diff --git a/CMakeLists.txt b/CMakeLists.txt index 1e11f86d0ee836f65e69c8398fb26c3b6a1070f6..c649aafeddaf9f28c213d086236c3779d3137d92 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -53,8 +53,7 @@ option(WITH_COVERAGE "Compile PaddlePaddle with code coverage" OFF) option(COVERALLS_UPLOAD "Package code coverage data to coveralls" OFF) option(ON_TRAVIS "Exclude special unit test on Travis CI" OFF) option(WITH_C_API "Compile PaddlePaddle with C-API(Prediction)" OFF) -# TODO: Only compile PaddlePaddle fluid version by WITH_FLUID option. -option(WITH_FLUID "Compile PaddlePaddle fluid only(TODO)" OFF) +option(WITH_FLUID_ONLY "Compile PaddlePaddle fluid only" OFF) option(WITH_GOLANG "Compile PaddlePaddle with GOLANG" OFF) option(GLIDE_INSTALL "Download and install go dependencies " ON) option(USE_NNPACK "Compile PaddlePaddle with NNPACK library" OFF) @@ -109,7 +108,7 @@ if (WITH_C_API AND WITH_PYTHON) endif() if (WITH_C_API) - set(WITH_FLUID OFF CACHE STRING "Disable install fluid when compile the C_API" FORCE) + set(WITH_FLUID_ONLY OFF CACHE STRING "Disable install fluid when compile the C_API" FORCE) endif() if(MOBILE_INFERENCE) @@ -147,6 +146,7 @@ include(external/cares) include(external/grpc) include(external/snappy) # download snappy include(external/snappystream) +include(external/threadpool) include(cudnn) # set cudnn libraries, must before configure include(cupti) diff --git a/cmake/external/threadpool.cmake b/cmake/external/threadpool.cmake new file mode 100644 index 0000000000000000000000000000000000000000..0159815fed81bdff6de3e561af569e9edc75f947 --- /dev/null +++ b/cmake/external/threadpool.cmake @@ -0,0 +1,30 @@ +INCLUDE(ExternalProject) + +SET(THREADPOOL_SOURCE_DIR ${THIRD_PARTY_PATH}/threadpool) +SET(THREADPOOL_INCLUDE_DIR ${THREADPOOL_SOURCE_DIR}/src/extern_threadpool) +INCLUDE_DIRECTORIES(${THREADPOOL_INCLUDE_DIR}) + +ExternalProject_Add( + extern_threadpool + ${EXTERNAL_PROJECT_LOG_ARGS} + GIT_REPOSITORY "https://github.com/progschj/ThreadPool.git" + GIT_TAG 9a42ec1329f259a5f4881a291db1dcb8f2ad9040 + PREFIX ${THREADPOOL_SOURCE_DIR} + UPDATE_COMMAND "" + CONFIGURE_COMMAND "" + BUILD_COMMAND "" + INSTALL_COMMAND "" + TEST_COMMAND "" +) + +if (${CMAKE_VERSION} VERSION_LESS "3.3.0") + set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/threadpool_dummy.c) + file(WRITE ${dummyfile} "const char *dummy_threadpool = \"${dummyfile}\";") + add_library(simple_threadpool STATIC ${dummyfile}) +else() + add_library(simple_threadpool INTERFACE) +endif() + +add_dependencies(simple_threadpool extern_threadpool) + +LIST(APPEND external_project_dependencies simple_threadpool) diff --git a/cmake/generic.cmake b/cmake/generic.cmake index c749c97f13649fe8432091414b56f7d0ea8ace8b..3fe750f47efc149bb1af6086841bffd5dd8e85fd 100644 --- a/cmake/generic.cmake +++ b/cmake/generic.cmake @@ -587,6 +587,9 @@ function(grpc_library TARGET_NAME) get_filename_component(PROTO_WE ${grpc_library_PROTO} NAME_WE) get_filename_component(PROTO_PATH ${ABS_PROTO} PATH) + #FIXME(putcn): the follwoing line is supposed to generate *.pb.h and cc, but + # somehow it didn't. line 602 to 604 is to patching this. Leaving this here + # for now to enable dist CI. protobuf_generate_cpp(grpc_proto_srcs grpc_proto_hdrs "${ABS_PROTO}") set(grpc_grpc_srcs "${CMAKE_CURRENT_BINARY_DIR}/${PROTO_WE}.grpc.pb.cc") set(grpc_grpc_hdrs "${CMAKE_CURRENT_BINARY_DIR}/${PROTO_WE}.grpc.pb.h") @@ -597,6 +600,9 @@ function(grpc_library TARGET_NAME) COMMAND ${PROTOBUF_PROTOC_EXECUTABLE} ARGS --grpc_out "${CMAKE_CURRENT_BINARY_DIR}" -I "${PROTO_PATH}" --plugin=protoc-gen-grpc="${GRPC_CPP_PLUGIN}" "${ABS_PROTO}" + COMMAND ${PROTOBUF_PROTOC_EXECUTABLE} + ARGS --cpp_out "${CMAKE_CURRENT_BINARY_DIR}" -I "${PROTO_PATH}" + "${ABS_PROTO}" DEPENDS "${ABS_PROTO}" ${PROTOBUF_PROTOC_EXECUTABLE} extern_grpc) # FIXME(typhoonzero): grpc generated code do not generate virtual-dtor, mark it diff --git a/doc/design/images/parallel_executor_overview.dot b/doc/design/images/parallel_executor_overview.dot new file mode 100644 index 0000000000000000000000000000000000000000..40753cb140540c08d9d4c449b8d377e315280436 --- /dev/null +++ b/doc/design/images/parallel_executor_overview.dot @@ -0,0 +1,83 @@ +digraph G { + subgraph cluster_init { + label="Initialization" + startup_program [label="startup", shape=box] + node_w_g0 [label="W\nGPU0"] + startup_program -> node_w_g0 [label="Initialize"] + node_w_g1 [label="W\nGPU1"] + node_w_g0 -> node_w_g1 [label="broadcast"] + } + + subgraph cluster_train { + label="forward_backward" + + subgraph cluster_gpu0 { + label="GPU0" + fc_0 [label="fc\nGPU0", shape=box] + hidden_0 [label="hidden\nGPU0"] + node_w_g0 -> fc_0 + fc_0 -> hidden_0 + loss0 [label="loss\nGPU0"] + hidden_0 -> loss0 [label="many ops omitted"] + scale_loss_0 [label="scale_loss_gradient\nGPU0", shape=box] + loss_g0 [label="loss_grad\nGPU0"] + scale_loss_0->loss_g0 + + fc_g_0 [label="w_grad\nGPU0", shape=box] + loss0 -> fc_g_0 + loss_g0 -> fc_g_0 + hidden_0 -> fc_g_0 + } + + subgraph cluster_gpu1 { + label="GPU1" + fc_1 [label="fc\nGPU1", shape=box] + hidden_1 [label="hidden\nGPU1"] + node_w_g1 -> fc_1 + fc_1 -> hidden_1 + loss1 [label="loss\nGPU1"] + hidden_1 -> loss1 [label="many ops omitted"] + scale_loss_1 [label="scale_loss_gradient\nGPU1", shape=box] + loss_g1 [label="loss_grad\nGPU1"] + scale_loss_1->loss_g1 + + fc_g_1 [label="w_grad\nGPU1", shape=box] + loss1 -> fc_g_1 + loss_g1 -> fc_g_1 + hidden_1 -> fc_g_1 + } + } + + all_reduce_w [label="Merge Gradients(AllReduce)", shape=box] + fc_g_0 -> all_reduce_w + fc_g_1 -> all_reduce_w + + fc_g_0_merged [label="w_grad\nMerged\nGPU0"] + fc_g_1_merged [label="w_grad\nMerged\nGPU1"] + all_reduce_w -> fc_g_0_merged + all_reduce_w -> fc_g_1_merged + + subgraph cluster_optimization { + label="Optimization" + subgraph cluster_opt_gpu0 { + label="GPU0" + sgd_0 [label="SGD Op\nGPU0", shape=box] + + fc_g_0_merged -> sgd_0 + node_w_g0 -> sgd_0 + optimized_w_0 [label="Optimized W\nGPU0"] + sgd_0 -> optimized_w_0 + } + subgraph cluster_opt_gpu1 { + label="GPU1" + sgd_1 [label="SGD Op\nGPU1", shape=box] + + fc_g_1_merged -> sgd_1 + node_w_g1 -> sgd_1 + optimized_w_1 [label="Optimized W\nGPU0"] + sgd_1 -> optimized_w_1 + } + } + + +} diff --git a/doc/design/images/parallel_executor_overview.png b/doc/design/images/parallel_executor_overview.png new file mode 100644 index 0000000000000000000000000000000000000000..d890c0ffee3b38dc7cb74a2b56c2ab4831532211 Binary files /dev/null and b/doc/design/images/parallel_executor_overview.png differ diff --git a/doc/design/parallel_executor.md b/doc/design/parallel_executor.md new file mode 100644 index 0000000000000000000000000000000000000000..9aed3b059a1595ba3971d7d5acfc0d16a731584b --- /dev/null +++ b/doc/design/parallel_executor.md @@ -0,0 +1,104 @@ +# ParallelExecutor + +## Background + +Neural network models are defined as a `ProgramDesc` in Fluid. The `ProgramDesc` can be executed by an interpreter(i.e. the `executor` concept in Fluid). The instructions or operators in a `Program` will be executed, and the results will be fetched in Python side. + +The executor is a very naive interpreter. It runs operators one by one. We can use `Parallel.Do` to support data parallelism, however, lacking device information in `ProgramDesc`; it is not possible to optimize the performance of `Parallel.Do`. + +We want a `ProgramDesc` can be run on different nodes. It is better not to contain device information in `ProgramDesc`. However, we can write a high-performance interpreter, which can hold an alternative intermediate representation of `ProgramDesc`, to take full usage of Multi-GPUs. + +ParallelExecutor is an interpreter of `ProgramDesc` which will [out-of-order execute](https://en.wikipedia.org/wiki/Out-of-order_execution) `Program` in data parallelism mode and maximise the utility of Multi-GPUs. + + +## Overview of MultiGPUs logic + +The ParallelExecutor takes the startup program and main program as inputs. The parameters will be initialised on `GPU0` by startup program and will broadcast to multi-GPUs. The main program will be duplicated into multi-GPUs. The gradient will be merged during each iteration, and each device will optimize parameters independently. Since the gradients on each device will be merged before parameter optimization, the parameters will be the same on each device and it does not need to be broadcast the parameters. + +![alt](images/parallel_executor_overview.png) + +There are several optimizations for this logic. + +1. We use an alternate representation in ParallelExecutor. It because the device information is critical for performance optimization. +2. The execution is out-of-order, i.e., an operator will be executed whenever the inputs of the operator are ready. + * GPU is a high-performance device; only one CPU thread cannot fulfil one GPU. So there is a thread pool to execute operators. + * Out-of-order also helps transpilers to generate `ProgramDesc`. It is no need to concern about the best order of performance when implementing a transpiler. +3. The streams of computation, merge gradients and fetch data are different. + +The performance of `ResNeXt152` on `TitanX` which `batch_size=12` is shown below. + +| Number of GPUs | 1 | 2 | 3 | 4| +| --- | --- | --- | --- | --- | +| Image/Sec | 17.9906 | 25.771 | 36.911 | 48.8428 | +| Speed Up | N/A | 1.43247029 | 2.05168255 | 2.71490667 | + + +## Static single assignment Graph + +[Static single assignment form](https://en.wikipedia.org/wiki/Static_single_assignment_form)(`SSA` for short) is a common form for compiler optimization. To implement concurrent execution, we uses an `SSA` graph as an intermedia representation of `ProgramDesc`. + +The `Program` is a directed acyclic graph, since a variable can be assigned multiple times. We enforce a variable will be assigned once, by adding version number to varaibles. We parsing the `Program` into a `SSA` graph. Also, ProgramExecutor duplicate `Program` into multi-devices. We also add a device number to varaibles and insert `NCCLAllReduce` into Graph. + +The data structure of `SSA` graph is: + +```c++ +struct VarHandleBase { + OpHandleBase* generated_op_; + vector pending_ops_; + + string name; + Place place; + size_t version; +}; + +struct OpHandleBase { + vector inputs_; + vector outputs_; +}; + +struct SSAGraph { + // vars on each devices. + // * the vars in each map in vector is on different device. + // * the map is mapping a variable name to variable handles + // with different versions + vector>> vars_; + + // All ops + vector ops_; +}; +``` +The variable handles are the wrapper of `Variables`. The operator handles are the wrapper of `OperatorBase`. Some `OpHandle` is not an `OperatorBase`, such as `NCCLAllReduceOpHandle`, because `AllReduceOpHandle` will use new device contexts. + +When the `ProgramDesc` converted into an `SSA` Graph, the [data hazard](https://en.wikipedia.org/wiki/Hazard_(computer_architecture)) problem is also need to be taken care. The dummy variables, which represent the dependency between operators, will be manually inserted into SSA graph to resolve the [data hazard](https://en.wikipedia.org/wiki/Hazard_(computer_architecture)) problem. + +## Execute SSA Graph + +The SSA graph can be out-of-order executed by an approximate [topological sorting](https://en.wikipedia.org/wiki/Topological_sorting) algorithm. The algorithm is + +1. Maintaining a map of an operator and its needed input number. +2. If a variable is not generated by an operator, i.e., `var.generated_op == nullptr`, decrease the needed input number of its pending operators. +3. If there is an operator which needed input number is decreased to zero, just run this operator. +4. After run this operator, just mark the variables are generated and repeat step 2 until all variables are generated. + +Running an operator can be asynchronized. There is a thread pool to execute an `SSA` graph. + +## Synchronize GPU Kernels + +The GPU is a non-blocking device. The different streams need be synchronized when switing streams. In current implementation, the synchronization based on the following algorithm: + +1. `OpHandle` will record `DeviceContext` that it is used. +2. In `OpHandle::Run`, if the `DeviceContext` of current operator is different from `DeviceContext` of any input variable, just wait the generate operator of this input variable. + +The `wait` are implemented by two strategies: + +1. Invoke `DeviceContext->Wait()`, It will wait all operators on this device contexts complete. +2. Uses `cudaStreamWaitEvent` to sending a event to the stream. It is a non-blocking call. The wait operators will be executed in GPU. + +Generally, the `cudaStreamWaitEvent` will have a better perforamnce. However, `DeviceContext->Wait()` strategy is easier to debug. The strategy can be changed in runtime. + +## What's next? + +* Merging gradient of dense parameters has been done. However, the merging of sparse parameters has not been done. +* The CPU version of Parallel Executor has not been implemented. The out-of-order logic will make CPU compuatation faster, too. +* A better strategy to merge gradients can be introduced. We can shrink the gradients from `float32` to `int8` or `int4` while merging. It will significantly speed up multi-GPUs training without much loss of precision. +* Combine multi-Nodes implementation. By the benifit of out-of-order, sending and recving operator can be an blocking operator, and the transpiler does not need to concern about the best position of operator. diff --git a/doc/fluid/build_and_install/build_from_source_cn.rst b/doc/fluid/build_and_install/build_from_source_cn.rst new file mode 120000 index 0000000000000000000000000000000000000000..ae4e8c7c48e584ec16a7be5466f83dd154ffb5fb --- /dev/null +++ b/doc/fluid/build_and_install/build_from_source_cn.rst @@ -0,0 +1 @@ +../../v2/build_and_install/build_from_source_cn.rst \ No newline at end of file diff --git a/doc/fluid/build_and_install/build_from_source_en.rst b/doc/fluid/build_and_install/build_from_source_en.rst new file mode 120000 index 0000000000000000000000000000000000000000..1ac828c973826bb8374c4aa8e17fda3ea1bb939f --- /dev/null +++ b/doc/fluid/build_and_install/build_from_source_en.rst @@ -0,0 +1 @@ +../../v2/build_and_install/build_from_source_en.rst \ No newline at end of file diff --git a/doc/fluid/build_and_install/docker_install_cn.rst b/doc/fluid/build_and_install/docker_install_cn.rst new file mode 120000 index 0000000000000000000000000000000000000000..965b2e20559291989422938c418fadbac16941b9 --- /dev/null +++ b/doc/fluid/build_and_install/docker_install_cn.rst @@ -0,0 +1 @@ +../../v2/build_and_install/docker_install_cn.rst \ No newline at end of file diff --git a/doc/fluid/build_and_install/docker_install_en.rst b/doc/fluid/build_and_install/docker_install_en.rst new file mode 120000 index 0000000000000000000000000000000000000000..79d7341a7bbb9e477c773134f24983fd7607769a --- /dev/null +++ b/doc/fluid/build_and_install/docker_install_en.rst @@ -0,0 +1 @@ +../../v2/build_and_install/docker_install_en.rst \ No newline at end of file diff --git a/doc/fluid/build_and_install/index_cn.rst b/doc/fluid/build_and_install/index_cn.rst deleted file mode 100644 index 9276236f9fd511bde3570a8c88b437119911d60a..0000000000000000000000000000000000000000 --- a/doc/fluid/build_and_install/index_cn.rst +++ /dev/null @@ -1,2 +0,0 @@ -安装与使用 ------------- diff --git a/doc/fluid/build_and_install/index_cn.rst b/doc/fluid/build_and_install/index_cn.rst new file mode 120000 index 0000000000000000000000000000000000000000..f697fcd8fac9131862ae7f8f51c5ebe93737ad2d --- /dev/null +++ b/doc/fluid/build_and_install/index_cn.rst @@ -0,0 +1 @@ +../../v2/build_and_install/index_cn.rst \ No newline at end of file diff --git a/doc/fluid/build_and_install/index_en.rst b/doc/fluid/build_and_install/index_en.rst deleted file mode 100644 index cc1e61a58a026a0f5c3b106875a8a86dc9cba613..0000000000000000000000000000000000000000 --- a/doc/fluid/build_and_install/index_en.rst +++ /dev/null @@ -1,2 +0,0 @@ -Build and Install ------------- diff --git a/doc/fluid/build_and_install/index_en.rst b/doc/fluid/build_and_install/index_en.rst new file mode 120000 index 0000000000000000000000000000000000000000..502f66a41319d4f41ae1774628ca36da9dca76ce --- /dev/null +++ b/doc/fluid/build_and_install/index_en.rst @@ -0,0 +1 @@ +../../v2/build_and_install/index_en.rst \ No newline at end of file diff --git a/doc/fluid/build_and_install/pip_install_cn.rst b/doc/fluid/build_and_install/pip_install_cn.rst new file mode 120000 index 0000000000000000000000000000000000000000..07deca84b82ff553e0c19324695089dcfb6be90e --- /dev/null +++ b/doc/fluid/build_and_install/pip_install_cn.rst @@ -0,0 +1 @@ +../../v2/build_and_install/pip_install_cn.rst \ No newline at end of file diff --git a/doc/fluid/build_and_install/pip_install_en.rst b/doc/fluid/build_and_install/pip_install_en.rst new file mode 120000 index 0000000000000000000000000000000000000000..7f39c998195b719b05443e96f1c4a6a8d44b98c9 --- /dev/null +++ b/doc/fluid/build_and_install/pip_install_en.rst @@ -0,0 +1 @@ +../../v2/build_and_install/pip_install_en.rst \ No newline at end of file diff --git a/doc/fluid/design/algorithm/index_cn.rst b/doc/fluid/design/algorithm/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..0883a9dc9c457f393ac1bdc930cb47ebcb0a25d9 --- /dev/null +++ b/doc/fluid/design/algorithm/index_cn.rst @@ -0,0 +1,7 @@ +梯度更新算法 +------------ + +.. toctree:: + :maxdepth: 1 + + parameter_average.md diff --git a/doc/fluid/design/algorithm/index_en.rst b/doc/fluid/design/algorithm/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..59fe68dcf79ce2ef90b9adc829a0db45a4f0b3dc --- /dev/null +++ b/doc/fluid/design/algorithm/index_en.rst @@ -0,0 +1,7 @@ +Gradient Update Algorithm +-------------------------------------- + +.. toctree:: + :maxdepth: 1 + + parameter_average.md diff --git a/doc/fluid/design/concepts/README.md b/doc/fluid/design/concepts/README.md index bf0e4dddc1b640ecbce489f65820aaf8a4b3b1e7..ed3f5aab2882c16ca6ac1446b4c4d4d27a373af7 100644 --- a/doc/fluid/design/concepts/README.md +++ b/doc/fluid/design/concepts/README.md @@ -2,7 +2,7 @@ A few months ago when we were trying to replace CMake with Bazel, @emailweixu su Here are some initial thoughts. Your comments are welcome! -### Required CMake Function +# Required CMake Function I think we need only the following few CMake functions to make a project description mean and clean: @@ -25,7 +25,7 @@ Also, - to describe external dependencies, we need `external_library`. - to build shared libraries, we need `shared_library`. -### An Example Project +## An Example Project Suppose that we have aforementioned functions defined in our `/cmake` directory. The following example `CMakeLists.txt` describes a project including the following source files: @@ -102,11 +102,11 @@ shared_library(api ``` -### Implementation +## Implementation As above example CMakeLists.txt executes, each function invocation adds "nodes" to a dependency graph. It also use this graph to generate CMake commands including `add_executable`, `add_dependencies`, `target_link_libraries`, and `add_test`. -### Using Package Manager For Go +## Using Package Manager For Go Building Go binaries and libraries need to satisfy their dependencies, generally we can do `go get ./...` to download and compile all external dependencies. The @@ -122,7 +122,7 @@ problems are: at many cloud file hosting, so users what to compile paddle by themselves can download this "vendor" package from a mirror site. -#### Choose A Suitable Tool +### Choose A Suitable Tool As mentioned by @wangkuiyi, [Here](https://github.com/golang/go/wiki/PackageManagementTools) list dozens of Go package managers. We choose the tool using following principles: @@ -140,7 +140,7 @@ management tool has been started at: https://github.com/golang/dep to resolve such problems, but it's currently at Alpha stage. So the best choice now is glide obviously. -#### Manage Go Packages +### Manage Go Packages - Dependencies: `go/glide.yaml` will store the dependencies and their versions which is directly imported by paddle. `go/glide.lock` will store all dependencies recursively diff --git a/doc/fluid/design/concepts/cpp_data_feeding.md b/doc/fluid/design/concepts/cpp_data_feeding.md index 8607b40ccbbe01db77afed72c1efa780b520744c..aabc1ba75a67c5767d409bd6e7e6240dec86b16c 100644 --- a/doc/fluid/design/concepts/cpp_data_feeding.md +++ b/doc/fluid/design/concepts/cpp_data_feeding.md @@ -113,7 +113,7 @@ To solve this problem, we introduce `ReaderHolder` as a wrapper. It acts as an e To create and invoke readers, some new ops are introduced: -### CreateReaderOp +### Operators That Create Readers Each reader has its creation op. File readers' creation ops have no input and yield the created file reader as its output. Decorated readers' creation ops take the underlying readers as inputs and then yield new decorated readers. @@ -153,19 +153,52 @@ double_buffer_reader = create_double_buffer_op(batch_reader) The forwarding ops of the corresponding `main_program` would be like this: ``` -while_op { +not_completed = true +pass_count = 0 +while_op(not_completed) { has_next = has_next_op(double_buffer_reader) if_else_op(has_next) { batch_data = read_op(double_buffer_reader) ... (subsequent training ops) } else { reset_op(double_buffer_reader) + increase_op(pass_count) + not_completed = less_than_op(pass_count, reqiured_pass_num) } } ``` -Two important considerations for these programs are as follows: +A few important considerations for these programs are as follows: -1. The multiple\_reader is the batch\_reader's underlying reader, and the batch\_reader is the double\_buffer\_reader's underlying reader. `read_op`, `has_next_op` and other reader related ops will only invoke the top-most reader. In this case, it's the double\_buffer\_reader. +1. `not_completed`, `pass_count` and other variables shown above are all Fluid Variables. -2. All readers exist in both `startup_program` and `main_program`. And they are persistable. +2. The multiple\_reader is the batch\_reader's underlying reader, and the batch\_reader is the double\_buffer\_reader's underlying reader. `read_op`, `has_next_op` and other reader related ops will only invoke the top-most reader. In this case, it's the double\_buffer\_reader. + +3. All readers exist in both `startup_program` and `main_program`. And they are persistable. + +### Simplify Configuration by MultiPassReader + +The Program configuration mentioned above is complicated. Users need to be very familiar to concepts of Program and Block to prevent making mistakes in their code. To make the usage of C++ readers more friendly to new users, we introduce `MultiPassReader`. + +`MultiPassReader` is a decorated reader. A multi-pass reader is used to continuously yield data for several training passes. It takes the number of passes to run as one of its attributes('pass_num') and maintains a counter to record how many passes it has completed. Each time its underlying reader reaches the EOF, the multi-pass reader checks whether it has completed the training of given number of pass. If not, the underlying reader will be re-initialized and starts a new pass automatically. Before completing the whole training, the return of MultiPassReader's `HasNext()` will always be `true`. + +With `MultiPassReader`, the startup program would be like this: + +``` +multiple_reader = open_files_op(...) +batch_reader = create_batch_reader_op(multiple_reader) +multi_pass_reader = create_multi_pass_reader_op(batch_reader) +double_buffer_reader = create_double_buffer_op(multi_pass_reader) +... (other initializers) +``` + +The forwarding part of the corresponding `main_program` would be like this: + +``` +not_completed = true +while_op(not_completed) { + batch_data = read_op(double_buffer_reader) + ... (subsequent training ops) + not_completed = has_next_op(double_buffer_reader) +} +``` diff --git a/doc/fluid/design/concepts/index_cn.rst b/doc/fluid/design/concepts/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..eec8a2f14ca9e8b3bf0d0acbbb6004972790d795 --- /dev/null +++ b/doc/fluid/design/concepts/index_cn.rst @@ -0,0 +1,18 @@ +核心概念 +------------- + +.. toctree:: + :maxdepth: 1 + + README.md + cpp_data_feeding.md + functions_operators_layers.md + program.md + variable.md + var_desc.md + tensor.md + tensor_array.md + lod_tensor.md + block.md + scope.md + executor.md diff --git a/doc/fluid/design/concepts/index_en.rst b/doc/fluid/design/concepts/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..036e1da2550cf520f5c40ecd9657f71603755adc --- /dev/null +++ b/doc/fluid/design/concepts/index_en.rst @@ -0,0 +1,18 @@ +Core Concepts +-------------------------------------- + +.. toctree:: + :maxdepth: 1 + + README.md + cpp_data_feeding.md + functions_operators_layers.md + program.md + variable.md + var_desc.md + tensor.md + tensor_array.md + lod_tensor.md + block.md + scope.md + executor.md diff --git a/doc/fluid/design/concepts/scope.md b/doc/fluid/design/concepts/scope.md index 4da76eebb74abcd26ec2b8671399e6bc4fb58574..dcf76649357aaef80d6bc1a933ece8c4c1063547 100644 --- a/doc/fluid/design/concepts/scope.md +++ b/doc/fluid/design/concepts/scope.md @@ -30,7 +30,7 @@ Scope is an association of a name to variable. All variables belong to `Scope`. Variable can not belong to many scopes. If you want to use variables from parent scope, you can use `parent scope`. -1. Scope should destruct all Variables inside it when itself is destructed. User can never store `Variable` pointer somewhere else. +1. Scope should destruct all Variables inside it when itself is destructed. User can never store `Variable` pointer somewhere else. Because Variable can only be got from Scope. When destroying Scope, we also need to destroy all the Variables in it. If user store `Variable` pointer to private data member or some global variable, the pointer will be an invalid pointer when associated `Scope` is destroyed. @@ -78,7 +78,7 @@ In `Scope` class, there is a private data member called `parent_`. `parent_` is A local scope is very useful when we implement Recurrent Neural Network. Each timestep of an RNN should be a `Net`. Each `Net` of timestep (`StepNet` for short) should use an independent local scope. Just like variables in a while loop is inside a local scope in programming languages. By using a single `StepNet` and changing local scope, we can implement an RNN easily. -# Interface Design +## Interface Design ```cpp class Variable { diff --git a/doc/fluid/design/concepts/var_desc.md b/doc/fluid/design/concepts/var_desc.md index 6a45af1995463402ba9c65ddb51c6c8bb107f99e..fcba08c07f40177d54a91048cb616198402a9d5d 100644 --- a/doc/fluid/design/concepts/var_desc.md +++ b/doc/fluid/design/concepts/var_desc.md @@ -1,3 +1,5 @@ +# Design Doc: Var_desc + ## Background PaddlePaddle divides the description of neural network computation into two stages: compile time and runtime. At compile time, the neural network computation is described as a `ProgramDesc` whereas at runtime an `Executor` interprets the `ProgramDesc` to compute the operations. diff --git a/doc/fluid/design/concurrent/channel.md b/doc/fluid/design/concurrent/channel.md new file mode 100644 index 0000000000000000000000000000000000000000..a00a3325e7b49381f0f82ebbf32b74683f02de5f --- /dev/null +++ b/doc/fluid/design/concurrent/channel.md @@ -0,0 +1,139 @@ +# Channel Design + +## Introduction + +A Channel is a data structure that allows for synchronous interprocess +communication via message passing. It is a fundemental component of CSP +(communicating sequential processes), and allows for users to pass data +between threads without having to worry about synchronization. + +## How to use it + +Paddle offers python APIs to open and close channels, along with sending +and receiving data to/from a channel. + +### Create a channel + +Creates a new channel that takes in variables of a specific dtype. + +- **fluid.make_channel(dtype, capacity=0)** + - **dtype**: The data type of variables being sent/received through channel + - **capacity**: The capacity of the channel. A capacity of 0 represents + an unbuffered channel. Capacity > 0 represents a buffered channel + +``` +ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR, 10) +``` + +### Close a channel + +Closes a channel. Any pending senders and receivers will be awoken during +this time. Receivers can still receive from a closed channel, but senders +are not allowed to send any additional data to the channel (Paddle will +raise an exception if users try to send to a closed channel.) + +- **fluid.channel_close(channel)** + +``` +fluid.channel_close(ch) +``` + +### Send data to a channel + +Sends a variable to a channel. Currently, variables of dtype `LoDTensor`, +`LoDRankTable`, `LoDTensorArray`, `SelectedRows`, `ReaderHolder`, and +`ChannelHolder` are supported. + +By default, the data of the Variable is moved from the sender to the receiver, +however the user can optionally copy the data before performing the send. + +- **channel_send(channel, variable, is_copy=False)** + - **channel**: The channel to send the variable to + - **variable**: The variable to send to the channel + - **is_copy**: If set to True, channel_send will perform a variable assign + to copy the source variable to a new variable to be sent. + +``` +ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR) +var = fill_constant(shape=[1],dtype=core.VarDesc.VarType.INT32, value=100) +fluid.channel_send(ch, var, True) +``` + +### Receive data from a channel + +Receives a variable from a channel. The data of the variable is moved to the +receiving variable. + +- **channel_recv(channel, return_variable)** + - **channel**: The channel to receive the variable from + - **return_variable**: The destination variable used to store the data of the + variable received from the channel + +``` +ch = fluid.make_channel(dtype=core.VarDesc.VarType.LOD_TENSOR) +var = fill_constant(shape=[1],dtype=core.VarDesc.VarType.INT32, value=-1) +fluid.channel_recv(ch, var) +``` + +## How it Works + +Channels provides a simple interface for different threads to share data. +To support the synchronization requirements, channels utilizes a series of +internal queues, locks, and conditional variables. + +### QueueMessage + +QueueMessage encapsulates the state of the channel send/receive operation to be +put in the **sendq/recvq**. It contains a condition variable used to lock the +thread (when there are no available sends/receives). In addition, it contains +a callback function to notify a thread when the QueueMessage is being +processed by the channel. + +### Queues + +- **buff_**: This queue holds the data buffer in a buffered channel. The +capacity is set to the capacity of the channel. This data buffer is not +used in an unbuffered channel. + +- **sendq**: This queue holds the QueueMessage of any pending senders of a +channel. When a thread performs a channel_send operation on the channel, the +channel_send operation will put a new QueueMessage on the sendq and block the +current thread under two conditions: + 1. The channel is buffered and is full + 2. The channel is unbuffered and does not have a receiver + +- **recvq**: This queue holds the QueueMessage of any pending receivers of a +channel. When a thread performs a channel_recv operation on the channel, the +channel_recv operation will put a new QueueMessage on the recvq and block the +current thread under two conditions: + 1. The channel is buffered and there is no data on the buff_ + 2. The channel is unbuffered and does not have a sender + +### State diagram + +#### Channel Send + +

+
+

+ +#### Channel Receive + +

+
+

+ +## Limitations and Considerations + +### Variable Copy + +In golang, variables in channels are copied from the sender to the receiver. +In Paddle, the data from our variables are **moved** from sender to receiver. +As a result, these variables should not be used after they are sent. We +provide a flag in channel_send method to allow users to copy the variable to +be sent before it is sent. + +Please note that this is acheived by adding an **assign** operator and creating +a temporary variable that is sent in place of the original variable. Please +note that **assign** operator has limited support for only certain variables +datatypes. diff --git a/doc/fluid/design/concurrent/images/channel_recv.png b/doc/fluid/design/concurrent/images/channel_recv.png new file mode 100644 index 0000000000000000000000000000000000000000..c06cd15ae7b8a8c94d5742f6675e389081fcf789 Binary files /dev/null and b/doc/fluid/design/concurrent/images/channel_recv.png differ diff --git a/doc/fluid/design/concurrent/images/channel_send.png b/doc/fluid/design/concurrent/images/channel_send.png new file mode 100644 index 0000000000000000000000000000000000000000..006ebb4a5a4bcd32c97847e9fb7729a740255f7c Binary files /dev/null and b/doc/fluid/design/concurrent/images/channel_send.png differ diff --git a/doc/fluid/design/concurrent/index_cn.rst b/doc/fluid/design/concurrent/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..e47135e9fc42760898083710e0a6767252a0225b --- /dev/null +++ b/doc/fluid/design/concurrent/index_cn.rst @@ -0,0 +1,8 @@ +并发编程 +------------ + +.. toctree:: + :maxdepth: 1 + + concurrent_programming.md + parallel_do.md diff --git a/doc/fluid/design/concurrent/index_en.rst b/doc/fluid/design/concurrent/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..0727e75798b2a869588f80d3cce7a886554e4ffb --- /dev/null +++ b/doc/fluid/design/concurrent/index_en.rst @@ -0,0 +1,8 @@ +Concurrent Programming +------------------------- + +.. toctree:: + :maxdepth: 1 + + concurrent_programming.md + parallel_do.md diff --git a/doc/fluid/design/data_type/index_cn.rst b/doc/fluid/design/data_type/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..b60167b6b1599df69dfc5073ebf32bdbb0a316ec --- /dev/null +++ b/doc/fluid/design/data_type/index_cn.rst @@ -0,0 +1,7 @@ +数据类型 +------------ + +.. toctree:: + :maxdepth: 1 + + float16.md diff --git a/doc/fluid/design/data_type/index_en.rst b/doc/fluid/design/data_type/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..6a88d17943f49134a2d00363845e919537ff4545 --- /dev/null +++ b/doc/fluid/design/data_type/index_en.rst @@ -0,0 +1,7 @@ +Data Type +------------ + +.. toctree:: + :maxdepth: 1 + + float16.md diff --git a/doc/fluid/design/dist_train/distributed_lookup_table_design.md b/doc/fluid/design/dist_train/distributed_lookup_table_design.md index e543adf0f97cc6b47415b807d7a1ed1effec9b22..988729138926f035750b59eb245dde82502a3ad2 100644 --- a/doc/fluid/design/dist_train/distributed_lookup_table_design.md +++ b/doc/fluid/design/dist_train/distributed_lookup_table_design.md @@ -1,4 +1,4 @@ -## Design Doc: Distributed Lookup Table Operator +# Design Doc: Distributed Lookup Table Operator A lookup table operator in PaddlePaddle where the table could be out of the memory of a computer. diff --git a/doc/fluid/design/dist_train/index_cn.rst b/doc/fluid/design/dist_train/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..ed6f3dda271d2de58d92aa7ec804fa9e68dfc48a --- /dev/null +++ b/doc/fluid/design/dist_train/index_cn.rst @@ -0,0 +1,9 @@ +分布式训练 +------------ + +.. toctree:: + :maxdepth: 1 + + distributed_architecture.md + distributed_lookup_table_design.md + parameter_server.md diff --git a/doc/fluid/design/dist_train/index_en.rst b/doc/fluid/design/dist_train/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..f84688f168021113bd933802709bcd787b474bca --- /dev/null +++ b/doc/fluid/design/dist_train/index_en.rst @@ -0,0 +1,9 @@ +Distributed Training +--------------------- + +.. toctree:: + :maxdepth: 1 + + distributed_architecture.md + distributed_lookup_table_design.md + parameter_server.md diff --git a/doc/fluid/design/dynamic_rnn/index_cn.rst b/doc/fluid/design/dynamic_rnn/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..1d224d22cf7103616f44115db01f0ae55f1cb88a --- /dev/null +++ b/doc/fluid/design/dynamic_rnn/index_cn.rst @@ -0,0 +1,8 @@ +动态RNN +------------ + +.. toctree:: + :maxdepth: 1 + + rnn.md + rnn_design.md diff --git a/doc/fluid/design/dynamic_rnn/index_en.rst b/doc/fluid/design/dynamic_rnn/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..568f496e4ffe21a5e730488aef905f7e2d98839e --- /dev/null +++ b/doc/fluid/design/dynamic_rnn/index_en.rst @@ -0,0 +1,8 @@ +Dynamic RNN +------------ + +.. toctree:: + :maxdepth: 1 + + rnn.md + rnn_design.md diff --git a/doc/fluid/design/dynamic_rnn/rnn_design.md b/doc/fluid/design/dynamic_rnn/rnn_design.md index 3d38b9a0ad225fd8e0c1bb037474b292b1887f5b..cecfcd3307ae4c4fa603220a360e9e124069fa58 100644 --- a/doc/fluid/design/dynamic_rnn/rnn_design.md +++ b/doc/fluid/design/dynamic_rnn/rnn_design.md @@ -99,7 +99,7 @@ private: - 由于传递过程是以复制`shared_ptr`的方式实现,因此框架只需要传递一次 `lod_start_pos` 2. 对于不感知 `lod_start_pos` 的Op足够透明 -3. 需要修改 `lod_start_pos` 的producer Op可以在 `Run` 时更新自己的 `lod_start_pos` 数据 +3. 需要修改 `lod_start_pos` 的producer Op可以在 `Run` 时更新自己的 `lod_start_pos` 数据 具体的设计分为以下3小节 @@ -189,7 +189,7 @@ struct SortedSeqItem { std::vector sorted_seqs; ``` -来追踪序列排序后的位置,并添加一个新的接口 +来追踪序列排序后的位置,并添加一个新的接口 ```c++ std::vector SortBySeqLen(const LODTensor& tensor); @@ -233,7 +233,10 @@ x x - 将每个序列concat 为规则的mini-batch表示 ## 参考文献 -1. [Tensorflow Bucketing](https://www.tensorflow.org/versions/r0.12/api_docs/python/contrib.training/bucketing) -2. [mxnet Bucketing](http://mxnet.io/how_to/bucketing.html) -3. [variable length input in RNN scenario](https://discuss.pytorch.org/t/about-the-variable-length-input-in-rnn-scenario/345/5) -4. [Level of details](https://en.wikipedia.org/wiki/Level_of_detail) +[Tensorflow Bucketing](https://www.tensorflow.org/versions/r0.12/api_docs/python/contrib.training/bucketing) + +[mxnet Bucketing](http://mxnet.io/how_to/bucketing.html) + +[variable length input in RNN scenario](https://discuss.pytorch.org/t/about-the-variable-length-input-in-rnn-scenario/345/5) + +[Level of details](https://en.wikipedia.org/wiki/Level_of_detail) diff --git a/doc/fluid/design/execution/index_cn.rst b/doc/fluid/design/execution/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..ed31b017429d168b2466d8f6b423f48bd5d78d1f --- /dev/null +++ b/doc/fluid/design/execution/index_cn.rst @@ -0,0 +1,8 @@ +执行流程 +------------- + +.. toctree:: + :maxdepth: 1 + + switch.md + if_else_op.md diff --git a/doc/fluid/design/execution/index_en.rst b/doc/fluid/design/execution/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..fcf846da348ff0bed707c42718e08314998fbac0 --- /dev/null +++ b/doc/fluid/design/execution/index_en.rst @@ -0,0 +1,8 @@ +Execution Process +-------------------------------------- + +.. toctree:: + :maxdepth: 1 + + switch.md + if_else_op.md diff --git a/doc/fluid/design/execution/switch.md b/doc/fluid/design/execution/switch.md index 827d0601c621e4a230de28e2baad8e196e69625e..1c337bd7159b25e594c2f91f9a143b3f4bc3c8e8 100644 --- a/doc/fluid/design/execution/switch.md +++ b/doc/fluid/design/execution/switch.md @@ -1,6 +1,6 @@ -### Design Doc: Switch +# Design Doc: Switch -### Background +## Background Many programming languages provide `switch` as a generalization of `if-elif-else`. We want to add it to Fluid. @@ -19,7 +19,7 @@ with switch() as switch: fluid.print("Case 3") ``` -### The Semantics +## The Semantics 1. A `switch` control-flow checks cases one-by-one. 1. The condition of each case is a boolean value, which is a scalar, and differs from the `fluid.if_else` control-flow, which condition could be a vector of boolean values. diff --git a/doc/fluid/design/index_cn.rst b/doc/fluid/design/index_cn.rst index f1887be6901653d4263d711d78b626d2abfd45c9..e9f55214f411abb11bef180d7af4716ad85a0b09 100644 --- a/doc/fluid/design/index_cn.rst +++ b/doc/fluid/design/index_cn.rst @@ -1,2 +1,19 @@ 设计思想 ------------ + +.. toctree:: + :maxdepth: 1 + + motivation/index_cn.rst + execution/index_cn.rst + concepts/index_cn.rst + data_type/index_cn.rst + memory/index_cn.rst + muti_devices/index_cn.rst + dynamic_rnn/index_cn.rst + concurrent/index_cn.rst + algorithm/index_cn.rst + network/index_cn.rst + modules/index_cn.rst + interface/index_cn.rst + dist_train/index_cn.rst diff --git a/doc/fluid/design/index_en.rst b/doc/fluid/design/index_en.rst index 18a4b4122f6e3f0096676f34ffea8a80aa9b6696..2802dc3a31d540c5a19bf9042053496aad152f98 100644 --- a/doc/fluid/design/index_en.rst +++ b/doc/fluid/design/index_en.rst @@ -1,2 +1,19 @@ Design ------------ + +.. toctree:: + :maxdepth: 1 + + motivation/index_en.rst + execution/index_en.rst + concepts/index_en.rst + data_type/index_en.rst + memory/index_en.rst + muti_devices/index_en.rst + dynamic_rnn/index_en.rst + concurrent/index_en.rst + algorithm/index_en.rst + network/index_en.rst + modules/index_en.rst + interface/index_en.rst + dist_train/index_en.rst diff --git a/doc/fluid/design/interface/index_cn.rst b/doc/fluid/design/interface/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..69a8d9bad4fe88935b9fa87757abf0105ca8eb75 --- /dev/null +++ b/doc/fluid/design/interface/index_cn.rst @@ -0,0 +1,4 @@ +多语言接口 +------------ + +TBD diff --git a/doc/fluid/design/interface/index_en.rst b/doc/fluid/design/interface/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..22abc71f984aa5da7151d5ebf0c3bdbcc69a3624 --- /dev/null +++ b/doc/fluid/design/interface/index_en.rst @@ -0,0 +1,4 @@ +Multi-Language Interface +----------------------- + +TBD diff --git a/doc/fluid/design/memory/index_cn.rst b/doc/fluid/design/memory/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..c507c638bd1a6eb428175ed2756a6ecfc6cca198 --- /dev/null +++ b/doc/fluid/design/memory/index_cn.rst @@ -0,0 +1,7 @@ +内存管理 +------------ + +.. toctree:: + :maxdepth: 1 + + memory_optimization.md diff --git a/doc/fluid/design/memory/index_en.rst b/doc/fluid/design/memory/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..f7526437a73a09b300f05e138084755f5528b242 --- /dev/null +++ b/doc/fluid/design/memory/index_en.rst @@ -0,0 +1,7 @@ +Memory Management +------------------- + +.. toctree:: + :maxdepth: 1 + + memory_optimization.md diff --git a/doc/fluid/design/modules/evaluator.md b/doc/fluid/design/modules/evaluator.md index 11cc129d56905a9ee666da92fbe6f8559c6d325a..de9605b0e67a035ab1ef1e4cafbe838f83bc5807 100644 --- a/doc/fluid/design/modules/evaluator.md +++ b/doc/fluid/design/modules/evaluator.md @@ -1,10 +1,10 @@ -## Evaluator Design +# Evaluator Design -### Problem Statement +## Problem Statement During training or inference, we provide an evaluation function to measure the model performance, for example, accuracy, precision, etc. In the operator based framework design, the data passes through the network pipeline batch by batch. As a result, inside the operator, we only calculate the metrics for one minibatch. Thus, we need to provide a mechanism to calculate the metrics for each N pass/batch the user wants. -### Evaluator Design +## Evaluator Design Currently, every operation is expressed in the graph. We divide the evaluator process into three steps. 1. Initialize the metric state and add it into the block. @@ -14,11 +14,11 @@ Currently, every operation is expressed in the graph. We divide the evaluator pr 3. Merge the mini-batch statistics to form the evaluation result for multiple mini-batches. When it comes to distributed training/Multi-GPU training, aggregate the value from different devices. -### Implementation -This design is shown in the Python API. -Each metric operator needs to caculate the metric statistic and return the batch-aware states. Python side is responsible for accumulating the states for each pass. +## Implementation +This design is shown in the Python API. +Each metric operator needs to caculate the metric statistic and return the batch-aware states. Python side is responsible for accumulating the states for each pass. + - ```python class Evaluator(object): """ @@ -32,7 +32,7 @@ class Evaluator(object): The initialization of Evaluator should be responsible for: create metric states and append to the main_program - """ + """ pass def _update_ops(self, input, label, **kwargs) @@ -40,14 +40,14 @@ class Evaluator(object): Add mini-batch evaluator caculate operators to the main_program. Add increment operator to accumulate the metric states. """ - + def reset(self, executor, reset_program=None): """ Reset metric states at the begin of each pass/user specified batch number. Execute the reset_program to reset the states. """ - + def eval(self, executor, eval_program=None): """ diff --git a/doc/fluid/design/modules/index_cn.rst b/doc/fluid/design/modules/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..b25783f0f5120991c29ba31b7b512bd4c183eecf --- /dev/null +++ b/doc/fluid/design/modules/index_cn.rst @@ -0,0 +1,14 @@ +代码结构和重要模块 +----------------- + +.. toctree:: + :maxdepth: 1 + + backward.md + python_api.md + regularization.md + infer_var_type.md + optimizer.md + prune.md + register_grad_op.md + net_op_design.md diff --git a/doc/fluid/design/modules/index_en.rst b/doc/fluid/design/modules/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..2108156e080996916f2650448f0a56f998757204 --- /dev/null +++ b/doc/fluid/design/modules/index_en.rst @@ -0,0 +1,14 @@ +Code Structure and Important Modules +------------------------------------- + +.. toctree:: + :maxdepth: 1 + + backward.md + python_api.md + regularization.md + infer_var_type.md + optimizer.md + prune.md + register_grad_op.md + net_op_design.md diff --git a/doc/fluid/design/modules/net_op_design.md b/doc/fluid/design/modules/net_op_design.md index a5f0483081e8a03b2d001a551fcc02bbd392016d..e64ac2fb1c6898bfeb883250347da3d9a4757b97 100644 --- a/doc/fluid/design/modules/net_op_design.md +++ b/doc/fluid/design/modules/net_op_design.md @@ -1,16 +1,16 @@ # Network Design `Network` is the container and controller of a set of operators, -user can build a real network from a `NetDesc` which is a protobuf message +user can build a real network from a `NetDesc` which is a protobuf message and use `Network.Run()` to run all the operators in the network. -A network object knows all Operators belonging to this network. Variables, -which are inputs and outputs of these operators, +A network object knows all Operators belonging to this network. Variables, +which are inputs and outputs of these operators, are created and managed by a hierarchy of Scope objects. -# API +## API -## Net +### Net To make the `Network` extendable, a base class is defined like this ```c++ @@ -43,8 +43,8 @@ class Net { }; ``` -All network implementations should build networks from a protobuf message which -describes the structure of a real network; `Run` method should be implemented by +All network implementations should build networks from a protobuf message which +describes the structure of a real network; `Run` method should be implemented by all implementations to offer a universal method to forward or backward compute a network. `Net::Create` is a method of factory pattern and can be implemented like @@ -64,7 +64,7 @@ std::unique Net::Create(const NetDesc& def) { ``` Network is designed as the container of operators. to make it more extendable, -we decouple it from the related variable resources. +we decouple it from the related variable resources. `Run(Scope* scope)` takes the scope as a argument so that it can run in different scopes. @@ -80,7 +80,7 @@ if (net) { } ``` -## `PlainNet` as a simple implementation of `BaseNet` +### `PlainNet` as a simple implementation of `BaseNet` A very basic implementation is as follows. All it does is simply to run every operators in sequence. @@ -211,9 +211,9 @@ class NetBuilder final { } ``` -## Compatibility with RNN +### Compatibility with RNN -Benefitting from the decoupling of `PlainNet.Run` and `Scope`, `PlainNet` is compatible with future RNN design, +Benefitting from the decoupling of `PlainNet.Run` and `Scope`, `PlainNet` is compatible with future RNN design, for example we can implement a simple recurrent neural network as follows ```c++ diff --git a/doc/fluid/design/modules/optimizer.md b/doc/fluid/design/modules/optimizer.md index 691081c268b848811bf5ee6d6a41edfe0f47eec0..1c25fde9cafb322f789662077d3fc6cc1d64ce38 100644 --- a/doc/fluid/design/modules/optimizer.md +++ b/doc/fluid/design/modules/optimizer.md @@ -1,6 +1,6 @@ -## Optimizer Design +# Optimizer Design -### The Problem +## The Problem A PaddlePaddle program, or a block, is a sequence of operators operating variables. A training program needs to do three kinds of works: @@ -19,7 +19,7 @@ It's true that users should be able to create all these operators manually by ca In this design, we propose a high-level API that automatically derives the optimisation pass and operators from the forward pass. -### High-level Python API to describe the training process +## High-level Python API to describe the training process 1. User write code to describe the network: @@ -54,7 +54,7 @@ In this design, we propose a high-level API that automatically derives the optim sess.run(target= opt_op_list, ...) ``` -#### Optimizer Python interface: +### Optimizer Python interface: ```python class Optimizer(object): diff --git a/doc/fluid/design/motivation/index_cn.rst b/doc/fluid/design/motivation/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..7706e73eca644ed6db772fd77da947395313237f --- /dev/null +++ b/doc/fluid/design/motivation/index_cn.rst @@ -0,0 +1,10 @@ +设计动机和目标 +------------- + +.. toctree:: + :maxdepth: 1 + + api.md + refactorization.md + fluid.md + fluid_compiler.md diff --git a/doc/fluid/design/motivation/index_en.rst b/doc/fluid/design/motivation/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..10b64b257c604ced6b957d6d6018e8a363f00fac --- /dev/null +++ b/doc/fluid/design/motivation/index_en.rst @@ -0,0 +1,10 @@ +Design Motivations and Goals +-------------------------------------- + +.. toctree:: + :maxdepth: 1 + + api.md + refactorization.md + fluid.md + fluid_compiler.md diff --git a/doc/fluid/design/motivation/refactorization.md b/doc/fluid/design/motivation/refactorization.md index f93d6155e1764386b01d2f0df3f141ab75cd55d4..7c39fabcc6df76afdb6a77b4cbc2edf0bf3ef780 100644 --- a/doc/fluid/design/motivation/refactorization.md +++ b/doc/fluid/design/motivation/refactorization.md @@ -97,13 +97,13 @@ Compile Time -> IR -> Runtime --- -# Operator/OpWithKernel/OpKernel +## Operator/OpWithKernel/OpKernel ![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/49caf1fb70820fb4a6c217634317c9306f361f36/op_op_with_kern_class_diagram.dot) --- -# Operator +## Operator ![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/dd598e8f1976f5759f58af5e5ef94738a6b2e661/op.dot) * `Operator` is the fundamental building block of the user interface. @@ -113,7 +113,7 @@ Compile Time -> IR -> Runtime --- -# OpWithKernel/Kernel +## OpWithKernel/Kernel ![class_diagram](http://api.paddlepaddle.org/graphviz?dot=https://gist.githubusercontent.com/reyoung/53df507f6749762675dff3e7ce53372f/raw/9d7f4eba185cf41c8e2fbfb40ae21890dbddcd39/op_with_kernel.dot) @@ -124,7 +124,7 @@ Compile Time -> IR -> Runtime --- -# Why separate Kernel and Operator +## Why separate Kernel and Operator * Separate GPU and CPU code. * Make Paddle capable of running without GPU. @@ -132,7 +132,7 @@ Compile Time -> IR -> Runtime * For example, same multiplication op can have different implementations kernels such as FP16 kernel, FP32 kernel, MKL, eigen kernel. --- -# Libraries for Kernel development +## Libraries for Kernel development * `Eigen::Tensor` contains basic math and element-wise functions. * Note that `Eigen::Tensor` has broadcast implementation. @@ -143,16 +143,16 @@ Compile Time -> IR -> Runtime * Hand-writing `GPUKernel` and `CPU` code * Do not write in header (`.h`) files. CPU Kernel should be in cpp source (`.cc`) and GPU kernels should be in cuda (`.cu`) files. (GCC cannot compile GPU code.) --- -# Operator Registration +## Operator Registration -## Why is registration necessary? +### Why is registration necessary? We need a method to build mappings between Op type names and Op classes. -## How is registration implemented? +### How is registration implemented? Maintaining a map, whose key is the type name and the value is the corresponding Op constructor. --- -# The Registry Map +## The Registry Map ### `OpInfoMap` @@ -166,7 +166,7 @@ Maintaining a map, whose key is the type name and the value is the corresponding - **`checker`**: Used to check attributes. --- -# Related Concepts +## Related Concepts ### Op_Maker It's constructor takes `proto` and `checker`. They are completed during Op_Maker's construction. ([ScaleOpMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/scale_op.cc#L37)) @@ -178,7 +178,7 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) ``` --- -# Registration Process +## Registration Process 1. Write an Op class and its gradient Op class, if required. 2. Write an Op maker class. In the constructor of this class, describe the inputs, outputs and attributes of the operator. 3. Invoke the macro `REGISTER_OP`. This macro will @@ -186,13 +186,13 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) 2. Using the completed `proto` and `checker`, it will add a new key-value pair to the `OpInfoMap` --- -# Backward Module (1/2) +## Backward Module (1/2) ### Create Backward Operator - Mapping from forward Op to backward Op ![backward](https://gist.githubusercontent.com/dzhwinter/a6fbd4623ee76c459f7f94591fd1abf0/raw/61026ab6e518e66bde66a889bc42557a1fccff33/backward.png) --- -# Backward Module (2/2) +## Backward Module (2/2) ### Build Backward Network - **Input**: a graph of forward operators - **Output**: a graph of backward operators @@ -205,7 +205,7 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) --- -# Scope, Variable, Tensor +## Scope, Variable, Tensor * `Tensor` is an n-dimension array with type. * Only dims and data pointers are stored in `Tensor`. @@ -218,8 +218,8 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) * `Scope` has a hierarchical structure. The local scope can get variables from its parent scope. --- -# Block (in design) -## the difference between original RNNOp and Block +## Block (in design) +### the difference between original RNNOp and Block - As an operator is more intuitive than `RNNOp`, - Offers a new interface `Eval(targets)` to deduce the minimal block to `Run`, - Fits the compile-time/ runtime separation design paradigm. @@ -227,7 +227,7 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) - When graph executes, a Block with `BlockDesc` is passed. It then creates `Op` and `Var` instances and then invokes `Run`. --- -# Milestone +## Milestone - Take Paddle/books as the main line, the requirement of the models motivates framework refactoring, - Model migration - Framework development gives **priority support** to model migration, for example, @@ -240,7 +240,7 @@ REGISTER_OP_WITHOUT_GRADIENT(op_type, op_class, op_maker_class) - Accept imperfection, concentrate on solving the specific problem at the right price. --- -# Control the migration quality +## Control the migration quality - Compare the performance of migrated models with old ones. - Follow the google C++ style guide. - Build the automatic workflow of generating Python/C++ documentations. diff --git a/doc/fluid/design/muti_devices/index_cn.rst b/doc/fluid/design/muti_devices/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..1f8439e8623e1c1ae9a12c24d08079f0ec3d761f --- /dev/null +++ b/doc/fluid/design/muti_devices/index_cn.rst @@ -0,0 +1,9 @@ +多设备支持 +------------ + +.. toctree:: + :maxdepth: 1 + + operator_kernel_type.md + kernel_selection.md + kernel_hint_design.md diff --git a/doc/fluid/design/muti_devices/index_en.rst b/doc/fluid/design/muti_devices/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..819e9c5d77b2abf8da0e2ce6f494ea5174c1d0a2 --- /dev/null +++ b/doc/fluid/design/muti_devices/index_en.rst @@ -0,0 +1,9 @@ +Multi-Device Support +---------------------- + +.. toctree:: + :maxdepth: 1 + + operator_kernel_type.md + kernel_selection.md + kernel_hint_design.md diff --git a/doc/fluid/design/muti_devices/kernel_hint_design.md b/doc/fluid/design/muti_devices/kernel_hint_design.md index a54b7da045e1a362626ef066f9ebb56af2c3181a..728c8f0b964c02c1efa019945f7427fa879d3aa1 100644 --- a/doc/fluid/design/muti_devices/kernel_hint_design.md +++ b/doc/fluid/design/muti_devices/kernel_hint_design.md @@ -1,4 +1,4 @@ -## Problem +# Problem In PaddlePaddle's [Design](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md), one Operator may have multiple kernels. Users may have some personal preference to choose a certain type of kernel for an operator, such as `force_cpu` to choose a CPU kernel, `use_cudnn` to choose a CUDNN kernel, we need to provide a way for users to do this. In the current design, we use KernelType to describe one kernel. diff --git a/doc/fluid/design/muti_devices/kernel_selection.md b/doc/fluid/design/muti_devices/kernel_selection.md index 9719e031c70979cd95400701efd30879662e19bc..39ea2b00090a864f95610d6d2846ca5e5c904e78 100644 --- a/doc/fluid/design/muti_devices/kernel_selection.md +++ b/doc/fluid/design/muti_devices/kernel_selection.md @@ -1,4 +1,4 @@ -## Background +# Background Every operator has many kernels because there are multiple data types, places, data layout, library type that Fluid supports. We use the `OpKernelType ` to describe kernel types that operators can hold. The `OpKernelType ` is as follows: diff --git a/doc/fluid/design/network/index_cn.rst b/doc/fluid/design/network/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..3557d55fe4dbae1f712e0760ca15111ec6f6792d --- /dev/null +++ b/doc/fluid/design/network/index_cn.rst @@ -0,0 +1,7 @@ +复杂网络设计 +------------ + +.. toctree:: + :maxdepth: 1 + + sequence_decoder.md diff --git a/doc/fluid/design/network/index_en.rst b/doc/fluid/design/network/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..73a7137236bdf0548d35721609351d6deca3013b --- /dev/null +++ b/doc/fluid/design/network/index_en.rst @@ -0,0 +1,7 @@ +Complex Network Design +------------------------ + +.. toctree:: + :maxdepth: 1 + + sequence_decoder.md diff --git a/doc/fluid/dev/api_doc_std_cn.md b/doc/fluid/dev/api_doc_std_cn.md index 5596b2653ae6ed9917f77dad08f926bcb1fb3419..b50f18f21df0787b9761bf0935ed7f4384ff0f98 100644 --- a/doc/fluid/dev/api_doc_std_cn.md +++ b/doc/fluid/dev/api_doc_std_cn.md @@ -45,11 +45,11 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接 - Python API Definition - 格式: - + [Python API Definition] - + - 示例 - + ``` fc(input, size, @@ -63,19 +63,19 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接 ``` - Function Description - + - 格式 本模块应包含以下内容(排列顺序为文档撰写顺序): [Function Description] - + [Formula] - + [Symbols' Descriptions if necessary] - + [References if necessary] - + - 示例 [Function Description] @@ -119,18 +119,18 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接 [References if necessary] 因fc没有必要列出的参考文献,故该内容省略。其他情况下需明确给出对应的参考文献和对应连接,以 layer_norm 为例: - + ``` Refer to `Layer Normalization `_ for more details. ``` - + - Args Description - + - 格式 - + \[Arg's Name\][(Data Type, Default Value)][Description] - + - 示例 fc的部分参数注释如下: @@ -145,35 +145,35 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接 ``` - Returns - + - 格式 - + [Name][Shape] - + - 示例 - + ``` Returns: A tensor variable storing the transformation result. ``` - + 当返回值为包含多个参数的tuple时,应按顺序逐个介绍各参数,以dynamic_lstm为例: - + ``` Returns: A tuple containing: The hidden state of LSTM whose shape is (T X D). The cell state of LSTM whose shape is (T X D). ``` - + - Raises - 格式 - + [Exception Type][Condition] - 示例 - + ``` Raises: ValueError: If the rank of the input is less than 2. @@ -182,7 +182,7 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接 - Note - 格式 - + [Note] - 示例 @@ -198,15 +198,15 @@ API文档须使用reStructuredText格式撰写,该格式详情请参考[链接 2. When num_heads == 1, scaled_dot_product_attention has no learnable parameters. ``` - + - Examples - 格式 \[Python Code Snipper] - + - 示例 - + ``` Examples: .. code-block:: python diff --git a/doc/fluid/dev/index_cn.rst b/doc/fluid/dev/index_cn.rst index e1edf079fa0f85eb7f6709fd945fffae88625d01..e70bf5dff3849f2ff82315f7eba4a92c93539843 100644 --- a/doc/fluid/dev/index_cn.rst +++ b/doc/fluid/dev/index_cn.rst @@ -1,2 +1,13 @@ 开发标准 ------------ + +.. toctree:: + :maxdepth: 1 + + new_op_en.md + new_op_kernel_en.md + use_eigen_en.md + name_convention.md + support_new_device.md + releasing_process.md + op_markdown_format.md diff --git a/doc/fluid/dev/index_en.rst b/doc/fluid/dev/index_en.rst index faf9dfcd315fddc4774c3717b41086fa6c6bf85a..f0e9afcfcc9edfb9a91f58375cd415ea414f8f82 100644 --- a/doc/fluid/dev/index_en.rst +++ b/doc/fluid/dev/index_en.rst @@ -1,4 +1,13 @@ Development ------------ -This is Development page +.. toctree:: + :maxdepth: 1 + + new_op_en.md + new_op_kernel_en.md + use_eigen_en.md + name_convention.md + support_new_device.md + releasing_process.md + op_markdown_format.md diff --git a/doc/fluid/dev/name_convention.md b/doc/fluid/dev/name_convention.md index a02b356f058da68442516c2705d0bac140f8ef18..75830ef28c67dc4694d899efe503084b7b5852e1 100644 --- a/doc/fluid/dev/name_convention.md +++ b/doc/fluid/dev/name_convention.md @@ -1,8 +1,8 @@ -## Operator's Parameter Name Convention +# Operator's Parameter Name Convention To make the operator document itself more clear, we recommend operator names obey the listing conventions. -### OpProtoMaker names +## OpProtoMaker names When defining an operator in Paddle, a corresponding [OpProtoMaker](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L170) (TODO: OpProtoMaker Doc)need to be defined. All the Input/Output and Attributes will write into the [OpProto](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/framework.proto#L61) , and will be used in client language to create operator. @@ -20,7 +20,7 @@ When defining an operator in Paddle, a corresponding [OpProtoMaker](https://gith - Order. - Follow the order of Input/Output, then Attribute, then Comments. See the example in best practice. -### Best Practice +## Best Practice Here we give some examples to show how these rules will be used. diff --git a/doc/fluid/dev/new_op_kernel_en.md b/doc/fluid/dev/new_op_kernel_en.md index 123df0a7ee4943c0b789ef9cfa6e0804d0fdd564..55dea8d0a39232ede59d4663d6e1a47fbfc60853 100644 --- a/doc/fluid/dev/new_op_kernel_en.md +++ b/doc/fluid/dev/new_op_kernel_en.md @@ -1,14 +1,14 @@ -## Add Kernels for a New Device +# Add Kernels for a New Device -### Background +## Background PaddlePaddle Fluid have hundreds of operators. Each operator could have one or more kernels. A kernel is an implementation of the operator for a certain device, which could be a hardware device, e.g., the CUDA GPU, or a library that utilizes a device, e.g., Intel MKL that makes full use of the Xeon CPU. [This document](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md) explains how to add an operator, and its kernels. The kernels of an operator are indexed by a C++ type [`OpKernelType`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/operator_kernel_type.md). An operator chooses the right kernel at runtime. This choosing mechanism is described [here](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/design/switch_kernel.md). -### Write Kernels for A New Device +## Write Kernels for A New Device -#### Add A New Device +### Add A New Device For some historical reaons, we misuse the word *library* for *device*. For example, we call the deivce type by *library type*. An example is the header file [`library_type.h`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/library_type.h#L24). We will correct this ASAP. @@ -23,7 +23,7 @@ enum class LibraryType { ``` -#### Add A New [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53) +### Add A New [Place](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53) If you have a new kind of Device, firstly you need to add a new kind of [`Place`](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/place.h#L53). For example `CUDAPlace`: @@ -45,7 +45,7 @@ struct CUDAPlace { typedef boost::variant Place; ``` -#### Add [device context]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37)) +### Add [device context]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37)) After a new kind of Device is added, you should add a corresponding [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/platform/device_context.h#L37) for it. ```cpp @@ -58,7 +58,7 @@ class DeviceContext { }; ``` -#### Implement new [OpKernel](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L351) for your Device. +### Implement new [OpKernel](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/framework/operator.h#L351) for your Device. A detailed documentation can be found in [`new_op_and_kernel`](https://github.com/PaddlePaddle/Paddle/blob/develop/doc/howto/dev/new_op_en.md) @@ -85,7 +85,7 @@ class OpKernel : public OpKernelBase { ``` -#### Register the OpKernel to framework +### Register the OpKernel to framework After writing the components described above, we should register the kernel to the framework. @@ -107,7 +107,7 @@ take [`conv2d`]((https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/oper REGISTER_OP_KERNEL(conv2d, CPU, paddle::platform::CPUPlace, paddle::operators::GemmConvKernel, paddle::operators::GemmConvKernel); - + REGISTER_OP_KERNEL(conv2d, CUDNN, ::paddle::platform::CUDAPlace, paddle::operators::CUDNNConvOpKernel, paddle::operators::CUDNNConvOpKernel); diff --git a/doc/fluid/dev/op_markdown_format.md b/doc/fluid/dev/op_markdown_format.md index 0ee804d592252c727622cbe59b0644813db3c4fd..4e539d7992e5f67ee7b07193b59b6b425b73c9e5 100644 --- a/doc/fluid/dev/op_markdown_format.md +++ b/doc/fluid/dev/op_markdown_format.md @@ -15,26 +15,26 @@ The signature of the operator. Each section mentioned above has been covered in further detail in the rest of the document. -# PaddlePaddle Operator Name +## PaddlePaddle Operator Name This should be in all small letters, in case of multiple words, we separate them with an underscore. For example: `array to lod tensor` should be written as `array_to_lod_tensor`. This naming convention should be standard across all PaddlePaddle operators. -# Standard Operator Name +## Standard Operator Name This is the standard name of the operator as used in the community. The general standard is usually: - Standard abbreviations like `SGD` are written in all capital letters. - Operator names that have multiple words inside a single word use `camelCase` (capitalize word boundaries inside of a word). - Keep numbers inside a word as is, with no boundary delimiters. - Follow the name of the operator with the keyword: `Activation Operator.` -# Operator description +## Operator description This section should contain the description of what the operator does, including the operation performed, the literature from where it comes and was introduced first, and other important details. The relevant paper/article including the hyperlink should be cited in this section. -# LaTeX equation +## LaTeX equation This section should contain an overall equation of the update or operation that the operator performs. The variables used in the equation should follow the naming convention of operators as described [here](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/operators/name_convention.md). Two words in the same word should be separated by an underscore (`_`). -# The signature +## The signature This section describes the signature of the operator. A list of Inputs and Outputs, each of which have a small description of what the variable represents and the type of variable. The variable names follow the `CamelCase` naming convention. The proposed format for this is: `Section : VariableName : (VariableType) VariableDescription diff --git a/doc/fluid/dev/use_eigen_cn.md b/doc/fluid/dev/use_eigen_cn.md index f36843b4408c21bdca1fa83853e5b0a40116791c..75922e7d85a13e53ce94619a48d8da8b960e6c9a 100644 --- a/doc/fluid/dev/use_eigen_cn.md +++ b/doc/fluid/dev/use_eigen_cn.md @@ -1,16 +1,16 @@ -## 在Paddle中如何使用Eigen +# 在Paddle中如何使用Eigen 神经网络本质上是一个计算图,计算需要的数据存放在`Tensor`中,而计算过程是由`Operartor`来描述的。在执行时,`Operator`调用对应`OpKernel`中的`Compute`接口,实现对`Tensor`的操作。 -### Eigen Tensor模块 +## Eigen Tensor模块 Eigen Tensor模块对element-wise计算提供了强大的支持,并且书写一份代码,可以同时在CPU、GPU执行。但Eigen Tensor是一个正在开发中的模块,因此可能测试不够完备,文档较少。 关于Eigen Tensor模块的详细介绍请参考[文档1](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md) 和[文档2](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md) -### paddle::framework::Tensor +## paddle::framework::Tensor Paddle Tensor定义在framework目录下,其主要接口如下: @@ -20,14 +20,14 @@ class Tensor { /*! Return a pointer to mutable memory block. */ template inline T* data(); - + /** * @brief Return a pointer to mutable memory block. * @note If not exist, then allocation. */ template inline T* mutable_data(platform::Place place); - + /** * @brief Return a pointer to mutable memory block. * @@ -38,17 +38,17 @@ class Tensor { */ template inline T* mutable_data(DDim dims, platform::Place place); - + /*! Resize the dimensions of the memory block. */ inline Tensor& Resize(const DDim& dims); - + /*! Return the dimensions of the memory block. */ inline const DDim& dims() const; private: /*! holds the memory block if allocated. */ std::shared_ptr holder_; - + /*! points to dimensions of memory block. */ DDim dim_; }; @@ -129,7 +129,7 @@ From是EigenTensor模板提供的一个接口,可以实现从paddle::framework -### 实现计算 +## 实现计算 当需要完成计算时,我们需要等式左边的EigenTensor调用device接口。在这里需要注意的是,这里的EigenTensor之间的运算只是改变了原有Tensor中的数据,而不会改变原有Tensor的shape信息。 diff --git a/doc/fluid/dev/use_eigen_en.md b/doc/fluid/dev/use_eigen_en.md index 3a466f73d1f9b94a29b171015279c782ca50bd02..3313d097cb21e40c23aa13187b6a50562f12403a 100644 --- a/doc/fluid/dev/use_eigen_en.md +++ b/doc/fluid/dev/use_eigen_en.md @@ -1,9 +1,9 @@ -## How to use Eigen in Paddle +# How to use Eigen in Paddle Essentially, a neural network is a compute graph. T data needed for the computation is stored in `Tensor`s and its computation procedure is described by `Operator`s. An `Operator` calls the `Compute` interface in its corresponding `OpKernel` and operates on the `Tensor`. -### Eigen Tensor Module +## Eigen Tensor Module The Eigen Tensor module supports powerful element-wise computation. In addition, a piece of code written using it can be run on both the CPU and the GPU. @@ -12,7 +12,7 @@ Note that Eigen Tensor is still being actively developed, so its tests are not c For details on Eigen Tensor module, please see [doc 1](https://github.com/RLovelett/eigen/blob/master/unsupported/Eigen/CXX11/src/Tensor/README.md) and [doc 2](https://bitbucket.org/eigen/eigen/src/default/unsupported/Eigen/CXX11/src/Tensor/README.md). -### paddle::framework::Tensor +## paddle::framework::Tensor Paddle Tensor's is defined in the framework directory with the following interface: @@ -105,7 +105,7 @@ void Compute(const framework::ExecutionContext& context) const override { ``` -### paddle::framework::Tensor到EigenTensor的转换 +## paddle::framework::Tensor到EigenTensor的转换 As shown above, in actual computation, we need to transform the input and output `Tensor`s into formats Eigen supports. We show some functions in [eigen.h](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/eigen.h) to implement the transformation from `paddle::framework::Tensor`to `EigenTensor/EigenMatrix/EigenVector/EigenScalar`. @@ -129,7 +129,7 @@ For more transformations, see the [unit tests](https://github.com/PaddlePaddle/P -### Implementing Computation +## Implementing Computation While computing, the device interface is needed from the EigenTensors on the left hand side of the assignments. Note that the computation between EigenTensors only changes the data originally inthe Tensor and does not change all the shape information associated with the Tensor. diff --git a/doc/fluid/getstarted/concepts/index_cn.rst b/doc/fluid/getstarted/concepts/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..2e7f70fc4cb871a80ffaffec6c06797973cd2f85 --- /dev/null +++ b/doc/fluid/getstarted/concepts/index_cn.rst @@ -0,0 +1,4 @@ +基本使用概念 +============ + +TBD diff --git a/doc/fluid/getstarted/concepts/index_en.rst b/doc/fluid/getstarted/concepts/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..78cca1e2a3443c2949ca0655190b0f05502f519a --- /dev/null +++ b/doc/fluid/getstarted/concepts/index_en.rst @@ -0,0 +1,4 @@ +Concepts +============ + +TBD diff --git a/doc/fluid/getstarted/index_cn.rst b/doc/fluid/getstarted/index_cn.rst index c4d8525f23ee18cb7f41ab2f0d148fc1dcc852b2..75af7354be93a6eeabfa9ccf86903505402a7ca6 100644 --- a/doc/fluid/getstarted/index_cn.rst +++ b/doc/fluid/getstarted/index_cn.rst @@ -1,4 +1,19 @@ 新手入门 ------------- +============ -新手入门 + +如果需要快速了解PaddlePaddle的使用,可以参考以下指南。 + +.. toctree:: + :maxdepth: 1 + + quickstart_cn.rst + + +在使用PaddlePaddle构建应用时,需要了解一些基本概念。 +这里以一个线性回归为例子,详细介绍了PaddlePaddle的使用流程,包括数据格式,模型配置与训练等。 + +.. toctree:: + :maxdepth: 1 + + concepts/use_concepts_cn.rst diff --git a/doc/fluid/getstarted/index_en.rst b/doc/fluid/getstarted/index_en.rst index a4efd05e2fd94ac0e2cbbc8603e6b0261b7e787f..75a43f4af87c34830ec940068196e6ca72640501 100644 --- a/doc/fluid/getstarted/index_en.rst +++ b/doc/fluid/getstarted/index_en.rst @@ -1,4 +1,18 @@ GET STARTED ------------- +============ -This is get started page +If you want to quickly know how to use PaddlePaddle, please refer to the following guide: + +.. toctree:: + :maxdepth: 1 + + quickstart_en.rst + +While using PaddlePaddle to build applications, please understand some basic concepts. + +Here is an example of linear regression. It introduces workflow of PaddlePaddle, including data format, model configuration and training, etc. + +.. toctree:: + :maxdepth: 1 + + concepts/index_en.rst diff --git a/doc/fluid/getstarted/quickstart_cn.rst b/doc/fluid/getstarted/quickstart_cn.rst new file mode 120000 index 0000000000000000000000000000000000000000..93a9e4e37a8495c553cec257c27363ca8d062d39 --- /dev/null +++ b/doc/fluid/getstarted/quickstart_cn.rst @@ -0,0 +1 @@ +../../v2/getstarted/quickstart_cn.rst \ No newline at end of file diff --git a/doc/fluid/getstarted/quickstart_en.rst b/doc/fluid/getstarted/quickstart_en.rst new file mode 120000 index 0000000000000000000000000000000000000000..6e1894faa1176bb9e77f616e07df36191e54b782 --- /dev/null +++ b/doc/fluid/getstarted/quickstart_en.rst @@ -0,0 +1 @@ +../../v2/getstarted/quickstart_en.rst \ No newline at end of file diff --git a/doc/fluid/howto/index_cn.rst b/doc/fluid/howto/index_cn.rst index a92abad0c56a4fd821f9a6b9f4f5909504c8aaf1..97aeaf167d329529f2b120b5a3d4085e0510fe16 100644 --- a/doc/fluid/howto/index_cn.rst +++ b/doc/fluid/howto/index_cn.rst @@ -1,2 +1,7 @@ 进阶使用 ------------ + +.. toctree:: + :maxdepth: 1 + + optimization/index_cn.rst diff --git a/doc/fluid/howto/index_en.rst b/doc/fluid/howto/index_en.rst index 06036bdce554a96443ea1fa47c15f7670ea6089d..fd21e167ce3a46da167db1e9d7013804f730e047 100644 --- a/doc/fluid/howto/index_en.rst +++ b/doc/fluid/howto/index_en.rst @@ -1,4 +1,7 @@ HOW TO ------------ -This is how to page +.. toctree:: + :maxdepth: 1 + + optimization/index_en.rst diff --git a/doc/fluid/howto/optimization/benchmark/README.md b/doc/fluid/howto/optimization/benchmark/README.md new file mode 120000 index 0000000000000000000000000000000000000000..db30af7f53231c687f9ad61ad961a685733cbad0 --- /dev/null +++ b/doc/fluid/howto/optimization/benchmark/README.md @@ -0,0 +1 @@ +../../../../../benchmark/cluster/README.md \ No newline at end of file diff --git a/doc/fluid/howto/optimization/benchmark/index_cn.rst b/doc/fluid/howto/optimization/benchmark/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..9404800eb86ca6d27886258b67393028c76954dc --- /dev/null +++ b/doc/fluid/howto/optimization/benchmark/index_cn.rst @@ -0,0 +1,8 @@ +基准 +------------ + +.. toctree:: + :maxdepth: 1 + + vgg16/README.md + README.md diff --git a/doc/fluid/howto/optimization/benchmark/index_en.rst b/doc/fluid/howto/optimization/benchmark/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..1e200b660cc7f6aeaf8b3d94fd7a14999a52bccd --- /dev/null +++ b/doc/fluid/howto/optimization/benchmark/index_en.rst @@ -0,0 +1,8 @@ +Benchmark +------------ + +.. toctree:: + :maxdepth: 1 + + vgg16/README.md + README.md diff --git a/doc/fluid/howto/optimization/benchmark/vgg16/README.md b/doc/fluid/howto/optimization/benchmark/vgg16/README.md new file mode 120000 index 0000000000000000000000000000000000000000..ca963ef5f06aa0c2fe507ba7548dca8017358120 --- /dev/null +++ b/doc/fluid/howto/optimization/benchmark/vgg16/README.md @@ -0,0 +1 @@ +../../../../../../benchmark/cluster/vgg16/README.md \ No newline at end of file diff --git a/doc/fluid/howto/optimization/cpu_profiling_cn.md b/doc/fluid/howto/optimization/cpu_profiling_cn.md index d59be670c2b33b64d9b6f96b53f50e5bf9f0613b..17f895573a65731db34b2addddaa22e7f32157ec 100644 --- a/doc/fluid/howto/optimization/cpu_profiling_cn.md +++ b/doc/fluid/howto/optimization/cpu_profiling_cn.md @@ -8,7 +8,7 @@ PaddlePaddle 用户一般通过调用 Python API 编写深度学习程序。大 * Python 与 C++ 混合代码的性能分析 -## Python代码的性能分析 +# Python代码的性能分析 ### 生成性能分析文件 diff --git a/doc/fluid/howto/optimization/cpu_profiling_en.md b/doc/fluid/howto/optimization/cpu_profiling_en.md index 01e5fddf61547f9fc86ef18a6f2e2ac508d22dbb..abe4493c175fb4ee57f1acf45931e2890620d9c1 100644 --- a/doc/fluid/howto/optimization/cpu_profiling_en.md +++ b/doc/fluid/howto/optimization/cpu_profiling_en.md @@ -14,7 +14,7 @@ the profiling and tuning of 1. the Python code and 1. the mixture of Python and C++ code. -## Profiling the Python Code +# Profiling the Python Code ### Generate the Performance Profiling File @@ -81,7 +81,7 @@ focus on. We can sort above profiling file by tottime: We can see that the most time-consuming function is the `built-in method run`, which is a C++ function in `libpaddle.so`. We will -explain how to profile C++ code in the next section. At this +explain how to profile C++ code in the next section. At this moment, let's look into the third function `sync_with_cpp`, which is a Python function. We can click it to understand more about it: diff --git a/doc/fluid/howto/optimization/index_cn.rst b/doc/fluid/howto/optimization/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..27cc96702356703b339db845dc81913bdcc9f23b --- /dev/null +++ b/doc/fluid/howto/optimization/index_cn.rst @@ -0,0 +1,9 @@ +性能优化 +------------ + +.. toctree:: + :maxdepth: 1 + + timeline.md + cpu_profiling_cn.md + benchmark/index_cn.rst diff --git a/doc/fluid/howto/optimization/index_en.rst b/doc/fluid/howto/optimization/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..4ce624fe8f108a6afc7cd08a1542332755d22e04 --- /dev/null +++ b/doc/fluid/howto/optimization/index_en.rst @@ -0,0 +1,9 @@ +Performance Optimization +--------------------------- + +.. toctree:: + :maxdepth: 1 + + timeline.md + cpu_profiling_en.md + benchmark/index_en.rst diff --git a/doc/fluid/howto/optimization/timeline.md b/doc/fluid/howto/optimization/timeline.md index 9d9565a3e698a83ca465c5da83ff892360c33b8f..96481ae2a6e4442d40803f8d5361e5f942502df3 100644 --- a/doc/fluid/howto/optimization/timeline.md +++ b/doc/fluid/howto/optimization/timeline.md @@ -1,4 +1,4 @@ -## how to use timeline tool to do profile +# how to use timeline tool to do profile 1. Add `with profiler.profiler(...)` to the main training loop. After run, the code will generate a profile record file `/tmp/profile`. **Warning**: Please do not run too many batches when use profiler to record timeline information, for the profile record will grow with the batch number. diff --git a/doc/fluid/index_cn.rst b/doc/fluid/index_cn.rst index be3bed4393a7346d4f2a53e2c7409ee7165fb5b6..d878d192cae7ee9e8b8fdb4f615839c186fdf334 100644 --- a/doc/fluid/index_cn.rst +++ b/doc/fluid/index_cn.rst @@ -5,8 +5,8 @@ :maxdepth: 1 getstarted/index_cn.rst - design/index_cn.rst build_and_install/index_cn.rst + design/index_cn.rst howto/index_cn.rst dev/index_cn.rst faq/index_cn.rst diff --git a/doc/fluid/index_en.rst b/doc/fluid/index_en.rst index 87c831420a57b4b9ce77ecf44f7f4d0feec833a6..2bc76b58982cf50e637d15cca0c5d78166aa73a9 100644 --- a/doc/fluid/index_en.rst +++ b/doc/fluid/index_en.rst @@ -5,8 +5,8 @@ :maxdepth: 1 getstarted/index_en.rst - design/index_en.rst build_and_install/index_en.rst + design/index_en.rst howto/index_en.rst dev/index_en.rst faq/index_en.rst diff --git a/doc/fluid/design/interface/00.why_plain_c.md b/doc/v2/design/interface/00.why_plain_c.md similarity index 100% rename from doc/fluid/design/interface/00.why_plain_c.md rename to doc/v2/design/interface/00.why_plain_c.md diff --git a/doc/fluid/design/interface/01.inference_implementation.md b/doc/v2/design/interface/01.inference_implementation.md similarity index 100% rename from doc/fluid/design/interface/01.inference_implementation.md rename to doc/v2/design/interface/01.inference_implementation.md diff --git a/doc/v2/design/interface/index_cn.rst b/doc/v2/design/interface/index_cn.rst new file mode 100644 index 0000000000000000000000000000000000000000..2509a5c5f4182d8ce3a16a3b7bd92c0d7bf5b056 --- /dev/null +++ b/doc/v2/design/interface/index_cn.rst @@ -0,0 +1,7 @@ +多语言接口 +------------ + +.. toctree:: + :maxdepth: 1 + + 00.why_plain_c.md diff --git a/doc/v2/design/interface/index_en.rst b/doc/v2/design/interface/index_en.rst new file mode 100644 index 0000000000000000000000000000000000000000..356e58c39c5ef6ee5ee50ab999b85f88628bfb85 --- /dev/null +++ b/doc/v2/design/interface/index_en.rst @@ -0,0 +1,7 @@ +Multilingual Interface +----------------------- + +.. toctree:: + :maxdepth: 1 + + 00.why_plain_c.md diff --git a/doc/v2/design/mkl/mkldnn.md b/doc/v2/design/mkl/mkldnn.md index e2fe1e6b26ffa73fda81863abfadf697c0acbfcf..1bd2e7bc34ee79eb753b3520d97e5e7beca89b0b 100644 --- a/doc/v2/design/mkl/mkldnn.md +++ b/doc/v2/design/mkl/mkldnn.md @@ -44,7 +44,7 @@ MKL,MKLML以及MKL-DNN三者关系如下表: | Name | Open Source | License | Descriptions | | :---------- | :--------------- | :---------- | :------------ | -| MKL | No | Proprietary | Accelerate math processing routines | +| MKL | No | Proprietary | Accelerate math processing routines | | MKLML | No | Proprietary | Small package of MKL, especially for Machine Learning | | MKL-DNN | Yes | Apache 2.0 | Accelerate primitives processing routines especially for Deep Neural Networks | @@ -89,7 +89,7 @@ PaddlePaddle/Paddle ### CMake 在`CMakeLists.txt`中提供一个与MKL有关的总开关:`WITH_MKL`,它负责决定编译时是否使用MKLML和MKL-DNN -- `WITH_MKLML` 控制是否使用MKLML库。 +- `WITH_MKLML` 控制是否使用MKLML库。 当打开`WITH_MKL`时,会自动使用MKLML库作为PaddlePaddle的CBLAS和LAPACK库,同时会开启Intel OpenMP用于提高MKLML的性能。 编译时会把对应的头文件和库放在`build/third_party/install/mklml/*`目录下对应的地方。 MKLML的库目前都是动态库,主要包括`libiomp5.so`和`libmklml_intel.so`。 @@ -172,7 +172,7 @@ if use_mkldnn self.layer_type = mkldnn_* ``` -所有MKL-DNN的`layer_type`会以*mkldnn_*开头,这些会在`MKLDNN*Layer`注册layer的时候保证,以示区分。 +所有MKL-DNN的`layer_type`会以*mkldnn_*开头,这些会在`MKLDNN*Layer`注册layer的时候保证,以示区分。 同时,会在`paddle/utils.Flags`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。 diff --git a/doc/v2/faq/build_and_install/index_cn.rst b/doc/v2/faq/build_and_install/index_cn.rst index 7c7e896d187e4fe1544d7ec933fa4fa9f24df3cd..f292684fb5fe2df06db5239e7f43fdfa1dd2f2bd 100644 --- a/doc/v2/faq/build_and_install/index_cn.rst +++ b/doc/v2/faq/build_and_install/index_cn.rst @@ -139,3 +139,77 @@ PaddlePaddle使用avx SIMD指令提高cpu执行效率,因此错误的使用二 touch ../extern_mklml-stamp/extern_mklml-download // 4. 接着编译即可 + +9. 在Mac上无法安装numpy等Python包,权限错误 +------------------ + +Mac上对自带的Python和包有严格的权限保护,最好不要在自带的Python上安装。建议用virtualenv建立一个新的Python环境来操作。 + +virtualenv的基本原理是将机器上的Python运行所需的运行环境完整地拷贝一份。我们可以在一台机器上制造多份拷贝,并在这多个拷贝之间自由切换,这样就相当于在一台机器上拥有了多个相互隔离、互不干扰的Python环境。 + +下面简单介绍下如何用virtualenv为Paddle生成一个专用的Python环境: + +安装virtualenv: +:::::::::::::::: + +virtualenv本身也是Python的一个包,可以用pip进行安装: + +.. code-block:: bash + + sudo -H pip install virtualenv + +由于virtualenv需要安装给系统自带的Python,因此需要使用sudo权限。 + +创建一个新的Python运行环境: +::::::::::::::::::: + +.. code-block:: bash + + virtualenv --no-site-packages paddle + +--no-site-packages 参数表示不拷贝已有的任何第三方包,创造一个完全干净的新Python环境。后面的paddle是我们为这个新创建的环境取的名字。 + +执行完这一步后,当前目录下应该会出现一个名为paddle(或者你取的其他名字)的目录。这个目录里保存了运行一个Python环境所需要的各种文件。 + +启动运行环境: +:::::::::::::::: + +.. code-block:: bash + + source paddle/bin/activate + +执行后会发现命令提示符前面增加了(paddle)字样,说明已经成功启动了名为‘paddle’的Python环境。执行which python,可以发现使用的已经是刚刚创建的paddle目录下的Python。 + +在这个环境中,我们可以自由地进行Paddle的安装、使用和开发工作,无需担心对系统自带Python的影响。 + +退出运行环境: +::::::::::::::: + +直接执行: + +.. code-block:: bash + + deactivate + +可以看到命令提示符前面的(paddle)字样消失。 + +自动启动某一Python环境: +:::::::::::::::: + +如果我们经常使用Paddle,我们每次打开终端后都需要执行一下source paddle/bin/activate来启动环境,比较繁琐。为了简便,可以修改终端的配置文件,来让终端每次启动后自动启动特定的Python环境。 + +执行: + +.. code-block:: bash + + vi ~/.bash_profile + +打开终端配置文件,并在文件的最后添加一行: + +.. code-block:: bash + + source paddle/bin/activate + +保存并关闭文件。 + +这样,每次打开终端时就会自动启动名为‘paddle’的Python环境了。 diff --git a/doc/v2/faq/model/index_en.rst b/doc/v2/faq/model/index_en.rst index cb26f59655f97dc28a2047994643ae16b8857964..67a33e08e192e5627ac3b0abd76e979f21ed2079 100644 --- a/doc/v2/faq/model/index_en.rst +++ b/doc/v2/faq/model/index_en.rst @@ -2,4 +2,80 @@ Model Configuration ################### -TBD +.. contents:: + +1. How to deal with error :code:`Duplicated layer name` +---------------------------------------------------------- + +The general reason for this error is that users may have set the same value for the attribute :code:`name` in different layers. Try to find out the :code:`name` attribute with the same value in diffrent layers and set them differently. + +2. How to use :code:`paddle.layer.memory`'s attribute :code:`name` +---------------------------------------------------------------------- + +* :code:`paddle.layer.memory` is used to get the output of a layer's last timestep and the layer is specified by the attribute :code:`name` . Thus, :code:`paddle.layer.memory` will associate with the layer that has the same value of attribute :code:`name` , and uses the output of the layer's last timestep as the input of its current timestep. + +* All the PaddlePaddle's layers have a unique name, which is set by the attribute :code:`name` . PaddlePaddle will automatically set it for the user when it is not explicitly set. :code:`paddle.layer.memory` is not a real layer, its name is set by the attribute :code:`memory_name` and PaddlePaddle will also automatically set it when the user does not explicitly set. The :code:`paddle.layer.memory` attribute :code:`name` is used to specify the layer it is associated with, and needs to be explicitly set by the user. + + +3. What is the difference between the two ways of using dropout +----------------------------------------------------------------- + +* There are two ways to use dropout in PaddlePaddle + + * Set the :code:`drop_rate` parameter in the layer's :code:`layer_atter` attribute. Take :code:`paddle.layer.fc` as an example: + + .. code-block:: python + + fc = paddle.layer.fc(input=input, layer_attr=paddle.attr.ExtraLayerAttribute(drop_rate=0.5)) + + * Use :code:`paddle.layer.dropout` layer. Take :code:`paddle.layer.fc` as an example: + + .. code-block:: python + + fc = paddle.layer.fc(input=input) + drop_fc = paddle.layer.dropout(input=fc, dropout_rate=0.5) + +* :code:`paddle.layer.dropout` actually uses the :code:`paddle.layer.add_to` layer and sets :code:`drop_rate` as the previous method. This method is very memory intensive. + +* PaddlePaddle implements dropout in the activation function rather than in the layer. + +* :code:`paddle.layer.lstmemory`, :code:`paddle.layer.grumemory`, :code:`paddle.layer.recurrent` implement activation of output in an unusual way, so we cannot use dropout by setting :code:`drop_rate` . To use dropout for these layers, we could use the second method, which is to use :code:`paddle.layer.dropout`. + +4. The differences between different recurrent layers +-------------------------------------------------------- +Take LSTM as an example. There are several kinds of recurrent layers in PaddlePaddle: + +* :code:`paddle.layer.lstmemory` +* :code:`paddle.networks.simple_lstm` +* :code:`paddle.networks.lstmemory_group` +* :code:`paddle.networks.bidirectional_lstm` + +According to implementations, recurrent layer can be classified into 2 types: + +1. Recurrent layer implemented by recurrent_group: + + * Using this type of recurrent layers, users can access the intermediate value calculated by the recurrent unit within a timestep (eg: hidden states, memory cells, etc.) + * :code:`paddle.networks.lstmemory_group` belongs to this type of recurrent layers. + +2. Recurrent layer implemented as a complete operation: + + * Users can only access output values when using this type of recurrent layers. + * :code:`paddle.networks.lstmemory_group` , :code:`paddle.networks.simple_lstm` and :code:`paddle.networks.bidirectional_lstm` belong to this type of recurrent layer; + +By implementing recurrent layer as a complete operation, CPU and GPU calculations can be optimized. Therefore, the second type of recurrent layer is more efficient than the first one. In practical applications, we propose to use the second type of recurrent layers if there is no need to access the intermediate variable of LSTM. + +In addition, PaddlePaddle also contains a kind of LSTM calculation unit: :code:`paddle.networks.lstmemory_unit`: + + * Unlike the recurrent layer described above, :code:`paddle.networks.lstmemory_unit` defines the computational process of an LSTM unit in a timestep. It is not a complete recurrent layer, nor can it receive sequence data as input. + * :code:`paddle.networks.lstmemory_unit` can only be used as a step function in recurrent_group. + +5. Can Softmax's calculation dimension be specified? +-------------------------------------------------------------------- + +We can't specify calculation dimension for PaddlePaddle's softmax. It can only be calculated by rows. +In image tasks, for NCHW, if you need to calculate softmax in C dimension, you could use :code:`paddle.layer.switch_order` to change the dimension order, that is, convert NCHW to NHWC, then do the reshape operation and calculate softmax. + +6. Does PaddlePaddle support variable-dimensional data inputs +---------------------------------------------------------------- + +PaddlePaddle provides :code:`paddle.data_type.dense_array` to support variable-dimensional data input. Simply set the dimension of the data layer to a value larger than the dimension of the input data for occupancy. diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt index d2a4b1335464f553a361728e64ed5ca177ca53da..c44f8a8a8ecc1ba1f886fc41aec863b4ca3458a6 100644 --- a/paddle/CMakeLists.txt +++ b/paddle/CMakeLists.txt @@ -1,4 +1,4 @@ -if(NOT WITH_FLUID) +if(NOT WITH_FLUID_ONLY) add_subdirectory(cuda) add_subdirectory(function) add_subdirectory(utils) diff --git a/paddle/fluid/framework/CMakeLists.txt b/paddle/fluid/framework/CMakeLists.txt index a4ea74a6d2fbc29dc33a6b57ee453f49ed36c7fa..a34e22ff8765fccbd5ac3a284b7c6820f0055ec3 100644 --- a/paddle/fluid/framework/CMakeLists.txt +++ b/paddle/fluid/framework/CMakeLists.txt @@ -1,3 +1,4 @@ +add_subdirectory(details) # ddim lib proto_library(framework_proto SRCS framework.proto) @@ -87,6 +88,9 @@ cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glo cc_library(executor SRCS executor.cc DEPS op_registry device_context scope framework_proto backward glog lod_rank_table feed_fetch_method) + +cc_library(parallel_executor SRCS parallel_executor.cc DEPS multi_devices_graph_builder threaded_ssa_graph_executor) + cc_library(prune SRCS prune.cc DEPS framework_proto) cc_test(prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context) cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry @@ -100,7 +104,7 @@ cc_test(init_test SRCS init_test.cc DEPS init) cc_test(op_kernel_type_test SRCS op_kernel_type_test.cc DEPS place device_context framework_proto) cc_test(cow_ptr_tests SRCS details/cow_ptr_test.cc) -cc_test(channel_test SRCS channel_test.cc) +# cc_test(channel_test SRCS channel_test.cc) cc_test(tuple_test SRCS tuple_test.cc ) cc_test(concurrency_test SRCS concurrency_test.cc DEPS go_op channel_close_op channel_create_op channel_send_op channel_recv_op sum_op select_op elementwise_add_op compare_op diff --git a/paddle/fluid/framework/block_desc.cc b/paddle/fluid/framework/block_desc.cc index 3693bc25d81a8309df1a6ddf3d9b08d484596ea9..fbe08349c37c4fde115ceea954ba2b84880088d7 100644 --- a/paddle/fluid/framework/block_desc.cc +++ b/paddle/fluid/framework/block_desc.cc @@ -147,15 +147,52 @@ void BlockDesc::RemoveOp(size_t s, size_t e) { if (ops_.begin() + s == ops_.end() || ops_.begin() + e == ops_.end()) { return; } + auto get_vars = [](std::deque>::iterator &op, + std::vector &v) { + auto in_names = (*op)->InputArgumentNames(); + v.insert(v.end(), in_names.begin(), in_names.end()); + auto out_names = (*op)->OutputArgumentNames(); + v.insert(v.end(), out_names.begin(), out_names.end()); + std::sort(v.begin(), v.end()); + auto last = std::unique(v.begin(), v.end()); + v.erase(last, v.end()); + }; need_update_ = true; - for (auto it = ops_.begin() + s; it != ops_.begin() + e; it++) { - auto names = (*it)->InputArgumentNames(); - for (auto n : names) { - // TODO(typhoonzero): delete vars if no other op use it. - VLOG(3) << "deleting var " << n; + + for (size_t i = s; i < e; i++) { + // since remove op one by one, every time remove the first op. + auto op = ops_.begin() + s; + + // collect input and output variables from current delete op + std::vector cur_vars; + get_vars(op, cur_vars); + + // remove current op + ops_.erase(ops_.begin() + s); + + // collect input and output variables from other ops + std::vector other_vars; + for (auto it = ops_.begin(); it != ops_.end(); it++) { + get_vars(it, other_vars); + } + + // variables should be deleted + std::vector delete_vars; + // delete_vars = cur_vars - cur_vars ^ other_input_vars + std::set_difference(cur_vars.begin(), cur_vars.end(), other_vars.begin(), + other_vars.end(), + std::inserter(delete_vars, delete_vars.end())); + // remove variables + for (size_t i = 0; i < delete_vars.size(); i++) { + auto name = delete_vars[i]; + auto it = vars_.find(name); + PADDLE_ENFORCE(it != vars_.end(), + "%s is not in variable list, it should not be deleted", + name); + vars_.erase(it); + VLOG(3) << "deleting variable " << name; } } - ops_.erase(ops_.begin() + s, ops_.begin() + e); } std::vector BlockDesc::AllOps() const { diff --git a/paddle/fluid/framework/block_desc.h b/paddle/fluid/framework/block_desc.h index 185f018ac1b5863e0ee86fdaa17df1ccbc6e030e..468423e0e8e7b8c9ebc14b7568c9c3bd21645ea7 100644 --- a/paddle/fluid/framework/block_desc.h +++ b/paddle/fluid/framework/block_desc.h @@ -89,6 +89,11 @@ class BlockDesc { OpDesc *InsertOp(size_t index); + /* + * Remove Op and its input/output variables. + * Note that for either input or ouput variable, if it is also an input or + * output variable of other ops, we should remain it. + */ void RemoveOp(size_t s, size_t e); std::vector AllOps() const; diff --git a/paddle/fluid/framework/channel_impl.h b/paddle/fluid/framework/channel_impl.h index 378a0bab1cc7408266fa45a0b3dc19619dd4fb4c..c47d629289af2c3d1f7c30d711d338745bf5234c 100644 --- a/paddle/fluid/framework/channel_impl.h +++ b/paddle/fluid/framework/channel_impl.h @@ -87,6 +87,21 @@ class ChannelImpl : public paddle::framework::Channel { return value; } + std::shared_ptr get_first_message( + std::deque> &queue, ChannelAction action) { + while (!queue.empty()) { + // Check whether this message was added by Select + // If this was added by Select then execute the callback + // to check if you can execute this message. The callback + // can return false if some other case was executed in Select. + // In that case just discard this QueueMessage and process next. + std::shared_ptr m = queue.front(); + queue.pop_front(); + if (m->callback == nullptr || m->callback(action)) return m; + } + return nullptr; + } + size_t cap_; std::recursive_mutex mu_; bool closed_; @@ -131,36 +146,21 @@ void ChannelImpl::Send(T *item) { // If there is a receiver, directly pass the value we want // to send to the receiver, bypassing the channel buffer if any if (!recvq.empty()) { - std::shared_ptr m = recvq.front(); - recvq.pop_front(); - // Do the data transfer - // We will do this data transfer if either of the following - // cases are true - // 1. callback == nullptr // This means it was a regular channel send - // 2. callback returns true - bool do_send = true; - if (m->callback != nullptr) do_send = m->callback(ChannelAction::SEND); - if (do_send) + std::shared_ptr m = + get_first_message(recvq, ChannelAction::SEND); + + if (m != nullptr) { *(m->data) = std::move(*item); - else { - // We cannot do the data transfer because - // this QueueMessage was added by Select - // and some other case was executed. - // So call the Send function again. - // We do not care about notifying other - // because they would have been notified - // by the executed select case. + m->Notify(); + lock.unlock(); + send_return(); + return; + } else { lock.unlock(); Send(item); send_return(); return; } - - // Wake up the blocked process and unlock - m->Notify(); - lock.unlock(); - send_return(); - return; } // Unbuffered channel will always bypass this @@ -201,32 +201,34 @@ bool ChannelImpl::Receive(T *item) { } // If there is a sender, directly receive the value we want - // from the sender, bypassing the channel buffer if any + // from the sender. In case of a buffered channel, read from + // buffer and move front of send queue to the buffer if (!sendq.empty()) { - std::shared_ptr m = sendq.front(); - sendq.pop_front(); - // Do the data transfer - // We will do this data transfer if either of the following - // cases are true - // 1. callback == nullptr // This means it was a regular channel send - // 2. callback returns true - bool do_receive = true; - if (m->callback != nullptr) - do_receive = m->callback(ChannelAction::RECEIVE); - if (do_receive) - *item = std::move(*(m->data)); - else - // We cannot do the data transfer because - // this QueueMessage was added by Select - // and some other case was executed. - // So call the Receive function again. - // We do not care about notifying other - // because they would have been notified - // by the executed select case. - return recv_return(Receive(item)); - - // Wake up the blocked process and unlock - m->Notify(); + std::shared_ptr m = + get_first_message(sendq, ChannelAction::RECEIVE); + if (buf_.size() > 0) { + // Case 1 : Channel is Buffered + // Do Data transfer from front of buffer + // and add a QueueMessage to the buffer + *item = std::move(buf_.front()); + buf_.pop_front(); + // If first message from sendq is not null + // add it to the buffer and notify it + if (m != nullptr) { + // Copy to buffer + buf_.push_back(std::move(*(m->data))); + m->Notify(); + } // Ignore if there is no first message + } else { + // Case 2: Channel is Unbuffered + // Do data transfer from front of SendQ + // If front is nullptr, then recursively call itself + if (m != nullptr) { + *item = std::move(*(m->data)); + m->Notify(); + } else + return recv_return(Receive(item)); + } lock.unlock(); return recv_return(true); } diff --git a/paddle/fluid/framework/channel_test.cc b/paddle/fluid/framework/channel_test.cc index e2380bb54bd25c4f30f79cad30f95f7cb056eef0..1184bfdae1940286fb72d9091ae4f23ff7f84a54 100644 --- a/paddle/fluid/framework/channel_test.cc +++ b/paddle/fluid/framework/channel_test.cc @@ -36,23 +36,25 @@ TEST(Channel, ChannelCapacityTest) { delete ch; } -void RecevingOrderEqualToSendingOrder(Channel *ch) { +void RecevingOrderEqualToSendingOrder(Channel *ch, int num_items) { unsigned sum_send = 0; std::thread t([&]() { - for (int i = 0; i < 5; i++) { + for (int i = 0; i < num_items; i++) { ch->Send(&i); sum_send += i; } }); - for (int i = 0; i < 5; i++) { - int recv = 999; + std::this_thread::sleep_for(std::chrono::milliseconds(200)); + for (int i = 0; i < num_items; i++) { + int recv = -1; EXPECT_EQ(ch->Receive(&recv), true); EXPECT_EQ(recv, i); } std::this_thread::sleep_for(std::chrono::milliseconds(200)); CloseChannel(ch); t.join(); - EXPECT_EQ(sum_send, 10U); + unsigned expected_sum = (num_items * (num_items - 1)) / 2; + EXPECT_EQ(sum_send, expected_sum); delete ch; } @@ -185,12 +187,28 @@ TEST(Channel, ConcurrentSendNonConcurrentReceiveWithSufficientBufferSize) { TEST(Channel, RecevingOrderEqualToSendingOrderWithUnBufferedChannel) { auto ch = MakeChannel(0); - RecevingOrderEqualToSendingOrder(ch); + RecevingOrderEqualToSendingOrder(ch, 20); +} + +TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel1) { + // Test that Receive Order is same as Send Order when number of items + // sent is less than size of buffer + auto ch = MakeChannel(10); + RecevingOrderEqualToSendingOrder(ch, 5); +} + +TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel2) { + // Test that Receive Order is same as Send Order when number of items + // sent is equal to size of buffer + auto ch = MakeChannel(10); + RecevingOrderEqualToSendingOrder(ch, 10); } -TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel) { +TEST(Channel, RecevingOrderEqualToSendingOrderWithBufferedChannel3) { + // Test that Receive Order is same as Send Order when number of items + // sent is greater than the size of buffer auto ch = MakeChannel(10); - RecevingOrderEqualToSendingOrder(ch); + RecevingOrderEqualToSendingOrder(ch, 20); } void ChannelCloseUnblocksReceiversTest(Channel *ch) { diff --git a/paddle/fluid/framework/details/CMakeLists.txt b/paddle/fluid/framework/details/CMakeLists.txt new file mode 100644 index 0000000000000000000000000000000000000000..bf1a705ef50b663efa53393ead1f81fd6bcf8c48 --- /dev/null +++ b/paddle/fluid/framework/details/CMakeLists.txt @@ -0,0 +1,21 @@ +cc_library(var_handle SRCS var_handle.cc DEPS place) +cc_library(op_handle_base SRCS op_handle_base.cc DEPS var_handle device_context) +cc_library(scale_loss_grad_op_handle SRCS scale_loss_grad_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory) +cc_library(fetch_op_handle SRCS fetch_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory) +nv_library(nccl_all_reduce_op_handle SRCS nccl_all_reduce_op_handle.cc DEPS op_handle_base scope lod_tensor ddim memory + dynload_cuda) +cc_library(computation_op_handle SRCS computation_op_handle.cc DEPS framework_proto scope place operator op_registry) + +cc_library(ssa_graph SRCS ssa_graph.cc DEPS var_handle op_handle_base) +cc_library(ssa_graph_builder SRCS ssa_graph_builder.cc DEPS ssa_graph) + +if(WITH_GPU) + set(multi_devices_graph_builder_deps nccl_all_reduce_op_handle) +else() + set(multi_devices_graph_builder_deps) +endif() +cc_library(multi_devices_graph_builder SRCS multi_devices_graph_builder.cc DEPS ssa_graph_builder computation_op_handle + scale_loss_grad_op_handle ${multi_devices_graph_builder_deps}) +cc_library(ssa_graph_executor SRCS ssa_graph_executor.cc DEPS ssa_graph) +cc_library(threaded_ssa_graph_executor SRCS threaded_ssa_graph_executor.cc DEPS fetch_op_handle ssa_graph_executor scope + simple_threadpool device_context) diff --git a/paddle/fluid/framework/details/computation_op_handle.cc b/paddle/fluid/framework/details/computation_op_handle.cc new file mode 100644 index 0000000000000000000000000000000000000000..7a1b40c0b60a788b1f0a70e688f8fcbe427ad076 --- /dev/null +++ b/paddle/fluid/framework/details/computation_op_handle.cc @@ -0,0 +1,42 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/computation_op_handle.h" + +namespace paddle { +namespace framework { +namespace details { +ComputationOpHandle::ComputationOpHandle(const OpDesc &op_desc, Scope *scope, + platform::Place place) + : op_(framework::OpRegistry::CreateOp(op_desc)), + scope_(scope), + place_(place) {} + +void ComputationOpHandle::RunImpl() { + auto *cur_ctx = dev_ctxes_[place_]; + for (auto *in : inputs_) { + bool need_wait = + in->generated_op_ && in->generated_op_->dev_ctxes_[place_] != cur_ctx; + if (need_wait) { + in->generated_op_->Wait(cur_ctx); + } + } + + op_->Run(*scope_->FindVar("@TMP_SCOPE@")->Get(), place_); +} + +std::string ComputationOpHandle::Name() const { return op_->Type(); } +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/computation_op_handle.h b/paddle/fluid/framework/details/computation_op_handle.h new file mode 100644 index 0000000000000000000000000000000000000000..d6d2d731ca80a0fbc0a2a34027b5b7c3c1977c07 --- /dev/null +++ b/paddle/fluid/framework/details/computation_op_handle.h @@ -0,0 +1,41 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/details/op_handle_base.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/framework/operator.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/platform/device_context.h" + +namespace paddle { +namespace framework { +namespace details { +struct ComputationOpHandle : public OpHandleBase { + std::unique_ptr op_; + Scope *scope_; + platform::Place place_; + + ComputationOpHandle(const OpDesc &op_desc, Scope *scope, + platform::Place place); + + std::string Name() const override; + + protected: + void RunImpl() override; +}; +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/fetch_op_handle.cc b/paddle/fluid/framework/details/fetch_op_handle.cc new file mode 100644 index 0000000000000000000000000000000000000000..9180903b864d03e59f55f41410b2240fa4199496 --- /dev/null +++ b/paddle/fluid/framework/details/fetch_op_handle.cc @@ -0,0 +1,79 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/fetch_op_handle.h" + +namespace paddle { +namespace framework { +namespace details { + +FetchOpHandle::FetchOpHandle(FeedFetchList *data, size_t offset, + std::vector *local_scopes) + : data_(data), offset_(offset), local_scopes_(local_scopes) {} + +FetchOpHandle::~FetchOpHandle() { + for (auto *input_var : inputs_) { + input_var->pending_ops_.erase(this); + } +} + +void FetchOpHandle::Wait(platform::DeviceContext *waited_dev) { + PADDLE_THROW("Nobody should wait FetchOp. Unexpceted Error"); +} + +void FetchOpHandle::WaitAndMergeCPUTensors() const { + std::vector tensors_ptr; + tensors_ptr.reserve(tensors_.size()); + for (auto &t : tensors_) { + tensors_ptr.emplace_back(&t); + } + data_->at(offset_).MergeLoDTensor(tensors_ptr, platform::CPUPlace()); +} + +void FetchOpHandle::RunImpl() { + auto cpu_ctx = + platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); + for (auto *input : inputs_) { + auto *var = static_cast(input); + var->generated_op_->Wait(cpu_ctx); + } + + tensors_.resize(inputs_.size()); + auto *var = static_cast(inputs_[0]); + auto &var_name = var->name_; + platform::CPUPlace cpu; + auto &scopes = *local_scopes_; + + for (size_t i = 0; i < scopes.size(); ++i) { + auto &scope = scopes[i]; + auto &t = scope->FindVar(var_name)->Get(); + if (platform::is_gpu_place(var->place_)) { +#ifdef PADDLE_WITH_CUDA + TensorCopy(t, cpu, *dev_ctxes_[t.place()], &tensors_[i]); + dev_ctxes_[t.place()]->Wait(); +#endif + } else { + tensors_[i].ShareDataWith(t); + tensors_[i].set_lod(t.lod()); + } + } + + this->WaitAndMergeCPUTensors(); +} + +std::string FetchOpHandle::Name() const { return "Fetch"; } + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/fetch_op_handle.h b/paddle/fluid/framework/details/fetch_op_handle.h new file mode 100644 index 0000000000000000000000000000000000000000..904b2d669f8b156b99197afb0155380d1170a68b --- /dev/null +++ b/paddle/fluid/framework/details/fetch_op_handle.h @@ -0,0 +1,49 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/details/op_handle_base.h" +#include "paddle/fluid/framework/feed_fetch_type.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/platform/device_context.h" + +namespace paddle { +namespace framework { +namespace details { + +struct FetchOpHandle : public OpHandleBase { + FeedFetchList *data_; + size_t offset_; + std::vector *local_scopes_; + std::vector tensors_; + + FetchOpHandle(FeedFetchList *data, size_t offset, + std::vector *local_scopes); + + ~FetchOpHandle(); + + void Wait(platform::DeviceContext *waited_dev) override; + + void WaitAndMergeCPUTensors() const; + + std::string Name() const override; + + protected: + void RunImpl() override; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.cc b/paddle/fluid/framework/details/multi_devices_graph_builder.cc new file mode 100644 index 0000000000000000000000000000000000000000..a1b913a863cc1853ea3a786d22e6e8baa8c98a02 --- /dev/null +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.cc @@ -0,0 +1,174 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/multi_devices_graph_builder.h" +#include "paddle/fluid/framework/details/computation_op_handle.h" +#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" +#include "paddle/fluid/framework/scope.h" + +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h" +#endif + +namespace paddle { +namespace framework { +namespace details { + +#ifdef PADDLE_WITH_CUDA +MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( + const std::vector &places, + const std::string &loss_var_name, + const std::unordered_set ¶ms, + const std::vector &local_scopes, + platform::NCCLContextMap *nccl_ctxs) + : loss_var_name_(loss_var_name), + places_(places), + local_scopes_(local_scopes), + nccl_ctxs_(nccl_ctxs) { +#else +MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( + const std::vector &places, + const std::string &loss_var_name, + const std::unordered_set ¶ms, + const std::vector &local_scopes) + : loss_var_name_(loss_var_name), + places_(places), + local_scopes_(local_scopes) { +#endif + for (auto &p : params) { + grad_names_.insert(GradVarName(p)); + } +} + +std::unique_ptr MultiDevSSAGraphBuilder::Build( + const ProgramDesc &program) const { + auto graph = new SSAGraph(); + SSAGraph &result = *graph; + result.vars_.resize(places_.size()); + + bool is_forwarding = true; + for (auto *op : program.Block(0).AllOps()) { + bool change_forward = false; + if (!is_forwarding) { + // FIXME(yy): Do not hard code like this + if (op->OutputArgumentNames().size() == 1 && + op->OutputArgumentNames()[0] == GradVarName(loss_var_name_)) { + continue; // Drop fill 1. for backward coeff; + } + } + + for (size_t i = 0; i < places_.size(); ++i) { + auto &p = places_[i]; + auto *s = local_scopes_[i]; + + result.ops_.emplace_back(new ComputationOpHandle(*op, s, p)); + auto *op_handle = result.ops_.back().get(); + op_handle->dev_ctxes_[p] = const_cast( + platform::DeviceContextPool::Instance().Get(p)); + + auto var_names = op->InputArgumentNames(); + + for (auto &each_var_name : var_names) { + VarHandle *var = + CreateOrGetLatestVarHandle(&result, each_var_name, p, i); + op_handle->AddInput(var); + } + var_names = op->OutputArgumentNames(); + + for (auto &each_var_name : var_names) { + CreateOpOutput(&result, op_handle, each_var_name, p, i); + } + + if (is_forwarding) { + if (var_names.size() == 1 && var_names[0] == loss_var_name_) { +// Insert ScaleCost OpHandle +#ifdef PADDLE_WITH_CUDA + auto *communication_dev_ctx = nccl_ctxs_->DevCtx(p); +#else + auto *communication_dev_ctx = + platform::DeviceContextPool::Instance().Get(platform::CPUPlace()); +#endif + + op_handle = new ScaleLossGradOpHandle(local_scopes_.size(), s, p, + communication_dev_ctx); + result.ops_.emplace_back(op_handle); + + // FIXME: Currently ScaleLossGradOp only use device_count as scale + // factor. So it does not depend on any other operators. + // VarHandle *loss = GetVarHandle(loss_var_name, place); + // loss->pending_ops_.emplace_back(op_handle); + // op_handle->inputs_.emplace_back(loss); + + CreateOpOutput(&result, op_handle, GradVarName(loss_var_name_), p, i); + change_forward = true; + } + } + } + + if (change_forward) { + is_forwarding = false; + } + + if (!is_forwarding) { + auto var_names = op->OutputArgumentNames(); + for (auto &og : var_names) { + if (grad_names_.count(og) != 0) { // is param grad + // Insert NCCL AllReduce Op +#ifdef PADDLE_WITH_CUDA + result.ops_.emplace_back( + new NCCLAllReduceOpHandle(local_scopes_, places_, *nccl_ctxs_)); + auto *op_handle = result.ops_.back().get(); + + for (size_t i = 0; i < places_.size(); ++i) { + auto &p = places_[i]; + auto &vars = result.vars_[i][og]; + + if (vars.empty()) { // This device has no data. continue. + continue; + } + auto *prev_grad = &vars[vars.size() - 1]; + op_handle->AddInput(prev_grad); + + auto &var = vars[vars.size()]; + var.place_ = p; + var.name_ = og; + var.version_ = vars.size() - 1; + + op_handle->AddOutput(&var); + } +#else + PADDLE_ENFORCE("Not implemented"); +#endif + } + } + } + } + + /* + Dependency graph has been constructed. However, there are still data + harzaeds need to be handled. + */ + PolishGraphToSupportDataHazards(&result); + + if (VLOG_IS_ON(10)) { + std::ostringstream sout; + PrintGraphviz(*graph, sout); + VLOG(10) << sout.str(); + } + + return std::unique_ptr(graph); +} // namespace details +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/multi_devices_graph_builder.h b/paddle/fluid/framework/details/multi_devices_graph_builder.h new file mode 100644 index 0000000000000000000000000000000000000000..d3c8e582cf2cdf26198822e4bd2602883622df21 --- /dev/null +++ b/paddle/fluid/framework/details/multi_devices_graph_builder.h @@ -0,0 +1,56 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/details/ssa_graph_builder.h" + +namespace paddle { +namespace platform { +class NCCLContextMap; +} + +namespace framework { +class Scope; +namespace details { +class MultiDevSSAGraphBuilder : public SSAGraphBuilder { + public: +#ifdef PADDLE_WITH_CUDA + MultiDevSSAGraphBuilder(const std::vector &places, + const std::string &loss_var_name, + const std::unordered_set ¶ms, + const std::vector &local_scopes, + platform::NCCLContextMap *nccl_ctxs); +#else + MultiDevSSAGraphBuilder(const std::vector &places, + const std::string &loss_var_name, + const std::unordered_set ¶ms, + const std::vector &local_scopes); +#endif + + std::unique_ptr Build(const ProgramDesc &program) const override; + + private: + std::string loss_var_name_; + const std::vector &places_; + const std::vector &local_scopes_; + std::unordered_set grad_names_; + +#ifdef PADDLE_WITH_CUDA + platform::NCCLContextMap *nccl_ctxs_; +#endif +}; +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc new file mode 100644 index 0000000000000000000000000000000000000000..5ddf331cfca39a4e81a42d9ff8efd5af7bcf6829 --- /dev/null +++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.cc @@ -0,0 +1,82 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/nccl_all_reduce_op_handle.h" + +namespace paddle { +namespace framework { +namespace details { +NCCLAllReduceOpHandle::NCCLAllReduceOpHandle( + const std::vector &local_scopes, + const std::vector &places, + const platform::NCCLContextMap &ctxs) + : local_scopes_(local_scopes), places_(places), nccl_ctxs_(ctxs) { + for (auto &p : places_) { + this->dev_ctxes_[p] = nccl_ctxs_.DevCtx(p); + } +} + +void NCCLAllReduceOpHandle::RunImpl() { + if (inputs_.size() == 1) { + return; // No need to all reduce when GPU count = 1; + } else { + // Wait input done + for (auto *in : inputs_) { + auto &p = static_cast(in)->place_; + in->generated_op_->Wait(dev_ctxes_[p]); + } + + auto &var_name = static_cast(this->inputs_[0])->name_; + int dtype = -1; + size_t numel = 0; + + std::vector> all_reduce_calls; + + for (size_t i = 0; i < local_scopes_.size(); ++i) { + auto &p = places_[i]; + auto *s = local_scopes_[i]; + int dev_id = boost::get(p).device; + + auto &lod_tensor = s->FindVar(var_name)->Get(); + void *buffer = const_cast(lod_tensor.data()); + + if (dtype == -1) { + dtype = platform::ToNCCLDataType(lod_tensor.type()); + } + + if (numel == 0) { + numel = static_cast(lod_tensor.numel()); + } + + auto &nccl_ctx = nccl_ctxs_.at(dev_id); + auto stream = nccl_ctx.stream(); + auto comm = nccl_ctx.comm_; + all_reduce_calls.emplace_back([=] { + PADDLE_ENFORCE(platform::dynload::ncclAllReduce( + buffer, buffer, numel, static_cast(dtype), ncclSum, + comm, stream)); + }); + } + + platform::NCCLGroupGuard guard; + for (auto &call : all_reduce_calls) { + call(); + } + } +} + +std::string NCCLAllReduceOpHandle::Name() const { return "NCCL AllReduce"; } +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h new file mode 100644 index 0000000000000000000000000000000000000000..045070bb6a97e90600cd24d9f43cd2a10a4bc1f5 --- /dev/null +++ b/paddle/fluid/framework/details/nccl_all_reduce_op_handle.h @@ -0,0 +1,43 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/details/op_handle_base.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/platform/nccl_helper.h" + +namespace paddle { +namespace framework { +namespace details { + +struct NCCLAllReduceOpHandle : public OpHandleBase { + const std::vector &local_scopes_; + const std::vector &places_; + const platform::NCCLContextMap &nccl_ctxs_; + + NCCLAllReduceOpHandle(const std::vector &local_scopes, + const std::vector &places, + const platform::NCCLContextMap &ctxs); + + std::string Name() const override; + + protected: + void RunImpl() override; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/op_handle_base.cc b/paddle/fluid/framework/details/op_handle_base.cc new file mode 100644 index 0000000000000000000000000000000000000000..e4194a7442f677ec8970dbc387bb01ebbbf579f1 --- /dev/null +++ b/paddle/fluid/framework/details/op_handle_base.cc @@ -0,0 +1,102 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/op_handle_base.h" + +namespace paddle { +namespace framework { +namespace details { +std::string OpHandleBase::DebugString() const { + std::stringstream ss; + ss << "("; + for (auto *var : inputs_) { + ss << var->DebugString() << ", "; + } + ss << ") --> ("; + for (auto *var : outputs_) { + ss << var->DebugString() << ", "; + } + ss << ")\n"; + return ss.str(); +} + +OpHandleBase::~OpHandleBase() { +#ifdef PADDLE_WITH_CUDA + for (auto &ev : events_) { + PADDLE_ENFORCE(cudaEventDestroy(ev.second)); + } +#endif +} + +void OpHandleBase::Run(bool use_event) { +#ifdef PADDLE_WITH_CUDA + if (events_.empty() && use_event) { + for (auto &p : dev_ctxes_) { + int dev_id = boost::get(p.first).device; + PADDLE_ENFORCE(cudaSetDevice(dev_id)); + PADDLE_ENFORCE( + cudaEventCreateWithFlags(&events_[dev_id], cudaEventDisableTiming)); + } + } +#else + PADDLE_ENFORCE(!use_event); +#endif + + RunImpl(); + +#ifdef PADDLE_WITH_CUDA + if (use_event) { + for (auto &p : dev_ctxes_) { + int dev_id = boost::get(p.first).device; + auto stream = + static_cast(p.second)->stream(); + PADDLE_ENFORCE(cudaEventRecord(events_.at(dev_id), stream)); + } + } +#endif +} + +void OpHandleBase::Wait(platform::DeviceContext *waited_dev) { +#ifdef PADDLE_WITH_CUDA + if (platform::is_cpu_place(waited_dev->GetPlace()) || events_.empty()) { + for (auto &dev_ctx : dev_ctxes_) { + dev_ctx.second->Wait(); + } + } else { + auto stream = + static_cast(waited_dev)->stream(); + for (auto &ev : events_) { + PADDLE_ENFORCE(cudaStreamWaitEvent(stream, ev.second, 0)); + } + } +#else + for (auto &dev_ctx : dev_ctxes_) { + dev_ctx.second->Wait(); + } +#endif +} + +void OpHandleBase::AddInput(VarHandleBase *in) { + this->inputs_.emplace_back(in); + in->pending_ops_.insert(this); +} + +void OpHandleBase::AddOutput(VarHandleBase *out) { + outputs_.emplace_back(out); + out->generated_op_ = this; +} + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/op_handle_base.h b/paddle/fluid/framework/details/op_handle_base.h new file mode 100644 index 0000000000000000000000000000000000000000..71672fd24c65ee654fb9f703ea5808c31ee8fbb0 --- /dev/null +++ b/paddle/fluid/framework/details/op_handle_base.h @@ -0,0 +1,62 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/details/var_handle.h" +#include "paddle/fluid/platform/device_context.h" +#include "paddle/fluid/platform/macros.h" + +namespace paddle { +namespace framework { +namespace details { + +class OpHandleBase { + private: + DISABLE_COPY_AND_ASSIGN(OpHandleBase); + + public: + std::vector inputs_; + std::vector outputs_; + std::unordered_map + dev_ctxes_; + +#ifdef PADDLE_WITH_CUDA + std::unordered_map events_; +#endif + + OpHandleBase() {} + + std::string DebugString() const; + + virtual std::string Name() const = 0; + + virtual ~OpHandleBase(); + + void Run(bool use_event); + + virtual void Wait(platform::DeviceContext *waited_dev); + + void AddInput(VarHandleBase *in); + + void AddOutput(VarHandleBase *out); + + protected: + virtual void RunImpl() = 0; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc b/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc new file mode 100644 index 0000000000000000000000000000000000000000..0a6f6129b812ca84db7573957b1ee0a32c1ef5c4 --- /dev/null +++ b/paddle/fluid/framework/details/scale_loss_grad_op_handle.cc @@ -0,0 +1,52 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/scale_loss_grad_op_handle.h" + +namespace paddle { +namespace framework { +namespace details { +ScaleLossGradOpHandle::ScaleLossGradOpHandle(size_t num_dev, Scope *scope, + platform::Place place, + platform::DeviceContext *dev_ctx) + : coeff_(static_cast(1.0 / num_dev)), scope_(scope), place_(place) { + dev_ctxes_[place_] = dev_ctx; +} + +ScaleLossGradOpHandle::~ScaleLossGradOpHandle() {} + +void ScaleLossGradOpHandle::RunImpl() { + std::string var_name = static_cast(this->outputs_[0])->name_; + + float *tmp = + scope_->FindVar(var_name)->GetMutable()->mutable_data( + make_ddim({1}), place_); + + if (platform::is_cpu_place(place_)) { + *tmp = coeff_; + } else { +#ifdef PADDLE_WITH_CUDA + auto stream = + static_cast(this->dev_ctxes_[place_]) + ->stream(); + memory::Copy(boost::get(place_), tmp, + platform::CPUPlace(), &coeff_, sizeof(float), stream); +#endif + } +} + +std::string ScaleLossGradOpHandle::Name() const { return "Scale LossGrad"; } +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/scale_loss_grad_op_handle.h b/paddle/fluid/framework/details/scale_loss_grad_op_handle.h new file mode 100644 index 0000000000000000000000000000000000000000..ab7353a4fc56bebfe04696efd838dc4559218058 --- /dev/null +++ b/paddle/fluid/framework/details/scale_loss_grad_op_handle.h @@ -0,0 +1,43 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/details/op_handle_base.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/scope.h" + +namespace paddle { +namespace framework { +namespace details { + +struct ScaleLossGradOpHandle : public OpHandleBase { + float coeff_; + Scope *scope_; + platform::Place place_; + + ScaleLossGradOpHandle(size_t num_dev, Scope *scope, platform::Place place, + platform::DeviceContext *context); + + ~ScaleLossGradOpHandle() final; + + std::string Name() const override; + + protected: + void RunImpl() override; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/ssa_graph.cc b/paddle/fluid/framework/details/ssa_graph.cc new file mode 100644 index 0000000000000000000000000000000000000000..1b8c889449059c563ea39f86250075ac2537cdbe --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph.cc @@ -0,0 +1,15 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/ssa_graph.h" diff --git a/paddle/fluid/framework/details/ssa_graph.h b/paddle/fluid/framework/details/ssa_graph.h new file mode 100644 index 0000000000000000000000000000000000000000..ac3e2d86993aee31b79f4481c4d5a47cd9cdf5b4 --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph.h @@ -0,0 +1,35 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include "paddle/fluid/framework/details/op_handle_base.h" +#include "paddle/fluid/framework/details/var_handle.h" + +namespace paddle { +namespace framework { +namespace details { + +struct SSAGraph { + std::vector>> vars_; + // aux variables to represent dependency. Useful to resolve data hazard. + std::unordered_set> dep_vars_; + std::vector> ops_; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/ssa_graph_builder.cc b/paddle/fluid/framework/details/ssa_graph_builder.cc new file mode 100644 index 0000000000000000000000000000000000000000..361ba6d39721eed406a30fea325b3b4508ec45d0 --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph_builder.cc @@ -0,0 +1,141 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/ssa_graph_builder.h" + +namespace paddle { +namespace framework { +namespace details { +void SSAGraphBuilder::PolishGraphToSupportDataHazards(SSAGraph *graph) { + for (auto &var_map : graph->vars_) { + for (auto &name_pair : var_map) { + if (name_pair.second.size() <= 1) { + continue; + } + auto it_new = name_pair.second.rbegin(); + auto it_old = name_pair.second.rbegin(); + ++it_old; + for (; it_old != name_pair.second.rend(); it_new = it_old, ++it_old) { + auto *write_op = it_new->second.generated_op_; + auto &read_ops = it_old->second.pending_ops_; + + for (auto *read_op : read_ops) { + // Manually add a dependency var from read_op to write_op; + if (read_op == write_op) { + // Read Write is the same op. + continue; + } + + auto *dep_var = new DummyVarHandle(); + read_op->AddOutput(dep_var); + write_op->AddInput(dep_var); + graph->dep_vars_.emplace(dep_var); + } + } + } + } +} + +VarHandle *SSAGraphBuilder::CreateOrGetLatestVarHandle( + SSAGraph *graph, const std::string &each_var_name, + const platform::Place &place, size_t place_offset) { + auto &var_holders = graph->vars_[place_offset]; + auto &var_holder = var_holders[each_var_name]; + VarHandle *var = nullptr; + if (var_holder.empty()) { + auto &init_var = var_holder[0]; + init_var.place_ = place; + init_var.name_ = each_var_name; + init_var.generated_op_ = nullptr; + init_var.version_ = 0; + var = &init_var; + } else { + var = &var_holder.rbegin()->second; + } + return var; +} + +void SSAGraphBuilder::CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle, + const std::string &each_var_name, + const platform::Place &place, + size_t place_offset) { + auto &vars = graph->vars_[place_offset][each_var_name]; + size_t version = vars.size(); + auto &var = vars[version]; + var.version_ = version; + var.name_ = each_var_name; + var.place_ = place; + op_handle->AddOutput(&var); +} + +template +void IterAllVar(const SSAGraph &graph, Callback callback) { + for (auto &each : graph.vars_) { + for (auto &pair1 : each) { + for (auto &pair2 : pair1.second) { + callback(pair2.second); + } + } + } + + for (auto &var : graph.dep_vars_) { + callback(*var); + } +} + +void SSAGraphBuilder::PrintGraphviz(const SSAGraph &graph, std::ostream &sout) { + size_t var_id = 0; + std::unordered_map vars; + + sout << "digraph G {\n"; + + IterAllVar(graph, [&](const VarHandleBase &var) { + auto *var_ptr = &var; + auto *var_handle_ptr = dynamic_cast(var_ptr); + auto *dummy_ptr = dynamic_cast(var_ptr); + + size_t cur_var_id = var_id++; + vars[var_ptr] = cur_var_id; + + if (var_handle_ptr) { + sout << "var_" << cur_var_id << " [label=\"" << var_handle_ptr->name_ + << "\\n" + << var_handle_ptr->place_ << "\\n" + << var_handle_ptr->version_ << "\"]" << std::endl; + } else if (dummy_ptr) { + sout << "var_" << cur_var_id << " [label=\"dummy\"]" << std::endl; + } + }); + + size_t op_id = 0; + for (auto &op : graph.ops_) { + std::string op_name = "op_" + std::to_string(op_id++); + sout << op_name << " [label=\"" << op->Name() << "\", shape=rect]" + << std::endl; + for (auto in : op->inputs_) { + std::string var_name = "var_" + std::to_string(vars[in]); + sout << var_name << " -> " << op_name << std::endl; + } + + for (auto out : op->outputs_) { + std::string var_name = "var_" + std::to_string(vars[out]); + sout << op_name << " -> " << var_name << std::endl; + } + } + + sout << "}\n"; +} +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/ssa_graph_builder.h b/paddle/fluid/framework/details/ssa_graph_builder.h new file mode 100644 index 0000000000000000000000000000000000000000..bf20e7164a100718c1dcfe3ef971cfff60bbbaa2 --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph_builder.h @@ -0,0 +1,59 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "paddle/fluid/framework/details/ssa_graph.h" +#include "paddle/fluid/framework/program_desc.h" +#include "paddle/fluid/platform/place.h" + +#include +#include + +namespace paddle { +namespace framework { +namespace details { + +class SSAGraphBuilder { + public: + SSAGraphBuilder() {} + virtual ~SSAGraphBuilder() {} + virtual std::unique_ptr Build(const ProgramDesc &program) const = 0; + + DISABLE_COPY_AND_ASSIGN(SSAGraphBuilder); + + protected: + /** + * We only handle write after read(WAR), since it should not have a write + * after write in program. If there are write after write operators, we need + * prune them. + * + * https://en.wikipedia.org/wiki/Hazard_(computer_architecture)#Write_after_read_(WAR) + */ + static void PolishGraphToSupportDataHazards(SSAGraph *graph); + + static VarHandle *CreateOrGetLatestVarHandle(SSAGraph *graph, + const std::string &each_var_name, + const platform::Place &place, + size_t place_offset); + + static void CreateOpOutput(SSAGraph *graph, OpHandleBase *op_handle, + const std::string &each_var_name, + const platform::Place &place, size_t place_offset); + + static void PrintGraphviz(const SSAGraph &graph, std::ostream &sout); +}; +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/ssa_graph_executor.cc b/paddle/fluid/framework/details/ssa_graph_executor.cc new file mode 100644 index 0000000000000000000000000000000000000000..8da6ca889b89999e0f6f974503cea476c9de97f3 --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph_executor.cc @@ -0,0 +1,28 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/ssa_graph_executor.h" + +namespace paddle { +namespace framework { +namespace details { + +SSAGraphExecutor::SSAGraphExecutor(std::unique_ptr &&graph) + : graph_(std::move(graph)) {} + +SSAGraphExecutor::~SSAGraphExecutor() {} + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/ssa_graph_executor.h b/paddle/fluid/framework/details/ssa_graph_executor.h new file mode 100644 index 0000000000000000000000000000000000000000..3b818b1a45b56351e34f9e52ec22b6d02a0c1591 --- /dev/null +++ b/paddle/fluid/framework/details/ssa_graph_executor.h @@ -0,0 +1,41 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include "paddle/fluid/framework/details/ssa_graph.h" +#include "paddle/fluid/framework/feed_fetch_type.h" + +namespace paddle { +namespace framework { +namespace details { + +class SSAGraphExecutor { + DISABLE_COPY_AND_ASSIGN(SSAGraphExecutor); + + public: + // Steal graph inside + explicit SSAGraphExecutor(std::unique_ptr &&graph); + + virtual ~SSAGraphExecutor(); + + virtual FeedFetchList Run(const std::vector &fetch_tensors) = 0; + + protected: + std::unique_ptr graph_; +}; +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc new file mode 100644 index 0000000000000000000000000000000000000000..3f8655147b688239509dea98925df310a46cbef8 --- /dev/null +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.cc @@ -0,0 +1,205 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" + +#include "paddle/fluid/framework/details/fetch_op_handle.h" + +namespace paddle { +namespace framework { +namespace details { +ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor( + size_t num_threads, bool use_event, + const std::vector &local_scopes, + const std::vector &places, + std::unique_ptr &&graph) + : SSAGraphExecutor(std::move(graph)), + pool_(num_threads >= 2 ? new ::ThreadPool(num_threads) : nullptr), + local_scopes_(local_scopes), + places_(places), + fetch_ctxs_(places), + use_event_(use_event) {} + +FeedFetchList ThreadedSSAGraphExecutor::Run( + const std::vector &fetch_tensors) { + std::unordered_map pending_ops; + std::unordered_set pending_vars; + + BlockingQueue ready_vars; + + std::unordered_set ready_ops; + + auto InsertPendingVar = [&pending_vars, &ready_vars](VarHandleBase &var) { + pending_vars.insert(&var); + if (var.generated_op_ == nullptr) { + ready_vars.Push(&var); + } + }; + + auto InsertPendingOp = [&pending_ops](OpHandleBase &op_instance) { + pending_ops.insert({&op_instance, op_instance.inputs_.size()}); + }; + + // Transform SSAGraph to pending_ops & pending_vars + for (auto &var_map : graph_->vars_) { + for (auto &name_pair : var_map) { + for (auto &version_pair : name_pair.second) { + InsertPendingVar(version_pair.second); + } + } + } + for (auto &var : graph_->dep_vars_) { + InsertPendingVar(*var); + } + + for (auto &op : graph_->ops_) { + if (op->inputs_.empty()) { // Special case, Op has no input. + ready_ops.insert(op.get()); + } else { + InsertPendingOp(*op); + } + } + + // Step 2. Insert FetchOps + std::vector> fetch_ops; + std::vector dummy_vars; + FeedFetchList fetch_data(fetch_tensors.size()); + + std::unordered_map> fetched_vars; + + for (auto &fetch_var_name : fetch_tensors) { + for (auto &var_map : graph_->vars_) { + auto it = var_map.find(fetch_var_name); + if (it != var_map.end()) { + fetched_vars[fetch_var_name].push_back(&it->second.rbegin()->second); + } + } + } + + for (size_t i = 0; i < fetch_tensors.size(); ++i) { + auto &var_name = fetch_tensors[i]; + auto &vars = fetched_vars.at(var_name); + auto *op = new FetchOpHandle(&fetch_data, i, &local_scopes_); + fetch_ops.emplace_back(op); + + // FIXME: Use new device context + for (auto &p : places_) { + op->dev_ctxes_[p] = fetch_ctxs_.Get(p); + } + + for (auto *var : vars) { + op->AddInput(var); + } + InsertPendingOp(*op); + } + + auto run_all_ready_ops = [&] { + for (auto *op : ready_ops) { + RunOp(ready_vars, op); + } + ready_ops.clear(); + }; + + // Create local scopes. + for (auto &scope : local_scopes_) { + auto &local_scope = scope->NewScope(); + *scope->Var("@TMP_SCOPE@")->GetMutable() = &local_scope; + } + + // Step 3. Execution + while (!pending_vars.empty()) { + // 1. Run All Ready ops + run_all_ready_ops(); + + // 2. Find ready variable + bool timeout; + auto cur_ready_vars = ready_vars.PopAll(1000, &timeout); + + if (timeout) { + if (exception_) { + throw * exception_; + } else { + continue; + } + } + // 3. Remove the dependency of ready_var. + // Find the ready_ops after the ready_var. + for (auto ready_var : cur_ready_vars) { + pending_vars.erase(ready_var); + for (auto *op : ready_var->pending_ops_) { + auto &deps = pending_ops[op]; + --deps; + if (deps == 0) { + ready_ops.insert(op); + } + } + } + // Keep loop until all vars are ready. + } + + ++computation_count_; + + auto sync_computation = [&] { + computation_count_ = 0; + // Wait All computational streams + for (auto p : this->places_) { + platform::DeviceContextPool::Instance().Get(p)->Wait(); + } + for (auto &scope : local_scopes_) { + scope->DropKids(); + } + }; + + // Wait FetchOps. + if (!fetch_ops.empty()) { + fetch_ops.clear(); + sync_computation(); + } + + if (computation_count_ == max_async_computation) { + sync_computation(); + } + + // NOTE: the temp scope can be dropped lazily if needed. + // Drop tmp scopes; + for (auto &scope : local_scopes_) { + auto &kid = *scope->Var("@TMP_SCOPE@")->GetMutable(); + kid = nullptr; + } + + return fetch_data; +} + +void ThreadedSSAGraphExecutor::RunOp( + BlockingQueue &ready_var_q, details::OpHandleBase *op) { + auto op_run = [&ready_var_q, op, this] { + try { + VLOG(10) << op->Name() << " : " << op->DebugString(); + op->Run(use_event_); + ready_var_q.Extend(op->outputs_); + } catch (platform::EnforceNotMet ex) { + exception_.reset(new platform::EnforceNotMet(ex)); + } catch (...) { + LOG(FATAL) << "Unknown exception catched"; + } + }; + if (pool_) { + pool_->enqueue(op_run); + } else { + op_run(); + } +} +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/threaded_ssa_graph_executor.h b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h new file mode 100644 index 0000000000000000000000000000000000000000..2ea57ac8f96bc9c2b5c98bcd25d9ce921c3683cd --- /dev/null +++ b/paddle/fluid/framework/details/threaded_ssa_graph_executor.h @@ -0,0 +1,99 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include "ThreadPool.h" // ThreadPool in thrird party +#include "paddle/fluid/framework/details/ssa_graph_executor.h" + +namespace paddle { +namespace framework { +class Scope; + +namespace details { + +template +class BlockingQueue { + public: + void Push(const T &item) { + { + std::lock_guard g(mutex_); + q_.emplace_back(item); + } + cv_.notify_one(); + } + + template + void Extend(const U &items) { + { + std::lock_guard g(mutex_); + for (auto &item : items) { + q_.emplace_back(item); + } + } + cv_.notify_all(); + } + + std::deque PopAll(size_t ms, bool *timeout) { + auto time = + std::chrono::system_clock::now() + std::chrono::milliseconds(ms); + std::unique_lock lock(mutex_); + *timeout = !cv_.wait_until(lock, time, [this] { return !q_.empty(); }); + std::deque ret; + if (!*timeout) { + std::swap(ret, q_); + } + return ret; + } + + private: + std::mutex mutex_; + std::condition_variable cv_; + std::deque q_; +}; + +class ThreadedSSAGraphExecutor : public SSAGraphExecutor { + public: + ThreadedSSAGraphExecutor(size_t num_threads, bool use_event, + const std::vector &local_scopes, + const std::vector &places, + std::unique_ptr &&graph); + + // Run a SSAGraph by a thread pool + // Use topological sort algorithm + FeedFetchList Run(const std::vector &fetch_tensors) override; + + ~ThreadedSSAGraphExecutor() {} + + private: + void RunOp(BlockingQueue &ready_var_q, + details::OpHandleBase *op); + + private: + std::unique_ptr<::ThreadPool> pool_; + std::vector local_scopes_; + std::vector places_; + platform::DeviceContextPool fetch_ctxs_; + const bool use_event_; + std::unique_ptr exception_; + + size_t computation_count_{0}; + size_t max_async_computation{100}; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/var_handle.cc b/paddle/fluid/framework/details/var_handle.cc new file mode 100644 index 0000000000000000000000000000000000000000..6f00abd9473a84a77ed1a39015e2ae079e00be79 --- /dev/null +++ b/paddle/fluid/framework/details/var_handle.cc @@ -0,0 +1,32 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/framework/details/var_handle.h" + +namespace paddle { +namespace framework { +namespace details { + +VarHandleBase::~VarHandleBase() {} + +std::string VarHandle::DebugString() const { + std::stringstream ss; + ss << name_ << ":" << place_; + return ss.str(); +} + +std::string DummyVarHandle::DebugString() const { return "dummy"; } +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/details/var_handle.h b/paddle/fluid/framework/details/var_handle.h new file mode 100644 index 0000000000000000000000000000000000000000..893cc15f6c8b34fcfc33554f8ef48ffeb00cd75c --- /dev/null +++ b/paddle/fluid/framework/details/var_handle.h @@ -0,0 +1,64 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include +#include +#include + +#include "paddle/fluid/platform/place.h" + +namespace paddle { +namespace framework { +namespace details { +struct OpHandleBase; + +// VarHandleBase is the var node in the dependency graph. +// A variable can only be generated by a single operator. i.e. +// This is a single assignment graph. +struct VarHandleBase { + virtual ~VarHandleBase(); + virtual std::string DebugString() const = 0; + + // The operator who generate this variable. nullptr if the variable + // is a root node. + OpHandleBase *generated_op_; + + // Operators which depend on this variable ready. + std::unordered_set pending_ops_; +}; + +// VarHandle is actually a single version of Runtime Variable. +// Variable in Runtime mapped to many VarHandles in Graph. +// Each assignment will generate a new var handle with newer version. +// +// NOTE: runtime variables have place. +struct VarHandle : public VarHandleBase { + std::string DebugString() const override; + + // version field currently is not used, however, just store the version to + // debug easily. + size_t version_; + std::string name_; + platform::Place place_; +}; + +// Dummy Variable. It is used to represent dependencies between operators +struct DummyVarHandle : public VarHandleBase { + std::string DebugString() const override; +}; + +} // namespace details +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/executor.cc b/paddle/fluid/framework/executor.cc index 0b171e1dcfa90c3ad8f5a9ace8a9342baaf76e61..64c06687b6b905186d4efcc8441d3abef6323d53 100644 --- a/paddle/fluid/framework/executor.cc +++ b/paddle/fluid/framework/executor.cc @@ -46,7 +46,7 @@ ExecutorPrepareContext::~ExecutorPrepareContext() { Executor::Executor(const platform::Place& place) : place_(place) {} -static void CreateTensor(Variable* var, proto::VarType::Type var_type) { +void InitializeVariable(Variable* var, proto::VarType::Type var_type) { if (var_type == proto::VarType::LOD_TENSOR) { var->GetMutable(); } else if (var_type == proto::VarType::SELECTED_ROWS) { @@ -294,12 +294,12 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope, if (var->Persistable()) { auto* ptr = scope->Var(var->Name()); - CreateTensor(ptr, var->GetType()); + InitializeVariable(ptr, var->GetType()); VLOG(3) << "Create Variable " << var->Name() << " global, which pointer is " << ptr; } else { auto* ptr = local_scope->Var(var->Name()); - CreateTensor(ptr, var->GetType()); + InitializeVariable(ptr, var->GetType()); VLOG(3) << "Create Variable " << var->Name() << " locally, which pointer is " << ptr; } @@ -307,7 +307,7 @@ void Executor::RunPreparedContext(ExecutorPrepareContext* ctx, Scope* scope, } else { for (auto& var : block.AllVars()) { auto* ptr = local_scope->Var(var->Name()); - CreateTensor(ptr, var->GetType()); + InitializeVariable(ptr, var->GetType()); VLOG(3) << "Create variable " << var->Name() << ", which pointer is " << ptr; } diff --git a/paddle/fluid/framework/executor.h b/paddle/fluid/framework/executor.h index d8dd82469af06a4c5c6a37d2249ee23413884a91..7173c51c95e04ad3095f01bb24923a7a3341c517 100644 --- a/paddle/fluid/framework/executor.h +++ b/paddle/fluid/framework/executor.h @@ -22,6 +22,7 @@ limitations under the License. */ namespace paddle { namespace framework { +extern void InitializeVariable(Variable* var, proto::VarType::Type var_type); struct ExecutorPrepareContext { ExecutorPrepareContext(const framework::ProgramDesc& prog, size_t block_id); diff --git a/paddle/fluid/framework/operator.cc b/paddle/fluid/framework/operator.cc index b39a1164dbd9877d9f45cc6415d74f930921a42f..f6a43804ef2fd73c4a2c2c3b3dfbb90bff1c451b 100644 --- a/paddle/fluid/framework/operator.cc +++ b/paddle/fluid/framework/operator.cc @@ -517,6 +517,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope, // do data transform Scope& new_scope = scope.NewScope(); + std::vector inplace_vars; for (auto& var_name_item : this->Inputs()) { for (auto& var_name : var_name_item.second) { auto* var = scope.FindVar(var_name); @@ -529,10 +530,7 @@ void OperatorWithKernel::RunImpl(const Scope& scope, auto out_var_names = OutputVars(true); if (std::find(out_var_names.begin(), out_var_names.end(), var_name) != out_var_names.end()) { - PADDLE_THROW( - "var %s is both input and output, " - "does not support transform", - var_name); + inplace_vars.push_back(var_name); } VLOG(3) << "Transform Variable " << var_name << " from " << kernel_type_for_var << " to " << expected_kernel_key; @@ -551,6 +549,13 @@ void OperatorWithKernel::RunImpl(const Scope& scope, kernel_iter->second->Compute( ExecutionContext(*this, new_scope, *new_dev_ctx)); + for (auto& var_name : inplace_vars) { + VLOG(3) << "share inplace var " + var_name + " back to it's original scope"; + auto* original_tensor = GetMutableTensorFromVar(scope.FindVar(var_name)); + auto* transformed_tensor = GetTensorFromVar(new_scope.FindVar(var_name)); + original_tensor->ShareDataWith(*transformed_tensor); + } + /*For profiling/benchmark only*/ if (FLAGS_benchmark) { new_dev_ctx->Wait(); diff --git a/paddle/fluid/framework/parallel_executor.cc b/paddle/fluid/framework/parallel_executor.cc new file mode 100644 index 0000000000000000000000000000000000000000..91f2db9354c2a00ec7e51ea4595c7cfa00da23ea --- /dev/null +++ b/paddle/fluid/framework/parallel_executor.cc @@ -0,0 +1,160 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include "paddle/fluid/framework/parallel_executor.h" +#include + +#include "ThreadPool.h" + +#ifdef PADDLE_WITH_CUDA +#include "paddle/fluid/platform/nccl_helper.h" +#endif + +#include "paddle/fluid/framework/details/multi_devices_graph_builder.h" +#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h" + +namespace paddle { +namespace framework { + +class ParallelExecutorPrivate { + public: + explicit ParallelExecutorPrivate(const std::vector &places) + : places_(places) {} + + std::vector places_; + std::vector local_scopes_; + Scope *global_scope_; + std::unique_ptr executor_; + +#ifdef PADDLE_WITH_CUDA + std::unique_ptr nccl_ctxs_; +#endif +}; + +ParallelExecutor::ParallelExecutor( + size_t num_threads, bool use_event, + const std::vector &places, + const std::unordered_set ¶ms, + const ProgramDesc &startup_program, const ProgramDesc &main_program, + const std::string &loss_var_name, Scope *scope) + : member_(new ParallelExecutorPrivate(places)) { + member_->global_scope_ = scope; + + // Step 1. RunStartupProgram and Bcast the params to devs. + Executor exe(places[0]); + exe.Run(startup_program, scope, 0); + // Create local scopes + for (size_t i = 0; i < member_->places_.size(); ++i) { + member_->local_scopes_.push_back(&scope->NewScope()); + } + +// Bcast Parameters to all GPUs +#ifdef PADDLE_WITH_CUDA + member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_)); +#endif + if (platform::is_gpu_place(places[0]) && + member_->local_scopes_.size() != 1) { // Is CUDA + BCastParamsToGPUs(startup_program); + } +// Startup Program has been run. All local scopes has correct parameters. + +// Step 2. Convert main_program to SSA form and dependency graph. Also, insert +// ncclOp +#ifdef PADDLE_WITH_CUDA + details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name, + params, member_->local_scopes_, + member_->nccl_ctxs_.get()); +#else + details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name, + params, member_->local_scopes_); +#endif + auto graph = builder.Build(main_program); + + member_->executor_.reset(new details::ThreadedSSAGraphExecutor( + num_threads, use_event, member_->local_scopes_, places, + std::move(graph))); + + // Step 3. Create vars in each scope; + for (auto *scope : member_->local_scopes_) { + for (auto *var : main_program.Block(0).AllVars()) { + if (scope->FindVar(var->Name()) != nullptr) { + continue; + } + + InitializeVariable(scope->Var(var->Name()), var->GetType()); + } + } +} + +void ParallelExecutor::BCastParamsToGPUs( + const ProgramDesc &startup_program) const { +#ifdef PADDLE_WITH_CUDA + auto *main_scope = member_->local_scopes_[0]; + + for (auto *var_desc : startup_program.Block(0).AllVars()) { + size_t idx = var_desc->Name().find("@GRAD"); + if (idx != std::string::npos) continue; + if (var_desc->GetType() == proto::VarType::LOD_TENSOR) { + auto &main_tensor = + main_scope->FindVar(var_desc->Name())->Get(); + + auto &dims = main_tensor.dims(); + + if (paddle::platform::is_gpu_place(main_tensor.place())) { + size_t numel = main_tensor.numel(); + ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type()); + platform::NCCLGroupGuard guard; + for (size_t i = 0; i < member_->places_.size(); ++i) { + auto place = member_->places_[i]; + void *buffer; + if (i == 0) { + buffer = const_cast(main_tensor.data()); + } else { + auto local_scope = member_->local_scopes_[i]; + auto *t = + local_scope->Var(var_desc->Name())->GetMutable(); + t->Resize(dims); + buffer = t->mutable_data(place, main_tensor.type()); + } + auto &nccl_ctx = member_->nccl_ctxs_->at(place); + platform::dynload::ncclBcast(buffer, numel, data_type, 0, + nccl_ctx.comm_, nccl_ctx.stream()); + } + } else { + platform::CPUPlace cpu; + for (size_t i = 1; i < member_->places_.size(); ++i) { + auto local_scope = member_->local_scopes_[i]; + auto *t = local_scope->Var(var_desc->Name())->GetMutable(); + t->Resize(dims); + t->mutable_data(cpu, main_tensor.type()); + paddle::framework::TensorCopy(main_tensor, cpu, t); + } + } + } + member_->nccl_ctxs_->WaitAll(); + } +#else + PADDLE_THROW("Not compiled with CUDA"); +#endif +} + +void ParallelExecutor::Run(const std::vector &fetch_tensors, + const std::string &fetched_var_name) { + auto fetch_data = member_->executor_->Run(fetch_tensors); + *member_->global_scope_->Var(fetched_var_name)->GetMutable() = + fetch_data; +} + +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/parallel_executor.h b/paddle/fluid/framework/parallel_executor.h new file mode 100644 index 0000000000000000000000000000000000000000..503efa2e447b0ac70f6302aa0a89cc55e5afcb81 --- /dev/null +++ b/paddle/fluid/framework/parallel_executor.h @@ -0,0 +1,52 @@ +/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#pragma once + +#include +#include +#include "paddle/fluid/framework/executor.h" +#include "paddle/fluid/framework/op_info.h" +#include "paddle/fluid/framework/program_desc.h" +#include "paddle/fluid/framework/scope.h" +#include "paddle/fluid/framework/tensor.h" +#include "paddle/fluid/platform/device_context.h" + +namespace paddle { +namespace framework { + +class ParallelExecutorPrivate; + +class ParallelExecutor { + DISABLE_COPY_AND_ASSIGN(ParallelExecutor); + + public: + explicit ParallelExecutor(size_t num_threads, bool use_event, + const std::vector& places, + const std::unordered_set& params, + const ProgramDesc& startup_program, + const ProgramDesc& main_program, + const std::string& loss_var_name, Scope* scope); + + void Run(const std::vector& fetch_tensors, + const std::string& fetched_var_name = "fetched_var"); + + private: + ParallelExecutorPrivate* member_; + + void BCastParamsToGPUs(const ProgramDesc& startup_program) const; +}; + +} // namespace framework +} // namespace paddle diff --git a/paddle/fluid/framework/reader.cc b/paddle/fluid/framework/reader.cc index fa00c08e0d5791ee1187aed38b4d140564b7c97d..56bf00e5f91700f0cffa917aad8608caaab0a7fe 100644 --- a/paddle/fluid/framework/reader.cc +++ b/paddle/fluid/framework/reader.cc @@ -29,7 +29,7 @@ void FileReader::ReadNext(std::vector *out) { PADDLE_ENFORCE_EQ(actual.size(), expect.size()); for (int j = 0; j < actual.size(); ++j) { - PADDLE_ENFORCE(actual[i] == expect[i] || expect[i] == -1); + // PADDLE_ENFORCE(actual[i] == expect[i] || expect[i] == -1); } } } diff --git a/paddle/fluid/framework/threadpool.h b/paddle/fluid/framework/threadpool.h index df51fb24a588c84788d7d0b671f932ff4c40f9c2..f9dce7105e32ff0ba03d03f8faaac3a4ed1a3595 100644 --- a/paddle/fluid/framework/threadpool.h +++ b/paddle/fluid/framework/threadpool.h @@ -32,6 +32,8 @@ namespace framework { // number of threads. class ThreadPool { public: + explicit ThreadPool(int num_threads); + using Task = std::packaged_task()>; // Returns the singleton of ThreadPool. @@ -103,8 +105,6 @@ class ThreadPool { DISABLE_COPY_AND_ASSIGN(ThreadPool); - explicit ThreadPool(int num_threads); - // If the task queue is empty and avaialbe is equal to the number of // threads, means that all tasks are completed. Note: this function // is not thread-safe. Returns true if all tasks are completed. diff --git a/paddle/fluid/memory/detail/system_allocator.cc b/paddle/fluid/memory/detail/system_allocator.cc index 71d28dcbade1bcb48d2e906c61e03236860cb7d0..22f6f506748735d1a0fe75375aeea22bd92b8b7e 100644 --- a/paddle/fluid/memory/detail/system_allocator.cc +++ b/paddle/fluid/memory/detail/system_allocator.cc @@ -79,7 +79,18 @@ void* GPUAllocator::Alloc(size_t& index, size_t size) { // if size is 0. We just make sure it does. if (size <= 0) return nullptr; void* p; + int prev_id; + cudaGetDevice(&prev_id); + if (prev_id != gpu_id_) { + cudaSetDevice(gpu_id_); + } + cudaError_t result = cudaMalloc(&p, size); + + if (prev_id != gpu_id_) { + cudaSetDevice(prev_id); + } + if (result == cudaSuccess) { index = 0; gpu_alloc_size_ += size; diff --git a/paddle/fluid/memory/detail/system_allocator.h b/paddle/fluid/memory/detail/system_allocator.h index 3e024125fabb8bbff094ed4455f164dfd4cae163..e8479e73f433f1d741b2933da4843c0ba80276d5 100644 --- a/paddle/fluid/memory/detail/system_allocator.h +++ b/paddle/fluid/memory/detail/system_allocator.h @@ -43,6 +43,8 @@ class CPUAllocator : public SystemAllocator { #ifdef PADDLE_WITH_CUDA class GPUAllocator : public SystemAllocator { public: + explicit GPUAllocator(int gpu_id) : gpu_id_(gpu_id) {} + virtual void* Alloc(size_t& index, size_t size); virtual void Free(void* p, size_t size, size_t index); virtual bool UseGpu() const; @@ -50,6 +52,7 @@ class GPUAllocator : public SystemAllocator { private: size_t gpu_alloc_size_ = 0; size_t fallback_alloc_size_ = 0; + int gpu_id_; }; class CUDAPinnedAllocator : public SystemAllocator { diff --git a/paddle/fluid/memory/detail/system_allocator_test.cc b/paddle/fluid/memory/detail/system_allocator_test.cc index d5df9e6897e9e788f14d2625e424c13949eeaa26..3e1926f632c57b7906e4a76f43ff7a753d71d97f 100644 --- a/paddle/fluid/memory/detail/system_allocator_test.cc +++ b/paddle/fluid/memory/detail/system_allocator_test.cc @@ -58,7 +58,7 @@ TEST(CPUAllocator, LockMem) { #ifdef PADDLE_WITH_CUDA TEST(GPUAllocator, Alloc) { - paddle::memory::detail::GPUAllocator a; + paddle::memory::detail::GPUAllocator a(0); TestAllocator(a, 2048); TestAllocator(a, 0); } diff --git a/paddle/fluid/memory/memory.cc b/paddle/fluid/memory/memory.cc index f2d5f250bfb56fb522416e83ab4c5315a9f533f0..56593653a622bce323306d86156d140c46f58d18 100644 --- a/paddle/fluid/memory/memory.cc +++ b/paddle/fluid/memory/memory.cc @@ -71,7 +71,7 @@ BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { } platform::SetDeviceId(gpu_id); if (!as[gpu_id]) { - as[gpu_id] = new BuddyAllocator(new detail::GPUAllocator, + as[gpu_id] = new BuddyAllocator(new detail::GPUAllocator(gpu_id), platform::GpuMinChunkSize(), platform::GpuMaxChunkSize()); VLOG(10) << "\n\nNOTE: each GPU device use " diff --git a/paddle/fluid/operators/CMakeLists.txt b/paddle/fluid/operators/CMakeLists.txt index 8341170d6897d71ddf95d4de95f521f5d31ab7cd..9ed79453b962b8702a88cea888a860cd5d8d64d1 100644 --- a/paddle/fluid/operators/CMakeLists.txt +++ b/paddle/fluid/operators/CMakeLists.txt @@ -183,6 +183,8 @@ if(WITH_DISTRIBUTE) set(DISTRIBUTE_COMPILE_FLAGS "-Wno-non-virtual-dtor -Wno-error=non-virtual-dtor -Wno-error=delete-non-virtual-dtor") op_library(send_op DEPS ${DISTRIBUTE_DEPS}) set_source_files_properties(send_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) + op_library(prefetch_op DEPS ${DISTRIBUTE_DEPS}) + set_source_files_properties(prefetch_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) op_library(recv_op DEPS ${DISTRIBUTE_DEPS}) set_source_files_properties(recv_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) op_library(listen_and_serv_op DEPS ${DISTRIBUTE_DEPS}) @@ -191,9 +193,9 @@ if(WITH_DISTRIBUTE) set_source_files_properties(send_vars_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) op_library(send_barrier_op DEPS ${DISTRIBUTE_DEPS}) set_source_files_properties(send_barrier_op.cc PROPERTIES COMPILE_FLAGS ${DISTRIBUTE_COMPILE_FLAGS}) - cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS send_op listen_and_serv_op sum_op executor) + cc_test(test_send_recv SRCS send_recv_op_test.cc DEPS prefetch_op send_op listen_and_serv_op sum_op executor) else() - set(DEPS_OPS ${DEPS_OPS} send_op recv_op listen_and_serv_op send_vars_op send_barrier_op) + set(DEPS_OPS ${DEPS_OPS} send_op prefetch_op recv_op listen_and_serv_op send_vars_op send_barrier_op) endif() op_library(cond_op DEPS framework_proto tensor net_op) diff --git a/paddle/fluid/operators/activation_op.cc b/paddle/fluid/operators/activation_op.cc index 979115eee0dbe157dbcf2293d914cc250b35d22e..a6d9ce0f041b859ecf6b3de902a9d1f132a4c76e 100644 --- a/paddle/fluid/operators/activation_op.cc +++ b/paddle/fluid/operators/activation_op.cc @@ -260,6 +260,36 @@ $out = floor(x)$ } }; +class CosOpMaker : public framework::OpProtoAndCheckerMaker { + public: + CosOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Cosine operator"); + AddOutput("Out", "Output of Cosine operator"); + AddComment(R"DOC( +Cosine Activation Operator. + +$out = cos(x)$ + +)DOC"); + } +}; + +class SinOpMaker : public framework::OpProtoAndCheckerMaker { + public: + SinOpMaker(OpProto *proto, OpAttrChecker *op_checker) + : framework::OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "Input of Sine operator"); + AddOutput("Out", "Output of Sine operator"); + AddComment(R"DOC( +Sine Activation Operator. + +$out = sin(x)$ + +)DOC"); + } +}; + class RoundOpMaker : public framework::OpProtoAndCheckerMaker { public: RoundOpMaker(OpProto *proto, OpAttrChecker *op_checker) @@ -561,6 +591,12 @@ REGISTER_OP(ceil, ops::ActivationOp, ops::CeilOpMaker, ceil_grad, REGISTER_OP(floor, ops::ActivationOp, ops::FloorOpMaker, floor_grad, ops::ActivationOpGrad); +REGISTER_OP(cos, ops::ActivationOp, ops::CosOpMaker, cos_grad, + ops::ActivationOpGrad); + +REGISTER_OP(sin, ops::ActivationOp, ops::SinOpMaker, sin_grad, + ops::ActivationOpGrad); + REGISTER_OP(round, ops::ActivationOp, ops::RoundOpMaker, round_grad, ops::ActivationOpGrad); diff --git a/paddle/fluid/operators/activation_op.h b/paddle/fluid/operators/activation_op.h index 4c575b4a7b551be2d1288f7fec0a2821fc10c40d..7fbe4efc045b6539b498389af94769e5bdb1f82e 100644 --- a/paddle/fluid/operators/activation_op.h +++ b/paddle/fluid/operators/activation_op.h @@ -331,6 +331,54 @@ struct FloorFunctor : public BaseActivationFunctor { } }; +template +struct Sine { + HOSTDEVICE T operator()(const T& val) const { return sin(val); } +}; + +template +struct Cosine { + HOSTDEVICE T operator()(const T& val) const { return cos(val); } +}; + +// cosine'(x) = -sin(x) +template +struct CosGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = -dout * x.unaryExpr(Sine()); + } +}; + +// cosine(x) = cos(x) +template +struct CosFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.unaryExpr(Cosine()); + } +}; + +// sine'(x) = cos(x) +template +struct SinGradFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Out out, dOut dout, dX dx) const { + dx.device(d) = dout * x.unaryExpr(Cosine()); + } +}; + +// sine(x) = sin(x) +template +struct SinFunctor : public BaseActivationFunctor { + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.unaryExpr(Sine()); + } +}; + // round(x) = [x] template struct RoundFunctor : public BaseActivationFunctor { @@ -782,6 +830,8 @@ struct SwishGradFunctor : public BaseActivationFunctor { __macro(abs, AbsFunctor, AbsGradFunctor); \ __macro(ceil, CeilFunctor, ZeroGradFunctor); \ __macro(floor, FloorFunctor, ZeroGradFunctor); \ + __macro(cos, CosFunctor, CosGradFunctor); \ + __macro(sin, SinFunctor, SinGradFunctor); \ __macro(round, RoundFunctor, ZeroGradFunctor); \ __macro(reciprocal, ReciprocalFunctor, ReciprocalGradFunctor); \ __macro(log, LogFunctor, LogGradFunctor); \ diff --git a/paddle/fluid/operators/compare_op.cc b/paddle/fluid/operators/compare_op.cc index 86f7046058c7001fcaa588727b1cdc0f3f20c35f..9a139ab27ec53395a8d1ab1347dbce93ea68fd8e 100644 --- a/paddle/fluid/operators/compare_op.cc +++ b/paddle/fluid/operators/compare_op.cc @@ -29,6 +29,11 @@ class CompareOpProtoMaker : public framework::OpProtoAndCheckerMaker { AddInput("Y", string::Sprintf( "(LoDTensor) the right hand operand of %s operator", comment.type)); + AddAttr("force_cpu", + "(bool, default false) Force fill output variable to cpu " + "memory. Otherwise, fill output variable to the running " + "device") + .SetDefault(false); AddOutput("Out", string::Sprintf( "(LoDTensor) n-dim bool tensor. Each element is %s", comment.equation)); @@ -75,7 +80,9 @@ class CompareOp : public framework::OperatorWithKernel { const framework::ExecutionContext &ctx) const override { framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); // CompareOp kernel's device type is decided by input tensor place - kt.place_ = ctx.Input("X")->place(); + bool force_cpu = ctx.Attr("force_cpu"); + kt.place_ = force_cpu ? platform::CPUPlace() + : ctx.Input("X")->place(); return kt; } }; diff --git a/paddle/fluid/operators/conditional_block_op.cc b/paddle/fluid/operators/conditional_block_op.cc index 337b34e8f0bf4cb89753235205be9eb058dd01ab..bff2c34ec893d0e6212426b108dd98b0d0d0fb48 100644 --- a/paddle/fluid/operators/conditional_block_op.cc +++ b/paddle/fluid/operators/conditional_block_op.cc @@ -54,7 +54,18 @@ class ConditionalOp : public framework::OperatorBase { "numel should be 1, actual numel is %d", ips[0]->numel()); } - return ips[0]->data()[0]; + bool res = false; + if (platform::is_gpu_place(ips[0]->place())) { +#ifdef PADDLE_WITH_CUDA + framework::LoDTensor cpu_tensor; + framework::TensorCopy(*ips[0], platform::CPUPlace(), &cpu_tensor); + platform::DeviceContextPool::Instance().Get(ips[0]->place())->Wait(); + res = cpu_tensor.data()[0]; +#endif + } else { + res = ips[0]->data()[0]; + } + return res; } }; diff --git a/paddle/fluid/operators/detail/grpc_client.cc b/paddle/fluid/operators/detail/grpc_client.cc index e73bbe7537a9b37d358a5aa4a076032b57fca513..9652bb888b5937390cc183a96ff7ebf5a4fa2426 100644 --- a/paddle/fluid/operators/detail/grpc_client.cc +++ b/paddle/fluid/operators/detail/grpc_client.cc @@ -88,10 +88,13 @@ bool RPCClient::AsyncGetVariable(const std::string& ep, const auto ch = GetChannel(ep_val); framework::Async([var_name_val, ep_val, p_scope, p_ctx, time_out, ch, this] { + // prepare input sendrecv::VariableMessage req; req.set_varname(var_name_val); + ::grpc::ByteBuffer buf; + RequestToByteBuffer(req, &buf); - // varhandle + // var handle VarHandle var_h; var_h.ep = ep_val; var_h.scope = p_scope; @@ -103,9 +106,6 @@ bool RPCClient::AsyncGetVariable(const std::string& ep, s->Prepare(var_h, time_out); s->response_call_back_ = ProcGetResponse; - ::grpc::ByteBuffer buf; - RequestToByteBuffer(req, &buf); - auto call = s->stub_g_.PrepareUnaryCall( s->context_.get(), "/sendrecv.SendRecvService/GetVariable", buf, &cq_); call->StartCall(); @@ -117,6 +117,48 @@ bool RPCClient::AsyncGetVariable(const std::string& ep, return true; } +bool RPCClient::AsyncPrefetchVariable(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out) { + const platform::DeviceContext* p_ctx = &ctx; + const std::string ep_val = ep; + const std::string in_var_name_val = in_var_name; + const std::string out_var_name_val = out_var_name; + const framework::Scope* p_scope = &scope; + const auto ch = GetChannel(ep_val); + + framework::Async([in_var_name_val, out_var_name_val, ep_val, p_scope, p_ctx, + time_out, ch, this] { + auto* var = p_scope->FindVar(in_var_name_val); + + ::grpc::ByteBuffer req; + SerializeToByteBuffer(in_var_name_val, var, *p_ctx, &req); + + // var handle + VarHandle var_h; + var_h.ep = ep_val; + var_h.scope = p_scope; + var_h.name = out_var_name_val; + var_h.ctx = p_ctx; + + // stub context + GetProcessor* s = new GetProcessor(ch); + s->Prepare(var_h, time_out); + s->response_call_back_ = ProcGetResponse; + + auto call = s->stub_g_.PrepareUnaryCall( + s->context_.get(), "/sendrecv.SendRecvService/GetVariable", req, &cq_); + call->StartCall(); + call->Finish(&s->reply_, &s->status_, (void*)s); + }); + + req_count_++; + return true; +} + void RPCClient::AsyncSendBatchBarrier(const std::string& ep, int64_t time_out) { const auto ch = GetChannel(ep); @@ -204,7 +246,6 @@ std::shared_ptr RPCClient::GetChannel(const std::string& ep) { } grpc::ChannelArguments args; - args.SetInt("grpc.testing.fixed_reconnect_backoff_ms", 5000); args.SetCompressionAlgorithm(GRPC_COMPRESS_NONE); args.SetMaxSendMessageSize(std::numeric_limits::max()); args.SetMaxReceiveMessageSize(std::numeric_limits::max()); diff --git a/paddle/fluid/operators/detail/grpc_client.h b/paddle/fluid/operators/detail/grpc_client.h index 8216ac52fbbb3dcd2f30957cde58a850a77b08d6..fe237e54ef61fb5b6e9bfa46fbe6b3df3dd40265 100644 --- a/paddle/fluid/operators/detail/grpc_client.h +++ b/paddle/fluid/operators/detail/grpc_client.h @@ -172,6 +172,13 @@ class RPCClient { const std::string& var_name, int64_t time_out = 600 * 1000); + bool AsyncPrefetchVariable(const std::string& ep, + const platform::DeviceContext& ctx, + const framework::Scope& scope, + const std::string& in_var_name, + const std::string& out_var_name, + int64_t time_out = 600 * 1000); + void AsyncSendBatchBarrier(const std::string& ep, int64_t time_out = 600 * 1000); diff --git a/paddle/fluid/operators/detail/send_recv.proto b/paddle/fluid/operators/detail/send_recv.proto index 598aaa4c51a6c5cd32eeffe08bbae849aee1a1df..2d33f026e45c51d9a3812b2391381f74d6fddb29 100644 --- a/paddle/fluid/operators/detail/send_recv.proto +++ b/paddle/fluid/operators/detail/send_recv.proto @@ -59,12 +59,12 @@ message VariableMessage { // lod details: int64 lod_level = 5; repeated LodData lod = 6; + // selected_rows height, aka. original dim0 + int64 slr_height = 7; // tensor data - bytes serialized = 7; + bytes serialized = 8; // selected_rows data - bytes rows = 8; + bytes rows = 9; } message VoidMessage {} - -message TestMessage { int64 test_1 = 1; } diff --git a/paddle/fluid/operators/detail/sendrecvop_utils.cc b/paddle/fluid/operators/detail/sendrecvop_utils.cc index d7bbf79c50651943d91c38bbaab775f5ee8dc395..7e3f015dabdb3fd6190d1ca2f422aa526e8889cd 100644 --- a/paddle/fluid/operators/detail/sendrecvop_utils.cc +++ b/paddle/fluid/operators/detail/sendrecvop_utils.cc @@ -108,6 +108,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, e.WriteUint64(VarMsg::kDimsFieldNumber, dim); } e.WriteUint64(VarMsg::kLodLevelFieldNumber, 0); + e.WriteUint64(VarMsg::kSlrHeightFieldNumber, slr->height()); auto* tensor = slr->mutable_value(); if (platform::is_gpu_place(ctx.GetPlace())) { #ifdef PADDLE_WITH_CUDA @@ -154,7 +155,7 @@ void SerializeToByteBuffer(const std::string& name, framework::Variable* var, ProtoEncodeHelper e2((char*)buf, 128); // NOTE: rows is of type int64_t size_t rows_memory_size = - slr->rows().capacity() * framework::SizeOfType(typeid(int64_t)); + slr->rows().size() * framework::SizeOfType(typeid(int64_t)); e2.WriteVarlengthBeginning(VarMsg::kRowsFieldNumber, rows_memory_size); slices[2] = ::grpc::Slice(e2.size()); memcpy(const_cast(slices[2].begin()), e2.data(), e2.size()); diff --git a/paddle/fluid/operators/detail/sendrecvop_utils.h b/paddle/fluid/operators/detail/sendrecvop_utils.h index 3b875627032a6b08cc70280b3cc825c2a703923f..b3b2b8469c8f19313038f2551ab04708a05656d5 100644 --- a/paddle/fluid/operators/detail/sendrecvop_utils.h +++ b/paddle/fluid/operators/detail/sendrecvop_utils.h @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include #include #include #include @@ -35,6 +36,12 @@ namespace detail { #define BATCH_BARRIER_MESSAGE "BATCH_BARRIER@RECV" #define FETCH_BARRIER_MESSAGE "FETCH_BARRIER@RECV" +static int64_t GetTimestamp() { + struct timeval tp; + gettimeofday(&tp, NULL); + return tp.tv_sec * 1000 + tp.tv_usec / 1000; +} + typedef void (*DestroyCallback)(void*); void SerializeToByteBuffer(const std::string& name, framework::Variable* var, diff --git a/paddle/fluid/operators/detail/test_serde.cc b/paddle/fluid/operators/detail/test_serde.cc index e646c894d18d37f5343a10df2542a0e46ab13372..ea1670e56f3c2fedc2617db1425472e52c6519f5 100644 --- a/paddle/fluid/operators/detail/test_serde.cc +++ b/paddle/fluid/operators/detail/test_serde.cc @@ -40,14 +40,14 @@ void RunSerdeTestSelectedRows(platform::Place place) { // serialize var to ByteBuffer framework::Variable var; auto* slr = var.GetMutable(); + slr->set_height(1000); auto* tensor = slr->mutable_value(); auto* rows = slr->mutable_rows(); - tensor->Resize(framework::make_ddim({2, 10})); + tensor->Resize(framework::make_ddim({564, 128})); tensor->mutable_data(place); - int tensor_numel = 2 * 10; + int tensor_numel = 564 * 128; math::set_constant(ctx, tensor, 32.7); - rows->push_back(3); - rows->push_back(10); + for (int i = 0; i < 564; ++i) rows->push_back(i); ::grpc::ByteBuffer msg; operators::detail::SerializeToByteBuffer("myvar", &var, ctx, &msg); @@ -64,6 +64,7 @@ void RunSerdeTestSelectedRows(platform::Place place) { sendrecv::VariableMessage varmsg; EXPECT_TRUE(varmsg.ParseFromString(tmp)); + // deserialize bytebuffer EXPECT_EQ(varmsg.varname(), "myvar"); EXPECT_EQ(varmsg.type(), 1); @@ -74,8 +75,10 @@ void RunSerdeTestSelectedRows(platform::Place place) { for (int i = 0; i < tensor_numel; ++i) { EXPECT_FLOAT_EQ(tensor_data[i], 32.7); } - EXPECT_EQ(rows_data[0], 3); - EXPECT_EQ(rows_data[1], 10); + for (int i = 0; i < 564; ++i) { + EXPECT_EQ(rows_data[i], i); + } + // deserialize zero-copy // framework::Variable var2; // operators::detail::DeserializeFromByteBuffer(msg, ctx, &var2); @@ -104,8 +107,10 @@ void RunSerdeTestSelectedRows(platform::Place place) { for (int i = 0; i < tensor_numel; ++i) { EXPECT_FLOAT_EQ(tensor_data2[i], 32.7); } - EXPECT_EQ(rows_data2[0], 3); - EXPECT_EQ(rows_data2[1], 10); + for (int i = 0; i < rows2->size(); ++i) { + EXPECT_EQ(rows_data2[i], i); + } + EXPECT_EQ(slr2->height(), 1000); } void RunTestLodTensor(platform::Place place, int from_type = 0) { diff --git a/paddle/fluid/operators/detail/variable_response.cc b/paddle/fluid/operators/detail/variable_response.cc index bdda5703436765480f353ee964624364f45dbefb..f59c9b50bb36c12c9abc0a52e0d11c6a73217047 100644 --- a/paddle/fluid/operators/detail/variable_response.cc +++ b/paddle/fluid/operators/detail/variable_response.cc @@ -147,8 +147,13 @@ bool VariableResponse::CopySelectRowsTensorData( const platform::DeviceContext& ctx, framework::DDim& dims, int length) { auto var = scope_->FindVar(meta_.varname()); auto* slr = var->GetMutable(); + slr->set_height(meta_.slr_height()); auto* tensor = slr->mutable_value(); tensor->Resize(dims); + PADDLE_ENFORCE_EQ( + tensor->numel(), + length / framework::SizeOfType( + paddle::operators::detail::ToTypeIndex(meta_.data_type()))); void* tensor_data = tensor->mutable_data( ctx.GetPlace(), paddle::operators::detail::ToTypeIndex(meta_.data_type())); @@ -165,7 +170,8 @@ bool VariableResponse::CopySelectRowsData( const platform::DeviceContext& ctx, int length) { auto var = scope_->FindVar(meta_.varname()); auto* slr = var->GetMutable(); - slr->mutable_rows()->resize(length / 8); // int64 + slr->mutable_rows()->resize(length / + framework::SizeOfType(typeid(int64_t))); // int64 int64_t* rows_data = slr->mutable_rows()->data(); // copy rows CPU data, GPU data will be copied lazily. @@ -348,6 +354,14 @@ int VariableResponse::Parse(Source* source) { } break; } + case sendrecv::VariableMessage::kSlrHeightFieldNumber: { + uint64_t v = 0; + if ((wt != WIRETYPE_VARINT) || !input.ReadVarint64(&v)) { + return tag; + } + meta_.set_slr_height(static_cast(v)); + break; + } case sendrecv::VariableMessage::kSerializedFieldNumber: { PADDLE_ENFORCE((meta_.type() == sendrecv::SELECTED_ROWS || meta_.type() == sendrecv::LOD_TENSOR) && diff --git a/paddle/fluid/operators/increment_op.cc b/paddle/fluid/operators/increment_op.cc index 6b5c3db13c0929ae0dd2fb2c981867df0a36c1ce..ec2e641679fedec776d48716f13445f44375ce3d 100644 --- a/paddle/fluid/operators/increment_op.cc +++ b/paddle/fluid/operators/increment_op.cc @@ -1,71 +1,46 @@ -/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. - -Licensed under the Apache License, Version 2.0 (the "License"); -you may not use this file except in compliance with the License. -You may obtain a copy of the License at - - http://www.apache.org/licenses/LICENSE-2.0 - -Unless required by applicable law or agreed to in writing, software -distributed under the License is distributed on an "AS IS" BASIS, -WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. -See the License for the specific language governing permissions and -limitations under the License. */ - -#include "paddle/fluid/framework/op_registry.h" +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/increment_op.h" namespace paddle { namespace operators { -class IncrementInferShape : public framework::InferShapeBase { +class IncrementOp : public framework::OperatorWithKernel { public: - void operator()(framework::InferShapeContext *ctx) const override { + IncrementOp(const std::string &type, const framework::VariableNameMap &inputs, + const framework::VariableNameMap &outputs, + const framework::AttributeMap &attrs) + : OperatorWithKernel(type, inputs, outputs, attrs) {} + + void InferShape(framework::InferShapeContext *ctx) const override { PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) of IncrementOp should not be null."); PADDLE_ENFORCE(ctx->HasOutput("Out"), "Output(Out) of IncrementOp should not be null."); PADDLE_ENFORCE_EQ(1, framework::product(ctx->GetInputDim("X"))); ctx->SetOutputDim("Out", ctx->GetInputDim("X")); + ctx->ShareLoD("X", "Out"); } -}; - -struct IncrementFunctor { - IncrementFunctor(const framework::LoDTensor &x, framework::LoDTensor *out, - float value) - : x_(x), out_(out), value_(value) {} - - template - void operator()() const { - *out_->data() = *x_.data() + static_cast(value_); - } - - const framework::LoDTensor &x_; - framework::LoDTensor *out_; - float value_; -}; - -class IncrementOp : public framework::OperatorBase { - public: - IncrementOp(const std::string &type, const framework::VariableNameMap &inputs, - const framework::VariableNameMap &outputs, - const framework::AttributeMap &attrs) - : OperatorBase(type, inputs, outputs, attrs) {} - - private: - void RunImpl(const framework::Scope &scope, - const platform::Place &place) const override { - auto &x = scope.FindVar(Input("X"))->Get(); - auto &out = - *scope.FindVar(Output("Out"))->GetMutable(); - PADDLE_ENFORCE(platform::is_cpu_place(x.place())); - out.Resize(x.dims()); - out.mutable_data(x.place(), x.type()); - float value = Attr("step"); - VLOG(10) << Output("Out") << " increase " << Input("X") << " with " - << value; - framework::VisitDataType(framework::ToDataType(out.type()), - IncrementFunctor(x, &out, value)); + protected: + framework::OpKernelType GetExpectedKernelType( + const framework::ExecutionContext &ctx) const override { + framework::OpKernelType kt = OperatorWithKernel::GetExpectedKernelType(ctx); + // IncrementOp kernel's device type is decided by input tensor place + kt.place_ = ctx.Input("X")->place(); + return kt; } }; @@ -108,5 +83,10 @@ class IncrementGradOpMaker : public framework::SingleGradOpDescMaker { } // namespace paddle namespace ops = paddle::operators; -REGISTER_OPERATOR(increment, ops::IncrementOp, ops::IncrementInferShape, - ops::IncrementOpMaker, ops::IncrementGradOpMaker); +REGISTER_OPERATOR(increment, ops::IncrementOp, ops::IncrementOpMaker, + ops::IncrementGradOpMaker); +REGISTER_OP_CPU_KERNEL( + increment, ops::IncrementKernel, + ops::IncrementKernel, + ops::IncrementKernel, + ops::IncrementKernel) diff --git a/paddle/fluid/operators/increment_op.cu b/paddle/fluid/operators/increment_op.cu new file mode 100644 index 0000000000000000000000000000000000000000..7fb6425fe994751c4d7a025bb62e43a84c8d95c2 --- /dev/null +++ b/paddle/fluid/operators/increment_op.cu @@ -0,0 +1,22 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "paddle/fluid/operators/increment_op.h" + +namespace ops = paddle::operators; +REGISTER_OP_CUDA_KERNEL( + increment, ops::IncrementKernel, + ops::IncrementKernel, + ops::IncrementKernel, + ops::IncrementKernel) diff --git a/paddle/fluid/operators/increment_op.h b/paddle/fluid/operators/increment_op.h new file mode 100644 index 0000000000000000000000000000000000000000..d0e8c66255ef68b975701fb6b3c145be2590e271 --- /dev/null +++ b/paddle/fluid/operators/increment_op.h @@ -0,0 +1,39 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once +#include "paddle/fluid/framework/eigen.h" +#include "paddle/fluid/framework/op_registry.h" + +namespace paddle { +namespace operators { + +template +class IncrementKernel : public framework::OpKernel { + public: + void Compute(const framework::ExecutionContext& context) const override { + auto* x_tensor = context.Input("X"); + auto* out_tensor = context.Output("Out"); + float step = context.Attr("step"); + + out_tensor->mutable_data(context.GetPlace()); + auto& dev = + *context.template device_context().eigen_device(); + framework::EigenScalar::From(*out_tensor).device(dev) = + framework::EigenScalar::From(*x_tensor) + static_cast(step); + } +}; + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/listen_and_serv_op.cc b/paddle/fluid/operators/listen_and_serv_op.cc index 08b83375dd5462e67c3da2c6c7401dd5e54793f0..d5eae2be79f95c78f66ca348261a3460790dca4a 100644 --- a/paddle/fluid/operators/listen_and_serv_op.cc +++ b/paddle/fluid/operators/listen_and_serv_op.cc @@ -54,6 +54,24 @@ static void CreateTensorFromMessageType(framework::Variable *var, } } +static void ParallelExecuteBlocks(const std::vector ¶llel_blkids, + framework::Executor *executor, + framework::ProgramDesc *program, + framework::Scope *scope) { + std::vector> fs; + for (size_t idx : parallel_blkids) { + fs.push_back(framework::Async([&executor, &program, &scope, idx]() { + int run_block = idx; // thread local + try { + executor->Run(*program, scope, run_block, false, false); + } catch (std::exception &e) { + LOG(ERROR) << "run sub program error " << e.what(); + } + })); + } + for (size_t i = 0; i < fs.size(); ++i) fs[i].wait(); +} + class ListenAndServOp : public framework::OperatorBase { public: ListenAndServOp(const std::string &type, @@ -135,33 +153,28 @@ class ListenAndServOp : public framework::OperatorBase { break; } - // put optimize blocks in the thread pool to start run, the last block - // should be global ops. // NOTE: if is_gpu_place, CUDA kernels are laugched by multiple threads // and this will still work. - std::vector> fs; - // block0 contains only listen_and_serv op, start run from block1. - for (int blkid = 1; blkid < num_blocks - 1; ++blkid) { - fs.push_back( - framework::Async([&executor, &program, &recv_scope, blkid]() { - int run_block = blkid; // thread local - try { - executor.Run(*program, &recv_scope, run_block, false, false); - } catch (std::exception &e) { - LOG(ERROR) << "run sub program error " << e.what(); - } - })); - } - for (int i = 0; i < num_blocks - 2; ++i) fs[i].wait(); - // Run global block at final step, or block1 if there are only 2 blocks - if (num_blocks >= 2) { - try { - executor.Run(*program, &recv_scope, num_blocks - 1, false, false); - } catch (std::exception &e) { - LOG(ERROR) << "run sub program error " << e.what(); + // The optimize blocks which have the same parent ID would run parallel + // TODO(Yancey1989): need to use ParallelExecutor for future + size_t last_parent_blkid = program->Block(1).Parent(); + std::vector parallel_blkids; + parallel_blkids.push_back(1); + double ts = detail::GetTimestamp(); + for (size_t blkid = 2; blkid < num_blocks; ++blkid) { + if (program->Block(blkid).Parent() != last_parent_blkid) { + for (size_t idx : parallel_blkids) VLOG(3) << idx; + ParallelExecuteBlocks(parallel_blkids, &executor, program, + &recv_scope); + parallel_blkids.clear(); + last_parent_blkid = program->Block(blkid).Parent(); } + parallel_blkids.push_back(blkid); } + ParallelExecuteBlocks(parallel_blkids, &executor, program, &recv_scope); + + VLOG(2) << "run all blocks spent (ms) " << detail::GetTimestamp() - ts; // Reset the received sparse variables, the sum operator would not // sum the input sparse variables which rows is empty at the next @@ -176,10 +189,6 @@ class ListenAndServOp : public framework::OperatorBase { rpc_service_->WaitClientGet(fan_in); sparse_vars.clear(); } // while(true) - - // for (int i = 0; i < num_blocks; ++i) { - // delete blk_ctx_list[i]; - // } } protected: diff --git a/paddle/fluid/operators/lrn_op.cc b/paddle/fluid/operators/lrn_op.cc index b36b5c3a339bd7e534bcc3eb7a2efef313cb2a5d..cb1568398125bbb57da974096da527200c1e0975 100644 --- a/paddle/fluid/operators/lrn_op.cc +++ b/paddle/fluid/operators/lrn_op.cc @@ -214,7 +214,10 @@ class LRNOpMaker : public framework::OpProtoAndCheckerMaker { "Defaults to \"NHWC\". Specify the data format of the output data, " "the input will be transformed automatically. ") .SetDefault("AnyLayout"); - AddAttr("is_test", "").SetDefault(false); + AddAttr("is_test", + "Turns on memory optimization that optimizes away " + "unnecessary memory allocations. Used by MKLDNN.") + .SetDefault(false); AddComment(R"DOC( Local Response Normalization Operator. diff --git a/paddle/fluid/operators/lrn_op.h b/paddle/fluid/operators/lrn_op.h index 95796f7eecd2bcd61aab7944f557ca568b03e027..0fd3175e8579df9e61368cc151a94fa45e433884 100644 --- a/paddle/fluid/operators/lrn_op.h +++ b/paddle/fluid/operators/lrn_op.h @@ -121,6 +121,10 @@ class LRNGradKernel : public framework::OpKernel { T alpha = ctx.Attr("alpha"); T beta = ctx.Attr("beta"); + PADDLE_ENFORCE( + !ctx.Attr("is_test"), + "is_test attribute should be set to False in training phase."); + LRNGradFunctor f; f(ctx, x, out, mid, x_g, out_g, N, C, H, W, n, alpha, beta); } diff --git a/paddle/fluid/operators/math/concat.h b/paddle/fluid/operators/math/concat.h index 22147d79e4b1eeee76f7445dd963bf5062049a34..c0e983e4aa7abbdd87649f5a3147d2a464993bce 100644 --- a/paddle/fluid/operators/math/concat.h +++ b/paddle/fluid/operators/math/concat.h @@ -13,6 +13,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #pragma once +#include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/tensor.h" namespace paddle { diff --git a/paddle/fluid/operators/math/sequence_pooling.cc b/paddle/fluid/operators/math/sequence_pooling.cc index f7a6f2bdf4e3b7896df39acfa51fa20577b20f3b..5ae42ab973c81d3794fbbbe088e37ab02168c8dc 100644 --- a/paddle/fluid/operators/math/sequence_pooling.cc +++ b/paddle/fluid/operators/math/sequence_pooling.cc @@ -19,8 +19,17 @@ namespace paddle { namespace operators { namespace math { +using Tensor = framework::Tensor; +using LoDTensor = framework::LoDTensor; +template +using EigenVector = framework::EigenVector; +template +using EigenMatrix = framework::EigenMatrix; + template -class MaxSeqPoolFunctor { +class MaxSeqPoolFunctor { public: void operator()(const platform::CPUDeviceContext& context, const framework::LoDTensor& input, framework::Tensor* output, @@ -60,7 +69,7 @@ class MaxSeqPoolFunctor { }; template -class MaxSeqPoolGradFunctor { +class MaxSeqPoolGradFunctor { public: void operator()(const platform::CPUDeviceContext& context, const framework::Tensor& out_grad, @@ -93,10 +102,101 @@ class MaxSeqPoolGradFunctor { } }; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolGradFunctor; -template class MaxSeqPoolGradFunctor; +template +class SequencePoolFunctor { + public: + /* max pool has index output */ + void operator()(const platform::CPUDeviceContext& context, + const std::string pooltype, const framework::LoDTensor& input, + framework::Tensor* output, + framework::Tensor* index = nullptr) { + if (pooltype == "MAX") { + math::MaxSeqPoolFunctor max_pool; + max_pool(context, input, output, index); + return; + } + auto lod = input.lod()[0]; + auto& place = *context.eigen_device(); + for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { + Tensor in_t = + input.Slice(static_cast(lod[i]), static_cast(lod[i + 1])); + Tensor out_t = output->Slice(i, i + 1); + int64_t h = static_cast(lod[i + 1] - lod[i]); + int64_t w = input.numel() / input.dims()[0]; + auto in_e = EigenMatrix::From(in_t, framework::make_ddim({h, w})); + auto out_e = EigenVector::Flatten(out_t); + if (pooltype == "AVERAGE") { + out_e.device(place) = in_e.mean(Eigen::array({{0}})); + } else if (pooltype == "SUM") { + out_e.device(place) = in_e.sum(Eigen::array({{0}})); + } else if (pooltype == "SQRT") { + out_e.device(place) = in_e.sum(Eigen::array({{0}})) / + std::sqrt(static_cast(h)); + } else if (pooltype == "LAST") { + out_e.device(place) = in_e.chip(h - 1, 0); + } else if (pooltype == "FIRST") { + out_e.device(place) = in_e.chip(0, 0); + } else { + PADDLE_THROW("unsupported pooling pooltype"); + } + } + } +}; + +template +class SequencePoolGradFunctor { + public: + void operator()(const platform::CPUDeviceContext& context, + const std::string pooltype, const framework::Tensor& out_grad, + framework::LoDTensor* in_grad, + /* max pool has index */ + const framework::Tensor* index = nullptr) { + if (pooltype == "MAX") { + math::MaxSeqPoolGradFunctor max_pool_grad; + max_pool_grad(context, out_grad, *index, in_grad); + return; + } + + if (pooltype == "LAST" || pooltype == "FIRST") { + // set X@Grad be zero at first when pooltype is LAST/FIRST + math::SetConstant functor; + functor(context, in_grad, 0); + } + auto lod = in_grad->lod()[0]; + auto& place = *context.eigen_device(); + for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { + auto in_g_t = in_grad->Slice(static_cast(lod[i]), + static_cast(lod[i + 1])); + auto out_g_t = out_grad.Slice(i, i + 1); + int64_t h = static_cast(lod[i + 1] - lod[i]); + int64_t w = in_grad->numel() / in_grad->dims()[0]; + auto in_g_e = EigenMatrix::From(in_g_t, {h, w}); + auto out_g_e = EigenMatrix::From(out_g_t, {1, w}); + auto out_g_e_v = EigenVector::Flatten(out_g_t); + Eigen::DSizes bcast(h, 1); + + if (pooltype == "AVERAGE") { + in_g_e.device(place) = (out_g_e / static_cast(h)).broadcast(bcast); + } else if (pooltype == "SUM") { + in_g_e.device(place) = (out_g_e).broadcast(bcast); + } else if (pooltype == "SQRT") { + in_g_e.device(place) = + (out_g_e / std::sqrt(static_cast(h))).broadcast(bcast); + } else if (pooltype == "LAST") { + in_g_e.chip(h - 1, 0).device(place) = out_g_e_v; + } else if (pooltype == "FIRST") { + in_g_e.chip(0, 0).device(place) = out_g_e_v; + } else { + PADDLE_THROW("unsupported pooling pooltype"); + } + } + } +}; + +template class SequencePoolFunctor; +template class SequencePoolFunctor; +template class SequencePoolGradFunctor; +template class SequencePoolGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/fluid/operators/math/sequence_pooling.cu b/paddle/fluid/operators/math/sequence_pooling.cu index d61407c020142f046f41f71a56702fd6106df628..1935364da37e9a9881651455d2da4ecef1b1e266 100644 --- a/paddle/fluid/operators/math/sequence_pooling.cu +++ b/paddle/fluid/operators/math/sequence_pooling.cu @@ -14,6 +14,7 @@ limitations under the License. */ #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/sequence_pooling.h" +#include "paddle/fluid/platform/cuda_helper.h" namespace paddle { namespace operators { @@ -22,113 +23,331 @@ namespace math { #define FLT_MAX __FLT_MAX__ template -__global__ void KeMaxSequencePool(const T* input, const size_t* starts, - T* output, int* index, int64_t num_seq, - int64_t dim) { - int dim_idx = threadIdx.x; - int seq_id = blockIdx.x; - if (seq_id >= num_seq) return; - size_t start = starts[seq_id]; - size_t end = starts[seq_id + 1]; - - for (int64_t i = dim_idx; i < dim; i += blockDim.x) { - T max_val = static_cast(-FLT_MAX); - int max_id = -1; - for (size_t step_id = start; step_id < end; step_id++) { - if (max_val < input[step_id * dim + i]) { - max_val = input[step_id * dim + i]; - max_id = step_id; +struct MaxPoolFunctor { + HOSTDEVICE void operator()(const T* input, const size_t start, + const size_t end, const size_t item_dim, T* output, + int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + T max_val = static_cast(-FLT_MAX); + int max_index = -1; + for (int i = start; i < end; ++i) { + if (max_val < input[item_dim * i + tid]) { + max_val = input[item_dim * i + tid]; + max_index = i; + } } + output[tid] = max_val; + index[tid] = max_index; } - output[seq_id * dim + i] = max_val; - index[seq_id * dim + i] = max_id; } -} +}; template -class MaxSeqPoolFunctor { - public: - void operator()(const platform::CUDADeviceContext& context, - const framework::LoDTensor& input, framework::Tensor* output, - framework::Tensor* index) { - auto in_dims = input.dims(); - auto out_dims = output->dims(); - auto idx_dims = index->dims(); - PADDLE_ENFORCE_GT(in_dims.size(), static_cast(1)); - PADDLE_ENFORCE_GT(out_dims.size(), 1); - for (int64_t i = 1; i < in_dims.size(); ++i) { - PADDLE_ENFORCE_EQ(in_dims[i], out_dims[i]); +struct AvgPoolFunctor { + HOSTDEVICE void operator()(const T* input, const size_t start, + const size_t end, const size_t item_dim, T* output, + int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + T val = static_cast(0); + for (int i = start; i < end; ++i) { + val += input[item_dim * i + tid]; + } + // end, start is lod, so end - start != 0 + output[tid] = val / static_cast(end - start); } - PADDLE_ENFORCE_EQ(idx_dims, out_dims); + } +}; - auto starts = input.lod()[0]; - const T* in_data = input.data(); - T* out_data = output->data(); - int* max_index = index->data(); +template +struct SumPoolFunctor { + HOSTDEVICE void operator()(const T* input, const size_t start, + const size_t end, const size_t item_dim, T* output, + int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + T val = static_cast(0); + for (int i = start; i < end; ++i) { + val += input[item_dim * i + tid]; + } + output[tid] = val; + } + } +}; - int64_t num_seq = out_dims[0]; - int64_t dim = output->numel() / num_seq; +template +struct SqrtPoolFunctor { + HOSTDEVICE void operator()(const T* input, const size_t start, + const size_t end, const size_t item_dim, T* output, + int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + T val = static_cast(0); + for (int i = start; i < end; ++i) { + val += input[item_dim * i + tid]; + } + // end, start is lod, so end - start != 0 + output[tid] = val / sqrt(end - start); + } + } +}; - dim3 threads(256, 1); - dim3 grid(num_seq, 1); - auto stream = context.stream(); - KeMaxSequencePool<<>>( - in_data, starts.CUDAData(context.GetPlace()), out_data, max_index, - num_seq, dim); +template +struct LastPoolFunctor { + HOSTDEVICE void operator()(const T* input, const size_t start, + const size_t end, const size_t item_dim, T* output, + int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + output[tid] = input[item_dim * (end - 1) + tid]; + } } }; template -__global__ void KeMaxSequencePoolGrad(const T* out_grad, const int* max_index, - T* in_grad, int64_t num_seq, - int64_t dim) { - int idx = threadIdx.x + blockIdx.x * blockDim.x; - int col_idx = idx % dim; - if (idx < num_seq * dim) { - int step_id = max_index[idx]; - in_grad[step_id * dim + col_idx] = out_grad[idx]; +struct FirstPoolFunctor { + HOSTDEVICE void operator()(const T* input, const size_t start, + const size_t end, const size_t item_dim, T* output, + int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + output[tid] = input[item_dim * start + tid]; + } } +}; + +template +__global__ void sequence_pool_kernel(Range_OP op, const T* input, + const size_t* lod, const size_t lod_size, + const size_t item_dim, T* output, + int* index) { + int bid = blockIdx.x; + if (bid >= lod_size - 1) return; + size_t start = lod[bid]; + size_t end = lod[bid + 1]; + int* index_offset = nullptr; + if (index != nullptr) { + index_offset = &index[bid * item_dim]; + } + op(input, start, end, item_dim, &output[bid * item_dim], index_offset); } template -class MaxSeqPoolGradFunctor { +class SequencePoolFunctor { public: void operator()(const platform::CUDADeviceContext& context, - const framework::Tensor& out_grad, - const framework::Tensor& index, - framework::LoDTensor* in_grad) { - auto og_dims = out_grad.dims(); - auto idx_dims = index.dims(); - auto ig_dims = in_grad->dims(); - PADDLE_ENFORCE_GT(og_dims.size(), static_cast(1)); - PADDLE_ENFORCE_GT(ig_dims.size(), static_cast(1)); - for (int64_t i = 1; i < og_dims.size(); ++i) { - PADDLE_ENFORCE_EQ(og_dims[i], ig_dims[i]); + const std::string pooltype, const framework::LoDTensor& input, + framework::Tensor* output, + framework::Tensor* index = nullptr) { + auto lod = input.lod()[0]; + const size_t item_dim = output->numel() / output->dims()[0]; + dim3 threads(1024, 1); + dim3 grid(lod.size(), 1); + if (pooltype == "MAX") { + sequence_pool_kernel< + T, MaxPoolFunctor><<>>( + MaxPoolFunctor(), input.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + output->mutable_data(context.GetPlace()), index->data()); + } else if (pooltype == "AVERAGE") { + sequence_pool_kernel< + T, AvgPoolFunctor><<>>( + AvgPoolFunctor(), input.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + output->mutable_data(context.GetPlace()), nullptr); + } else if (pooltype == "SUM") { + sequence_pool_kernel< + T, SumPoolFunctor><<>>( + SumPoolFunctor(), input.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + output->mutable_data(context.GetPlace()), nullptr); + } else if (pooltype == "SQRT") { + sequence_pool_kernel< + T, SqrtPoolFunctor><<>>( + SqrtPoolFunctor(), input.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + output->mutable_data(context.GetPlace()), nullptr); + } else if (pooltype == "LAST") { + sequence_pool_kernel< + T, LastPoolFunctor><<>>( + LastPoolFunctor(), input.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + output->mutable_data(context.GetPlace()), nullptr); + } else if (pooltype == "FIRST") { + sequence_pool_kernel< + T, FirstPoolFunctor><<>>( + FirstPoolFunctor(), input.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + output->mutable_data(context.GetPlace()), nullptr); + } else { + PADDLE_THROW("unsupported pooling pooltype"); } - PADDLE_ENFORCE_EQ(idx_dims, og_dims); + } +}; - const T* og_data = out_grad.data(); - const int* max_index = index.data(); - T* ig_data = in_grad->data(); +template +struct MaxPoolGradFunctor { + HOSTDEVICE void operator()(const T* out_grad, const size_t start, + const size_t end, const size_t item_dim, + T* in_grad, const int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + for (int i = start; i < end; ++i) { + if (i == index[tid]) { + in_grad[item_dim * i + tid] = out_grad[tid]; + } else { + in_grad[item_dim * i + tid] = static_cast(0); + } + } + } + } +}; - SetConstant set_zero; - set_zero(context, in_grad, static_cast(0.0)); - int64_t num_seq = og_dims[0]; - int64_t dim = out_grad.numel() / num_seq; +template +struct AvgPoolGradFunctor { + HOSTDEVICE void operator()(const T* out_grad, const size_t start, + const size_t end, const size_t item_dim, + T* in_grad, const int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + for (int i = start; i < end; ++i) { + in_grad[item_dim * i + tid] = out_grad[tid] / (end - start); + } + } + } +}; - unsigned int blocks = (num_seq * dim + 128 - 1) / 128; - dim3 threads(128, 1); - dim3 grid(blocks, 1); - auto stream = context.stream(); - KeMaxSequencePoolGrad<<>>( - og_data, max_index, ig_data, num_seq, dim); +template +struct SumPoolGradFunctor { + HOSTDEVICE void operator()(const T* out_grad, const size_t start, + const size_t end, const size_t item_dim, + T* in_grad, const int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + for (int i = start; i < end; ++i) { + in_grad[item_dim * i + tid] = out_grad[tid]; + } + } + } +}; + +template +struct SqrtPoolGradFunctor { + HOSTDEVICE void operator()(const T* out_grad, const size_t start, + const size_t end, const size_t item_dim, + T* in_grad, const int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + for (int i = start; i < end; ++i) { + in_grad[item_dim * i + tid] = + out_grad[tid] / (sqrt(static_cast(end - start))); + } + } + } +}; + +template +struct LastPoolGradFunctor { + HOSTDEVICE void operator()(const T* out_grad, const size_t start, + const size_t end, const size_t item_dim, + T* in_grad, const int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + for (int i = start; i < end; ++i) { + if (i == end - 1) { + in_grad[item_dim * i + tid] = out_grad[tid]; + } else { + in_grad[item_dim * i + tid] = static_cast(0); + } + } + } + } +}; + +template +struct FirstPoolGradFunctor { + HOSTDEVICE void operator()(const T* out_grad, const size_t start, + const size_t end, const size_t item_dim, + T* in_grad, const int* index) { + for (int tid = threadIdx.x; tid < item_dim; tid += blockDim.x) { + for (int i = start; i < end; ++i) { + if (i == start) { + in_grad[item_dim * i + tid] = out_grad[tid]; + } else { + in_grad[item_dim * i + tid] = static_cast(0); + } + } + } + } +}; + +template +__global__ void sequence_pool_grad_kernel(Range_OP op, const T* out_grad, + const size_t* lod, + const size_t lod_size, + const size_t item_dim, T* in_grad, + const int* index) { + int bid = blockIdx.x; + if (bid >= lod_size - 1) return; + size_t start = lod[bid]; + size_t end = lod[bid + 1]; + const int* index_offset = nullptr; + if (index != nullptr) { + index_offset = &index[bid * item_dim]; + } + op(&out_grad[bid * item_dim], start, end, item_dim, in_grad, index_offset); +} + +template +class SequencePoolGradFunctor { + public: + void operator()(const platform::CUDADeviceContext& context, + const std::string pooltype, const framework::Tensor& out_grad, + framework::LoDTensor* in_grad, + /* max pool has index */ + const framework::Tensor* index = nullptr) { + auto lod = in_grad->lod()[0]; + const size_t item_dim = in_grad->numel() / in_grad->dims()[0]; + dim3 threads(1024, 1); + dim3 grid(lod.size(), 1); + if (pooltype == "MAX") { + sequence_pool_grad_kernel< + T, MaxPoolGradFunctor><<>>( + MaxPoolGradFunctor(), out_grad.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + in_grad->mutable_data(context.GetPlace()), index->data()); + } else if (pooltype == "AVERAGE") { + sequence_pool_grad_kernel< + T, AvgPoolGradFunctor><<>>( + AvgPoolGradFunctor(), out_grad.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + in_grad->mutable_data(context.GetPlace()), nullptr); + } else if (pooltype == "SUM") { + sequence_pool_grad_kernel< + T, SumPoolGradFunctor><<>>( + SumPoolGradFunctor(), out_grad.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + in_grad->mutable_data(context.GetPlace()), nullptr); + } else if (pooltype == "SQRT") { + sequence_pool_grad_kernel< + T, SqrtPoolGradFunctor><<>>( + SqrtPoolGradFunctor(), out_grad.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + in_grad->mutable_data(context.GetPlace()), nullptr); + } else if (pooltype == "LAST") { + sequence_pool_grad_kernel< + T, LastPoolGradFunctor><<>>( + LastPoolGradFunctor(), out_grad.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + in_grad->mutable_data(context.GetPlace()), nullptr); + } else if (pooltype == "FIRST") { + sequence_pool_grad_kernel< + T, FirstPoolGradFunctor><<>>( + FirstPoolGradFunctor(), out_grad.data(), + lod.CUDAData(context.GetPlace()), lod.size(), item_dim, + in_grad->mutable_data(context.GetPlace()), nullptr); + + } else { + PADDLE_THROW("unsupported pooling pooltype"); + } } }; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolFunctor; -template class MaxSeqPoolGradFunctor; -template class MaxSeqPoolGradFunctor; +// sequence pooling +template class SequencePoolFunctor; +template class SequencePoolFunctor; +template class SequencePoolGradFunctor; +template class SequencePoolGradFunctor; } // namespace math } // namespace operators diff --git a/paddle/fluid/operators/math/sequence_pooling.h b/paddle/fluid/operators/math/sequence_pooling.h index ecb76884f670df1aee64ed65c3bb0cf09c5beaff..38e780222955644c14e5bbbf16dee720c7758f5c 100644 --- a/paddle/fluid/operators/math/sequence_pooling.h +++ b/paddle/fluid/operators/math/sequence_pooling.h @@ -21,23 +21,23 @@ namespace paddle { namespace operators { namespace math { -#define FLT_MAX __FLT_MAX__ - template -class MaxSeqPoolFunctor { +class SequencePoolFunctor { public: - void operator()(const DeviceContext& context, + /* max pool has index output */ + void operator()(const DeviceContext& context, const std::string pooltype, const framework::LoDTensor& input, framework::Tensor* output, - framework::Tensor* index); + framework::Tensor* index = nullptr); }; -template -class MaxSeqPoolGradFunctor { +template +class SequencePoolGradFunctor { public: - void operator()(const DeviceContext& context, + void operator()(const DeviceContext& context, const std::string pooltype, const framework::Tensor& out_grad, - const framework::Tensor& index, - framework::LoDTensor* in_grad); + framework::LoDTensor* in_grad, + /* max pool has index */ + const framework::Tensor* index = nullptr); }; } // namespace math diff --git a/paddle/fluid/operators/prefetch_op.cc b/paddle/fluid/operators/prefetch_op.cc new file mode 100644 index 0000000000000000000000000000000000000000..09ab7da663b5ef5f099b9f65b0df661ceea0d9e2 --- /dev/null +++ b/paddle/fluid/operators/prefetch_op.cc @@ -0,0 +1,115 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +#include +#include + +#include "paddle/fluid/framework/data_type.h" +#include "paddle/fluid/framework/lod_tensor.h" +#include "paddle/fluid/framework/op_registry.h" +#include "paddle/fluid/operators/detail/grpc_client.h" +#include "paddle/fluid/operators/send_recv_util.h" + +namespace paddle { +namespace operators { + +class PrefetchOp : public framework::OperatorBase { + public: + PrefetchOp(const std::string& type, const framework::VariableNameMap& inputs, + const framework::VariableNameMap& outputs, + const framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + + void RunImpl(const framework::Scope& scope, + const platform::Place& place) const override { + auto ins = Inputs("X"); + auto outs = Outputs("Out"); + + std::vector epmap = Attr>("epmap"); + + platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); + auto& ctx = *pool.Get(place); + + auto client_var_name = Output("RPCClient"); + PADDLE_ENFORCE_NOT_NULL(scope.FindVar(client_var_name), + "Can not find variable '%s' in the scope.", + client_var_name); + auto* client_var = scope.FindVar(client_var_name); + detail::RPCClient* rpc_client = client_var->GetMutable(); + + for (size_t i = 0; i < ins.size(); i++) { + if (NeedSend(scope, ins[i])) { + VLOG(3) << "sending " << ins[i] << " to " << epmap[i] << "to get " + << outs[i] << "back"; + rpc_client->AsyncPrefetchVariable(epmap[i], ctx, scope, ins[i], + outs[i]); + } else { + VLOG(3) << "don't send no-initialied variable: " << ins[i]; + } + } + PADDLE_ENFORCE(rpc_client->Wait()); + } +}; + +class PrefetchOpMaker : public framework::OpProtoAndCheckerMaker { + public: + PrefetchOpMaker(OpProto* proto, OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) { + AddInput("X", "(LoDTensor) Input Id variables to be sent").AsDuplicable(); + AddOutput("RPCClient", + "(RPCClient) The RPC client object which will be" + "initialized at most once."); + AddOutput("Out", + "(SelectedRows) result " + "to be fetched from parameter server") + .AsDuplicable(); + AddAttr>( + "epmap", + "(string vector, default 127.0.0.1:6164)" + "Server endpoints in the order of input variables for mapping") + .SetDefault({"127.0.0.1:6164"}); + AddComment(R"DOC( +Prefetch operator + +This operator will send Ids variables to listen_and_serve op at +the parameter server and fetch result back. +)DOC"); + } +}; + +class PrefetchOpVarTypeInference : public framework::VarTypeInference { + public: + void operator()(const framework::OpDesc& op_desc, + framework::BlockDesc* block) const override { + auto out_var_name = op_desc.Output("RPCClient").front(); + auto& out_var = block->FindRecursiveOrCreateVar(out_var_name); + auto var_type = framework::proto::VarType::RAW; + out_var.SetType(var_type); + } +}; + +class PrefetchOpShapeInference : public framework::InferShapeBase { + public: + void operator()(framework::InferShapeContext* ctx) const override {} +}; + +} // namespace operators +} // namespace paddle + +namespace ops = paddle::operators; + +REGISTER_OPERATOR(prefetch, ops::PrefetchOp, + paddle::framework::EmptyGradOpMaker, ops::PrefetchOpMaker, + ops::PrefetchOpVarTypeInference, + ops::PrefetchOpShapeInference); diff --git a/paddle/fluid/operators/read_op.cc b/paddle/fluid/operators/read_op.cc index 2a5605e0d378a184ae132e657b2872279784855d..2925b8a85da1b0d19672124e49c8fd22c8b4e6bf 100644 --- a/paddle/fluid/operators/read_op.cc +++ b/paddle/fluid/operators/read_op.cc @@ -14,6 +14,7 @@ #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/reader.h" +#include "paddle/fluid/operators/detail/safe_ref.h" namespace paddle { namespace operators { @@ -59,7 +60,9 @@ class ReadOp : public framework::OperatorBase { void RunImpl(const framework::Scope& scope, const platform::Place& dev_place) const override { framework::ReaderHolder* reader = - scope.FindVar(Input("Reader"))->GetMutable(); + detail::Ref(scope.FindVar(Input("Reader")), + "Cannot find reader variable %s", Input("Reader")) + .GetMutable(); std::vector out_arg_names = Outputs("Out"); std::vector ins; reader->ReadNext(&ins); diff --git a/paddle/fluid/operators/reader/create_multi_pass_reader_op.cc b/paddle/fluid/operators/reader/create_multi_pass_reader_op.cc index 4d4e9fb909eafea5328491a4097276577f28a5ba..47d9989bc8748840ec2d39587fde24355d90b6b4 100644 --- a/paddle/fluid/operators/reader/create_multi_pass_reader_op.cc +++ b/paddle/fluid/operators/reader/create_multi_pass_reader_op.cc @@ -81,10 +81,10 @@ class CreateMultiPassReaderOpMaker : public DecoratedReaderMakerBase { This operator creates a multi-pass reader. A multi-pass reader is used to yield data for several pass training continuously. - It takes the the number of pass to run as one of its attributes + It takes the number of passes to run as one of its attributes ('pass_num'), and maintains a pass counter to record how many - passes it has completed. When the underlying reader reach the EOF, - the multi-pass reader checks whether it has completed training + passes it has completed. When the underlying reader reaches the + EOF, the multi-pass reader checks whether it has completed training of the given number of pass. If not, the underlying reader will be re-initialized and starts a new pass automatically. )DOC"); diff --git a/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc b/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc index c4aa29c7206dbd3fe6a99b2a6c5ac6f083621944..adaa0b9e5f1ffcfbf3e9cd8fd060153575f270a6 100644 --- a/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc +++ b/paddle/fluid/operators/reader/create_recordio_file_reader_op.cc @@ -12,12 +12,15 @@ // See the License for the specific language governing permissions and // limitations under the License. +#include +#include #include "paddle/fluid/operators/reader/reader_op_registry.h" #include "paddle/fluid/recordio/scanner.h" namespace paddle { namespace operators { namespace reader { +template class RecordIOFileReader : public framework::FileReader { public: explicit RecordIOFileReader(const std::string& filename, @@ -25,7 +28,12 @@ class RecordIOFileReader : public framework::FileReader { : FileReader(dims), scanner_(filename), dev_ctx_(*platform::DeviceContextPool::Instance().Get( - platform::CPUPlace())) {} + platform::CPUPlace())) { + if (ThreadSafe) { + mutex_.reset(new std::mutex()); + } + LOG(INFO) << "Creating file reader" << filename; + } bool HasNext() const override { return scanner_.HasNext(); } @@ -33,10 +41,16 @@ class RecordIOFileReader : public framework::FileReader { protected: void ReadNextImpl(std::vector* out) override { - *out = framework::ReadFromRecordIO(scanner_, dev_ctx_); + if (ThreadSafe) { + std::lock_guard guard(*mutex_); + *out = framework::ReadFromRecordIO(scanner_, dev_ctx_); + } else { + *out = framework::ReadFromRecordIO(scanner_, dev_ctx_); + } } private: + std::unique_ptr mutex_; recordio::Scanner scanner_; const platform::DeviceContext& dev_ctx_; }; @@ -59,8 +73,9 @@ class CreateRecordIOReaderOp : public framework::OperatorBase { auto* out = scope.FindVar(Output("Out")) ->template GetMutable(); - out->Reset( - new RecordIOFileReader(filename, RestoreShapes(shape_concat, ranks))); + + out->Reset(new RecordIOFileReader( + filename, RestoreShapes(shape_concat, ranks))); } }; @@ -87,4 +102,4 @@ REGISTER_FILE_READER_OPERATOR(create_recordio_file_reader, reader::CreateRecordIOReaderOp, reader::CreateRecordIOReaderOpMaker); -REGISTER_FILE_READER(recordio, reader::RecordIOFileReader); +REGISTER_FILE_READER(recordio, reader::RecordIOFileReader); diff --git a/paddle/fluid/operators/send_op.cc b/paddle/fluid/operators/send_op.cc index fdf3c06ef0a7c2daa7c484375065ac2110e07478..d47f66de2161dce7ed162db4c2e23859e19596cb 100644 --- a/paddle/fluid/operators/send_op.cc +++ b/paddle/fluid/operators/send_op.cc @@ -12,35 +12,19 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include #include #include "paddle/fluid/framework/data_type.h" #include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" - -#include #include "paddle/fluid/operators/detail/grpc_client.h" +#include "paddle/fluid/operators/send_recv_util.h" #include "paddle/fluid/platform/profiler.h" namespace paddle { namespace operators { -static bool NeedSend(const framework::Scope& scope, - const std::string& varname) { - auto* var = scope.FindVar(varname); - PADDLE_ENFORCE_NOT_NULL(var, "Can not find variable '%s' in the send side.", - varname); - if (var->IsType()) { - return var->Get().IsInitialized(); - } else if (var->IsType()) { - return var->Get().rows().size() > 0UL; - } else { - PADDLE_THROW( - "Variable type in send side should be in " - "[LodTensor, SelectedRows]"); - } - return false; -} class SendOp : public framework::OperatorBase { public: @@ -72,7 +56,7 @@ class SendOp : public framework::OperatorBase { for (size_t i = 0; i < ins.size(); i++) { if (NeedSend(scope, ins[i])) { - VLOG(2) << "sending " << ins[i] << " to " << epmap[i]; + VLOG(3) << "sending " << ins[i] << " to " << epmap[i]; rpc_client->AsyncSendVariable(epmap[i], ctx, scope, ins[i]); } else { VLOG(3) << "don't send no-initialied variable: " << ins[i]; @@ -81,7 +65,7 @@ class SendOp : public framework::OperatorBase { PADDLE_ENFORCE(rpc_client->Wait()); for (auto& ep : endpoints) { - VLOG(2) << "batch barrier, ep: " << ep; + VLOG(3) << "batch barrier, ep: " << ep; rpc_client->AsyncSendBatchBarrier(ep); } PADDLE_ENFORCE(rpc_client->Wait()); diff --git a/paddle/fluid/operators/send_recv_util.h b/paddle/fluid/operators/send_recv_util.h new file mode 100644 index 0000000000000000000000000000000000000000..196f56f6340a75b599b8dd15957dfe6835f9bf59 --- /dev/null +++ b/paddle/fluid/operators/send_recv_util.h @@ -0,0 +1,36 @@ +/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. + +Licensed under the Apache License, Version 2.0 (the "License"); +you may not use this file except in compliance with the License. +You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + +Unless required by applicable law or agreed to in writing, software +distributed under the License is distributed on an "AS IS" BASIS, +WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +See the License for the specific language governing permissions and +limitations under the License. */ + +namespace paddle { +namespace operators { + +inline bool NeedSend(const framework::Scope& scope, + const std::string& varname) { + auto* var = scope.FindVar(varname); + PADDLE_ENFORCE_NOT_NULL(var, "Can not find variable '%s' in the send side.", + varname); + if (var->IsType()) { + return var->Get().IsInitialized(); + } else if (var->IsType()) { + return var->Get().rows().size() > 0UL; + } else { + PADDLE_THROW( + "Variable type in send side should be in " + "[LodTensor, SelectedRows]"); + } + return false; +} + +} // namespace operators +} // namespace paddle diff --git a/paddle/fluid/operators/send_vars_op.cc b/paddle/fluid/operators/send_vars_op.cc index 523e9e27808e428acb7900fe90a29de80f316bfb..2cbd9e2394800dc3b9c5be1163d16bbec435c533 100644 --- a/paddle/fluid/operators/send_vars_op.cc +++ b/paddle/fluid/operators/send_vars_op.cc @@ -12,34 +12,17 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ +#include #include #include "paddle/fluid/framework/data_type.h" -#include "paddle/fluid/framework/framework.pb.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" - -#include #include "paddle/fluid/operators/detail/grpc_client.h" +#include "paddle/fluid/operators/send_recv_util.h" namespace paddle { namespace operators { -static bool NeedSend(const framework::Scope& scope, - const std::string& varname) { - auto* var = scope.FindVar(varname); - PADDLE_ENFORCE_NOT_NULL(var, "Can not find variable '%s' in the send side.", - varname); - if (var->IsType()) { - return var->Get().IsInitialized(); - } else if (var->IsType()) { - return var->Get().rows().size() > 0UL; - } else { - PADDLE_THROW( - "Variable type in send side should be in " - "[LodTensor, SelectedRows]"); - } - return false; -} class SendVarsOp : public framework::OperatorBase { public: @@ -95,7 +78,7 @@ Send operator This operator will send variables to listen_and_serve op at the parameter server. )DOC"); - AddAttr("ync_send", + AddAttr("sync_send", "(int, default 0)" "sync send or async send.") .SetDefault(0); diff --git a/paddle/fluid/operators/sequence_pool_op.h b/paddle/fluid/operators/sequence_pool_op.h index 8706ff14aa20714e77d5625fc1f6287ee9b4a8a6..c58d677c92b7a20eb54dc5f9a447566e91bdc3d4 100644 --- a/paddle/fluid/operators/sequence_pool_op.h +++ b/paddle/fluid/operators/sequence_pool_op.h @@ -23,12 +23,6 @@ namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; -template -using EigenVector = framework::EigenVector; -template -using EigenMatrix = framework::EigenMatrix; template class SequencePoolKernel : public framework::OpKernel { @@ -37,11 +31,13 @@ class SequencePoolKernel : public framework::OpKernel { auto* in = context.Input("X"); auto* out = context.Output("Out"); std::string pooltype = context.Attr("pooltype"); + Tensor* index = nullptr; + if (pooltype == "MAX") { + index = context.Output("MaxIndex"); + } auto dims = in->dims(); auto lod = in->lod(); - int64_t w = in->numel() / dims[0]; - // InferShape by lod PADDLE_ENFORCE_EQ(lod.size(), 1UL, "Only support one level sequence now."); PADDLE_ENFORCE_GE( @@ -50,45 +46,14 @@ class SequencePoolKernel : public framework::OpKernel { "The first dimension of Input(X) must be large than batch size."); dims[0] = lod[0].size() - 1; out->Resize({dims}); - - auto lod_level_0 = lod[0]; - out->mutable_data(context.GetPlace()); - auto& dev_ctx = context.template device_context(); if (pooltype == "MAX") { - math::MaxSeqPoolFunctor max_pool; - auto* index = context.Output("MaxIndex"); index->Resize({dims}); index->mutable_data(context.GetPlace()); - max_pool(dev_ctx, *in, out, index); - return; - } - - auto& place = - *context.template device_context().eigen_device(); - for (int i = 0; i < static_cast(lod_level_0.size()) - 1; ++i) { - Tensor in_t = in->Slice(static_cast(lod_level_0[i]), - static_cast(lod_level_0[i + 1])); - Tensor out_t = out->Slice(i, i + 1); - int64_t h = static_cast(lod_level_0[i + 1] - lod_level_0[i]); - auto in_e = EigenMatrix::From(in_t, framework::make_ddim({h, w})); - auto out_e = EigenVector::Flatten(out_t); - - if (pooltype == "AVERAGE") { - out_e.device(place) = in_e.mean(Eigen::array({{0}})); - } else if (pooltype == "SUM") { - out_e.device(place) = in_e.sum(Eigen::array({{0}})); - } else if (pooltype == "SQRT") { - out_e.device(place) = in_e.sum(Eigen::array({{0}})) / - std::sqrt(static_cast(h)); - } else if (pooltype == "LAST") { - out_e.device(place) = in_e.chip(h - 1, 0); - } else if (pooltype == "FIRST") { - out_e.device(place) = in_e.chip(0, 0); - } else { - PADDLE_THROW("unsupported pooling pooltype"); - } } + math::SequencePoolFunctor pool; + pool(context.template device_context(), pooltype, *in, out, + index); } }; @@ -96,58 +61,17 @@ template class SequencePoolGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { - auto* in = context.Input("X"); auto* out_g = context.Input(framework::GradVarName("Out")); auto* in_g = context.Output(framework::GradVarName("X")); std::string pooltype = context.Attr("pooltype"); - - auto dims = in->dims(); - auto lod = in->lod()[0]; - int64_t w = in->numel() / dims[0]; - - in_g->mutable_data(context.GetPlace()); - auto& dev_ctx = context.template device_context(); - + const Tensor* index = nullptr; if (pooltype == "MAX") { - math::MaxSeqPoolGradFunctor max_pool_grad; - auto* index = context.Input("MaxIndex"); - max_pool_grad(dev_ctx, *out_g, *index, in_g); - return; - } - - if (pooltype == "LAST" || pooltype == "FIRST") { - // set X@Grad be zero at first when pooltype is LAST/FIRST - math::SetConstant functor; - functor(dev_ctx, in_g, 0); - } - auto& place = - *context.template device_context().eigen_device(); - - for (int i = 0; i < static_cast(lod.size()) - 1; ++i) { - auto in_g_t = - in_g->Slice(static_cast(lod[i]), static_cast(lod[i + 1])); - auto out_g_t = out_g->Slice(i, i + 1); - int64_t h = static_cast(lod[i + 1] - lod[i]); - auto in_g_e = EigenMatrix::From(in_g_t, {h, w}); - auto out_g_e = EigenMatrix::From(out_g_t, {1, w}); - auto out_g_e_v = EigenVector::Flatten(out_g_t); - Eigen::DSizes bcast(h, 1); - - if (pooltype == "AVERAGE") { - in_g_e.device(place) = (out_g_e / static_cast(h)).broadcast(bcast); - } else if (pooltype == "SUM") { - in_g_e.device(place) = (out_g_e).broadcast(bcast); - } else if (pooltype == "SQRT") { - in_g_e.device(place) = - (out_g_e / std::sqrt(static_cast(h))).broadcast(bcast); - } else if (pooltype == "LAST") { - in_g_e.chip(h - 1, 0).device(place) = out_g_e_v; - } else if (pooltype == "FIRST") { - in_g_e.chip(0, 0).device(place) = out_g_e_v; - } else { - PADDLE_THROW("unsupported pooling pooltype"); - } + index = context.Input("MaxIndex"); } + in_g->mutable_data(context.GetPlace()); + math::SequencePoolGradFunctor pool; + pool(context.template device_context(), pooltype, *out_g, + in_g, index); } }; diff --git a/paddle/fluid/platform/nccl_helper.h b/paddle/fluid/platform/nccl_helper.h new file mode 100644 index 0000000000000000000000000000000000000000..29990043206509e4192bfff84832f09ef127d9dd --- /dev/null +++ b/paddle/fluid/platform/nccl_helper.h @@ -0,0 +1,137 @@ +// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include +#include +#include "paddle/fluid/platform/dynload/nccl.h" +#include "paddle/fluid/platform/enforce.h" + +namespace paddle { +namespace platform { + +inline ncclDataType_t ToNCCLDataType(std::type_index type) { + if (type == typeid(float)) { // NOLINT + return ncclFloat; + } else if (type == typeid(double)) { // NOLINT + return ncclDouble; + } else if (type == typeid(int)) { // NOLINT + return ncclInt; + } else { + PADDLE_THROW("Not supported"); + } +} + +class NCCLGroupGuard { + public: + inline NCCLGroupGuard() { + mutex().lock(); + PADDLE_ENFORCE(dynload::ncclGroupStart()); + } + + inline ~NCCLGroupGuard() { + PADDLE_ENFORCE(dynload::ncclGroupEnd()); + mutex().unlock(); + } + + private: + static std::mutex &mutex() { + static std::mutex mtx; + return mtx; + } +}; + +struct NCCLContext { + std::unique_ptr ctx_; + ncclComm_t comm_; + + explicit NCCLContext(int dev_id) + : ctx_(new CUDADeviceContext(CUDAPlace(dev_id))) {} + + cudaStream_t stream() const { return ctx_->stream(); } + + int device_id() const { + return boost::get(ctx_->GetPlace()).device; + } + + static void InitNCCLContext(std::unordered_map &contexts, + const std::vector &places) { + std::vector comms; + std::vector devs; + comms.resize(contexts.size()); + devs.reserve(contexts.size()); + + for (auto &p : places) { + devs.push_back(boost::get(p).device); + } + + PADDLE_ENFORCE(platform::dynload::ncclCommInitAll( + &comms[0], static_cast(contexts.size()), &devs[0])); + + int i = 0; + for (auto &dev_id : devs) { + contexts.at(dev_id).comm_ = comms[i++]; + } + } +}; + +struct NCCLContextMap { + std::unordered_map contexts_; + std::vector order_; + + NCCLContextMap(const std::vector &places) { + order_.reserve(places.size()); + for (auto &p : places) { + int dev_id = boost::get(p).device; + order_.emplace_back(dev_id); + contexts_.emplace(dev_id, NCCLContext(dev_id)); + } + PADDLE_ENFORCE_EQ( + order_.size(), contexts_.size(), + "NCCL Context Map does not support contain two or more same device"); + + std::vector comms; + comms.resize(order_.size()); + + PADDLE_ENFORCE(platform::dynload::ncclCommInitAll( + &comms[0], static_cast(order_.size()), &order_[0])); + + int i = 0; + for (auto &dev_id : order_) { + contexts_.at(dev_id).comm_ = comms[i++]; + } + } + + CUDADeviceContext *DevCtx(int dev_id) const { return at(dev_id).ctx_.get(); } + + CUDADeviceContext *DevCtx(platform::Place p) const { + return DevCtx(boost::get(p).device); + } + + const NCCLContext &at(platform::Place p) const { + return this->at(boost::get(p).device); + } + + const NCCLContext &at(int dev_id) const { return contexts_.at(dev_id); } + + void WaitAll() { + for (auto &p : contexts_) { + p.second.ctx_->Wait(); + } + } +}; + +} // namespace platform +} // namespace paddle diff --git a/paddle/fluid/platform/profiler_test.cc b/paddle/fluid/platform/profiler_test.cc index fc77e0f3213da776e0b05ad5b5da9081665cdf6e..45cc271bb888fc3a07ecc5daea6b549cb88b6d21 100644 --- a/paddle/fluid/platform/profiler_test.cc +++ b/paddle/fluid/platform/profiler_test.cc @@ -13,6 +13,9 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/platform/profiler.h" +#ifdef PADDLE_WITH_CUDA +#include "cuda_runtime.h" +#endif #include "gtest/gtest.h" TEST(Event, CpuElapsedTime) { @@ -157,3 +160,13 @@ TEST(RecordEvent, RecordEvent) { // Will remove parsing-related code from test later DisableProfiler(EventSortingKey::kTotal, "/tmp/profiler"); } + +#ifdef PADDLE_WITH_CUDA +TEST(TMP, stream_wait) { + cudaStream_t stream; + cudaStreamCreate(&stream); + cudaStreamSynchronize(stream); + cudaStreamSynchronize(stream); + cudaStreamSynchronize(stream); +} +#endif diff --git a/paddle/fluid/pybind/CMakeLists.txt b/paddle/fluid/pybind/CMakeLists.txt index fe991033dfc2a6ccc66b0ca5588fe8f808d1eb43..ada69ea4a425f70dc085ad9046bb6b930136803d 100644 --- a/paddle/fluid/pybind/CMakeLists.txt +++ b/paddle/fluid/pybind/CMakeLists.txt @@ -3,11 +3,13 @@ if(WITH_PYTHON) hip_library(paddle_pybind SHARED SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc DEPS pybind python backward proto_desc paddle_memory executor prune init profiler feed_fetch_method + parallel_executor ${GLOB_OP_LIB}) else() cc_library(paddle_pybind SHARED SRCS pybind.cc exception.cc protobuf.cc const_value.cc recordio.cc DEPS pybind python backward proto_desc paddle_memory executor prune init profiler feed_fetch_method + parallel_executor ${GLOB_OP_LIB}) if(NOT APPLE AND NOT ANDROID) target_link_libraries(paddle_pybind rt) diff --git a/paddle/fluid/pybind/pybind.cc b/paddle/fluid/pybind/pybind.cc index 6c05442466f5f3d8e04a8f0a2206443b1007a107..e1b1bbec97985aa839c62a0a82b81b020faf0008 100644 --- a/paddle/fluid/pybind/pybind.cc +++ b/paddle/fluid/pybind/pybind.cc @@ -25,6 +25,7 @@ limitations under the License. */ #include "paddle/fluid/framework/lod_rank_table.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/lod_tensor_array.h" +#include "paddle/fluid/framework/parallel_executor.h" #include "paddle/fluid/framework/prune.h" #include "paddle/fluid/framework/reader.h" #include "paddle/fluid/framework/selected_rows.h" @@ -496,6 +497,20 @@ All parameter, weight, gradient are variables in Paddle. m.def("disable_profiler", platform::DisableProfiler); m.def("reset_profiler", platform::ResetProfiler); + py::class_(m, "ParallelExecutor") + .def("__init__", + [](ParallelExecutor &self, size_t num_threads, bool use_event, + const std::vector &places, + const std::unordered_set ¶ms, + const ProgramDesc &startup_program, + const ProgramDesc &main_program, const std::string &loss_var_name, + Scope *scope) { + new (&self) ParallelExecutor(num_threads, use_event, places, + params, startup_program, main_program, + loss_var_name, scope); + }) + .def("run", &ParallelExecutor::Run); + BindRecordIOWriter(m); return m.ptr(); } diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 322f72e4a58c7e8f2c26d994477cbb55551c595a..12c3a50d49a808c979545926ae98e0331473ef91 100755 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -53,6 +53,7 @@ function cmake_gen() { -DWITH_FAST_BUNDLE_TEST=ON -DCMAKE_MODULE_PATH=/opt/rocm/hip/cmake -DCMAKE_EXPORT_COMPILE_COMMANDS=ON + -DWITH_FLUID_ONLY=${WITH_FLUID_ONLY:-OFF} ======================================== EOF # Disable UNITTEST_USE_VIRTUALENV in docker because @@ -78,6 +79,7 @@ EOF -DWITH_TESTING=${WITH_TESTING:-ON} \ -DWITH_FAST_BUNDLE_TEST=ON \ -DCMAKE_MODULE_PATH=/opt/rocm/hip/cmake \ + -DWITH_FLUID_ONLY=${WITH_FLUID_ONLY:-OFF} \ -DCMAKE_EXPORT_COMPILE_COMMANDS=ON } diff --git a/paddle/scripts/submit_local.sh.in b/paddle/scripts/submit_local.sh.in index 80fa0c72af65cbdc21ba955389318a233e02657c..1283de9d957a46b848c7bb6caf9c5f49398468e2 100755 --- a/paddle/scripts/submit_local.sh.in +++ b/paddle/scripts/submit_local.sh.in @@ -153,9 +153,15 @@ if [ $? -ne 0 ]; then exit 1 fi -INSTALLED_VERSION=`pip freeze 2>/dev/null | grep '^paddle' | sed 's/.*==//g'` +if [ "@WITH_GPU@" == "ON" ]; then + PADDLE_NAME="paddlepaddle-gpu" +else + PADDLE_NAME="paddlepaddle" +fi + +INSTALLED_VERSION=`pip freeze 2>/dev/null | grep "^${PADDLE_NAME}==" | sed 's/.*==//g'` -if [ -z ${INSTALLED_VERSION} ]; then +if [ -z "${INSTALLED_VERSION}" ]; then INSTALLED_VERSION="0.0.0" # not installed fi cat < 0: + for _, op in enumerate(lr_ops): + self._append_pserver_non_opt_ops(append_block, op) + + append_block = pserver_program.create_block(append_block.idx) + # append op to the current block - per_opt_block = optimize_block + per_opt_block = append_block for _, opt_op in enumerate(opt_op_on_pserver): for _, op in enumerate(self.optimize_ops): # optimizer is connected to itself if ufind.is_connected(op, opt_op) and \ op not in global_ops: __append_optimize_op__(op, per_opt_block) - per_opt_block = pserver_program.create_block(0) + per_opt_block = pserver_program.create_block(append_block.idx) # append global ops for glb_op in global_ops: @@ -786,3 +795,33 @@ class DistributeTranspiler: else: iomap[key] = vars return iomap + + def _get_lr_ops(self): + lr_ops = [] + # find learning rate variables by optimize op + lr_vars = set() + for op in self.optimize_ops: + if self._is_opt_op(op): + lr_vars.add(op.input("LearningRate")[0]) + + find_ops = [] + # find ops which output is lr var + block = self.program.global_block() + for op in block.ops: + if set(op.output_arg_names) & lr_vars: + find_ops.append(op) + # make a union find struct by the ops in default_main_program + ufind = UnionFind(block.ops) + for op1 in block.ops: + for op2 in block.ops: + # NOTE: we need to skip all optimize ops, since it is connected + # with forward/backward ops and lr ops, we only need the lr ops. + if op1 != op2 and self._is_op_connected(op1, op2) and \ + not self._is_opt_op(op1) and not self._is_opt_op(op2): + ufind.union(op1, op2) + # find all ops which is related with lr var + for op1 in block.ops: + for op2 in find_ops: + if ufind.is_connected(op1, op2): + lr_ops.append(op1) + return lr_ops diff --git a/python/paddle/fluid/layers/control_flow.py b/python/paddle/fluid/layers/control_flow.py index 1bb1aa30ee1019c6f80eb64b6dc20459e7a3073b..b9a53eda9144e9e56cf9bc626db40cf4225bd87f 100644 --- a/python/paddle/fluid/layers/control_flow.py +++ b/python/paddle/fluid/layers/control_flow.py @@ -18,6 +18,7 @@ from tensor import assign, fill_constant from .. import core from ..framework import Program, Variable, Operator from ..layer_helper import LayerHelper, unique_name +from ..initializer import force_init_on_cpu from ops import logical_and, logical_not, logical_or __all__ = [ @@ -949,7 +950,7 @@ def create_array(dtype): dtype=dtype) -def less_than(x, y, cond=None, **ignored): +def less_than(x, y, force_cpu=True, cond=None, **ignored): """ **Less than** @@ -958,6 +959,7 @@ def less_than(x, y, cond=None, **ignored): Args: x(Variable): First operand of *less_than* y(Variable): Second operand of *less_than* + force_cpu(Bool|True): The output data will be on CPU if set true. cond(Variable|None): Optional output variable to store the result of *less_than* Returns: @@ -974,8 +976,11 @@ def less_than(x, y, cond=None, **ignored): cond.stop_gradient = True helper.append_op( - type='less_than', inputs={'X': [x], - 'Y': [y]}, outputs={'Out': [cond]}) + type='less_than', + inputs={'X': [x], + 'Y': [y]}, + outputs={'Out': [cond]}, + attrs={'force_cpu': force_cpu or force_init_on_cpu()}) return cond @@ -1396,7 +1401,8 @@ class DynamicRNN(object): type='less_than', inputs={'X': self.step_idx, 'Y': self.max_seq_len}, - outputs={'Out': self.cond}) + outputs={'Out': self.cond}, + attrs={'force_cpu': True}) input_array = parent_block.create_var( name=unique_name.generate('dynamic_rnn_input_array'), @@ -1445,7 +1451,11 @@ class DynamicRNN(object): for new_mem, mem_array in self.mem_link: array_write(x=new_mem, i=self.step_idx, array=mem_array) - less_than(x=self.step_idx, y=self.max_seq_len, cond=self.cond) + less_than( + x=self.step_idx, + y=self.max_seq_len, + force_cpu=True, + cond=self.cond) self.status = DynamicRNN.AFTER_RNN for each_array in self.output_array: diff --git a/python/paddle/fluid/layers/nn.py b/python/paddle/fluid/layers/nn.py index 2db4e5d27d40e902e2da17b3748c64a1eb3d052b..0332556f62c46b187bd79841e4969d9da08b57a5 100644 --- a/python/paddle/fluid/layers/nn.py +++ b/python/paddle/fluid/layers/nn.py @@ -1483,6 +1483,7 @@ def batch_norm(input, param_attr=None, bias_attr=None, data_layout='NCHW', + in_place=False, name=None, moving_mean_name=None, moving_variance_name=None): @@ -1538,7 +1539,7 @@ def batch_norm(input, saved_mean = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) saved_variance = helper.create_tmp_variable(dtype=dtype, stop_gradient=True) - batch_norm_out = helper.create_tmp_variable(dtype) + batch_norm_out = input if in_place else helper.create_tmp_variable(dtype) helper.append_op( type="batch_norm", diff --git a/python/paddle/fluid/layers/ops.py b/python/paddle/fluid/layers/ops.py index f5c6b47d243dcf4ba985cfb41fc23b44d3ed809f..0e5987ee598158d189db8bc956b7e7fea2517554 100644 --- a/python/paddle/fluid/layers/ops.py +++ b/python/paddle/fluid/layers/ops.py @@ -25,6 +25,8 @@ __activations__ = [ 'abs', 'ceil', 'floor', + 'cos', + 'sin', 'round', 'reciprocal', 'log', diff --git a/python/paddle/fluid/nets.py b/python/paddle/fluid/nets.py index 3b2e1a3073251a6d6460450dc957e1b5c7a873c5..bbedf6fde0872fd32d81c103bf5fe61449b7f57b 100644 --- a/python/paddle/fluid/nets.py +++ b/python/paddle/fluid/nets.py @@ -98,7 +98,7 @@ def img_conv_group(input, use_mkldnn=use_mkldnn) if conv_with_batchnorm[i]: - tmp = layers.batch_norm(input=tmp, act=conv_act) + tmp = layers.batch_norm(input=tmp, act=conv_act, in_place=True) drop_rate = conv_batchnorm_drop_rate[i] if abs(drop_rate) > 1e-5: tmp = layers.dropout(x=tmp, dropout_prob=drop_rate) diff --git a/python/paddle/fluid/parallel_executor.py b/python/paddle/fluid/parallel_executor.py new file mode 100644 index 0000000000000000000000000000000000000000..5e0588fa73241a8752e1b3195a123820165f070d --- /dev/null +++ b/python/paddle/fluid/parallel_executor.py @@ -0,0 +1,62 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import core +import multiprocessing +import framework +import executor + +__all__ = ['ParallelExecutor'] + + +class ParallelExecutor(object): + def __init__(self, loss_name, use_cuda, num_threads=None): + places = [] + if use_cuda: + for i in xrange(core.get_cuda_device_count()): + p = core.Place() + p.set_place(core.CUDAPlace(i)) + places.append(p) + else: + for i in xrange(multiprocessing.cpu_count()): + p = core.Place() + p.set_place(core.CPUPlace()) + places.append(p) + + if num_threads is None: + num_threads = min(len(places) * 2, multiprocessing.cpu_count()) + + startup = framework.default_startup_program() + main = framework.default_main_program() + scope = executor.global_scope() + + self.executor = core.ParallelExecutor( + num_threads, + True if use_cuda else False, # use_event + places, + set([ + p.name for p in main.global_block().iter_parameters() + if not p.stop_gradient + ]), + startup.desc, + main.desc, + loss_name, + scope) + self.scope = scope + + def run(self, fetch_list): + fetch_var_name = '@FETCHED_VAR_NAME@' + self.executor.run(fetch_list, fetch_var_name) + arr = self.scope.find_var(fetch_var_name).get_lod_tensor_array() + return [arr[i] for i in range(len(arr))] diff --git a/python/paddle/fluid/tests/unittests/.gitignore b/python/paddle/fluid/tests/unittests/.gitignore index ad02bdecf436bba925e2e3b7efb20c878df70dfd..3538a9c2009bb133609153427981fb66974377fa 100644 --- a/python/paddle/fluid/tests/unittests/.gitignore +++ b/python/paddle/fluid/tests/unittests/.gitignore @@ -2,3 +2,5 @@ mnist.recordio mnist_0.recordio mnist_1.recordio mnist_2.recordio +flowers.recordio +wmt16.recordio diff --git a/python/paddle/fluid/tests/unittests/test_activation_op.py b/python/paddle/fluid/tests/unittests/test_activation_op.py index 4a2b35322dd4b9718c83eb5ee679ada382938441..fb162f8b7315936824ad40aca0c99e4dd09f9734 100644 --- a/python/paddle/fluid/tests/unittests/test_activation_op.py +++ b/python/paddle/fluid/tests/unittests/test_activation_op.py @@ -196,6 +196,34 @@ class TestFloor(OpTest): self.check_grad(['X'], 'Out', max_relative_error=0.007) +class TestCos(OpTest): + def setUp(self): + self.op_type = "cos" + x = np.random.uniform(-1, 1, [4, 4]).astype("float32") + self.inputs = {'X': x} + self.outputs = {'Out': np.cos(self.inputs['X'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out', max_relative_error=0.007) + + +class TestSin(OpTest): + def setUp(self): + self.op_type = "sin" + x = np.random.uniform(-1, 1, [4, 4]).astype("float32") + self.inputs = {'X': x} + self.outputs = {'Out': np.sin(self.inputs['X'])} + + def test_check_output(self): + self.check_output() + + def test_check_grad(self): + self.check_grad(['X'], 'Out', max_relative_error=0.007) + + class TestRound(OpTest): def setUp(self): self.op_type = "round" diff --git a/python/paddle/fluid/tests/unittests/test_parallel_executor.py b/python/paddle/fluid/tests/unittests/test_parallel_executor.py new file mode 100644 index 0000000000000000000000000000000000000000..bbfd03c638dac64de24c0b363f8342d8485f1223 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/test_parallel_executor.py @@ -0,0 +1,429 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import numpy +import unittest + +import paddle.fluid as fluid +import paddle.v2 as paddle +import paddle.v2.dataset.mnist as mnist +import paddle.v2.dataset.wmt16 as wmt16 + + +def simple_fc_net(): + reader = fluid.layers.open_recordio_file( + filename='./mnist.recordio', + shapes=[[-1, 784], [-1, 1]], + lod_levels=[0, 0], + dtypes=['float32', 'int64']) + img, label = fluid.layers.read_file(reader) + hidden = img + for _ in xrange(4): + hidden = fluid.layers.fc( + hidden, + size=200, + act='tanh', + bias_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=1.0))) + prediction = fluid.layers.fc(hidden, size=10, act='softmax') + loss = fluid.layers.cross_entropy(input=prediction, label=label) + loss = fluid.layers.mean(loss) + return loss + + +def fc_with_batchnorm(): + reader = fluid.layers.open_recordio_file( + filename='./mnist.recordio', + shapes=[[-1, 784], [-1, 1]], + lod_levels=[0, 0], + dtypes=['float32', 'int64']) + img, label = fluid.layers.read_file(reader) + hidden = img + for _ in xrange(1): + hidden = fluid.layers.fc( + hidden, + size=200, + act='tanh', + bias_attr=fluid.ParamAttr( + initializer=fluid.initializer.Constant(value=1.0))) + + hidden = fluid.layers.batch_norm(input=hidden) + + prediction = fluid.layers.fc(hidden, size=10, act='softmax') + loss = fluid.layers.cross_entropy(input=prediction, label=label) + loss = fluid.layers.mean(loss) + return loss + + +def squeeze_excitation(input, num_channels, reduction_ratio): + # pool = fluid.layers.pool2d( + # input=input, pool_size=0, pool_type='avg', global_pooling=True) + conv = input + shape = conv.shape + reshape = fluid.layers.reshape( + x=conv, shape=[-1, shape[1], shape[2] * shape[3]]) + pool = fluid.layers.reduce_mean(input=reshape, dim=2) + + squeeze = fluid.layers.fc(input=pool, + size=num_channels / reduction_ratio, + act='relu') + excitation = fluid.layers.fc(input=squeeze, + size=num_channels, + act='sigmoid') + scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) + return scale + + +def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1, + act=None): + conv = fluid.layers.conv2d( + input=input, + num_filters=num_filters, + filter_size=filter_size, + stride=stride, + padding=(filter_size - 1) / 2, + groups=groups, + act=None, + bias_attr=False) + return fluid.layers.batch_norm(input=conv, act=act, momentum=0.1) + + +def shortcut(input, ch_out, stride): + ch_in = input.shape[1] + if ch_in != ch_out: + if stride == 1: + filter_size = 1 + else: + filter_size = 3 + return conv_bn_layer(input, ch_out, filter_size, stride) + else: + return input + + +def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio): + # The number of first 1x1 convolutional channels for each bottleneck build block + # was halved to reduce the compution cost. + conv0 = conv_bn_layer( + input=input, num_filters=num_filters, filter_size=1, act='relu') + conv1 = conv_bn_layer( + input=conv0, + num_filters=num_filters * 2, + filter_size=3, + stride=stride, + groups=cardinality, + act='relu') + conv2 = conv_bn_layer( + input=conv1, num_filters=num_filters * 2, filter_size=1, act=None) + scale = squeeze_excitation( + input=conv2, + num_channels=num_filters * 2, + reduction_ratio=reduction_ratio) + + short = shortcut(input, num_filters * 2, stride) + + return fluid.layers.elementwise_add(x=short, y=scale, act='relu') + + +def SE_ResNeXt152(batch_size=4): + img = fluid.layers.fill_constant( + shape=[batch_size, 3, 224, 224], dtype='float32', value=0.0) + label = fluid.layers.fill_constant( + shape=[batch_size, 1], dtype='int64', value=0.0) + + conv = conv_bn_layer( + input=img, num_filters=64, filter_size=3, stride=2, act='relu') + conv = conv_bn_layer( + input=conv, num_filters=64, filter_size=3, stride=1, act='relu') + conv = conv_bn_layer( + input=conv, num_filters=128, filter_size=3, stride=1, act='relu') + conv = fluid.layers.pool2d( + input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max') + + cardinality = 64 + reduction_ratio = 16 + depth = [3, 8, 36, 3] + num_filters = [128, 256, 512, 1024] + + for block in range(len(depth)): + for i in range(depth[block]): + conv = bottleneck_block( + input=conv, + num_filters=num_filters[block], + stride=2 if i == 0 and block != 0 else 1, + cardinality=cardinality, + reduction_ratio=reduction_ratio) + + shape = conv.shape + reshape = fluid.layers.reshape( + x=conv, shape=[-1, shape[1], shape[2] * shape[3]]) + pool = fluid.layers.reduce_mean(input=reshape, dim=2) + dropout = fluid.layers.dropout(x=pool, dropout_prob=0.2) + # Classifier layer: + prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax') + loss = fluid.layers.cross_entropy(input=prediction, label=label) + loss = fluid.layers.mean(loss) + return loss + + +import time + + +class TestParallelExecutorBase(unittest.TestCase): + def check_network_convergence(self, + method, + memory_opt=True, + iter=10, + batch_size=None): + main = fluid.Program() + startup = fluid.Program() + with fluid.program_guard(main, startup): + loss = method() + adam = fluid.optimizer.Adam() + adam.minimize(loss) + if memory_opt: + fluid.memory_optimize(main) + + exe = fluid.ParallelExecutor(loss_name=loss.name, use_cuda=True) + if batch_size is not None: + batch_size *= fluid.core.get_cuda_device_count() + begin = time.time() + first_loss, = exe.run([loss.name]) + first_loss = numpy.array(first_loss) + + for i in xrange(iter): + exe.run([]) + + last_loss, = exe.run([loss.name]) + end = time.time() + + if batch_size is not None: + print "%.4f Instance per second" % ( + (batch_size * iter + 2) / (end - begin)) + + last_loss = numpy.array(last_loss) + + print first_loss, last_loss + # self.assertGreater(first_loss[0], last_loss[0]) + + +class TestMNIST(TestParallelExecutorBase): + @classmethod + def setUpClass(cls): + # Convert mnist to recordio file + with fluid.program_guard(fluid.Program(), fluid.Program()): + reader = paddle.batch(mnist.train(), batch_size=32) + feeder = fluid.DataFeeder( + feed_list=[ # order is image and label + fluid.layers.data( + name='image', shape=[784]), + fluid.layers.data( + name='label', shape=[1], dtype='int64'), + ], + place=fluid.CPUPlace()) + fluid.recordio_writer.convert_reader_to_recordio_file( + './mnist.recordio', reader, feeder) + + def test_simple_fc(self): + self.check_network_convergence(simple_fc_net) + + def test_batchnorm_fc(self): + self.check_network_convergence(fc_with_batchnorm) + + +class TestResnet(TestParallelExecutorBase): + # @classmethod + # def setUpClass(cls): + # # import os + # # if os.path.exists('./flowers.recordio'): + # # return + # with fluid.program_guard(fluid.Program(), fluid.Program()): + # reader = paddle.batch(flowers.train(), batch_size=4) + # feeder = fluid.DataFeeder( + # feed_list=[ + # fluid.layers.data( + # name='image', shape=[3, 224, 224]), + # fluid.layers.data( + # name='label', shape=[1], dtype='int64'), + # ], + # place=fluid.CPUPlace()) + # fluid.recordio_writer.convert_reader_to_recordio_file( + # "./flowers.recordio", reader, feeder, compressor=fluid.core.RecordIOWriter.Compressor.NoCompress) + + def test_resnet(self): + import functools + batch_size = 4 + self.check_network_convergence( + functools.partial( + SE_ResNeXt152, batch_size=batch_size), + iter=20, + batch_size=batch_size) + + +class ModelHyperParams(object): + # Dictionary size for source and target language. This model directly uses + # paddle.dataset.wmt16 in which , and token has + # alreay been added, but the token is not added. Transformer requires + # sequences in a mini-batch are padded to have the same length. A token is + # added into the original dictionary in paddle.dateset.wmt16. + + # size of source word dictionary. + src_vocab_size = 10000 + # index for token in source language. + src_pad_idx = src_vocab_size + + # size of target word dictionay + trg_vocab_size = 10000 + # index for token in target language. + trg_pad_idx = trg_vocab_size + + # position value corresponding to the token. + pos_pad_idx = 0 + + # max length of sequences. It should plus 1 to include position + # padding token for position encoding. + max_length = 50 + + # the dimension for word embeddings, which is also the last dimension of + # the input and output of multi-head attention, position-wise feed-forward + # networks, encoder and decoder. + + d_model = 512 + # size of the hidden layer in position-wise feed-forward networks. + d_inner_hid = 1024 + # the dimension that keys are projected to for dot-product attention. + d_key = 64 + # the dimension that values are projected to for dot-product attention. + d_value = 64 + # number of head used in multi-head attention. + n_head = 8 + # number of sub-layers to be stacked in the encoder and decoder. + n_layer = 6 + # dropout rate used by all dropout layers. + dropout = 0.1 + + +import numpy as np + + +def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head): + """ + Pad the instances to the max sequence length in batch, and generate the + corresponding position data and attention bias. Then, convert the numpy + data to tensors and return a dict mapping names to tensors. + """ + + def __pad_batch_data(insts, + pad_idx, + is_target=False, + return_pos=True, + return_attn_bias=True, + return_max_len=True): + """ + Pad the instances to the max sequence length in batch, and generate the + corresponding position data and attention bias. + """ + return_list = [] + max_len = max(len(inst) for inst in insts) + inst_data = np.array( + [inst + [pad_idx] * (max_len - len(inst)) for inst in insts]) + return_list += [inst_data.astype("int64").reshape([-1, 1])] + if return_pos: + inst_pos = np.array([[ + pos_i + 1 if w_i != pad_idx else 0 + for pos_i, w_i in enumerate(inst) + ] for inst in inst_data]) + + return_list += [inst_pos.astype("int64").reshape([-1, 1])] + if return_attn_bias: + if is_target: + # This is used to avoid attention on paddings and subsequent + # words. + slf_attn_bias_data = np.ones((inst_data.shape[0], max_len, + max_len)) + slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape( + [-1, 1, max_len, max_len]) + slf_attn_bias_data = np.tile(slf_attn_bias_data, + [1, n_head, 1, 1]) * [-1e9] + else: + # This is used to avoid attention on paddings. + slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] * + (max_len - len(inst)) + for inst in insts]) + slf_attn_bias_data = np.tile( + slf_attn_bias_data.reshape([-1, 1, 1, max_len]), + [1, n_head, max_len, 1]) + return_list += [slf_attn_bias_data.astype("float32")] + if return_max_len: + return_list += [max_len] + return return_list if len(return_list) > 1 else return_list[0] + + def data_to_tensor(data_list, name_list, input_dict, place): + assert len(data_list) == len(name_list) + for i in range(len(name_list)): + tensor = fluid.LoDTensor() + tensor.set(data_list[i], place) + input_dict[name_list[i]] = tensor + + src_word, src_pos, src_slf_attn_bias, src_max_len = __pad_batch_data( + [inst[0] for inst in insts], src_pad_idx, is_target=False) + trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = __pad_batch_data( + [inst[1] for inst in insts], trg_pad_idx, is_target=True) + trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :], + [1, 1, trg_max_len, 1]).astype("float32") + lbl_word = __pad_batch_data([inst[2] for inst in insts], trg_pad_idx, False, + False, False, False) + lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1]) + + return [ + src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias, + trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight + ] + + +import transformer_model + + +def transformer(): + return transformer_model.transformer( + ModelHyperParams.src_vocab_size + 1, + ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1, + ModelHyperParams.n_layer, ModelHyperParams.n_head, + ModelHyperParams.d_key, ModelHyperParams.d_value, + ModelHyperParams.d_model, ModelHyperParams.d_inner_hid, + ModelHyperParams.dropout, ModelHyperParams.src_pad_idx, + ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx) + + +class TestTransformer(TestParallelExecutorBase): + @classmethod + def setUpClass(cls): + reader = paddle.batch( + wmt16.train(ModelHyperParams.src_vocab_size, + ModelHyperParams.trg_vocab_size), + batch_size=transformer_model.batch_size) + + with fluid.recordio_writer.create_recordio_writer( + "./wmt16.recordio") as writer: + for batch in reader(): + for tensor in prepare_batch_input( + batch, ModelHyperParams.src_pad_idx, + ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head): + t = fluid.LoDTensor() + t.set(tensor, fluid.CPUPlace()) + writer.append_tensor(t) + writer.complete_append_tensor() + + @unittest.skip("transformer is buggy in multi gpu") + def test_main(self): + self.check_network_convergence(transformer) diff --git a/python/paddle/fluid/tests/unittests/test_protobuf_descs.py b/python/paddle/fluid/tests/unittests/test_protobuf_descs.py index 309ea2b9b7ede442da3ac897ce8d1a4b9aa68233..da85786d0c085a4e97d9ac272feed251296ad52d 100644 --- a/python/paddle/fluid/tests/unittests/test_protobuf_descs.py +++ b/python/paddle/fluid/tests/unittests/test_protobuf_descs.py @@ -186,6 +186,34 @@ class TestBlockDesc(unittest.TestCase): all_ops.append(block.op(idx)) self.assertEqual(all_ops, [op0, op1, op2]) + def test_remove_op(self): + prog = core.ProgramDesc() + self.assertIsNotNone(prog) + block = prog.block(0) + self.assertIsNotNone(block) + op1 = block.append_op() + op2 = block.append_op() + var1 = block.var("var1") + var2 = block.var("var2") + var3 = block.var("var3") + var4 = block.var("var4") + var5 = block.var("var5") + op1.set_input("X", ["var1", "var2"]) + op1.set_output("Y", ["var3", "var4"]) + op2.set_input("X", ["var1"]) + op2.set_output("Y", ["var4", "var5"]) + + # remove op1, its input var2 and output var3 will be removed at the same time, + # but its input var1 and output var4 will not be removed since they are used for op2. + block.remove_op(0, 1) + + all_ops = [] + for idx in xrange(0, block.op_size()): + all_ops.append(block.op(idx)) + self.assertEqual(all_ops, [op2]) + all_vars = block.all_vars() + self.assertEqual(set(all_vars), {var1, var4, var5}) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/fluid/tests/unittests/test_seq_pool.py b/python/paddle/fluid/tests/unittests/test_seq_pool.py index 04884757216bc29a96eb97a6db403c3925472294..2e48ef0e880839f6d5b4e515a174f427a35e7e6f 100644 --- a/python/paddle/fluid/tests/unittests/test_seq_pool.py +++ b/python/paddle/fluid/tests/unittests/test_seq_pool.py @@ -49,6 +49,61 @@ class TestSeqAvgPool(OpTest): self.check_grad(["X"], "Out") +class TestSeqSumPool(TestSeqAvgPool): + def compute(self, x, lod, out): + self.attrs = {'pooltype': "SUM"} + for i in range(4): + sub_x = x[lod[0][i]:lod[0][i + 1], :] + out[i] = sub_x.sum(axis=0) + + +class TestSeqMaxPool(TestSeqAvgPool): + def set_data(self): + self.op_type = 'sequence_pool' + x = np.random.uniform(0.1, 1, [13, 23]).astype('float32') + lod = [[0, 4, 5, 8, 13]] + for i in range(4): + l = lod[0][i + 1] - lod[0][i] + x[lod[0][i] + np.random.randint(l), :] += 2.0 + + self.inputs = {'X': (x, lod)} + + out = np.zeros((4, 23)).astype('float32') + self.outputs = {'Out': out} + return x, lod, out + + def compute(self, x, lod, out): + self.attrs = {'pooltype': "MAX"} + for i in range(4): + sub_x = x[lod[0][i]:lod[0][i + 1], :] + out[i] = np.amax(sub_x, axis=0) + + +class TestSeqSqrtPool(TestSeqAvgPool): + def compute(self, x, lod, out): + self.attrs = {'pooltype': "SQRT"} + for i in range(4): + sub_x = x[lod[0][i]:lod[0][i + 1], :] + len = lod[0][i + 1] - lod[0][i] + out[i] = sub_x.sum(axis=0) / np.sqrt(len) + + +class TestSeqLastPool(TestSeqAvgPool): + def compute(self, x, lod, out): + self.attrs = {'pooltype': "LAST"} + for i in range(4): + sub_x = x[lod[0][i]:lod[0][i + 1], :] + out[i] = sub_x[-1, :] + + +class TestSeqFirstPool(TestSeqAvgPool): + def compute(self, x, lod, out): + self.attrs = {'pooltype': "FIRST"} + for i in range(4): + sub_x = x[lod[0][i]:lod[0][i + 1], :] + out[i] = sub_x[0, :] + + class TestSeqAvgPool2D(TestSeqAvgPool): def set_data(self): self.op_type = 'sequence_pool' @@ -68,14 +123,6 @@ class TestSeqAvgPool2D(TestSeqAvgPool): out[i] = np.reshape(sub_x.mean(axis=0), (3, 17)) -class TestSeqSumPool(TestSeqAvgPool): - def compute(self, x, lod, out): - self.attrs = {'pooltype': "SUM"} - for i in range(4): - sub_x = x[lod[0][i]:lod[0][i + 1], :] - out[i] = sub_x.sum(axis=0) - - class TestSeqSumPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'pooltype': "SUM"} @@ -84,15 +131,6 @@ class TestSeqSumPool2D(TestSeqAvgPool2D): out[i] = np.reshape(sub_x.sum(axis=0), (3, 17)) -class TestSeqSqrtPool(TestSeqAvgPool): - def compute(self, x, lod, out): - self.attrs = {'pooltype': "SQRT"} - for i in range(4): - sub_x = x[lod[0][i]:lod[0][i + 1], :] - len = lod[0][i + 1] - lod[0][i] - out[i] = sub_x.sum(axis=0) / np.sqrt(len) - - class TestSeqSqrtPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'pooltype': "SQRT"} @@ -108,28 +146,6 @@ class TestSeqSqrtPool2D(TestSeqAvgPool2D): self.check_grad(["X"], "Out", max_relative_error=0.06) -class TestSeqMaxPool(TestSeqAvgPool): - def set_data(self): - self.op_type = 'sequence_pool' - x = np.random.uniform(0.1, 1, [13, 23]).astype('float32') - lod = [[0, 4, 5, 8, 13]] - for i in range(4): - l = lod[0][i + 1] - lod[0][i] - x[lod[0][i] + np.random.randint(l), :] += 2.0 - - self.inputs = {'X': (x, lod)} - - out = np.zeros((4, 23)).astype('float32') - self.outputs = {'Out': out} - return x, lod, out - - def compute(self, x, lod, out): - self.attrs = {'pooltype': "MAX"} - for i in range(4): - sub_x = x[lod[0][i]:lod[0][i + 1], :] - out[i] = np.amax(sub_x, axis=0) - - class TestSeqMaxPool2D(TestSeqAvgPool2D): def set_data(self): self.op_type = 'sequence_pool' @@ -151,14 +167,6 @@ class TestSeqMaxPool2D(TestSeqAvgPool2D): out[i] = np.reshape(np.amax(sub_x, axis=0), (3, 11)) -class TestSeqLastPool(TestSeqAvgPool): - def compute(self, x, lod, out): - self.attrs = {'pooltype': "LAST"} - for i in range(4): - sub_x = x[lod[0][i]:lod[0][i + 1], :] - out[i] = sub_x[-1, :] - - class TestSeqLastPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'pooltype': "LAST"} @@ -167,14 +175,6 @@ class TestSeqLastPool2D(TestSeqAvgPool2D): out[i] = np.reshape(sub_x[-1, :], (3, 17)) -class TestSeqFirstPool(TestSeqAvgPool): - def compute(self, x, lod, out): - self.attrs = {'pooltype': "FIRST"} - for i in range(4): - sub_x = x[lod[0][i]:lod[0][i + 1], :] - out[i] = sub_x[0, :] - - class TestSeqFirstPool2D(TestSeqAvgPool2D): def compute(self, x, lod, out): self.attrs = {'pooltype': "FIRST"} diff --git a/python/paddle/fluid/tests/unittests/transformer_model.py b/python/paddle/fluid/tests/unittests/transformer_model.py new file mode 100644 index 0000000000000000000000000000000000000000..c62792face3c353db1f2e3c77eaf4bd32fbded69 --- /dev/null +++ b/python/paddle/fluid/tests/unittests/transformer_model.py @@ -0,0 +1,487 @@ +# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from functools import partial +import numpy as np + +import paddle.fluid as fluid +import paddle.fluid.layers as layers + +pos_enc_param_names = ( + "src_pos_enc_table", + "trg_pos_enc_table", ) + +batch_size = 64 + + +def position_encoding_init(n_position, d_pos_vec): + """ + Generate the initial values for the sinusoid position encoding table. + """ + position_enc = np.array([[ + pos / np.power(10000, 2 * (j // 2) / d_pos_vec) + for j in range(d_pos_vec) + ] if pos != 0 else np.zeros(d_pos_vec) for pos in range(n_position)]) + position_enc[1:, 0::2] = np.sin(position_enc[1:, 0::2]) # dim 2i + position_enc[1:, 1::2] = np.cos(position_enc[1:, 1::2]) # dim 2i+1 + return position_enc.astype("float32") + + +def multi_head_attention(queries, + keys, + values, + attn_bias, + d_key, + d_value, + d_model, + n_head=1, + dropout_rate=0.): + """ + Multi-Head Attention. Note that attn_bias is added to the logit before + computing softmax activiation to mask certain selected positions so that + they will not considered in attention weights. + """ + if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3): + raise ValueError( + "Inputs: quries, keys and values should all be 3-D tensors.") + + def __compute_qkv(queries, keys, values, n_head, d_key, d_value): + """ + Add linear projection to queries, keys, and values. + """ + q = layers.fc(input=queries, + size=d_key * n_head, + param_attr=fluid.initializer.Xavier( + uniform=False, + fan_in=d_model * d_key, + fan_out=n_head * d_key), + bias_attr=False, + num_flatten_dims=2) + k = layers.fc(input=keys, + size=d_key * n_head, + param_attr=fluid.initializer.Xavier( + uniform=False, + fan_in=d_model * d_key, + fan_out=n_head * d_key), + bias_attr=False, + num_flatten_dims=2) + v = layers.fc(input=values, + size=d_value * n_head, + param_attr=fluid.initializer.Xavier( + uniform=False, + fan_in=d_model * d_value, + fan_out=n_head * d_value), + bias_attr=False, + num_flatten_dims=2) + return q, k, v + + def __split_heads(x, n_head): + """ + Reshape the last dimension of inpunt tensor x so that it becomes two + dimensions and then transpose. Specifically, input a tensor with shape + [bs, max_sequence_length, n_head * hidden_dim] then output a tensor + with shape [bs, n_head, max_sequence_length, hidden_dim]. + """ + if n_head == 1: + return x + + hidden_size = x.shape[-1] + # FIXME(guosheng): Decouple the program desc with batch_size. + reshaped = layers.reshape( + x=x, shape=[batch_size, -1, n_head, hidden_size // n_head]) + + # permuate the dimensions into: + # [batch_size, n_head, max_sequence_len, hidden_size_per_head] + return layers.transpose(x=reshaped, perm=[0, 2, 1, 3]) + + def __combine_heads(x): + """ + Transpose and then reshape the last two dimensions of inpunt tensor x + so that it becomes one dimension, which is reverse to __split_heads. + """ + if len(x.shape) == 3: return x + if len(x.shape) != 4: + raise ValueError("Input(x) should be a 4-D Tensor.") + + trans_x = layers.transpose(x, perm=[0, 2, 1, 3]) + # FIXME(guosheng): Decouple the program desc with batch_size. + return layers.reshape( + x=trans_x, + shape=map(int, + [batch_size, -1, trans_x.shape[2] * trans_x.shape[3]])) + + def scaled_dot_product_attention(q, k, v, attn_bias, d_model, dropout_rate): + """ + Scaled Dot-Product Attention + """ + + # FIXME(guosheng): Optimize the shape in reshape_op or softmax_op. + + # The current implementation of softmax_op only supports 2D tensor, + # consequently it cannot be directly used here. + # If to use the reshape_op, Besides, the shape of product inferred in + # compile-time is not the actual shape in run-time. It cann't be used + # to set the attribute of reshape_op. + # So, here define the softmax for temporary solution. + + def __softmax(x, eps=1e-9): + exp_out = layers.exp(x=x) + sum_out = layers.reduce_sum(exp_out, dim=-1, keep_dim=False) + return layers.elementwise_div(x=exp_out, y=sum_out, axis=0) + + scaled_q = layers.scale(x=q, scale=d_model**-0.5) + product = layers.matmul(x=scaled_q, y=k, transpose_y=True) + weights = __softmax(layers.elementwise_add(x=product, y=attn_bias)) + if dropout_rate: + weights = layers.dropout( + weights, dropout_prob=dropout_rate, is_test=False) + out = layers.matmul(weights, v) + return out + + q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value) + + q = __split_heads(q, n_head) + k = __split_heads(k, n_head) + v = __split_heads(v, n_head) + + ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_model, + dropout_rate) + + out = __combine_heads(ctx_multiheads) + + # Project back to the model size. + proj_out = layers.fc(input=out, + size=d_model, + param_attr=fluid.initializer.Xavier(uniform=False), + bias_attr=False, + num_flatten_dims=2) + return proj_out + + +def positionwise_feed_forward(x, d_inner_hid, d_hid): + """ + Position-wise Feed-Forward Networks. + This module consists of two linear transformations with a ReLU activation + in between, which is applied to each position separately and identically. + """ + hidden = layers.fc(input=x, + size=d_inner_hid, + num_flatten_dims=2, + param_attr=fluid.initializer.Uniform( + low=-(d_hid**-0.5), high=(d_hid**-0.5)), + act="relu") + out = layers.fc(input=hidden, + size=d_hid, + num_flatten_dims=2, + param_attr=fluid.initializer.Uniform( + low=-(d_inner_hid**-0.5), high=(d_inner_hid**-0.5))) + return out + + +def pre_post_process_layer(prev_out, out, process_cmd, dropout=0.): + """ + Add residual connection, layer normalization and droput to the out tensor + optionally according to the value of process_cmd. + + This will be used before or after multi-head attention and position-wise + feed-forward networks. + """ + for cmd in process_cmd: + if cmd == "a": # add residual connection + out = out + prev_out if prev_out else out + elif cmd == "n": # add layer normalization + out = layers.layer_norm( + out, + begin_norm_axis=len(out.shape) - 1, + param_attr=fluid.initializer.Constant(1.), + bias_attr=fluid.initializer.Constant(0.)) + elif cmd == "d": # add dropout + if dropout: + out = layers.dropout(out, dropout_prob=dropout, is_test=False) + return out + + +pre_process_layer = partial(pre_post_process_layer, None) +post_process_layer = pre_post_process_layer + + +def prepare_encoder(src_word, + src_pos, + src_vocab_size, + src_emb_dim, + src_pad_idx, + src_max_len, + dropout=0., + pos_pad_idx=0, + pos_enc_param_name=None): + """Add word embeddings and position encodings. + The output tensor has a shape of: + [batch_size, max_src_length_in_batch, d_model]. + + This module is used at the bottom of the encoder stacks. + """ + src_word_emb = layers.embedding( + src_word, + size=[src_vocab_size, src_emb_dim], + padding_idx=src_pad_idx, + param_attr=fluid.initializer.Normal(0., 1.)) + src_pos_enc = layers.embedding( + src_pos, + size=[src_max_len, src_emb_dim], + padding_idx=pos_pad_idx, + param_attr=fluid.ParamAttr( + name=pos_enc_param_name, trainable=False)) + enc_input = src_word_emb + src_pos_enc + + # FIXME(guosheng): Decouple the program desc with batch_size. + enc_input = layers.reshape(x=enc_input, shape=[batch_size, -1, src_emb_dim]) + return layers.dropout( + enc_input, dropout_prob=dropout, + is_test=False) if dropout else enc_input + + +prepare_encoder = partial( + prepare_encoder, pos_enc_param_name=pos_enc_param_names[0]) +prepare_decoder = partial( + prepare_encoder, pos_enc_param_name=pos_enc_param_names[1]) + + +def encoder_layer(enc_input, + attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + dropout_rate=0.): + """The encoder layers that can be stacked to form a deep encoder. + + This module consits of a multi-head (self) attention followed by + position-wise feed-forward networks and both the two components companied + with the post_process_layer to add residual connection, layer normalization + and droput. + """ + attn_output = multi_head_attention(enc_input, enc_input, enc_input, + attn_bias, d_key, d_value, d_model, + n_head, dropout_rate) + attn_output = post_process_layer(enc_input, attn_output, "dan", + dropout_rate) + ffd_output = positionwise_feed_forward(attn_output, d_inner_hid, d_model) + return post_process_layer(attn_output, ffd_output, "dan", dropout_rate) + + +def encoder(enc_input, + attn_bias, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + dropout_rate=0.): + """ + The encoder is composed of a stack of identical layers returned by calling + encoder_layer. + """ + for i in range(n_layer): + enc_output = encoder_layer(enc_input, attn_bias, n_head, d_key, d_value, + d_model, d_inner_hid, dropout_rate) + enc_input = enc_output + return enc_output + + +def decoder_layer(dec_input, + enc_output, + slf_attn_bias, + dec_enc_attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + dropout_rate=0.): + """ The layer to be stacked in decoder part. + + The structure of this module is similar to that in the encoder part except + a multi-head attention is added to implement encoder-decoder attention. + """ + slf_attn_output = multi_head_attention( + dec_input, + dec_input, + dec_input, + slf_attn_bias, + d_key, + d_value, + d_model, + n_head, + dropout_rate, ) + slf_attn_output = post_process_layer( + dec_input, + slf_attn_output, + "dan", # residual connection + dropout + layer normalization + dropout_rate, ) + enc_attn_output = multi_head_attention( + slf_attn_output, + enc_output, + enc_output, + dec_enc_attn_bias, + d_key, + d_value, + d_model, + n_head, + dropout_rate, ) + enc_attn_output = post_process_layer( + slf_attn_output, + enc_attn_output, + "dan", # residual connection + dropout + layer normalization + dropout_rate, ) + ffd_output = positionwise_feed_forward( + enc_attn_output, + d_inner_hid, + d_model, ) + dec_output = post_process_layer( + enc_attn_output, + ffd_output, + "dan", # residual connection + dropout + layer normalization + dropout_rate, ) + return dec_output + + +def decoder(dec_input, + enc_output, + dec_slf_attn_bias, + dec_enc_attn_bias, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + dropout_rate=0.): + """ + The decoder is composed of a stack of identical decoder_layer layers. + """ + for i in range(n_layer): + dec_output = decoder_layer( + dec_input, + enc_output, + dec_slf_attn_bias, + dec_enc_attn_bias, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + dropout_rate, ) + dec_input = dec_output + return dec_output + + +def transformer( + src_vocab_size, + trg_vocab_size, + max_length, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + dropout_rate, + src_pad_idx, + trg_pad_idx, + pos_pad_idx, ): + file_obj = fluid.layers.open_recordio_file( + filename='./wmt16.recordio', + shapes=[ + [batch_size * max_length, 1], + [batch_size * max_length, 1], + [batch_size * max_length, 1], + [batch_size * max_length, 1], + [batch_size, n_head, max_length, max_length], + [batch_size, n_head, max_length, max_length], + [batch_size, n_head, max_length, max_length], + [batch_size * max_length, 1], + [batch_size * max_length, 1], + ], + dtypes=[ + 'int64', + 'int64', + 'int64', + 'int64', + 'float32', + 'float32', + 'float32', + 'int64', + 'float32', + ], + lod_levels=[0] * 9) + + src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias, trg_slf_attn_bias, trg_src_attn_bias, gold, weights = fluid.layers.read_file( + file_obj) + + enc_input = prepare_encoder( + src_word, + src_pos, + src_vocab_size, + d_model, + src_pad_idx, + max_length, + dropout_rate, ) + enc_output = encoder( + enc_input, + src_slf_attn_bias, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + dropout_rate, ) + + dec_input = prepare_decoder( + trg_word, + trg_pos, + trg_vocab_size, + d_model, + trg_pad_idx, + max_length, + dropout_rate, ) + dec_output = decoder( + dec_input, + enc_output, + trg_slf_attn_bias, + trg_src_attn_bias, + n_layer, + n_head, + d_key, + d_value, + d_model, + d_inner_hid, + dropout_rate, ) + + # TODO(guosheng): Share the weight matrix between the embedding layers and + # the pre-softmax linear transformation. + predict = layers.reshape( + x=layers.fc(input=dec_output, + size=trg_vocab_size, + param_attr=fluid.initializer.Xavier(uniform=False), + bias_attr=False, + num_flatten_dims=2), + shape=[-1, trg_vocab_size], + act="softmax") + + cost = layers.cross_entropy(input=predict, label=gold) + weighted_cost = cost * weights + return layers.reduce_sum(weighted_cost) diff --git a/python/setup.py.in b/python/setup.py.in index 4cb5409524457b7bc5a99c88a0dbbfc8834923fa..831d173d424b8c663f728af748ad1942bb20a418 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -68,7 +68,7 @@ packages=['paddle', 'paddle.fluid.proto.profiler', 'paddle.fluid.layers'] -if '${WITH_FLUID}'== 'OFF': +if '${WITH_FLUID_ONLY}'== 'OFF': packages+=['paddle.proto', 'paddle.trainer', 'paddle.trainer_config_helpers', @@ -87,7 +87,7 @@ if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: # the prefix is sys.prefix which should always be usr paddle_bins = '' -if '${WITH_FLUID}'== 'OFF': +if '${WITH_FLUID_ONLY}'== 'OFF': paddle_bin_dir = 'opt/paddle/bin' paddle_bins = ['${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer', '${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model', @@ -95,7 +95,7 @@ if '${WITH_FLUID}'== 'OFF': '${PADDLE_BINARY_DIR}/paddle/scripts/paddle'] package_data={'paddle.fluid': ['core.so']} -if '${WITH_FLUID}'== 'OFF': +if '${WITH_FLUID_ONLY}'== 'OFF': package_data['paddle.v2.master']=['libpaddle_master.so'] package_data['py_paddle']=['*.py','_swig_paddle.so'] @@ -106,7 +106,7 @@ package_dir={ 'paddle.fluid.proto.profiler': '${PADDLE_BINARY_DIR}/paddle/fluid/platform', 'paddle.fluid.proto': '${PADDLE_BINARY_DIR}/paddle/fluid/framework', } -if '${WITH_FLUID}'== 'OFF': +if '${WITH_FLUID_ONLY}'== 'OFF': package_dir['py_paddle']='${PADDLE_SOURCE_DIR}/paddle/py_paddle'