Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
90bd038d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
90bd038d
编写于
3月 25, 2019
作者:
D
dengkaipeng
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix format. test=develop
上级
f45aced5
变更
11
显示空白变更内容
内联
并排
Showing
11 changed file
with
34 addition
and
28 deletion
+34
-28
paddle/fluid/API.spec
paddle/fluid/API.spec
+1
-1
paddle/fluid/operators/jit/more/mix/mix.cc
paddle/fluid/operators/jit/more/mix/mix.cc
+4
-2
paddle/fluid/operators/jit/more/mkl/mkl.cc
paddle/fluid/operators/jit/more/mkl/mkl.cc
+8
-6
paddle/fluid/operators/jit/more/mkl/mkl.h
paddle/fluid/operators/jit/more/mkl/mkl.h
+1
-1
paddle/fluid/operators/jit/refer/refer.h
paddle/fluid/operators/jit/refer/refer.h
+2
-2
paddle/fluid/operators/jit/test.cc
paddle/fluid/operators/jit/test.cc
+4
-4
paddle/fluid/operators/math/softmax.h
paddle/fluid/operators/math/softmax.h
+1
-1
paddle/fluid/operators/math/softmax_impl.h
paddle/fluid/operators/math/softmax_impl.h
+3
-2
paddle/fluid/operators/softmax_op.cc
paddle/fluid/operators/softmax_op.cc
+2
-4
paddle/fluid/operators/softmax_op.h
paddle/fluid/operators/softmax_op.h
+6
-4
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
+2
-1
未找到文件。
paddle/fluid/API.spec
浏览文件 @
90bd038d
...
...
@@ -86,7 +86,7 @@ paddle.fluid.layers.conv2d (ArgSpec(args=['input', 'num_filters', 'filter_size',
paddle.fluid.layers.conv3d (ArgSpec(args=['input', 'num_filters', 'filter_size', 'stride', 'padding', 'dilation', 'groups', 'param_attr', 'bias_attr', 'use_cudnn', 'act', 'name'], varargs=None, keywords=None, defaults=(1, 0, 1, None, None, None, True, None, None)), ('document', '37042620f9bd3a2da6e5d3138b2f724b'))
paddle.fluid.layers.sequence_pool (ArgSpec(args=['input', 'pool_type', 'is_test'], varargs=None, keywords=None, defaults=(False,)), ('document', 'a194fb80614023f543df3949fbd0d0b8'))
paddle.fluid.layers.sequence_softmax (ArgSpec(args=['input', 'use_cudnn', 'name'], varargs=None, keywords=None, defaults=(False, None)), ('document', '19ef6f9cdd27feac8a1ae060f19c10b4'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '
85f9690b1b285def19077a41d9dba36c
'))
paddle.fluid.layers.softmax (ArgSpec(args=['input', 'use_cudnn', 'name', 'axis'], varargs=None, keywords=None, defaults=(False, None, -1)), ('document', '
502bad9e8bc7ef24817d0d4b20f61df3
'))
paddle.fluid.layers.pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', 'bbd84e855e660cd1084bb71a2fd0cdaa'))
paddle.fluid.layers.pool3d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'pool_stride', 'pool_padding', 'global_pooling', 'use_cudnn', 'ceil_mode', 'name', 'exclusive'], varargs=None, keywords=None, defaults=(-1, 'max', 1, 0, False, True, False, None, True)), ('document', '043de7333b79ee0ac55053c14ed81625'))
paddle.fluid.layers.adaptive_pool2d (ArgSpec(args=['input', 'pool_size', 'pool_type', 'require_index', 'name'], varargs=None, keywords=None, defaults=('max', False, None)), ('document', '859b887174d06f361658f69cb7c06d95'))
...
...
paddle/fluid/operators/jit/more/mix/mix.cc
浏览文件 @
90bd038d
...
...
@@ -54,8 +54,10 @@ void Softmax(const T* x, T* y, int n, int bs, int remain) {
auto
compute_hmax
=
KernelFuncs
<
HMaxTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_hsum
=
KernelFuncs
<
HSumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vscal
=
KernelFuncs
<
VScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_stridesum
=
KernelFuncs
<
StrideASumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_stridescal
=
KernelFuncs
<
StrideScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_stridesum
=
KernelFuncs
<
StrideASumTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_stridescal
=
KernelFuncs
<
StrideScalTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vaddbias
=
KernelFuncs
<
VAddBiasTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
auto
compute_vexp
=
KernelFuncs
<
VExpTuple
<
T
>
,
CPUPlace
>::
Cache
().
At
(
n
);
...
...
paddle/fluid/operators/jit/more/mkl/mkl.cc
浏览文件 @
90bd038d
...
...
@@ -79,18 +79,20 @@ void VScal<double>(const double* a, const double* x, double* y, int n) {
}
template
<
>
void
StrideScal
<
float
>
(
const
float
*
a
,
const
float
*
x
,
float
*
y
,
int
n
,
int
stride
)
{
void
StrideScal
<
float
>
(
const
float
*
a
,
const
float
*
x
,
float
*
y
,
int
n
,
int
stride
)
{
if
(
x
==
y
)
{
platform
::
dynload
::
cblas_sscal
(
n
/
stride
,
*
a
,
y
,
stride
);
platform
::
dynload
::
cblas_sscal
(
n
/
stride
,
*
a
,
y
,
stride
);
}
else
{
refer
::
StrideScal
<
float
>
(
a
,
x
,
y
,
n
,
stride
);
}
}
template
<
>
void
StrideScal
<
double
>
(
const
double
*
a
,
const
double
*
x
,
double
*
y
,
int
n
,
int
stride
)
{
void
StrideScal
<
double
>
(
const
double
*
a
,
const
double
*
x
,
double
*
y
,
int
n
,
int
stride
)
{
if
(
x
==
y
)
{
platform
::
dynload
::
cblas_dscal
(
n
/
stride
,
*
a
,
y
,
stride
);
platform
::
dynload
::
cblas_dscal
(
n
/
stride
,
*
a
,
y
,
stride
);
}
else
{
refer
::
StrideScal
<
double
>
(
a
,
x
,
y
,
n
,
stride
);
}
...
...
@@ -148,12 +150,12 @@ void ASum<double>(const double* x, double* res, int n) {
template
<
>
void
StrideASum
<
float
>
(
const
float
*
x
,
float
*
res
,
int
n
,
int
stride
)
{
res
[
0
]
=
platform
::
dynload
::
cblas_sasum
(
n
/
stride
,
x
,
stride
);
res
[
0
]
=
platform
::
dynload
::
cblas_sasum
(
n
/
stride
,
x
,
stride
);
}
template
<
>
void
StrideASum
<
double
>
(
const
double
*
x
,
double
*
res
,
int
n
,
int
stride
)
{
res
[
0
]
=
platform
::
dynload
::
cblas_dasum
(
n
/
stride
,
x
,
stride
);
res
[
0
]
=
platform
::
dynload
::
cblas_dasum
(
n
/
stride
,
x
,
stride
);
}
// TODO(TJ): tuning me carefully on AVX, AVX2 and AVX512
...
...
paddle/fluid/operators/jit/more/mkl/mkl.h
浏览文件 @
90bd038d
...
...
@@ -135,7 +135,7 @@ template <typename T>
void
StrideScal
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
,
int
stride
);
template
<
typename
T
>
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
=
1
)
{
void
Softmax
(
const
T
*
x
,
T
*
y
,
int
n
,
int
bs
,
int
remain
=
1
)
{
std
::
vector
<
T
>
entities
(
bs
);
for
(
int
i
=
0
;
i
<
bs
;
++
i
)
{
entities
[
i
]
=
x
[
i
*
n
];
...
...
paddle/fluid/operators/jit/refer/refer.h
浏览文件 @
90bd038d
...
...
@@ -414,13 +414,13 @@ void HSum(const T* x, T* res, int n) {
template
<
typename
T
>
void
StrideASum
(
const
T
*
x
,
T
*
res
,
int
n
,
int
stride
)
{
res
[
0
]
=
x
[
0
];
for
(
int
i
=
stride
;
i
<
n
;
i
+=
stride
)
{
for
(
int
i
=
stride
;
i
<
n
;
i
+=
stride
)
{
res
[
0
]
+=
std
::
abs
(
x
[
i
]);
}
}
template
<
typename
T
>
void
StrideScal
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
,
int
stride
)
{
void
StrideScal
(
const
T
*
a
,
const
T
*
x
,
T
*
y
,
int
n
,
int
stride
)
{
for
(
int
i
=
0
;
i
<
n
;
++
i
)
{
if
(
i
%
stride
==
0
)
{
y
[
i
]
=
x
[
i
]
*
a
[
0
];
...
...
paddle/fluid/operators/jit/test.cc
浏览文件 @
90bd038d
paddle/fluid/operators/math/softmax.h
浏览文件 @
90bd038d
paddle/fluid/operators/math/softmax_impl.h
浏览文件 @
90bd038d
...
...
@@ -94,8 +94,9 @@ class SoftmaxFunctor<DeviceContext, float, true, enable_if_CPU<DeviceContext>> {
template
<
typename
DeviceContext
,
typename
T
>
void
SoftmaxGradFunctor
<
DeviceContext
,
T
>::
operator
()(
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
)
{
const
DeviceContext
&
context
,
const
int
axis_dim
,
const
framework
::
Tensor
*
y
,
const
framework
::
Tensor
*
y_grad
,
framework
::
Tensor
*
x_grad
)
{
auto
softmax
=
EigenMatrix
<
T
>::
From
(
*
y
);
auto
softmax_grad
=
EigenMatrix
<
T
>::
From
(
*
y_grad
);
auto
logits_grad
=
EigenMatrix
<
T
>::
From
(
*
x_grad
);
...
...
paddle/fluid/operators/softmax_op.cc
浏览文件 @
90bd038d
...
...
@@ -49,10 +49,8 @@ class SoftmaxOp : public framework::OperatorWithKernel {
auto
use_cudnn
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_cudnn"
);
auto
use_mkldnn
=
ctx
->
Attrs
().
Get
<
bool
>
(
"use_mkldnn"
);
if
(
axis
!=
rank_x
-
1
&&
axis
!=
-
1
)
{
PADDLE_ENFORCE
(
!
use_cudnn
,
"CUDNN kernel only support axis as -1."
);
PADDLE_ENFORCE
(
!
use_mkldnn
,
"MKLDNN kernel only support axis as -1."
);
PADDLE_ENFORCE
(
!
use_cudnn
,
"CUDNN kernel only support axis as -1."
);
PADDLE_ENFORCE
(
!
use_mkldnn
,
"MKLDNN kernel only support axis as -1."
);
}
ctx
->
SetOutputDim
(
"Out"
,
ctx
->
GetInputDim
(
"X"
));
...
...
paddle/fluid/operators/softmax_op.h
浏览文件 @
90bd038d
...
...
@@ -66,10 +66,12 @@ class SoftmaxKernel : public framework::OpKernel<T> {
#ifdef PADDLE_ON_INFERENCE
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
true
>
()(
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
X_2d
,
&
Out_2d
);
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
X_2d
,
&
Out_2d
);
#else
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
X_2d
,
&
Out_2d
);
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
X_2d
,
&
Out_2d
);
#endif
}
};
...
...
@@ -96,8 +98,8 @@ class SoftmaxGradKernel : public framework::OpKernel<T> {
dOut_2d
.
ShareDataWith
(
*
dOut
).
Resize
({
n
,
d
});
math
::
SoftmaxGradFunctor
<
DeviceContext
,
T
>
()(
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
Out_2d
,
&
dOut_2d
,
&
dX_2d
);
context
.
template
device_context
<
DeviceContext
>(),
axis_dim
,
&
Out_2d
,
&
d
Out_2d
,
&
d
X_2d
);
}
};
...
...
paddle/fluid/operators/warpctc_cudnn_op.cu.cc
浏览文件 @
90bd038d
...
...
@@ -69,7 +69,8 @@ class CudnnCTCKernel : public framework::OpKernel<T> {
int
rank
=
logits
->
dims
().
size
();
Tensor
in_2d
=
framework
::
ReshapeToMatrix
(
*
logits
,
rank
-
1
);
Tensor
out_2d
=
framework
::
ReshapeToMatrix
(
softmax_logits
,
rank
-
1
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
dev_ctx
,
-
1
,
&
in_2d
,
&
out_2d
);
math
::
SoftmaxFunctor
<
DeviceContext
,
T
,
false
>
()(
dev_ctx
,
-
1
,
&
in_2d
,
&
out_2d
);
// ctc needs sequences data stored in transposed padding format
// logits and grad using padding data of layout 'TNC'
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录