ctxs, bool use_default_grad_scale)
platform::NCCLContextMap *nccl_ctxs, bool use_default_grad_scale,
bool balance_parameter_opt_between_cards)
: loss_var_name_(loss_var_name),
places_(places),
local_scopes_(local_scopes),
nccl_ctxs_(nccl_ctxs) {
nccl_ctxs_(nccl_ctxs),
balance_parameter_opt_between_cards_(
balance_parameter_opt_between_cards) {
#else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
const std::vector<platform::Place> &places,
const std::string &loss_var_name,
const std::unordered_set<std::string> &params,
const std::vector<Scope *> &local_scopes, bool use_default_grad_scale)
const std::vector<Scope *> &local_scopes, bool use_default_grad_scale,
bool balance_parameter_opt_between_cards)
: loss_var_name_(loss_var_name),
places_(places),
local_scopes_(local_scopes) {
local_scopes_(local_scopes),
balance_parameter_opt_between_cards_(
balance_parameter_opt_between_cards) {
#endif
for (auto &p : params) {
grad_names_.insert(GradVarName(p));
......@@ -124,6 +130,12 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
// Find "send" op first for split is in front of send.
OpDesc *send_op = GetSendOpDesc(program);
size_t cur_device_id = 0;
std::vector<std::unordered_set<std::string>> var_name_on_devices;
std::vector<std::unordered_set<std::string>> bcast_var_name_set;
var_name_on_devices.resize(places_.size());
bcast_var_name_set.resize(places_.size());
bool is_forwarding = true;
for (auto *op : program.Block(0).AllOps()) {
if (op->Type() == "send") {
......@@ -139,12 +151,27 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
}
is_forwarding = false;
} else {
int op_dev_id = GetOpDeviceID(var_name_on_devices, *op);
if (op_dev_id == -1) { // var on all device
CreateComputationalOps(&result, *op, places_.size());
} else {
CreateComputationalOp(&result, *op, op_dev_id);
for (auto &var_name : op->OutputArgumentNames()) {
var_name_on_devices[op_dev_id].emplace(var_name);
}
}
if (!is_forwarding && places_.size() > 1) {
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once.
for (auto &og : op->OutputArgumentNames()) {
if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
if (balance_parameter_opt_between_cards_) {
CreateReduceOp(&result, og, cur_device_id);
var_name_on_devices[cur_device_id].emplace(og);
bcast_var_name_set[cur_device_id].emplace(
og.substr(0, og.size() - strlen(kGradVarSuffix)));
cur_device_id = (cur_device_id + 1) % places_.size();
} else {
if (IsSparseGradient(var_types, og)) {
CreateReduceOp(&result, og, 0);
CreateBroadcastOp(&result, og, 0);
......@@ -156,7 +183,15 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
}
}
}
}
// Insert BCast Ops
for (size_t dev_id = 0; dev_id < bcast_var_name_set.size(); ++dev_id) {
auto &to_bcast_set = bcast_var_name_set[dev_id];
for (auto &bcast_name : to_bcast_set) {
CreateBroadcastOp(&result, bcast_name, dev_id);
}
}
/*
Dependency graph has been constructed. However, there are still data
harzaeds need to be handled.
......@@ -265,6 +300,26 @@ bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
return is_pg_once;
}
int MultiDevSSAGraphBuilder::GetOpDeviceID(
const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
const OpDesc &op) const {
if (!balance_parameter_opt_between_cards_) {
return -1;
}
int var_dev_id = -1;
for (auto &var_name : op.InputArgumentNames()) {
if (var_dev_id != -1) break;
for (size_t i = 0; i < var_name_on_devices.size(); ++i) {
if (var_name_on_devices[i].count(var_name)) {
var_dev_id = static_cast<int>(i);
break;
}
}
}
return var_dev_id;
}
void MultiDevSSAGraphBuilder::CreateScaleLossGradOp(SSAGraph *result) const {
for (size_t i = 0; i < places_.size(); ++i) {
// Insert ScaleCost OpHandle
......
......@@ -36,13 +36,15 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const std::unordered_set<std::string> &params,
const std::vector<Scope *> &local_scopes,
platform::NCCLContextMap *nccl_ctxs,
bool use_default_grad_scale);
bool use_default_grad_scale,
bool balance_parameter_opt_between_cards);
#else
MultiDevSSAGraphBuilder(const std::vector<platform::Place> &places,
const std::string &loss_var_name,
const std::unordered_set<std::string> &params,
const std::vector<Scope *> &local_scopes,
bool use_default_grad_scale);
bool use_default_grad_scale,
bool balance_parameter_opt_between_cards);
#endif
std::unique_ptr<SSAGraph> Build(const ProgramDesc &program) const override;
......@@ -60,6 +62,7 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
#ifdef PADDLE_WITH_CUDA
platform::NCCLContextMap *nccl_ctxs_;
#endif
bool balance_parameter_opt_between_cards_;
bool use_default_grad_scale_;
bool IsScaleLossOp(const OpDesc &op) const;
......@@ -84,6 +87,10 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const std::string &og,
std::unordered_set<std::string> *og_has_been_broadcast) const;
int GetOpDeviceID(
const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
const OpDesc &op) const;
void InsertNCCLAllReduceOp(SSAGraph *result, const std::string &og) const;
void CreateBroadcastOp(SSAGraph *result, const std::string &p_name,
......
......@@ -58,7 +58,7 @@ ParallelExecutor::ParallelExecutor(
const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay,
bool use_default_grad_scale)
bool use_default_grad_scale, bool balance_parameter_opt_between_cards)
: member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope;
......@@ -93,11 +93,12 @@ ParallelExecutor::ParallelExecutor(
#ifdef PADDLE_WITH_CUDA
details::MultiDevSSAGraphBuilder builder(
member_->places_, loss_var_name, params, member_->local_scopes_,
member_->nccl_ctxs_.get(), use_default_grad_scale);
member_->nccl_ctxs_.get(), use_default_grad_scale,
balance_parameter_opt_between_cards);
#else
details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
params, member_->local_scopes_,
use_default_grad_scale);
details::MultiDevSSAGraphBuilder builder(
member_->places_, loss_var_name, params, member_->local_scopes_,
use_default_grad_scale, balance_parameter_opt_between_cards);
#endif
auto graph = builder.Build(main_program);
......
......@@ -40,7 +40,8 @@ class ParallelExecutor {
const ProgramDesc& main_program,
const std::string& loss_var_name, Scope* scope,
const std::vector<Scope*>& local_scopes,
bool allow_op_delay, bool use_default_grad_scale);
bool allow_op_delay, bool use_default_grad_scale,
bool balance_parameter_opt_between_cards);
~ParallelExecutor();
......
......@@ -502,11 +502,13 @@ All parameter, weight, gradient are variables in Paddle.
const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, std::vector<Scope *> &local_scopes,
bool allow_op_delay, bool use_default_grad_scale) {
bool allow_op_delay, bool use_default_grad_scale,
bool balance_parameter_opt_between_cards) {
new (&self) ParallelExecutor(
num_threads, use_event, places, params, bcast_vars,
main_program, loss_var_name, scope, local_scopes,
allow_op_delay, use_default_grad_scale);
allow_op_delay, use_default_grad_scale,
balance_parameter_opt_between_cards);
})
.def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
......
......@@ -30,7 +30,8 @@ class ParallelExecutor(object):
num_threads=None,
allow_op_delay=False,
share_vars_from=None,
use_default_grad_scale=True):
use_default_grad_scale=True,
balance_parameter_opt_between_cards=False):
"""
ParallelExecutor can run program in parallel.
......@@ -51,6 +52,9 @@ class ParallelExecutor(object):
gradients of each device and scaled gradients would be
aggregated. Otherwise, a customized scale value should be fed
to the network.
balance_parameter_opt_between_cards(bool, default True): Whether
updating different gradients on different cards. Currently, it
is not recommended.
Returns:
A ParallelExecutor object.
......@@ -129,7 +133,8 @@ class ParallelExecutor(object):
scope,
local_scopes,
allow_op_delay,
use_default_grad_scale)
use_default_grad_scale,
balance_parameter_opt_between_cards)
self.scope = scope
......
......@@ -205,7 +205,8 @@ class TestParallelExecutorBase(unittest.TestCase):
allow_op_delay=False,
feed_dict=None,
seed=None,
use_parallel_executor=True):
use_parallel_executor=True,
balance_parameter_opt_between_cards=False):
def run_executor(exe, feed, fetch_list, program=None):
if isinstance(exe, fluid.ParallelExecutor):
res = exe.run(fetch_list=fetch_list, feed=feed)
......@@ -234,7 +235,11 @@ class TestParallelExecutorBase(unittest.TestCase):
if use_parallel_executor:
exe = fluid.ParallelExecutor(
True, loss_name=loss.name, allow_op_delay=allow_op_delay)
True,
loss_name=loss.name,
allow_op_delay=allow_op_delay,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
)
else:
exe = fluid.Executor(place=place)
......@@ -280,20 +285,27 @@ class TestMNIST(TestParallelExecutorBase):
fluid.recordio_writer.convert_reader_to_recordio_file(
'./mnist.recordio', reader, feeder)
def check_simple_fc_convergence(self):
def check_simple_fc_convergence(self, balance_parameter_opt_between_cards):
self.check_network_convergence(simple_fc_net)
self.check_network_convergence(simple_fc_net, allow_op_delay=True)
img = np.zeros(shape=[32, 784], dtype='float32')
label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence(
simple_fc_net, feed_dict={"image": img,
"label": label})
simple_fc_net,
feed_dict={"image": img,
"label": label},
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
)
def test_simple_fc(self):
self.check_simple_fc_convergence()
self.check_simple_fc_convergence(False)
def test_simple_fc_with_new_strategy(self):
self.check_simple_fc_convergence(True)
def check_simple_fc_parallel_accuracy(self):
def check_simple_fc_parallel_accuracy(self,
balance_parameter_opt_between_cards):
img = np.zeros(shape=[32, 784], dtype='float32')
label = np.ones(shape=[32, 1], dtype='int64')
single_first_loss, single_last_loss = self.check_network_convergence(
......@@ -307,7 +319,9 @@ class TestMNIST(TestParallelExecutorBase):
seed=1000,
feed_dict={"image": img,
"label": label},
use_parallel_executor=True)
use_parallel_executor=True,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
)
for p_f in parallel_first_loss:
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6)
......@@ -315,18 +329,28 @@ class TestMNIST(TestParallelExecutorBase):
self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6)
def test_simple_fc_parallel_accuracy(self):
self.check_simple_fc_parallel_accuracy()
self.check_simple_fc_parallel_accuracy(False)
def check_batchnorm_fc_convergence(self):
def test_simple_fc_parallel_accuracy_with_new_strategy(self):
self.check_simple_fc_parallel_accuracy(True)
def check_batchnorm_fc_convergence(self,
balance_parameter_opt_between_cards):
self.check_network_convergence(fc_with_batchnorm)
img = np.zeros(shape=[32, 784], dtype='float32')
label = np.ones(shape=[32, 1], dtype='int64')
self.check_network_convergence(
fc_with_batchnorm, feed_dict={"image": img,
"label": label})
fc_with_batchnorm,
feed_dict={"image": img,
"label": label},
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
)
def test_batchnorm_fc(self):
self.check_batchnorm_fc_convergence()
self.check_batchnorm_fc_convergence(False)
def test_batchnorm_fc_with_new_strategy(self):
self.check_batchnorm_fc_convergence(True)
class TestResnet(TestParallelExecutorBase):
......@@ -348,17 +372,22 @@ class TestResnet(TestParallelExecutorBase):
# fluid.recordio_writer.convert_reader_to_recordio_file(
# "./flowers.recordio", reader, feeder, compressor=fluid.core.RecordIOWriter.Compressor.NoCompress)
def check_resnet_convergence(self):
def check_resnet_convergence(self, balance_parameter_opt_between_cards):
import functools
batch_size = 2
self.check_network_convergence(
functools.partial(
SE_ResNeXt50Small, batch_size=batch_size),
iter=20,
batch_size=batch_size)
batch_size=batch_size,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
)
def test_resnet(self):
self.check_resnet_convergence()
self.check_resnet_convergence(False)
def test_resnet_with_new_strategy(self):
self.check_resnet_convergence(True)
class ModelHyperParams(object):
......@@ -519,7 +548,7 @@ class TestTransformer(TestParallelExecutorBase):
class ParallelExecutorTestingDuringTraining(unittest.TestCase):
def check_network_convergence(self):
def check_network_convergence(self, balance_parameter_opt_between_cards):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
......@@ -539,12 +568,18 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
feed_dict = {'image': image, 'label': label}
train_exe = fluid.ParallelExecutor(
use_cuda=True, loss_name=loss.name, main_program=main)
use_cuda=True,
loss_name=loss.name,
main_program=main,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
)
test_exe = fluid.ParallelExecutor(
use_cuda=True,
main_program=test_program,
share_vars_from=train_exe)
share_vars_from=train_exe,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
)
for i in xrange(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict)
......@@ -558,8 +593,11 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
"Train loss: " + str(train_loss) + "\n Test loss:" +
str(test_loss))
def test_parallel(self):
self.check_network_convergence()
def test_parallel_testing(self):
self.check_network_convergence(False)
def test_parallel_testing_with_new_strategy(self):
self.check_network_convergence(True)
import paddle.dataset.conll05 as conll05
......@@ -579,7 +617,7 @@ embedding_name = 'emb'
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
is_sparse, **ignored):
is_sparse, balance_parameter_opt_between_cards, **ignored):
# 8 features
predicate_embedding = fluid.layers.embedding(
input=predicate,
......@@ -648,7 +686,9 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
class TestCRFModel(unittest.TestCase):
def check_network_convergence(self, is_sparse):
def check_network_convergence(self,
is_sparse,
balance_parameter_opt_between_cards=False):
main = fluid.Program()
startup = fluid.Program()
with fluid.program_guard(main, startup):
......@@ -696,7 +736,11 @@ class TestCRFModel(unittest.TestCase):
exe = fluid.Executor(place)
exe.run(startup)
pe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
pe = fluid.ParallelExecutor(
use_cuda=True,
loss_name=avg_cost.name,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards
)
feeder = fluid.DataFeeder(
feed_list=[
......@@ -718,6 +762,14 @@ class TestCRFModel(unittest.TestCase):
def test_update_dense_parameter(self):
self.check_network_convergence(is_sparse=False)
def test_update_sparse_parameter_with_new_strategy(self):
self.check_network_convergence(
is_sparse=False, balance_parameter_opt_between_cards=True)
def test_update_dense_parameter_with_new_strategy(self):
self.check_network_convergence(
is_sparse=False, balance_parameter_opt_between_cards=True)
# test fetch all the variables of global_block
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册