Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
928418a9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
928418a9
编写于
5月 14, 2018
作者:
T
typhoonzero
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into gen_nccl_id_op
上级
5ae0c664
9923be5d
变更
40
显示空白变更内容
内联
并排
Showing
40 changed file
with
588 addition
and
227 deletion
+588
-227
doc/fluid/design/concepts/lod_tensor.md
doc/fluid/design/concepts/lod_tensor.md
+1
-1
paddle/fluid/framework/details/multi_devices_graph_builder.cc
...le/fluid/framework/details/multi_devices_graph_builder.cc
+64
-9
paddle/fluid/framework/details/multi_devices_graph_builder.h
paddle/fluid/framework/details/multi_devices_graph_builder.h
+9
-2
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+7
-5
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+1
-0
paddle/fluid/operators/CMakeLists.txt
paddle/fluid/operators/CMakeLists.txt
+5
-0
paddle/fluid/operators/detection/CMakeLists.txt
paddle/fluid/operators/detection/CMakeLists.txt
+29
-0
paddle/fluid/operators/detection/bipartite_match_op.cc
paddle/fluid/operators/detection/bipartite_match_op.cc
+0
-0
paddle/fluid/operators/detection/box_coder_op.cc
paddle/fluid/operators/detection/box_coder_op.cc
+1
-1
paddle/fluid/operators/detection/box_coder_op.cu
paddle/fluid/operators/detection/box_coder_op.cu
+1
-1
paddle/fluid/operators/detection/box_coder_op.h
paddle/fluid/operators/detection/box_coder_op.h
+0
-0
paddle/fluid/operators/detection/iou_similarity_op.cc
paddle/fluid/operators/detection/iou_similarity_op.cc
+1
-1
paddle/fluid/operators/detection/iou_similarity_op.cu
paddle/fluid/operators/detection/iou_similarity_op.cu
+1
-1
paddle/fluid/operators/detection/iou_similarity_op.h
paddle/fluid/operators/detection/iou_similarity_op.h
+0
-0
paddle/fluid/operators/detection/mine_hard_examples_op.cc
paddle/fluid/operators/detection/mine_hard_examples_op.cc
+0
-0
paddle/fluid/operators/detection/multiclass_nms_op.cc
paddle/fluid/operators/detection/multiclass_nms_op.cc
+0
-0
paddle/fluid/operators/detection/prior_box_op.cc
paddle/fluid/operators/detection/prior_box_op.cc
+1
-1
paddle/fluid/operators/detection/prior_box_op.cu
paddle/fluid/operators/detection/prior_box_op.cu
+1
-1
paddle/fluid/operators/detection/prior_box_op.h
paddle/fluid/operators/detection/prior_box_op.h
+0
-0
paddle/fluid/operators/detection/target_assign_op.cc
paddle/fluid/operators/detection/target_assign_op.cc
+1
-1
paddle/fluid/operators/detection/target_assign_op.cu
paddle/fluid/operators/detection/target_assign_op.cu
+1
-1
paddle/fluid/operators/detection/target_assign_op.h
paddle/fluid/operators/detection/target_assign_op.h
+0
-0
paddle/fluid/operators/gen_nccl_id_op.cc
paddle/fluid/operators/gen_nccl_id_op.cc
+3
-4
paddle/fluid/operators/math/blas_impl.cu.h
paddle/fluid/operators/math/blas_impl.cu.h
+15
-3
paddle/fluid/operators/math/blas_impl.h
paddle/fluid/operators/math/blas_impl.h
+3
-3
paddle/fluid/operators/math/math_function.cu
paddle/fluid/operators/math/math_function.cu
+4
-3
paddle/fluid/operators/matmul_op.cc
paddle/fluid/operators/matmul_op.cc
+44
-32
paddle/fluid/pybind/pybind.cc
paddle/fluid/pybind/pybind.cc
+4
-3
python/paddle/fluid/data_feeder.py
python/paddle/fluid/data_feeder.py
+58
-0
python/paddle/fluid/inferencer.py
python/paddle/fluid/inferencer.py
+32
-21
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+7
-3
python/paddle/fluid/parallel_executor.py
python/paddle/fluid/parallel_executor.py
+5
-0
python/paddle/fluid/tests/book/CMakeLists.txt
python/paddle/fluid/tests/book/CMakeLists.txt
+2
-0
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
+9
-0
python/paddle/fluid/tests/book/high-level-api/recognize_digits/CMakeLists.txt
...tests/book/high-level-api/recognize_digits/CMakeLists.txt
+7
-0
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
...-level-api/recognize_digits/test_recognize_digits_conv.py
+47
-30
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
...h-level-api/recognize_digits/test_recognize_digits_mlp.py
+46
-30
python/paddle/fluid/tests/book/high-level-api/word2vec/no_test_word2vec_new_api.py
.../book/high-level-api/word2vec/no_test_word2vec_new_api.py
+14
-14
python/paddle/fluid/tests/unittests/test_parallel_executor.py
...on/paddle/fluid/tests/unittests/test_parallel_executor.py
+113
-24
python/paddle/fluid/trainer.py
python/paddle/fluid/trainer.py
+51
-32
未找到文件。
doc/fluid/design/concepts/lod_tensor.md
浏览文件 @
928418a9
...
...
@@ -155,7 +155,7 @@ into offsets
3 2+3 4+5 1+9 2+10 3+12
```
so we know that the first sentence is from word 0 to word 3, and the second sentence from wor
k
3 to word 5.
so we know that the first sentence is from word 0 to word 3, and the second sentence from wor
d
3 to word 5.
Similarly, the lengths in the top level LoD
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.cc
浏览文件 @
928418a9
...
...
@@ -37,20 +37,26 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
platform
::
NCCLContextMap
*
nccl_ctxs
,
bool
use_default_grad_scale
)
platform
::
NCCLContextMap
*
nccl_ctxs
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
)
:
loss_var_name_
(
loss_var_name
),
places_
(
places
),
local_scopes_
(
local_scopes
),
nccl_ctxs_
(
nccl_ctxs
)
{
nccl_ctxs_
(
nccl_ctxs
),
balance_parameter_opt_between_cards_
(
balance_parameter_opt_between_cards
)
{
#else
MultiDevSSAGraphBuilder
::
MultiDevSSAGraphBuilder
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
use_default_grad_scale
)
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
)
:
loss_var_name_
(
loss_var_name
),
places_
(
places
),
local_scopes_
(
local_scopes
)
{
local_scopes_
(
local_scopes
),
balance_parameter_opt_between_cards_
(
balance_parameter_opt_between_cards
)
{
#endif
for
(
auto
&
p
:
params
)
{
grad_names_
.
insert
(
GradVarName
(
p
));
...
...
@@ -124,6 +130,12 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
// Find "send" op first for split is in front of send.
OpDesc
*
send_op
=
GetSendOpDesc
(
program
);
size_t
cur_device_id
=
0
;
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
var_name_on_devices
;
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
bcast_var_name_set
;
var_name_on_devices
.
resize
(
places_
.
size
());
bcast_var_name_set
.
resize
(
places_
.
size
());
bool
is_forwarding
=
true
;
for
(
auto
*
op
:
program
.
Block
(
0
).
AllOps
())
{
if
(
op
->
Type
()
==
"send"
)
{
...
...
@@ -139,12 +151,27 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
}
is_forwarding
=
false
;
}
else
{
int
op_dev_id
=
GetOpDeviceID
(
var_name_on_devices
,
*
op
);
if
(
op_dev_id
==
-
1
)
{
// var on all device
CreateComputationalOps
(
&
result
,
*
op
,
places_
.
size
());
}
else
{
CreateComputationalOp
(
&
result
,
*
op
,
op_dev_id
);
for
(
auto
&
var_name
:
op
->
OutputArgumentNames
())
{
var_name_on_devices
[
op_dev_id
].
emplace
(
var_name
);
}
}
if
(
!
is_forwarding
&&
places_
.
size
()
>
1
)
{
// Currently, we assume that once gradient is generated, it can be
// broadcast, and each gradient is only broadcast once.
for
(
auto
&
og
:
op
->
OutputArgumentNames
())
{
if
(
IsParameterGradientOnce
(
og
,
&
og_has_been_broadcast
))
{
if
(
balance_parameter_opt_between_cards_
)
{
CreateReduceOp
(
&
result
,
og
,
cur_device_id
);
var_name_on_devices
[
cur_device_id
].
emplace
(
og
);
bcast_var_name_set
[
cur_device_id
].
emplace
(
og
.
substr
(
0
,
og
.
size
()
-
strlen
(
kGradVarSuffix
)));
cur_device_id
=
(
cur_device_id
+
1
)
%
places_
.
size
();
}
else
{
if
(
IsSparseGradient
(
var_types
,
og
))
{
CreateReduceOp
(
&
result
,
og
,
0
);
CreateBroadcastOp
(
&
result
,
og
,
0
);
...
...
@@ -156,7 +183,15 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
}
}
}
}
// Insert BCast Ops
for
(
size_t
dev_id
=
0
;
dev_id
<
bcast_var_name_set
.
size
();
++
dev_id
)
{
auto
&
to_bcast_set
=
bcast_var_name_set
[
dev_id
];
for
(
auto
&
bcast_name
:
to_bcast_set
)
{
CreateBroadcastOp
(
&
result
,
bcast_name
,
dev_id
);
}
}
/*
Dependency graph has been constructed. However, there are still data
harzaeds need to be handled.
...
...
@@ -265,6 +300,26 @@ bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
return
is_pg_once
;
}
int
MultiDevSSAGraphBuilder
::
GetOpDeviceID
(
const
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
&
var_name_on_devices
,
const
OpDesc
&
op
)
const
{
if
(
!
balance_parameter_opt_between_cards_
)
{
return
-
1
;
}
int
var_dev_id
=
-
1
;
for
(
auto
&
var_name
:
op
.
InputArgumentNames
())
{
if
(
var_dev_id
!=
-
1
)
break
;
for
(
size_t
i
=
0
;
i
<
var_name_on_devices
.
size
();
++
i
)
{
if
(
var_name_on_devices
[
i
].
count
(
var_name
))
{
var_dev_id
=
static_cast
<
int
>
(
i
);
break
;
}
}
}
return
var_dev_id
;
}
void
MultiDevSSAGraphBuilder
::
CreateScaleLossGradOp
(
SSAGraph
*
result
)
const
{
for
(
size_t
i
=
0
;
i
<
places_
.
size
();
++
i
)
{
// Insert ScaleCost OpHandle
...
...
paddle/fluid/framework/details/multi_devices_graph_builder.h
浏览文件 @
928418a9
...
...
@@ -36,13 +36,15 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
platform
::
NCCLContextMap
*
nccl_ctxs
,
bool
use_default_grad_scale
);
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
);
#else
MultiDevSSAGraphBuilder
(
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
string
&
loss_var_name
,
const
std
::
unordered_set
<
std
::
string
>
&
params
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
use_default_grad_scale
);
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
);
#endif
std
::
unique_ptr
<
SSAGraph
>
Build
(
const
ProgramDesc
&
program
)
const
override
;
...
...
@@ -60,6 +62,7 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
#ifdef PADDLE_WITH_CUDA
platform
::
NCCLContextMap
*
nccl_ctxs_
;
#endif
bool
balance_parameter_opt_between_cards_
;
bool
use_default_grad_scale_
;
bool
IsScaleLossOp
(
const
OpDesc
&
op
)
const
;
...
...
@@ -84,6 +87,10 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const
std
::
string
&
og
,
std
::
unordered_set
<
std
::
string
>
*
og_has_been_broadcast
)
const
;
int
GetOpDeviceID
(
const
std
::
vector
<
std
::
unordered_set
<
std
::
string
>>
&
var_name_on_devices
,
const
OpDesc
&
op
)
const
;
void
InsertNCCLAllReduceOp
(
SSAGraph
*
result
,
const
std
::
string
&
og
)
const
;
void
CreateBroadcastOp
(
SSAGraph
*
result
,
const
std
::
string
&
p_name
,
...
...
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
928418a9
...
...
@@ -58,7 +58,8 @@ ParallelExecutor::ParallelExecutor(
const
std
::
unordered_set
<
std
::
string
>
&
bcast_vars
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
size_t
num_trainers
,
size_t
trainer_id
)
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
,
size_t
num_trainers
,
size_t
trainer_id
)
:
member_
(
new
ParallelExecutorPrivate
(
places
))
{
member_
->
global_scope_
=
scope
;
...
...
@@ -99,11 +100,12 @@ ParallelExecutor::ParallelExecutor(
#ifdef PADDLE_WITH_CUDA
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
member_
->
nccl_ctxs_
.
get
(),
use_default_grad_scale
);
member_
->
nccl_ctxs_
.
get
(),
use_default_grad_scale
,
balance_parameter_opt_between_cards
);
#else
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
use_default_grad_scale
);
details
::
MultiDevSSAGraphBuilder
builder
(
member_
->
places_
,
loss_var_name
,
params
,
member_
->
local_scopes_
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
);
#endif
auto
graph
=
builder
.
Build
(
main_program
);
...
...
paddle/fluid/framework/parallel_executor.h
浏览文件 @
928418a9
...
...
@@ -41,6 +41,7 @@ class ParallelExecutor {
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
const
std
::
vector
<
Scope
*>&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
bool
balance_parameter_opt_between_cards
,
size_t
num_trainers
=
0
,
size_t
trainer_id
=
0
);
~
ParallelExecutor
();
...
...
paddle/fluid/operators/CMakeLists.txt
浏览文件 @
928418a9
...
...
@@ -276,6 +276,11 @@ foreach(src ${READER_LIBRARY})
set
(
OP_LIBRARY
${
src
}
${
OP_LIBRARY
}
)
endforeach
()
add_subdirectory
(
detection
)
foreach
(
src
${
DETECTION_LIBRARY
}
)
set
(
OP_LIBRARY
${
src
}
${
OP_LIBRARY
}
)
endforeach
()
set
(
GLOB_OP_LIB
${
OP_LIBRARY
}
CACHE INTERNAL
"Global OP library"
)
cc_test
(
gather_test SRCS gather_test.cc DEPS tensor
)
...
...
paddle/fluid/operators/detection/CMakeLists.txt
0 → 100644
浏览文件 @
928418a9
set
(
LOCAL_DETECTION_LIBS
)
function
(
detection_library TARGET_NAME
)
set
(
oneValueArgs
""
)
set
(
multiValueArgs SRCS DEPS
)
set
(
options
""
)
set
(
common_deps op_registry
)
set
(
pybind_flag 0
)
cmake_parse_arguments
(
detection_library
"
${
options
}
"
"
${
oneValueArgs
}
"
"
${
multiValueArgs
}
"
${
ARGN
}
)
op_library
(
${
TARGET_NAME
}
SRCS
${
detection_library_SRCS
}
DEPS
${
common_deps
}
${
detection_library_DEPS
}
)
set
(
LOCAL_DETECTION_LIBS
${
TARGET_NAME
}
${
LOCAL_DETECTION_LIBS
}
PARENT_SCOPE
)
endfunction
()
detection_library
(
bipartite_match_op SRCS bipartite_match_op.cc
)
detection_library
(
box_coder_op SRCS box_coder_op.cc box_coder_op.cu
)
detection_library
(
iou_similarity_op SRCS iou_similarity_op.cc
iou_similarity_op.cu
)
detection_library
(
mine_hard_examples_op SRCS mine_hard_examples_op.cc
)
detection_library
(
multiclass_nms_op SRCS multiclass_nms_op.cc
)
detection_library
(
prior_box_op SRCS prior_box_op.cc prior_box_op.cu
)
detection_library
(
target_assign_op SRCS target_assign_op.cc
target_assign_op.cu
)
# Export local libraries to parent
set
(
DETECTION_LIBRARY
${
LOCAL_DETECTION_LIBS
}
PARENT_SCOPE
)
paddle/fluid/operators/bipartite_match_op.cc
→
paddle/fluid/operators/
detection/
bipartite_match_op.cc
浏览文件 @
928418a9
文件已移动
paddle/fluid/operators/box_coder_op.cc
→
paddle/fluid/operators/
detection/
box_coder_op.cc
浏览文件 @
928418a9
...
...
@@ -9,7 +9,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/box_coder_op.h"
#include "paddle/fluid/operators/
detection/
box_coder_op.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/box_coder_op.cu
→
paddle/fluid/operators/
detection/
box_coder_op.cu
浏览文件 @
928418a9
...
...
@@ -9,7 +9,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/box_coder_op.h"
#include "paddle/fluid/operators/
detection/
box_coder_op.h"
#include "paddle/fluid/platform/cuda_primitives.h"
namespace
paddle
{
...
...
paddle/fluid/operators/box_coder_op.h
→
paddle/fluid/operators/
detection/
box_coder_op.h
浏览文件 @
928418a9
文件已移动
paddle/fluid/operators/iou_similarity_op.cc
→
paddle/fluid/operators/
detection/
iou_similarity_op.cc
浏览文件 @
928418a9
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/iou_similarity_op.h"
#include "paddle/fluid/operators/
detection/
iou_similarity_op.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/iou_similarity_op.cu
→
paddle/fluid/operators/
detection/
iou_similarity_op.cu
浏览文件 @
928418a9
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/iou_similarity_op.h"
#include "paddle/fluid/operators/
detection/
iou_similarity_op.h"
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_CUDA_KERNEL
(
...
...
paddle/fluid/operators/iou_similarity_op.h
→
paddle/fluid/operators/
detection/
iou_similarity_op.h
浏览文件 @
928418a9
文件已移动
paddle/fluid/operators/mine_hard_examples_op.cc
→
paddle/fluid/operators/
detection/
mine_hard_examples_op.cc
浏览文件 @
928418a9
文件已移动
paddle/fluid/operators/multiclass_nms_op.cc
→
paddle/fluid/operators/
detection/
multiclass_nms_op.cc
浏览文件 @
928418a9
文件已移动
paddle/fluid/operators/prior_box_op.cc
→
paddle/fluid/operators/
detection/
prior_box_op.cc
浏览文件 @
928418a9
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/prior_box_op.h"
#include "paddle/fluid/operators/
detection/
prior_box_op.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/prior_box_op.cu
→
paddle/fluid/operators/
detection/
prior_box_op.cu
浏览文件 @
928418a9
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/prior_box_op.h"
#include "paddle/fluid/operators/
detection/
prior_box_op.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/prior_box_op.h
→
paddle/fluid/operators/
detection/
prior_box_op.h
浏览文件 @
928418a9
文件已移动
paddle/fluid/operators/target_assign_op.cc
→
paddle/fluid/operators/
detection/
target_assign_op.cc
浏览文件 @
928418a9
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/target_assign_op.h"
#include "paddle/fluid/operators/
detection/
target_assign_op.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/target_assign_op.cu
→
paddle/fluid/operators/
detection/
target_assign_op.cu
浏览文件 @
928418a9
...
...
@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/target_assign_op.h"
#include "paddle/fluid/operators/
detection/
target_assign_op.h"
namespace
paddle
{
namespace
operators
{
...
...
paddle/fluid/operators/target_assign_op.h
→
paddle/fluid/operators/
detection/
target_assign_op.h
浏览文件 @
928418a9
文件已移动
paddle/fluid/operators/gen_nccl_id_op.cc
浏览文件 @
928418a9
...
...
@@ -83,8 +83,8 @@ class GenNCCLIdOp : public framework::OperatorBase {
rpc_service_
->
SetProgram
(
&
empty_program
);
rpc_service_
->
SetExecutor
(
&
executor
);
s
erver_thread_
.
reset
(
new
std
::
thread
(
std
::
bind
(
&
detail
::
AsyncGRPCServer
::
RunSyncUpdate
,
rpc_service_
))
)
;
s
td
::
thread
server_
thread
(
std
::
bind
(
&
detail
::
AsyncGRPCServer
::
RunSyncUpdate
,
rpc_service_
));
rpc_service_
->
SetCond
(
0
);
VLOG
(
3
)
<<
"start getting nccl id from trainer 0..."
;
auto
recv
=
rpc_service_
->
Get
();
...
...
@@ -92,13 +92,12 @@ class GenNCCLIdOp : public framework::OperatorBase {
rpc_service_
->
ShutDown
();
VLOG
(
3
)
<<
"rpc server stopped"
;
// TODO(wuyi): reinit nccl communicators
server_thread
_
->
join
();
server_thread
.
join
();
delete
rpc_service_
;
}
protected:
mutable
detail
::
AsyncGRPCServer
*
rpc_service_
=
nullptr
;
mutable
std
::
shared_ptr
<
std
::
thread
>
server_thread_
;
};
class
GenNCCLIdOpMaker
:
public
framework
::
OpProtoAndCheckerMaker
{
...
...
paddle/fluid/operators/math/blas_impl.cu.h
浏览文件 @
928418a9
...
...
@@ -96,10 +96,22 @@ struct CUBlas<platform::float16> {
reinterpret_cast
<
__half
*>
(
C
),
ldc
));
}
template
<
typename
...
ARGS
>
static
void
GEMM_BATCH
(
ARGS
...
args
)
{
static
void
GEMM_BATCH
(
cublasHandle_t
handle
,
cublasOperation_t
transa
,
cublasOperation_t
transb
,
int
m
,
int
n
,
int
k
,
const
float16
*
alpha
,
const
float16
*
A
,
int
lda
,
long
long
int
strideA
,
const
float16
*
B
,
// NOLINT
int
ldb
,
long
long
int
strideB
,
// NOLINT
const
float16
*
beta
,
float16
*
C
,
int
ldc
,
long
long
int
strideC
,
// NOLINT
int
batchCount
)
{
#if CUDA_VERSION >= 8000
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasHgemmStridedBatched
(
args
...));
PADDLE_ENFORCE
(
platform
::
dynload
::
cublasHgemmStridedBatched
(
handle
,
transa
,
transb
,
m
,
n
,
k
,
reinterpret_cast
<
const
__half
*>
(
alpha
),
reinterpret_cast
<
const
__half
*>
(
A
),
lda
,
strideA
,
reinterpret_cast
<
const
__half
*>
(
B
),
ldb
,
strideB
,
reinterpret_cast
<
const
__half
*>
(
beta
),
reinterpret_cast
<
__half
*>
(
C
),
ldc
,
strideC
,
batchCount
));
#else
PADDLE_THROW
(
"HgemmStridedBatched is not supported on cuda <= 7.5"
);
#endif
...
...
paddle/fluid/operators/math/blas_impl.h
浏览文件 @
928418a9
...
...
@@ -172,9 +172,9 @@ void Blas<platform::CPUDeviceContext>::BatchedGEMM(
c_array
.
data
(),
&
ldc
,
1
/* group_count */
,
&
batchCount
);
#else
for
(
int
k
=
0
;
k
<
batchCount
;
++
k
)
{
const
float
*
Ak
=
&
A
[
k
*
strideA
];
const
float
*
Bk
=
&
B
[
k
*
strideB
];
float
*
Ck
=
&
C
[
k
*
M
*
N
];
auto
*
Ak
=
&
A
[
k
*
strideA
];
auto
*
Bk
=
&
B
[
k
*
strideB
];
auto
*
Ck
=
&
C
[
k
*
M
*
N
];
this
->
template
GEMM
<
T
>(
transA
,
transB
,
M
,
N
,
K
,
alpha
,
Ak
,
Bk
,
beta
,
Ck
);
}
#endif
...
...
paddle/fluid/operators/math/math_function.cu
浏览文件 @
928418a9
...
...
@@ -35,7 +35,8 @@ template struct SetConstant<platform::CUDADeviceContext, bool>;
#define DEFINE_GPU_TRANS(RANK) \
template struct Transpose<platform::CUDADeviceContext, float, RANK>; \
template struct Transpose<platform::CUDADeviceContext, double, RANK>;
template struct Transpose<platform::CUDADeviceContext, double, RANK>; \
template struct Transpose<platform::CUDADeviceContext, float16, RANK>;
DEFINE_GPU_TRANS
(
1
);
DEFINE_GPU_TRANS
(
2
);
...
...
paddle/fluid/operators/matmul_op.cc
浏览文件 @
928418a9
...
...
@@ -25,7 +25,7 @@ namespace operators {
* Get row matrix shape from a vector shape. If the rank of x_dim > 1, the
* original x_dim is returned.
*/
static
framework
::
DDim
RowMatrixFromVector
(
const
framework
::
DDim
&
x_dim
)
{
static
framework
::
DDim
RowMatrixFromVector
(
const
framework
::
DDim
&
x_dim
)
{
if
(
x_dim
.
size
()
>
1
)
{
return
x_dim
;
}
...
...
@@ -36,7 +36,7 @@ static framework::DDim RowMatrixFromVector(const framework::DDim& x_dim) {
* Get column matrix shape from a vector shape. If the ran of y_dim > 1, the
* original y_dim is returned.
*/
static
framework
::
DDim
ColumnMatrixFromVector
(
const
framework
::
DDim
&
y_dim
)
{
static
framework
::
DDim
ColumnMatrixFromVector
(
const
framework
::
DDim
&
y_dim
)
{
if
(
y_dim
.
size
()
>
1
)
{
return
y_dim
;
}
...
...
@@ -46,12 +46,12 @@ static framework::DDim ColumnMatrixFromVector(const framework::DDim& y_dim) {
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
x
=
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
&
x
=
detail
::
Ref
(
context
.
Input
<
framework
::
Tensor
>
(
"X"
),
"Cannot find X"
);
auto
&
y
=
auto
&
y
=
detail
::
Ref
(
context
.
Input
<
framework
::
Tensor
>
(
"Y"
),
"Cannot find Y"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out
=
context
.
Output
<
framework
::
Tensor
>
(
"Out"
);
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
...
...
@@ -65,7 +65,7 @@ class MatMulKernel : public framework::OpKernel<T> {
// Reshape a rank-3 tensor from P x M x N to (P * M) x N.
// Identity op if the tensor is not of rank 3.
static
framework
::
Tensor
FoldInitDims
(
const
framework
::
Tensor
&
input
)
{
static
framework
::
Tensor
FoldInitDims
(
const
framework
::
Tensor
&
input
)
{
auto
output
=
input
;
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
==
3
)
{
...
...
@@ -78,8 +78,8 @@ static framework::Tensor FoldInitDims(const framework::Tensor& input) {
// (Warning: This requires transposing data and writes into new memory.)
// Identity op if the tensor is not of rank 3.
template
<
typename
DeviceContext
,
typename
T
>
static
framework
::
Tensor
FoldHeadAndLastDims
(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
)
{
static
framework
::
Tensor
FoldHeadAndLastDims
(
const
DeviceContext
&
context
,
const
framework
::
Tensor
&
input
)
{
auto
in_dims
=
input
.
dims
();
if
(
in_dims
.
size
()
!=
3
)
{
return
input
;
...
...
@@ -102,7 +102,7 @@ static framework::Tensor FoldHeadAndLastDims(const DeviceContext& context,
* If transposed, `H,W` will be swapped.
*/
static
void
ReshapeTensorIntoMatrixSequence
(
framework
::
Tensor
*
x
,
const
math
::
MatDescriptor
&
descriptor
)
{
framework
::
Tensor
*
x
,
const
math
::
MatDescriptor
&
descriptor
)
{
int64_t
h
,
w
;
h
=
descriptor
.
height_
;
w
=
descriptor
.
width_
;
...
...
@@ -130,9 +130,9 @@ static void ReshapeTensorIntoMatrixSequence(
* If any of `X` and `Y` has batch size BatchSize, the out will have the
* BatchSize.
*/
static
void
ReshapeXYOutIntoMatrixSequence
(
framework
::
Tensor
*
x
,
framework
::
Tensor
*
y
,
framework
::
Tensor
*
out
,
bool
trans_x
,
static
void
ReshapeXYOutIntoMatrixSequence
(
framework
::
Tensor
*
x
,
framework
::
Tensor
*
y
,
framework
::
Tensor
*
out
,
bool
trans_x
,
bool
trans_y
)
{
auto
x_dim
=
RowMatrixFromVector
(
x
->
dims
());
auto
y_dim
=
ColumnMatrixFromVector
(
y
->
dims
());
...
...
@@ -177,10 +177,10 @@ static void ReshapeXYOutIntoMatrixSequence(framework::Tensor* x,
template
<
typename
DeviceContext
,
typename
T
>
class
MatMulGradKernel
:
public
framework
::
OpKernel
<
T
>
{
public:
void
MatMul
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
framework
::
Tensor
*
out
)
const
{
void
MatMul
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
framework
::
Tensor
*
out
)
const
{
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
context
);
auto
mat_dim_a
=
math
::
CreateMatrixDescriptor
(
a
.
dims
(),
0
,
trans_a
);
...
...
@@ -188,18 +188,18 @@ class MatMulGradKernel : public framework::OpKernel<T> {
blas
.
MatMul
(
a
,
mat_dim_a
,
b
,
mat_dim_b
,
T
(
1
),
out
,
T
(
0
));
}
void
CalcInputGrad
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
bool
is_fold_init_dims_a
,
const
framework
::
Tensor
&
b
,
void
CalcInputGrad
(
const
framework
::
ExecutionContext
&
context
,
const
framework
::
Tensor
&
a
,
bool
trans_a
,
bool
is_fold_init_dims_a
,
const
framework
::
Tensor
&
b
,
bool
trans_b
,
bool
is_fold_init_dims_b
,
framework
::
Tensor
*
out
)
const
{
framework
::
Tensor
*
out
)
const
{
if
(
out
==
nullptr
)
return
;
bool
need_combine
=
(
a
.
dims
().
size
()
==
3
||
b
.
dims
().
size
()
==
3
)
&&
out
->
dims
().
size
()
==
2
;
if
(
!
need_combine
)
{
MatMul
(
context
,
a
,
trans_a
,
b
,
trans_b
,
out
);
}
else
{
auto
&
ctx
=
context
.
template
device_context
<
DeviceContext
>();
auto
&
ctx
=
context
.
template
device_context
<
DeviceContext
>();
MatMul
(
context
,
is_fold_init_dims_a
?
FoldInitDims
(
a
)
:
FoldHeadAndLastDims
<
DeviceContext
,
T
>
(
ctx
,
a
),
...
...
@@ -210,13 +210,13 @@ class MatMulGradKernel : public framework::OpKernel<T> {
}
}
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
x
=
*
context
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
y
=
*
context
.
Input
<
framework
::
Tensor
>
(
"Y"
);
auto
dout
=
*
context
.
Input
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
dx
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
auto
*
dx
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
dy
=
context
.
Output
<
framework
::
Tensor
>
(
framework
::
GradVarName
(
"Y"
));
bool
transpose_x
=
context
.
Attr
<
bool
>
(
"transpose_X"
);
bool
transpose_y
=
context
.
Attr
<
bool
>
(
"transpose_Y"
);
...
...
@@ -269,7 +269,7 @@ class MatMulOp : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"X"
),
"Input(X) of MatMulOp should not be null."
);
PADDLE_ENFORCE
(
context
->
HasInput
(
"Y"
),
...
...
@@ -375,7 +375,7 @@ class MatMulOpGrad : public framework::OperatorWithKernel {
using
framework
::
OperatorWithKernel
::
OperatorWithKernel
;
protected:
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
void
InferShape
(
framework
::
InferShapeContext
*
context
)
const
override
{
PADDLE_ENFORCE
(
context
->
HasInput
(
"X"
),
"Input(X) should not be null"
);
PADDLE_ENFORCE
(
context
->
HasInput
(
"Y"
),
"Input(Y) should not be null"
);
PADDLE_ENFORCE
(
context
->
HasInput
(
framework
::
GradVarName
(
"Out"
)),
...
...
@@ -401,7 +401,7 @@ class MatMulOpGradMaker : public framework::SingleGradOpDescMaker {
protected:
std
::
unique_ptr
<
framework
::
OpDesc
>
Apply
()
const
override
{
auto
*
retv
=
new
framework
::
OpDesc
();
auto
*
retv
=
new
framework
::
OpDesc
();
retv
->
SetType
(
"matmul_grad"
);
retv
->
SetInput
(
"X"
,
Input
(
"X"
));
retv
->
SetInput
(
"Y"
,
Input
(
"Y"
));
...
...
@@ -420,15 +420,27 @@ REGISTER_OPERATOR(matmul, ops::MatMulOp, ops::MatMulOpMaker,
ops
::
MatMulOpGradMaker
);
REGISTER_OPERATOR
(
matmul_grad
,
ops
::
MatMulOpGrad
);
REGISTER_OP_CPU_KERNEL
(
matmul
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
matmul
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_CPU_KERNEL
(
matmul_grad
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
);
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
float
>
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
double
>
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CPUDeviceContext
,
paddle
::
platform
::
float16
>
);
#ifdef PADDLE_WITH_CUDA
REGISTER_OP_CUDA_KERNEL
(
matmul
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
matmul
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
MatMulKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
);
REGISTER_OP_CUDA_KERNEL
(
matmul_grad
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
);
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
float
>
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
double
>
,
ops
::
MatMulGradKernel
<
paddle
::
platform
::
CUDADeviceContext
,
paddle
::
platform
::
float16
>
);
#endif
paddle/fluid/pybind/pybind.cc
浏览文件 @
928418a9
...
...
@@ -503,12 +503,13 @@ All parameter, weight, gradient are variables in Paddle.
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
,
Scope
*
scope
,
std
::
vector
<
Scope
*>
&
local_scopes
,
bool
allow_op_delay
,
bool
use_default_grad_scale
,
size_t
num_trainers
,
size_t
trainer_id
)
{
bool
balance_parameter_opt_between_cards
,
size_t
num_trainers
,
size_t
trainer_id
)
{
new
(
&
self
)
ParallelExecutor
(
num_threads
,
use_event
,
places
,
params
,
bcast_vars
,
main_program
,
loss_var_name
,
scope
,
local_scopes
,
allow_op_delay
,
use_default_grad_scale
,
num_trainers
,
trainer_id
);
allow_op_delay
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
,
num_trainers
,
trainer_id
);
})
.
def
(
"bcast_params"
,
&
ParallelExecutor
::
BCastParamsToGPUs
)
// NOTE: even we return a vec<Scope*>* to Python use reference policy.
...
...
python/paddle/fluid/data_feeder.py
浏览文件 @
928418a9
...
...
@@ -16,6 +16,7 @@ from __future__ import print_function
import
core
import
numpy
import
six.moves
as
six
import
multiprocessing
from
framework
import
Variable
,
default_main_program
...
...
@@ -116,3 +117,60 @@ class DataFeeder(object):
for
each_name
,
each_converter
in
six
.
zip
(
self
.
feed_names
,
converter
):
ret_dict
[
each_name
]
=
each_converter
.
done
()
return
ret_dict
def
feed_parallel
(
self
,
iterable
,
num_places
=
None
):
if
isinstance
(
self
.
place
,
core
.
CUDAPlace
):
places
=
[
core
.
CUDAPlace
(
i
)
for
i
in
six
.
xrange
(
self
.
_get_number_of_places_
(
num_places
))
]
else
:
places
=
[
core
.
CPUPlace
()
for
_
in
six
.
xrange
(
self
.
_get_number_of_places_
(
num_places
))
]
if
len
(
iterable
)
!=
len
(
places
):
raise
ValueError
(
"feed_parallel takes multiple mini-batches. Each "
"mini-batch will be feed on each device. The "
"number of devices and number of mini-batches "
"must be same."
)
place
=
self
.
place
for
p
,
batch
in
six
.
zip
(
places
,
iterable
):
self
.
place
=
p
yield
self
.
feed
(
batch
)
self
.
place
=
place
def
_get_number_of_places_
(
self
,
num_places
):
if
num_places
is
not
None
:
return
int
(
num_places
)
elif
isinstance
(
self
.
place
,
core
.
CUDAPlace
):
return
core
.
get_cuda_device_count
()
else
:
return
multiprocessing
.
cpu_count
()
def
decorate_reader
(
self
,
reader
,
multi_devices
,
num_places
=
None
,
drop_last
=
True
):
def
__reader_creator__
():
if
not
multi_devices
:
for
item
in
reader
():
yield
self
.
feed
(
item
)
else
:
num
=
self
.
_get_number_of_places_
(
num_places
)
item
=
[]
for
batch
in
reader
():
item
.
append
(
batch
)
if
len
(
item
)
==
num
:
yield
list
(
self
.
feed_parallel
(
item
,
num
))
item
=
[]
if
not
drop_last
and
len
(
item
)
!=
0
:
raise
ValueError
(
"The data batch which cannot fit for devices will be "
"dropped is not implementation. Other strategies are "
"not implemented"
)
return
__reader_creator__
python/paddle/fluid/inferencer.py
浏览文件 @
928418a9
...
...
@@ -16,31 +16,42 @@ import core
import
framework
import
executor
import
io
from
trainer
import
check_and_get_place
__all__
=
[
'Inferencer'
,
]
class
Inferencer
(
object
):
def
__init__
(
self
,
network_func
,
param_path
=
None
,
place
=
None
):
# 1. we need to generate a framework.Program by calling
# network_func. Reference: fluid.program_guard in test_word2vec.py
# 2. move the default_main_program to self.program.
# 3. run the default_startup program.
# 4. load params from param_path into scope
def
__init__
(
self
,
param_path
,
place
=
None
):
"""
:param param_path: the path where the inference model is saved by fluid.io.save_inference_model
:param place: place to do the inference
"""
self
.
param_path
=
param_path
self
.
scope
=
core
.
Scope
()
self
.
place
=
place
self
.
startup_program
=
framework
.
Program
()
# TODO: generate the startup_program with network_func
exe
=
executor
.
Executor
(
place
)
exe
.
run
(
self
.
startup_program
,
scope
=
self
.
scope
)
if
param_path
:
self
.
exe
=
executor
.
Executor
(
check_and_get_place
(
place
))
with
executor
.
scope_guard
(
self
.
scope
):
# load params from param_path into scope
io
.
load_persistables
(
exe
,
dirname
=
param_path
)
def
infer
(
self
,
inputs
):
# run self.program
pass
[
self
.
inference_program
,
_
,
self
.
fetch_targets
]
=
io
.
load_inference_model
(
executor
=
self
.
exe
,
dirname
=
param_path
)
def
infer
(
self
,
inputs
,
return_numpy
=
True
):
"""
:param inputs: a map of {"input_name": input_var} that will be feed into the inference program
to get the predict value
:param return_numpy: if return numpy value for row tensor
:return: the predict value of the inference model
"""
if
not
isinstance
(
inputs
,
dict
):
raise
ValueError
(
"inputs should be a map of {'input_name': input_var}"
)
with
executor
.
scope_guard
(
self
.
scope
):
results
=
self
.
exe
.
run
(
self
.
inference_program
,
feed
=
inputs
,
fetch_list
=
self
.
fetch_targets
,
return_numpy
=
return_numpy
)
return
results
python/paddle/fluid/io.py
浏览文件 @
928418a9
...
...
@@ -263,6 +263,9 @@ def get_inference_program(target_vars, main_program=None):
def
prepend_feed_ops
(
inference_program
,
feed_target_names
,
feed_holder_name
=
'feed'
):
if
len
(
feed_target_names
)
==
0
:
return
global_block
=
inference_program
.
global_block
()
feed_var
=
global_block
.
create_var
(
name
=
feed_holder_name
,
...
...
@@ -323,6 +326,7 @@ def save_inference_model(dirname,
if
isinstance
(
feeded_var_names
,
basestring
):
feeded_var_names
=
[
feeded_var_names
]
else
:
if
len
(
feeded_var_names
)
>
0
:
if
not
(
bool
(
feeded_var_names
)
and
all
(
isinstance
(
name
,
basestring
)
for
name
in
feeded_var_names
)):
raise
ValueError
(
"'feed_var_names' should be a list of str."
)
...
...
python/paddle/fluid/parallel_executor.py
浏览文件 @
928418a9
...
...
@@ -31,6 +31,7 @@ class ParallelExecutor(object):
allow_op_delay
=
False
,
share_vars_from
=
None
,
use_default_grad_scale
=
True
,
balance_parameter_opt_between_cards
=
False
,
num_trainers
=
0
,
trainer_id
=
0
):
"""
...
...
@@ -53,6 +54,9 @@ class ParallelExecutor(object):
gradients of each device and scaled gradients would be
aggregated. Otherwise, a customized scale value should be fed
to the network.
balance_parameter_opt_between_cards(bool, default True): Whether
updating different gradients on different cards. Currently, it
is not recommended.
num_trainers(int, default 0): If greater than 0, NCCL will be
initialized with multpile rank of nodes, each node should have
same number of GPUs. Distributed training will be enabled then.
...
...
@@ -137,6 +141,7 @@ class ParallelExecutor(object):
local_scopes
,
allow_op_delay
,
use_default_grad_scale
,
balance_parameter_opt_between_cards
,
num_trainers
,
trainer_id
)
self
.
scope
=
scope
...
...
python/paddle/fluid/tests/book/CMakeLists.txt
浏览文件 @
928418a9
...
...
@@ -5,3 +5,5 @@ string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
add_subdirectory
(
high-level-api
)
python/paddle/fluid/tests/book/high-level-api/CMakeLists.txt
0 → 100644
浏览文件 @
928418a9
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
# default test
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
add_subdirectory
(
recognize_digits
)
python/paddle/fluid/tests/book/high-level-api/recognize_digits/CMakeLists.txt
0 → 100644
浏览文件 @
928418a9
file
(
GLOB TEST_OPS RELATIVE
"
${
CMAKE_CURRENT_SOURCE_DIR
}
"
"test_*.py"
)
string
(
REPLACE
".py"
""
TEST_OPS
"
${
TEST_OPS
}
"
)
# default test
foreach
(
src
${
TEST_OPS
}
)
py_test
(
${
src
}
SRCS
${
src
}
.py
)
endforeach
()
python/paddle/fluid/tests/book/high-level-api/recognize_digits/
no
test_recognize_digits_conv.py
→
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_conv.py
浏览文件 @
928418a9
...
...
@@ -21,7 +21,6 @@ import unittest
import
math
import
sys
import
os
import
paddle.v2.dataset
as
dataset
BATCH_SIZE
=
64
...
...
@@ -54,47 +53,65 @@ def train_program():
predict
=
inference_program
()
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
avg_cost
,
acc
# acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc
return
avg_cost
def
train
(
use_cuda
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_program
,
place
=
place
,
optimizer
=
optimizer
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
infer_func
=
inference_program
,
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndIteration
):
avg_cost
,
acc
=
event
.
values
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
(
event
.
batch_id
+
1
)
%
10
==
0
:
test_metrics
=
trainer
.
test
(
reader
=
dataset
.
mnist
.
test
())
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
batch_id
+
1
,
float
(
avg_cost
),
float
(
acc
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
# if (event.epoch + 1) % 10 == 0:
# trainer.save_params(save_dirname)
trainer
.
save_inference_model
(
save_dirname
)
# TODO: Uncomment this part once we are sure that .train is working
# test_reader = paddle.batch(
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0]
# acc_set = test_metrics[1]
#
# # get test acc and loss
# acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
#
# print("avg_cost: %s" % avg_cost)
# print("acc : %s" % acc)
#
# if float(acc) > 0.2: # Smaller value to increase CI speed
# trainer.save_params(save_dirname)
# else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
trainer
.
train
(
reader
=
dataset
.
mnist
.
train
(),
num_pass
=
100
,
event_handler
=
event_handler
)
num_epochs
=
1
,
event_handler
=
event_handler
,
reader
=
train_reader
,
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -114,5 +131,5 @@ def main(use_cuda):
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
)
#
for use_cuda in (False, True):
main
(
use_cuda
=
False
)
python/paddle/fluid/tests/book/high-level-api/recognize_digits/
no
test_recognize_digits_mlp.py
→
python/paddle/fluid/tests/book/high-level-api/recognize_digits/test_recognize_digits_mlp.py
浏览文件 @
928418a9
...
...
@@ -21,7 +21,6 @@ import unittest
import
math
import
sys
import
os
import
paddle.v2.dataset
as
dataset
BATCH_SIZE
=
64
...
...
@@ -41,47 +40,64 @@ def train_program():
predict
=
inference_program
()
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
cost
)
acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
)
return
avg_cost
,
acc
# acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc
return
avg_cost
def
train
(
use_cuda
,
save_dirname
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
optimizer
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
0.001
)
trainer
=
fluid
.
Trainer
(
train_program
,
place
=
place
,
optimizer
=
optimizer
)
trainer
=
fluid
.
Trainer
(
train_func
=
train_program
,
infer_func
=
inference_program
,
place
=
place
,
optimizer
=
optimizer
)
def
event_handler
(
event
):
if
isinstance
(
event
,
fluid
.
EndIteration
):
avg_cost
,
acc
=
event
.
values
print
(
"avg_cost: %s"
%
avg_cost
)
print
(
"acc : %s"
%
acc
)
if
(
event
.
batch_id
+
1
)
%
10
==
0
:
test_metrics
=
trainer
.
test
(
reader
=
dataset
.
mnist
.
test
())
avg_cost_set
=
test_metrics
[
0
]
acc_set
=
test_metrics
[
1
]
# get test acc and loss
acc
=
numpy
.
array
(
acc_set
).
mean
()
avg_cost
=
numpy
.
array
(
avg_cost_set
).
mean
()
if
float
(
acc
)
>
0.2
:
# Smaller value to increase CI speed
trainer
.
save_params
(
save_dirname
)
else
:
print
(
'BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'
.
format
(
event
.
batch_id
+
1
,
float
(
avg_cost
),
float
(
acc
)))
if
math
.
isnan
(
float
(
avg_cost
)):
sys
.
exit
(
"got NaN loss, training failed."
)
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
# if (event.epoch + 1) % 10 == 0:
trainer
.
save_inference_model
(
save_dirname
)
# TODO: Uncomment this part once we are sure that .train is working
# test_reader = paddle.batch(
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0]
# acc_set = test_metrics[1]
#
# # get test acc and loss
# acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
#
# print("avg_cost: %s" % avg_cost)
# print("acc : %s" % acc)
#
# if float(acc) > 0.2: # Smaller value to increase CI speed
# trainer.save_params(save_dirname)
# else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
train_reader
=
paddle
.
batch
(
paddle
.
reader
.
shuffle
(
paddle
.
dataset
.
mnist
.
train
(),
buf_size
=
500
),
batch_size
=
BATCH_SIZE
)
trainer
.
train
(
reader
=
dataset
.
mnist
.
train
(),
num_pass
=
100
,
event_handler
=
event_handler
)
num_epochs
=
1
,
event_handler
=
event_handler
,
reader
=
train_reader
,
feed_order
=
[
'img'
,
'label'
])
def
infer
(
use_cuda
,
save_dirname
=
None
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
inference_program
,
param_path
=
save_dirname
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_dirname
,
place
=
place
)
batch_size
=
1
tensor_img
=
numpy
.
random
.
uniform
(
-
1.0
,
1.0
,
...
...
@@ -101,5 +117,5 @@ def main(use_cuda):
if
__name__
==
'__main__'
:
for
use_cuda
in
(
False
,
True
):
main
(
use_cuda
=
use_cuda
)
#
for use_cuda in (False, True):
main
(
use_cuda
=
False
)
python/paddle/fluid/tests/book/high-level-api/word2vec/no_test_word2vec_new_api.py
浏览文件 @
928418a9
...
...
@@ -99,45 +99,45 @@ def train(use_cuda, is_sparse, save_path):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
def
event_handler
(
event
):
# print type(event)
if
isinstance
(
event
,
fluid
.
EndEpochEvent
):
outs
=
trainer
.
test
(
reader
=
test_reader
)
avg_cost
=
outs
[
0
]
print
(
"loss= "
,
avg_cost
)
if
avg_cost
<
5.0
:
trainer
.
save_
params
(
save_path
)
trainer
.
save_
inference_model
(
save_path
)
return
if
math
.
isnan
(
avg_cost
):
sys
.
exit
(
"got NaN loss, training failed."
)
trainer
=
fluid
.
Trainer
(
partial
(
train_program
,
is_sparse
),
partial
(
inference_program
,
is_sparse
),
fluid
.
optimizer
.
SGD
(
learning_rate
=
0.001
),
place
=
place
)
trainer
.
train
(
reader
=
train_reader
,
num_epochs
=
1
00
,
event_handler
=
event_handler
)
reader
=
train_reader
,
num_epochs
=
1
,
event_handler
=
event_handler
)
def
infer
(
use_cuda
,
is_sparse
,
save_path
):
place
=
fluid
.
CUDAPlace
(
0
)
if
use_cuda
else
fluid
.
CPUPlace
()
inferencer
=
fluid
.
Inferencer
(
partial
(
inference_program
,
is_sparse
),
param_path
=
save_path
,
place
=
place
)
inferencer
=
fluid
.
Inferencer
(
param_path
=
save_path
,
place
=
place
)
lod
=
[
0
,
1
]
first_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
second_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
third_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
fourth_word
=
create_random_lodtensor
(
lod
,
place
,
low
=
0
,
high
=
dict_size
-
1
)
result
=
inferencer
.
infer
({
result
=
inferencer
.
infer
(
{
'firstw'
:
first_word
,
'secondw'
:
second_word
,
'thirdw'
:
third_word
,
'forthw'
:
fourth_word
})
print
(
result
)
},
return_numpy
=
False
)
print
(
np
.
array
(
result
[
0
]))
def
main
(
use_cuda
,
is_sparse
):
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor.py
浏览文件 @
928418a9
...
...
@@ -205,7 +205,8 @@ class TestParallelExecutorBase(unittest.TestCase):
allow_op_delay
=
False
,
feed_dict
=
None
,
seed
=
None
,
use_parallel_executor
=
True
):
use_parallel_executor
=
True
,
balance_parameter_opt_between_cards
=
False
):
def
run_executor
(
exe
,
feed
,
fetch_list
,
program
=
None
):
if
isinstance
(
exe
,
fluid
.
ParallelExecutor
):
res
=
exe
.
run
(
fetch_list
=
fetch_list
,
feed
=
feed
)
...
...
@@ -234,7 +235,11 @@ class TestParallelExecutorBase(unittest.TestCase):
if
use_parallel_executor
:
exe
=
fluid
.
ParallelExecutor
(
True
,
loss_name
=
loss
.
name
,
allow_op_delay
=
allow_op_delay
)
True
,
loss_name
=
loss
.
name
,
allow_op_delay
=
allow_op_delay
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
else
:
exe
=
fluid
.
Executor
(
place
=
place
)
...
...
@@ -280,20 +285,27 @@ class TestMNIST(TestParallelExecutorBase):
fluid
.
recordio_writer
.
convert_reader_to_recordio_file
(
'./mnist.recordio'
,
reader
,
feeder
)
def
check_simple_fc_convergence
(
self
):
def
check_simple_fc_convergence
(
self
,
balance_parameter_opt_between_cards
):
self
.
check_network_convergence
(
simple_fc_net
)
self
.
check_network_convergence
(
simple_fc_net
,
allow_op_delay
=
True
)
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
self
.
check_network_convergence
(
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
})
simple_fc_net
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
def
test_simple_fc
(
self
):
self
.
check_simple_fc_convergence
()
self
.
check_simple_fc_convergence
(
False
)
def
test_simple_fc_with_new_strategy
(
self
):
self
.
check_simple_fc_convergence
(
True
)
def
check_simple_fc_parallel_accuracy
(
self
):
def
check_simple_fc_parallel_accuracy
(
self
,
balance_parameter_opt_between_cards
):
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
single_first_loss
,
single_last_loss
=
self
.
check_network_convergence
(
...
...
@@ -307,7 +319,9 @@ class TestMNIST(TestParallelExecutorBase):
seed
=
1000
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
use_parallel_executor
=
True
)
use_parallel_executor
=
True
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
for
p_f
in
parallel_first_loss
:
self
.
assertAlmostEquals
(
p_f
,
single_first_loss
[
0
],
delta
=
1e-6
)
...
...
@@ -315,18 +329,28 @@ class TestMNIST(TestParallelExecutorBase):
self
.
assertAlmostEquals
(
p_l
,
single_last_loss
[
0
],
delta
=
1e-6
)
def
test_simple_fc_parallel_accuracy
(
self
):
self
.
check_simple_fc_parallel_accuracy
()
self
.
check_simple_fc_parallel_accuracy
(
False
)
def
check_batchnorm_fc_convergence
(
self
):
def
test_simple_fc_parallel_accuracy_with_new_strategy
(
self
):
self
.
check_simple_fc_parallel_accuracy
(
True
)
def
check_batchnorm_fc_convergence
(
self
,
balance_parameter_opt_between_cards
):
self
.
check_network_convergence
(
fc_with_batchnorm
)
img
=
np
.
zeros
(
shape
=
[
32
,
784
],
dtype
=
'float32'
)
label
=
np
.
ones
(
shape
=
[
32
,
1
],
dtype
=
'int64'
)
self
.
check_network_convergence
(
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
})
fc_with_batchnorm
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
def
test_batchnorm_fc
(
self
):
self
.
check_batchnorm_fc_convergence
()
self
.
check_batchnorm_fc_convergence
(
False
)
def
test_batchnorm_fc_with_new_strategy
(
self
):
self
.
check_batchnorm_fc_convergence
(
True
)
class
TestResnet
(
TestParallelExecutorBase
):
...
...
@@ -348,17 +372,22 @@ class TestResnet(TestParallelExecutorBase):
# fluid.recordio_writer.convert_reader_to_recordio_file(
# "./flowers.recordio", reader, feeder, compressor=fluid.core.RecordIOWriter.Compressor.NoCompress)
def
check_resnet_convergence
(
self
):
def
check_resnet_convergence
(
self
,
balance_parameter_opt_between_cards
):
import
functools
batch_size
=
2
self
.
check_network_convergence
(
functools
.
partial
(
SE_ResNeXt50Small
,
batch_size
=
batch_size
),
iter
=
20
,
batch_size
=
batch_size
)
batch_size
=
batch_size
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
def
test_resnet
(
self
):
self
.
check_resnet_convergence
()
self
.
check_resnet_convergence
(
False
)
def
test_resnet_with_new_strategy
(
self
):
self
.
check_resnet_convergence
(
True
)
class
ModelHyperParams
(
object
):
...
...
@@ -519,7 +548,7 @@ class TestTransformer(TestParallelExecutorBase):
class
ParallelExecutorTestingDuringTraining
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
):
def
check_network_convergence
(
self
,
balance_parameter_opt_between_cards
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -539,12 +568,18 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
feed_dict
=
{
'image'
:
image
,
'label'
:
label
}
train_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
main
)
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
main
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
test_exe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
main_program
=
test_program
,
share_vars_from
=
train_exe
)
share_vars_from
=
train_exe
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
for
i
in
xrange
(
5
):
test_loss
,
=
test_exe
.
run
([
loss
.
name
],
feed
=
feed_dict
)
...
...
@@ -558,8 +593,11 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
"Train loss: "
+
str
(
train_loss
)
+
"
\n
Test loss:"
+
str
(
test_loss
))
def
test_parallel
(
self
):
self
.
check_network_convergence
()
def
test_parallel_testing
(
self
):
self
.
check_network_convergence
(
False
)
def
test_parallel_testing_with_new_strategy
(
self
):
self
.
check_network_convergence
(
True
)
import
paddle.dataset.conll05
as
conll05
...
...
@@ -579,7 +617,7 @@ embedding_name = 'emb'
def
db_lstm
(
word
,
predicate
,
ctx_n2
,
ctx_n1
,
ctx_0
,
ctx_p1
,
ctx_p2
,
mark
,
is_sparse
,
**
ignored
):
is_sparse
,
balance_parameter_opt_between_cards
,
**
ignored
):
# 8 features
predicate_embedding
=
fluid
.
layers
.
embedding
(
input
=
predicate
,
...
...
@@ -648,7 +686,9 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
class
TestCRFModel
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
is_sparse
):
def
check_network_convergence
(
self
,
is_sparse
,
balance_parameter_opt_between_cards
=
False
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main
,
startup
):
...
...
@@ -696,7 +736,11 @@ class TestCRFModel(unittest.TestCase):
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
)
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
avg_cost
.
name
,
balance_parameter_opt_between_cards
=
balance_parameter_opt_between_cards
)
feeder
=
fluid
.
DataFeeder
(
feed_list
=
[
...
...
@@ -718,6 +762,14 @@ class TestCRFModel(unittest.TestCase):
def
test_update_dense_parameter
(
self
):
self
.
check_network_convergence
(
is_sparse
=
False
)
def
test_update_sparse_parameter_with_new_strategy
(
self
):
self
.
check_network_convergence
(
is_sparse
=
False
,
balance_parameter_opt_between_cards
=
True
)
def
test_update_dense_parameter_with_new_strategy
(
self
):
self
.
check_network_convergence
(
is_sparse
=
False
,
balance_parameter_opt_between_cards
=
True
)
# test fetch all the variables of global_block
...
...
@@ -796,5 +848,42 @@ class TestFetchOp(unittest.TestCase):
self
.
parallel_exe
(
train_inputs
,
seed
=
1
)
class
TestFeedParallel
(
unittest
.
TestCase
):
def
test_main
(
self
):
main
=
fluid
.
Program
()
startup
=
fluid
.
Program
()
startup
.
random_seed
=
1
with
fluid
.
scope_guard
(
fluid
.
core
.
Scope
()):
with
fluid
.
program_guard
(
main
,
startup
):
data
=
fluid
.
layers
.
data
(
name
=
'image'
,
shape
=
[
3
,
224
,
224
],
dtype
=
'float32'
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
out
=
Lenet
(
data
,
class_dim
=
102
)
loss
=
fluid
.
layers
.
cross_entropy
(
input
=
out
,
label
=
label
)
loss
=
fluid
.
layers
.
mean
(
loss
)
opt
=
fluid
.
optimizer
.
Momentum
(
learning_rate
=
0.1
,
momentum
=
0.9
,
regularization
=
fluid
.
regularizer
.
L2Decay
(
1e-4
))
opt
.
minimize
(
loss
)
place
=
fluid
.
CUDAPlace
(
0
)
feeder
=
fluid
.
DataFeeder
(
place
=
place
,
feed_list
=
[
data
,
label
])
reader
=
feeder
.
decorate_reader
(
paddle
.
batch
(
flowers
.
train
(),
batch_size
=
16
),
multi_devices
=
True
)
exe
=
fluid
.
Executor
(
place
)
exe
.
run
(
startup
)
pe
=
fluid
.
ParallelExecutor
(
use_cuda
=
True
,
loss_name
=
loss
.
name
,
main_program
=
main
)
for
batch_id
,
data
in
enumerate
(
reader
()):
loss_np
=
np
.
array
(
pe
.
run
(
feed
=
data
,
fetch_list
=
[
loss
.
name
])[
0
])
print
batch_id
,
loss_np
if
batch_id
==
2
:
break
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/trainer.py
浏览文件 @
928418a9
...
...
@@ -19,7 +19,7 @@ import executor
import
data_feeder
import
contextlib
import
io
import
transpiler
import
unique_name
# optimizer is same as the parameter of Trainer.__init__. Rename it to opt_module
import
optimizer
as
opt_module
...
...
@@ -56,26 +56,62 @@ class EndStepEvent(object):
self
.
step
=
step_id
def
check_and_get_place
(
place
):
"""
Check the type of place or get the default place
Args:
place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.
Raises:
TypeError if the type mismatched.
Returns:
the original place if it is not None.
if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
Otherwise returns CPUPlace by default.
"""
if
place
is
None
:
if
core
.
is_compiled_with_cuda
():
return
core
.
CUDAPlace
(
0
)
else
:
return
core
.
CPUPlace
()
else
:
if
not
isinstance
(
place
,
core
.
CUDAPlace
)
and
not
isinstance
(
place
,
core
.
CPUPlace
):
raise
TypeError
(
"Place should be either CUDAPlace or CPUPlace"
)
return
place
class
Trainer
(
object
):
"""
Args:
program_func(callable): A function which will return loss. The loss must be a scaler.
train_func(callable): A function which will return loss. The loss must be a scalar.
infer_func(callable): A function which will return predict, used to save inference model
optimizer(optimizer.Optimizer): The optimizer should be an instance of Optimizer
place: The device place of this trainer.
"""
def
__init__
(
self
,
program_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
def
__init__
(
self
,
train_func
,
infer_func
,
optimizer
,
param_path
=
None
,
place
=
None
):
# 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in
# test_word2vec.py
if
not
isinstance
(
optimizer
,
opt_module
.
Optimizer
):
raise
TypeError
(
"The optimizer should be an instance of Optimizer"
)
self
.
infer_func
=
infer_func
self
.
scope
=
core
.
Scope
()
self
.
startup_program
=
framework
.
Program
()
self
.
train_program
=
framework
.
Program
()
with
framework
.
program_guard
(
self
.
train_program
,
self
.
startup_program
):
program_func_outs
=
program
_func
()
program_func_outs
=
train
_func
()
self
.
test_outputs
=
program_func_outs
if
isinstance
(
program_func_outs
,
list
)
else
[
program_func_outs
]
self
.
test_program
=
self
.
train_program
.
clone
()
...
...
@@ -86,9 +122,9 @@ class Trainer(object):
loss
=
self
.
test_outputs
[
0
]
optimize_ops
,
params_grads
=
optimizer
.
minimize
(
loss
)
self
.
place
=
Trainer
.
_
check_and_get_place
(
place
)
self
.
place
=
check_and_get_place
(
place
)
self
.
dist_transpile_if_necessary
(
optimize_ops
,
params_grads
)
self
.
_
dist_transpile_if_necessary
(
optimize_ops
,
params_grads
)
# 2. move the default_main_program to self.program and run the
# default_startup program on an empty core.Scope()
...
...
@@ -101,7 +137,7 @@ class Trainer(object):
# load params from param_path into scope
io
.
load_persistables
(
exe
,
dirname
=
param_path
)
def
dist_transpile_if_necessary
(
self
,
optimize_ops
,
params_grads
):
def
_
dist_transpile_if_necessary
(
self
,
optimize_ops
,
params_grads
):
if
"PADDLE_TRAINING_ROLE"
not
in
os
.
environ
:
return
...
...
@@ -190,31 +226,14 @@ class Trainer(object):
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_persistables
(
exe
,
dirname
=
param_path
)
@
staticmethod
def
_check_and_get_place
(
place
):
"""
Check the type of place or get the default place
Args:
place(None|core.CUDAPlace|core.CPUPlace): the place that trainer will be executed on.
Raises:
TypeError if the type mismatched.
Returns:
the original place if it is not None.
if fluid is compiled with CUDA, returns CUDAPlace(0) by default.
Otherwise returns CPUPlace by default.
"""
if
place
is
None
:
if
core
.
is_compiled_with_cuda
():
return
core
.
CUDAPlace
(
0
)
else
:
return
core
.
CPUPlace
()
else
:
if
not
isinstance
(
place
,
core
.
CUDAPlace
)
and
not
isinstance
(
place
,
core
.
CPUPlace
):
raise
TypeError
(
"Place should be either CUDAPlace or CPUPlace"
)
return
place
def
save_inference_model
(
self
,
model_path
):
inference_program
=
framework
.
Program
()
with
framework
.
program_guard
(
inference_program
):
with
unique_name
.
guard
():
predict_var
=
self
.
infer_func
()
predict_var
=
self
.
train_program
.
block
(
0
).
var
(
predict_var
.
name
)
exe
=
executor
.
Executor
(
self
.
place
)
io
.
save_inference_model
(
model_path
,
[],
[
predict_var
],
exe
)
@
contextlib
.
contextmanager
def
_prog_and_scope_guard
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录