diff --git a/paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preprocess.py b/paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preprocess.py new file mode 100644 index 0000000000000000000000000000000000000000..4d968c83d9c9bf9d947204d73f4460e62039cdda --- /dev/null +++ b/paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preprocess.py @@ -0,0 +1,162 @@ +# copyright (c) 2019 paddlepaddle authors. all rights reserved. +# +# licensed under the apache license, version 2.0 (the "license"); +# you may not use this file except in compliance with the license. +# you may obtain a copy of the license at +# +# http://www.apache.org/licenses/license-2.0 +# +# unless required by applicable law or agreed to in writing, software +# distributed under the license is distributed on an "as is" basis, +# without warranties or conditions of any kind, either express or implied. +# see the license for the specific language governing permissions and +# limitations under the license. +import unittest +import os +import numpy as np +import time +import sys +import random +import functools +import contextlib +from PIL import Image, ImageEnhance +import math +from paddle.dataset.common import download + +random.seed(0) +np.random.seed(0) + +DATA_DIM = 224 + +SIZE_FLOAT32 = 4 +SIZE_INT64 = 8 + +img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) +img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) + + +def resize_short(img, target_size): + percent = float(target_size) / min(img.size[0], img.size[1]) + resized_width = int(round(img.size[0] * percent)) + resized_height = int(round(img.size[1] * percent)) + img = img.resize((resized_width, resized_height), Image.LANCZOS) + return img + + +def crop_image(img, target_size, center): + width, height = img.size + size = target_size + if center == True: + w_start = (width - size) / 2 + h_start = (height - size) / 2 + else: + w_start = np.random.randint(0, width - size + 1) + h_start = np.random.randint(0, height - size + 1) + w_end = w_start + size + h_end = h_start + size + img = img.crop((w_start, h_start, w_end, h_end)) + return img + + +def process_image(img_path, mode, color_jitter, rotate): + img = Image.open(img_path) + img = resize_short(img, target_size=256) + img = crop_image(img, target_size=DATA_DIM, center=True) + if img.mode != 'RGB': + img = img.convert('RGB') + img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255 + img -= img_mean + img /= img_std + return img + + +def download_unzip(): + int8_download = 'int8/download' + + target_name = 'data' + + cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' + + int8_download) + + target_folder = os.path.join(cache_folder, target_name) + + data_urls = [] + data_md5s = [] + + data_urls.append( + 'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa' + ) + data_md5s.append('60f6525b0e1d127f345641d75d41f0a8') + data_urls.append( + 'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab' + ) + data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5') + + file_names = [] + + for i in range(0, len(data_urls)): + download(data_urls[i], cache_folder, data_md5s[i]) + file_names.append(data_urls[i].split('/')[-1]) + + zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz') + + if not os.path.exists(zip_path): + cat_command = 'cat' + for file_name in file_names: + cat_command += ' ' + os.path.join(cache_folder, file_name) + cat_command += ' > ' + zip_path + os.system(cat_command) + print('Data is downloaded at {0}\n').format(zip_path) + + if not os.path.exists(target_folder): + cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path) + os.system(cmd) + print('Data is unzipped at {0}\n'.format(target_folder)) + + data_dir = os.path.join(target_folder, 'ILSVRC2012') + print('ILSVRC2012 full val set at {0}\n'.format(data_dir)) + return data_dir + + +def reader(): + data_dir = download_unzip() + file_list = os.path.join(data_dir, 'val_list.txt') + output_file = os.path.join(data_dir, 'int8_full_val.bin') + with open(file_list) as flist: + lines = [line.strip() for line in flist] + num_images = len(lines) + if not os.path.exists(output_file): + print( + 'Preprocessing to binary file......\n' + ) + with open(output_file, "w+b") as of: + #save num_images(int64_t) to file + of.seek(0) + num = np.array(int(num_images)).astype('int64') + of.write(num.tobytes()) + for idx, line in enumerate(lines): + img_path, label = line.split() + img_path = os.path.join(data_dir, img_path) + if not os.path.exists(img_path): + continue + + #save image(float32) to file + img = process_image( + img_path, 'val', color_jitter=False, rotate=False) + np_img = np.array(img) + of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 + * idx) + of.write(np_img.astype('float32').tobytes()) + + #save label(int64_t) to file + label_int = (int)(label) + np_label = np.array(label_int) + of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 + * num_images + idx * SIZE_INT64) + of.write(np_label.astype('int64').tobytes()) + + print('The preprocessed binary file path {}\n'.format(output_file)) + + +if __name__ == '__main__': + reader()