未验证 提交 8d253e49 编写于 作者: 武毅 提交者: GitHub

Merge pull request #7249 from typhoonzero/transpiler_split_tensor

Feature/transpiler split tensor to multiple pservers
......@@ -18,6 +18,7 @@ from param_attr import ParamAttr
from data_feeder import DataFeeder
from core import LoDTensor, CPUPlace, CUDAPlace
from distribute_transpiler import DistributeTranspiler
from distribute_transpiler_simple import SimpleDistributeTranspiler
import clip
from memory_optimization_transpiler import memory_optimize
......@@ -37,6 +38,7 @@ __all__ = framework.__all__ + executor.__all__ + [
'ParamAttr'
'DataFeeder',
'clip',
'SimpleDistributeTranspiler',
'DistributeTranspiler',
'memory_optimize',
]
......
from __future__ import print_function
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
from distributed_spliter import *
import math
def hash_name_to_server(params_grads, pserver_endpoints):
"""
:param param_grads:
:return: a map of pserver endpoint ->
params -> [param list]
grads -> [grad list]
"""
def _hash_param(param_name, total):
return hash(param_name) % total
class VarBlock:
def __init__(self, varname, offset, size):
self.varname = varname
# NOTE: real offset is offset * size
self.offset = offset
self.size = size
param_grad_map = dict()
for param, grad in params_grads:
if param.trainable is True and grad is not None:
server_id = _hash_param(param.name, len(pserver_endpoints))
server_for_param = pserver_endpoints[server_id]
if not param_grad_map.has_key(server_for_param):
param_grad_map[server_for_param] = {"params": [], "grads": []}
param_grad_map[server_for_param]["params"].append(param)
param_grad_map[server_for_param]["grads"].append(grad)
def __str__(self):
return "%s:%d:%d" % (self.varname, self.offset, self.size)
return param_grad_map
def split_dense_variable(var_list,
pserver_count,
min_block_size=1024,
max_block_size=1048576):
"""
We may need to split dense tensor to one or several blocks and put
them equally onto parameter server. One block is a sub-tensor
aligned by dim[0] of the tensor.
def round_robin(params_grads, pserver_endpoints):
assert (len(params_grads) > len(pserver_endpoints))
param_grad_map = dict()
pserver_idx = 0
for param, grad in params_grads:
if param.trainable is True:
server_for_param = pserver_endpoints[pserver_idx]
if not param_grad_map.has_key(server_for_param):
param_grad_map[server_for_param] = {"params": [], "grads": []}
param_grad_map[server_for_param]["params"].append(param)
param_grad_map[server_for_param]["grads"].append(grad)
We need to have a minimal block size so that the calculations in
the parameter server side can gain better performance. By default
mininum block size is 1024. The max block size is used to prevent
too large block that may causing send error.
"""
blocks = []
for var in var_list:
split_count = pserver_count
var_numel = reduce(lambda x, y: x * y, var.shape)
max_pserver_count = int(math.floor(var_numel / float(min_block_size)))
if max_pserver_count == 0:
max_pserver_count = 1
if max_pserver_count < pserver_count:
split_count = max_pserver_count
block_size = int(math.ceil(var_numel / float(split_count)))
pserver_idx += 1
if pserver_idx >= len(pserver_endpoints):
pserver_idx = 0
return param_grad_map
if len(var.shape) >= 2:
# align by dim1(width)
dim1 = reduce(lambda x, y: x * y, var.shape[1:])
remains = block_size % dim1
if remains != 0:
block_size += dim1 - remains
# update split_count after align
split_count = int(math.ceil(var_numel / float(block_size)))
for block_id in xrange(split_count):
curr_block_size = min(block_size, var_numel - (
(block_id) * block_size))
block = VarBlock(var.name, block_id, curr_block_size)
blocks.append(str(block))
return blocks
class DistributeTranspiler:
......@@ -58,7 +69,6 @@ class DistributeTranspiler:
split_method=round_robin):
"""
Transpile the program to a distributed data-parallelism programs.
The main_program will be transform to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
in to a parameter server program.
......@@ -66,60 +76,113 @@ class DistributeTranspiler:
Use different methods to split trainable varialbles to different
parameter servers.
Example to run:
exe = fluid.Executor(place)
t = fluid.DistributeTranspiler()
t.transpile(optimize_ops, params_grads, pservers="127.0.0.1:6174", trainers=1)
pserver_endpoint = os.getenv("PSERVER")
if pserver_endpoint:
pserver_prog = t.get_pserver_program(pserver_endpoint, optimize_ops)
exe.run(fluid.default_startup_program())
exe.run(pserver_prog)
else:
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
...
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
:type optimize_ops: list
:param program: program to optimize, default default_main_program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:return: return a list of programs
"""
assert (callable(split_method))
if program is None:
program = default_main_program()
self.program = program
self.trainers = trainers
self.optimize_ops = optimize_ops
self._optimize_distributed(
optimize_ops,
program,
params_grads,
pservers=pservers,
trainers=trainers,
split_method=split_method)
def _clone_param(self, block, v):
assert isinstance(v, Parameter)
new_p = Parameter(
block=block,
shape=v.shape,
dtype=v.dtype,
type=v.type,
lod_level=v.lod_level,
stop_gradient=v.stop_gradient,
trainable=v.trainable,
optimize_attr=v.optimize_attr,
regularizer=v.regularizer,
name=v.name)
block.vars[new_p.name] = new_p
# steps to transpile:
# 1. split variable to multiple blocks, align by product(dim[1:]) (width).
# 2. modify trainer program add split_op to each Grad.
# 3. append send_op to trainer.
# 4. append concat_op to trainer to update local weights.
# 5. create new program as parameter server.
# 6. create parameter server program by split_method generated endpoint->VarBlock
pserver_endpoints = pservers.split(",")
# step1
param_list = [pg[0] for pg in params_grads]
grad_list = [pg[1] for pg in params_grads]
# TODO: add split selected rows support
grad_blocks = split_dense_variable(grad_list, len(pserver_endpoints))
param_blocks = split_dense_variable(param_list, len(pserver_endpoints))
# step2
grad_var_mapping = self._append_split_op(program, grad_blocks)
# step3
send_inputs = []
send_outputs = []
for b in grad_blocks: # append by order
varname, block_id, _ = b.split(":")
send_inputs.append(grad_var_mapping[varname][int(block_id)])
param_var_mapping = self._create_vars_from_blocklist(program,
param_blocks)
for b in param_blocks:
varname, block_id, _ = b.split(":")
send_outputs.append(param_var_mapping[varname][int(block_id)])
# let send_op know which endpoint to send which var, eplist is of the same
# order of send_inputs.
eplist = split_method(send_inputs, pserver_endpoints)
# create mapping of endpoint -> splited var to create pserver side program
self.param_grad_ep_mapping = dict()
for i, ep in enumerate(eplist):
param = send_outputs[i]
grad = send_inputs[i]
if not self.param_grad_ep_mapping.has_key(ep):
self.param_grad_ep_mapping[ep] = {"params": [], "grads": []}
self.param_grad_ep_mapping[ep]["params"].append(param)
self.param_grad_ep_mapping[ep]["grads"].append(grad)
send_op = program.global_block().append_op(
type="send",
inputs={"X": send_inputs},
outputs={"Out": send_outputs},
attrs={"endpoints": pserver_endpoints,
"epmap": eplist})
# step4
for varname, splited_var in param_var_mapping.iteritems():
if len(splited_var) <= 1:
continue
orig_param = program.global_block().vars[varname]
concat = program.global_block().append_op(
type="concat",
inputs={"X": splited_var},
outputs={"Out": [orig_param]},
attrs={"axis": 0})
def _create_vars_from_blocklist(self, program, block_list):
block_map = dict()
var_mapping = dict()
for block_str in block_list:
varname, offset, size = block_str.split(":")
if not block_map.has_key(varname):
block_map[varname] = []
block_map[varname].append((long(offset), long(size)))
for varname, splited in block_map.iteritems():
orig_var = program.global_block().vars[varname]
var_mapping[varname] = []
if len(splited) == 1:
var_mapping[varname] = [orig_var]
continue
orig_shape = orig_var.shape
orig_dim1_flatten = 1
if len(orig_shape) >= 2:
orig_dim1_flatten = reduce(lambda x, y: x * y, orig_shape[1:])
for i, block in enumerate(splited):
size = block[1]
rows = size / orig_dim1_flatten
splited_shape = [rows]
if len(orig_shape) >= 2:
splited_shape.extend(orig_shape[1:])
var = program.global_block().create_var(
name="%s.block%d" % (varname, i),
psersistable=False,
dtype=orig_var.dtype,
shape=splited_shape) # flattend splited var
var_mapping[varname].append(var)
return var_mapping
def _clone_var(self, block, var):
assert isinstance(var, Variable)
......@@ -129,34 +192,27 @@ class DistributeTranspiler:
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level,
persistable=var.persistable)
# HACK: let all param in pserver persistable so child
# program in recv can get them
persistable=True)
def _optimize_distributed(self, optimize_ops, program, params_and_grads,
**kwargs):
if kwargs.has_key("split_method"):
split_method = kwargs["split_method"]
else:
split_method = round_robin
assert (callable(split_method))
pserver_endpoints = kwargs["pservers"].split(",")
self.param_grad_map = split_method(params_and_grads, pserver_endpoints)
send_op_ordered_inputs = []
send_op_ordered_outputs = []
epmap = []
for ep, v in self.param_grad_map.iteritems():
send_op_ordered_inputs.extend(v["grads"])
send_op_ordered_outputs.extend(v["params"])
for i in v["grads"]:
epmap.append(ep)
send_op = program.global_block().append_op(
type="send",
inputs={"X": send_op_ordered_inputs
}, # inputs is a list of tensors to be send
outputs={"Out": send_op_ordered_outputs},
attrs={"endpoints": pserver_endpoints,
"epmap": epmap})
def _append_split_op(self, program, gradblocks):
var_mapping = self._create_vars_from_blocklist(program, gradblocks)
for varname, splited_vars in var_mapping.iteritems():
# variable that don't need to split have empty splited_vars
if len(splited_vars) <= 1:
continue
orig_var = program.global_block().vars[varname]
sections = []
for v in splited_vars:
sections.append(v.shape[0])
program.global_block().append_op(
type="split",
inputs={"X": orig_var},
outputs={"Out": splited_vars},
attrs={"sections": sections} # assume split evenly
)
return var_mapping
def get_trainer_program(self):
# remove optimize ops and add a send op to main_program
......@@ -174,69 +230,267 @@ class DistributeTranspiler:
var_list.append(var_each)
return var_list
def get_pserver_program(self, endpoint, optimize_ops):
pserver_program = Program()
for v in self.param_grad_map[endpoint]["params"]:
self._clone_param(pserver_program.global_block(), v)
def _get_optimizer_input_shape(self, op_type, varkey, orig_shape,
param_shape):
"""
Returns the shape for optimizer inputs that need to be reshaped when
Param and Grad is splited to multiple servers.
"""
# HACK(typhoonzero): Should use functions of corresponding optimizer in
# optimizer.py to get the shape, do not bind this in the transpiler.
if op_type == "adam":
if varkey in ["Moment1", "Moment2"]:
return param_shape
elif op_type == "adagrad":
if varkey == "Moment":
return param_shape
elif op_type == "adamax":
if varkey in ["Moment", "InfNorm"]:
return param_shape
elif op_type == "momentum":
if varkey == "Velocity":
return param_shape
elif op_type == "":
if varkey == "Moment":
return param_shape
elif op_type == "sgd":
pass
return orig_shape
optimize_sub_program = Program()
grad_var_names = [
var.name for var in self.param_grad_map[endpoint]["grads"]
def _is_op_on_pserver(self, endpoint, all_ops, idx):
"""
Recursively check if the op need to run on current server.
Assume that ops are in the execution order.
"""
param_names = [
p.name for p in self.param_grad_ep_mapping[endpoint]["params"]
]
for opt_op in optimize_ops:
for _, var in opt_op.inputs.iteritems():
# NOTE: append operators to merge gradients from multiple
# trainers. If trainers == 1, this is not needed.
if self.trainers > 1 and var.name in grad_var_names:
op = all_ops[idx]
if op.inputs.has_key("Param"):
if op.inputs["Param"].name in param_names:
return True
else:
for n in param_names:
if n.startswith(op.inputs["Param"].name+".block") and \
n != op.inputs["Param"].name:
return True
return False
else:
j = idx - 1
while j >= 0:
prev_op = all_ops[j]
prev_output_names = [o.name for o in prev_op.outputs.values()]
prev_input_names = [o.name for o in prev_op.inputs.values()]
found1 = False
found2 = False
for _, v in op.inputs.iteritems():
if v.name in prev_output_names:
found1 = self._is_op_on_pserver(endpoint, all_ops, j)
# later ops may produce output for prev op's next batch use.
for _, v in op.outputs.iteritems():
if v.name in prev_input_names:
found2 = self._is_op_on_pserver(endpoint, all_ops, j)
if found1 or found2:
return True
j -= 1
return False
def _append_pserver_ops(self, program, pserver_program, opt_op, endpoint):
new_inputs = dict()
# update param/grad shape first, then other inputs like
# moment can use the updated shape
for key, var in opt_op.inputs.iteritems():
if key == "Grad":
grad_block = None
for g in self.param_grad_ep_mapping[endpoint]["grads"]:
if g.name.startswith(var.name):
grad_block = g
break
if not grad_block:
# do not append this op if current endpoint
# is not dealing with this grad block
return
merged_var = program.global_block().create_var(
name=grad_block.name,
persistable=grad_block.persistable,
dtype=grad_block.dtype,
shape=grad_block.shape)
# append merging ops if trainers > 1
if self.trainers > 1:
vars2merge = self._create_var_for_trainers(
optimize_sub_program.global_block(), var, self.trainers)
merged_var = optimize_sub_program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
optimize_sub_program.global_block().append_op(
program.global_block(), grad_block, self.trainers)
program.global_block().append_op(
type="sum",
inputs={"X": vars2merge},
outputs={"Out": merged_var})
optimize_sub_program.global_block().append_op(
program.global_block().append_op(
type="scale",
inputs={"X": merged_var},
outputs={"Out": merged_var},
attrs={"scale": 1.0 / float(self.trainers)})
else:
optimize_sub_program.global_block().create_var(
new_inputs[key] = merged_var
elif key == "Param":
# param is already created on global program
param_block = None
for p in self.param_grad_ep_mapping[endpoint]["params"]:
if p.name.startswith(var.name):
param_block = p
break
if not param_block:
return
tmpvar = program.global_block().create_var(
name=param_block.name,
persistable=True,
dtype=param_block.dtype,
shape=param_block.shape)
new_inputs[key] = tmpvar
for key, var in opt_op.inputs.iteritems():
if key in ["Param", "Grad"]:
continue
# update accumulator variable shape
param_shape = new_inputs["Param"].shape
new_shape = self._get_optimizer_input_shape(opt_op.type, key,
var.shape, param_shape)
tmpvar = program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
shape=new_shape)
new_inputs[key] = tmpvar
# create var in pserver program global block.
# TODO(typhoonzero): put blocks in one program to avoid create two
# variables.
pserver_program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=new_shape)
if opt_op.inputs.has_key("Grad"):
if opt_op.inputs["Grad"].name in grad_var_names:
optimize_sub_program.global_block().append_op(
# change outputs ParamOut variable
opt_op.outputs["ParamOut"] = new_inputs["Param"]
program.global_block().append_op(
type=opt_op.type,
inputs=opt_op.inputs,
inputs=new_inputs,
outputs=opt_op.outputs,
attrs=opt_op.attrs)
else:
optimize_sub_program.global_block().append_op(
def _append_pserver_non_opt_ops(self, program, pserver_program, opt_op):
for _, var in opt_op.inputs.iteritems():
program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
pserver_program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
program.global_block().append_op(
type=opt_op.type,
inputs=opt_op.inputs,
outputs=opt_op.outputs,
attrs=opt_op.attrs)
def get_pserver_program(self, endpoint, optimize_ops):
"""
get pserver side program by endpoint
NOTE: assume blocks of the same variable is not distributed
on the same pserver, only change param/grad varnames for
trainers to fetch. For each pserver endpoint, server side
program must be a sub-set of the original optimization program.
"""
# step5
pserver_program = Program()
for v in self.param_grad_ep_mapping[endpoint]["params"]:
self._clone_var(pserver_program.global_block(), v)
# step6
optimize_sub_program = Program()
for idx, opt_op in enumerate(optimize_ops):
is_op_on_pserver = self._is_op_on_pserver(endpoint, optimize_ops,
idx)
if not is_op_on_pserver:
continue
if opt_op.inputs.has_key("Grad"):
self._append_pserver_ops(optimize_sub_program, pserver_program,
opt_op, endpoint)
else:
self._append_pserver_non_opt_ops(optimize_sub_program,
pserver_program, opt_op)
pserver_program.global_block().append_op(
type="recv",
inputs={"RX":
self.param_grad_map[endpoint]["grads"]}, # grads to recv
inputs={"RX": self.param_grad_ep_mapping[endpoint]["grads"]
}, # grads to recv
outputs={},
attrs={
"OptimizeProgram": optimize_sub_program.desc,
"endpoint": endpoint,
"ParamList":
[p.name for p in self.param_grad_map[endpoint]["params"]],
"GradList":
[p.name for p in self.param_grad_map[endpoint]["grads"]],
"ParamList": [
p.name
for p in self.param_grad_ep_mapping[endpoint]["params"]
],
"GradList": [
p.name
for p in self.param_grad_ep_mapping[endpoint]["grads"]
],
"Trainers": self.trainers
})
pserver_program.sync_with_cpp()
return pserver_program
def get_startup_program(self, endpoint, pserver_program):
"""
Get startup program for current parameter server.
Modify operator input variables if there are variables that
was splited to several blocks.
"""
s_prog = Program()
orig_s_prog = framework.default_startup_program()
params = self.param_grad_ep_mapping[endpoint]["params"]
def _get_splited_name_and_shape(varname):
for idx, splited_param in enumerate(params):
pname = splited_param.name
if pname.startswith(varname) and varname != pname:
return pname, splited_param.shape
return "", []
# 1. create vars in pserver program to startup program
pserver_vars = pserver_program.global_block().vars
created_var_map = dict()
for _, var in pserver_vars.iteritems():
tmpvar = s_prog.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
created_var_map[var.name] = tmpvar
# 2. rename op outputs
for op in orig_s_prog.global_block().ops:
new_outputs = dict()
# do not append startup op if var is not on this pserver
op_on_pserver = False
for key, var in op.outputs.iteritems():
newname, _ = _get_splited_name_and_shape(var.name)
if newname:
op_on_pserver = True
new_outputs[key] = created_var_map[newname]
elif var.name in pserver_vars:
op_on_pserver = True
new_outputs[key] = pserver_vars[var.name]
if op_on_pserver:
if op.type in [
"gaussian_random", "fill_constant", "uniform_random"
]:
op.attrs["shape"] = new_outputs["Out"].shape
s_prog.global_block().append_op(
type=op.type,
inputs=op.inputs,
outputs=new_outputs,
attrs=op.attrs)
return s_prog
import framework
from framework import Program, default_main_program, Parameter, Variable
import optimizer
from layer_helper import LayerHelper
def hash_name_to_server(params_grads, pserver_endpoints):
"""
:param param_grads:
:return: a map of pserver endpoint ->
params -> [param list]
grads -> [grad list]
"""
def _hash_param(param_name, total):
return hash(param_name) % total
param_grad_map = dict()
for param, grad in params_grads:
if param.trainable is True and grad is not None:
server_id = _hash_param(param.name, len(pserver_endpoints))
server_for_param = pserver_endpoints[server_id]
if not param_grad_map.has_key(server_for_param):
param_grad_map[server_for_param] = {"params": [], "grads": []}
param_grad_map[server_for_param]["params"].append(param)
param_grad_map[server_for_param]["grads"].append(grad)
return param_grad_map
def round_robin(params_grads, pserver_endpoints):
assert (len(params_grads) > len(pserver_endpoints))
param_grad_map = dict()
pserver_idx = 0
for param, grad in params_grads:
if param.trainable is True:
server_for_param = pserver_endpoints[pserver_idx]
if not param_grad_map.has_key(server_for_param):
param_grad_map[server_for_param] = {"params": [], "grads": []}
param_grad_map[server_for_param]["params"].append(param)
param_grad_map[server_for_param]["grads"].append(grad)
pserver_idx += 1
if pserver_idx >= len(pserver_endpoints):
pserver_idx = 0
return param_grad_map
class SimpleDistributeTranspiler:
def transpile(self,
optimize_ops,
params_grads,
program=None,
pservers="127.0.0.1:6174",
trainers=1,
split_method=round_robin):
"""
Transpile the program to a distributed data-parallelism programs.
The main_program will be transform to use a remote parameter server
to do parameter optimization. And the optimization graph will be put
in to a parameter server program.
Use different methods to split trainable varialbles to different
parameter servers.
Example to run:
exe = fluid.Executor(place)
t = fluid.DistributeTranspiler()
t.transpile(optimize_ops, params_grads, pservers="127.0.0.1:6174", trainers=1)
pserver_endpoint = os.getenv("PSERVER")
if pserver_endpoint:
pserver_prog = t.get_pserver_program(pserver_endpoint, optimize_ops)
exe.run(fluid.default_startup_program())
exe.run(pserver_prog)
else:
feeder = fluid.DataFeeder(feed_list=[images, label], place=place)
exe.run(fluid.default_startup_program())
for pass_id in range(PASS_NUM):
...
:param optimize_ops: op list of optimization, should be the
return value of Optimizer.minimize
:type optimize_ops: list
:param program: program to optimize, default default_main_program
:param pservers: parameter server endpoints like "m1:6174,m2:6174"
:type pservers: string
:return: return a list of programs
"""
if program is None:
program = default_main_program()
self.program = program
self.trainers = trainers
self.optimize_ops = optimize_ops
self._optimize_distributed(
optimize_ops,
program,
params_grads,
pservers=pservers,
trainers=trainers,
split_method=split_method)
def _clone_param(self, block, v):
assert isinstance(v, Parameter)
new_p = Parameter(
block=block,
shape=v.shape,
dtype=v.dtype,
type=v.type,
lod_level=v.lod_level,
stop_gradient=v.stop_gradient,
trainable=v.trainable,
optimize_attr=v.optimize_attr,
regularizer=v.regularizer,
name=v.name)
block.vars[new_p.name] = new_p
def _clone_var(self, block, var):
assert isinstance(var, Variable)
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level,
persistable=var.persistable)
def _optimize_distributed(self, optimize_ops, program, params_and_grads,
**kwargs):
if kwargs.has_key("split_method"):
split_method = kwargs["split_method"]
else:
split_method = round_robin
assert (callable(split_method))
pserver_endpoints = kwargs["pservers"].split(",")
self.param_grad_map = split_method(params_and_grads, pserver_endpoints)
send_op_ordered_inputs = []
send_op_ordered_outputs = []
epmap = []
for ep, v in self.param_grad_map.iteritems():
send_op_ordered_inputs.extend(v["grads"])
send_op_ordered_outputs.extend(v["params"])
for i in v["grads"]:
epmap.append(ep)
send_op = program.global_block().append_op(
type="send",
inputs={"X": send_op_ordered_inputs
}, # inputs is a list of tensors to be send
outputs={"Out": send_op_ordered_outputs},
attrs={"endpoints": pserver_endpoints,
"epmap": epmap})
def get_trainer_program(self):
# remove optimize ops and add a send op to main_program
self.program.global_block().delete_ops(self.optimize_ops)
return self.program
def _create_var_for_trainers(self, block, var, trainers):
var_list = []
for i in xrange(trainers):
var_each = block.create_var(
name="%s.trainer_%d" % (var.name, i),
psersistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
var_list.append(var_each)
return var_list
def get_pserver_program(self, endpoint, optimize_ops):
pserver_program = Program()
for v in self.param_grad_map[endpoint]["params"]:
self._clone_param(pserver_program.global_block(), v)
optimize_sub_program = Program()
grad_var_names = [
var.name for var in self.param_grad_map[endpoint]["grads"]
]
for opt_op in optimize_ops:
for _, var in opt_op.inputs.iteritems():
# NOTE: append operators to merge gradients from multiple
# trainers. If trainers == 1, this is not needed.
if self.trainers > 1 and var.name in grad_var_names:
vars2merge = self._create_var_for_trainers(
optimize_sub_program.global_block(), var, self.trainers)
merged_var = optimize_sub_program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
optimize_sub_program.global_block().append_op(
type="sum",
inputs={"X": vars2merge},
outputs={"Out": merged_var})
optimize_sub_program.global_block().append_op(
type="scale",
inputs={"X": merged_var},
outputs={"Out": merged_var},
attrs={"scale": 1.0 / float(self.trainers)})
else:
optimize_sub_program.global_block().create_var(
name=var.name,
persistable=var.persistable,
dtype=var.dtype,
shape=var.shape)
if opt_op.inputs.has_key("Grad"):
if opt_op.inputs["Grad"].name in grad_var_names:
optimize_sub_program.global_block().append_op(
type=opt_op.type,
inputs=opt_op.inputs,
outputs=opt_op.outputs,
attrs=opt_op.attrs)
else:
optimize_sub_program.global_block().append_op(
type=opt_op.type,
inputs=opt_op.inputs,
outputs=opt_op.outputs,
attrs=opt_op.attrs)
pserver_program.global_block().append_op(
type="recv",
inputs={"RX":
self.param_grad_map[endpoint]["grads"]}, # grads to recv
outputs={},
attrs={
"OptimizeProgram": optimize_sub_program.desc,
"endpoint": endpoint,
"ParamList":
[p.name for p in self.param_grad_map[endpoint]["params"]],
"GradList":
[p.name for p in self.param_grad_map[endpoint]["grads"]],
"Trainers": self.trainers
})
pserver_program.sync_with_cpp()
return pserver_program
def hash_name(varlist, pserver_endpoints):
"""
hash variable names to several endpoints.
:param varlist: a list of Variables
:return: a map of pserver endpoint -> varname
"""
def _hash_block(block_str, total):
return hash(block_str) % total
eplist = []
for var in varlist:
server_id = _hash_block(var.name(), len(pserver_endpoints))
server_for_param = pserver_endpoints[server_id]
eplist.append(server_for_param)
return eplist
def round_robin(varlist, pserver_endpoints):
"""
distribute variables to several endpoints.
"""
assert (len(varlist) > len(pserver_endpoints))
eplist = []
pserver_idx = 0
for var in varlist:
server_for_param = pserver_endpoints[pserver_idx]
eplist.append(server_for_param)
pserver_idx += 1
if pserver_idx >= len(pserver_endpoints):
pserver_idx = 0
return eplist
......@@ -5,3 +5,4 @@ foreach(src ${TEST_OPS})
endforeach()
add_subdirectory(book)
add_subdirectory(book_distribute)
file(GLOB TEST_OPS RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "test_*.py")
string(REPLACE ".py" "" TEST_OPS "${TEST_OPS}")
foreach(src ${TEST_OPS})
py_test(${src} SRCS ${src}.py)
endforeach()
import math
import unittest
from paddle.v2.fluid.distribute_transpiler import split_dense_variable
import paddle.v2.fluid as fluid
import paddle.v2.fluid.core as core
import random
class TestSplitVar(unittest.TestCase):
def test_check_output(self):
# split below shapes to 10 servers
shapes = [[3, 5], [1024], [28, 784], [8, 1020], [800, 10]]
expected_sizes = [
[15], [1024],
[2352, 2352, 2352, 2352, 2352, 2352, 2352, 2352, 2352, 784],
[2040, 2040, 2040, 2040],
[1150, 1150, 1150, 1150, 1150, 1150, 1100]
]
var_list = []
program = fluid.Program()
for shape in shapes:
var = program.global_block().create_var(
name=str(random.randint(10000, 99999)),
persistable=True,
# dtype=core.VarDesc.VarType.LOD_TENSOR,
shape=shape)
var_list.append(var)
blocks = split_dense_variable(var_list, 10)
all_sizes = []
for s in expected_sizes:
for s2 in s:
all_sizes.append(s2)
for i, block_str in enumerate(blocks):
varname, block_id, size = block_str.split(":")
self.assertEqual(int(size), all_sizes[i])
if __name__ == '__main__':
unittest.main()
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册