提交 8cbefd1a 编写于 作者: M Michał Gallus 提交者: Yan Chunwei

Fuse Conv+BN+SkipConnectionAdd+ReLU with transpiler temporarily (#13350)

上级 f00081a4
......@@ -300,6 +300,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
std::vector<int> paddings = ctx.Attr<std::vector<int>>("paddings");
std::vector<int> dilations = ctx.Attr<std::vector<int>>("dilations");
bool fuse_relu = ctx.Attr<bool>("fuse_relu");
bool fuse_eltwise = ctx.Attr<bool>("fuse_eltwise");
int groups = ctx.Attr<int>("groups");
// TODO: add support for dilation
......@@ -366,12 +367,13 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias_tz = paddle::framework::vectorize2int(bias->dims());
auto bias_md = platform::MKLDNNMemDesc(
bias_tz, platform::MKLDNNGetDataType<T>(), memory::format::x);
conv_pd =
ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md, strides,
paddings, mkldnn_engine, fuse_relu);
conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, bias_md, dst_md,
strides, paddings, mkldnn_engine,
fuse_relu, fuse_eltwise);
} else {
conv_pd = ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides,
paddings, mkldnn_engine, fuse_relu);
conv_pd =
ConvFwdPrimitiveDesc(src_md, weights_md, dst_md, strides, paddings,
mkldnn_engine, fuse_relu, fuse_eltwise);
}
// Save conv_pd/src_memory/weights_memory for backward pass
dev_ctx.SetBlob(key_conv_pd, conv_pd);
......@@ -421,16 +423,26 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
}
private:
mkldnn::primitive_attr AddRelu() const {
mkldnn::primitive_attr CreatePostOps(bool fuse_relu,
bool fuse_eltwise) const {
mkldnn::primitive_attr conv_attr;
mkldnn::post_ops post_operations;
// Fusion with Elementwise layer relies on adding a sum post-operation with
// the scale parameter. It is assumed that when fuse_eltwise is true, the
// Output tensor contains the data coming from residual connection. The
// result of this post_op is: Output = scale * Output + Conv_Out.
if (fuse_eltwise) {
post_operations.append_sum(1.0f);
}
// Fusion with ReLU layer is executed through the PostOps feature. Create a
// PostOps object and configure it to execute an eltwise relu operation.
mkldnn::primitive_attr conv_attr;
if (fuse_relu) {
constexpr float scale = 1.0f;
constexpr float negative_slope = 0.0f;
constexpr float placeholder = 0.0f;
mkldnn::post_ops post_operations;
post_operations.append_eltwise(scale, mkldnn::algorithm::eltwise_relu,
negative_slope, placeholder);
}
conv_attr.set_post_ops(post_operations);
return conv_attr;
}
......@@ -439,8 +451,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
ConvFwdPrimitiveDesc(const memory::desc& src, const memory::desc& weights,
const memory::desc& dst, const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::engine& engine,
const bool fuse_relu) const {
const mkldnn::engine& engine, const bool fuse_relu,
const bool fuse_eltwise) const {
memory::dims stride_dims = {strides[0], strides[1]};
memory::dims padding_dims = {paddings[0], paddings[1]};
......@@ -449,10 +461,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
dst, stride_dims, padding_dims, padding_dims,
mkldnn::padding_kind::zero);
mkldnn::primitive_attr conv_attr;
if (fuse_relu) {
conv_attr = AddRelu();
}
mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_eltwise);
auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
conv_desc, conv_attr, engine);
......@@ -466,8 +475,8 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
const memory::desc& bias, const memory::desc& dst,
const std::vector<int>& strides,
const std::vector<int>& paddings,
const mkldnn::engine& engine,
const bool fuse_relu) const {
const mkldnn::engine& engine, const bool fuse_relu,
const bool fuse_eltwise) const {
memory::dims stride_dims = {strides[0], strides[1]};
memory::dims padding_dims = {paddings[0], paddings[1]};
......@@ -476,10 +485,7 @@ class ConvMKLDNNOpKernel : public paddle::framework::OpKernel<T> {
bias, dst, stride_dims, padding_dims, padding_dims,
mkldnn::padding_kind::zero);
mkldnn::primitive_attr conv_attr;
if (fuse_relu) {
conv_attr = AddRelu();
}
mkldnn::primitive_attr conv_attr = CreatePostOps(fuse_relu, fuse_eltwise);
auto p_conv_pd = new mkldnn::convolution_forward::primitive_desc(
conv_desc, conv_attr, engine);
......
......@@ -164,6 +164,11 @@ void Conv2DOpMaker::Make() {
.SetDefault(false);
AddAttr<bool>("fuse_relu", "(bool, default false) Only used in mkldnn kernel")
.SetDefault(false);
AddAttr<bool>("fuse_eltwise",
"(bool, default false) Only used in mkldnn kernel. Used "
"whenever convolution output is connected via skip connection "
"to a previous layer.")
.SetDefault(false);
AddAttr<std::string>(
"data_format",
"(string, default NCHW) Only used in "
......
......@@ -65,8 +65,43 @@ class InferenceTranspiler(object):
if use_mkldnn:
self._fuse_conv_bias_mkldnn(program)
self._fuse_conv_relu_mkldnn(program)
self._fuse_conv_eltwise_mkldnn(program)
self._fuse_conv_relu_mkldnn(
program) # ResNet residual block merging
self._fuse_bn_relu_mkldnn(program)
def _fuse_conv_eltwise_mkldnn(self, program):
'''
Transpile the program fusing elementwise_add into conv for MKLDNN
program. Elementwise add following convolution OP can be fused by adding
'fuse_eltwise' attribute to convolution OP and replacing its output
Tensor with second parameter of elementwise_add.
The result of fuse is:
- before:
- conv->elementwise_add->any_other_op
- after:
- conv->any_other_op
:param program: program to transpile
:type program: Program
'''
self.block = program.block(0)
i = 0
while i < len(self.block.ops):
current_op = self.block.ops[i]
if current_op.type in ['conv2d']:
next_op = self.block.ops[i + 1]
if next_op.type == 'elementwise_add':
self._fuse_conv_eltwise(current_op, next_op)
self.block._remove_op(i + 1) # Remove elementwise_add
i = i + 1
self._adjust_input()
self._remove_unused_var()
# TODO(luotao): use clone() method to flush the program.desc in force,
# since some large program.desc will not be flushed immediately.
# And a better solution will be considered later.
program = program.clone()
def _fuse_conv_relu_mkldnn(self, program):
'''
Transpile the program by fused relu activation for MKLDNN program.
......@@ -88,9 +123,9 @@ class InferenceTranspiler(object):
if current_op.type in ['conv2d']:
next_op = self.block.ops[i + 1]
if next_op.type == 'relu':
# modify conv OP to include relu
# modify bnorm OP to include relu
current_op.set_attr("fuse_relu", True)
# remove conv OP
# remove relu OP
self.block._remove_op(i + 1)
i = i + 1
......@@ -409,6 +444,20 @@ class InferenceTranspiler(object):
outputs={"Output": out_var},
attrs=attrs)
def _fuse_conv_eltwise(self, conv_op, eltwise_op):
'''
fuse the conv op with elementwise_add
:param conv_op: convolution operator
:type conv_op: Operator
:param eltwise_op: operator adding data from skip connection
:type eltwise_op: Operator
'''
conv_op.set_attr("fuse_eltwise", True)
self.input_map[conv_op.output("Output")[0]] = eltwise_op.input("Y")[0]
self.input_map[eltwise_op.output("Out")[0]] = eltwise_op.input("Y")[0]
def _adjust_input(self):
for i in range(len(self.block.ops)):
current_op = self.block.ops[i]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册