Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8b9938ac
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8b9938ac
编写于
5月 23, 2018
作者:
Y
yangyaming
提交者:
fengjiayi
8月 31, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Refine code.
上级
5d901416
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
183 addition
and
169 deletion
+183
-169
paddle/fluid/operators/math/sequence_padding.cc
paddle/fluid/operators/math/sequence_padding.cc
+63
-60
paddle/fluid/operators/math/sequence_padding.cu
paddle/fluid/operators/math/sequence_padding.cu
+72
-64
paddle/fluid/operators/math/sequence_padding.h
paddle/fluid/operators/math/sequence_padding.h
+34
-35
paddle/fluid/operators/math/sequence_padding_test.cc
paddle/fluid/operators/math/sequence_padding_test.cc
+7
-3
paddle/fluid/operators/sequence_pad_op.cc
paddle/fluid/operators/sequence_pad_op.cc
+1
-1
paddle/fluid/operators/warpctc_op.h
paddle/fluid/operators/warpctc_op.h
+6
-6
未找到文件。
paddle/fluid/operators/math/sequence_padding.cc
浏览文件 @
8b9938ac
...
...
@@ -18,111 +18,114 @@ namespace paddle {
namespace
operators
{
namespace
math
{
template
<
typename
T
,
PaddingLayout
padding_layout
>
template
<
typename
T
>
void
CopyDataCPU
(
framework
::
LoDTensor
*
seq_tensor
,
framework
::
Tensor
*
pad
ding
_tensor
,
const
framework
::
Vector
<
size_t
>&
abs
_offset
,
framework
::
Tensor
*
pad_tensor
,
const
framework
::
Vector
<
size_t
>&
seq
_offset
,
const
int64_t
&
max_seq_len
,
const
int64_t
&
seq_width
,
bool
seq_to_padding
,
bool
norm_by_len
)
{
bool
seq_to_pad
,
bool
norm_by_len
,
OutputLayout
output_layout
)
{
T
*
seq_data
=
seq_tensor
->
data
<
T
>
();
T
*
pad
ding_data
=
padding
_tensor
->
data
<
T
>
();
T
*
pad
_data
=
pad
_tensor
->
data
<
T
>
();
int64_t
seq_num
=
abs
_offset
.
size
()
-
1
;
int64_t
seq_num
=
seq
_offset
.
size
()
-
1
;
for
(
int64_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
int64_t
seq_start
=
abs_offset
[
i
];
int64_t
seq_len
=
abs_offset
[
i
+
1
]
-
seq_start
;
int64_t
seq_start
=
seq_offset
[
i
];
int64_t
seq_len
=
seq_offset
[
i
+
1
]
-
seq_start
;
T
scale
=
norm_by_len
?
(
1.0
f
/
static_cast
<
T
>
(
seq_len
))
:
1.0
f
;
for
(
int64_t
j
=
0
;
j
<
seq_len
;
++
j
)
{
for
(
int64_t
k
=
0
;
k
<
seq_width
;
++
k
)
{
size_t
padding_offset
=
0
;
if
(
padding_layout
==
BATCH_LENGTH_WIDTH
)
{
padding_offset
=
(
i
*
max_seq_len
*
seq_width
)
+
j
*
seq_width
+
k
;
size_t
pad_data_idx
=
0
;
size_t
seq_data_idx
=
(
seq_start
+
j
)
*
seq_width
+
k
;
if
(
output_layout
==
kBatchLengthWidth
)
{
pad_data_idx
=
(
i
*
max_seq_len
+
j
)
*
seq_width
+
k
;
}
else
{
pad
ding_offset
=
(
j
*
seq_num
*
seq_width
)
+
i
*
seq_width
+
k
;
pad
_data_idx
=
(
j
*
seq_num
+
i
)
*
seq_width
+
k
;
}
if
(
seq_to_padding
)
{
padding_data
[
padding_offset
]
=
seq_data
[(
seq_start
+
j
)
*
seq_width
+
k
]
*
scale
;
if
(
seq_to_pad
)
{
pad_data
[
pad_data_idx
]
=
seq_data
[
seq_data_idx
]
*
scale
;
}
else
{
seq_data
[(
seq_start
+
j
)
*
seq_width
+
k
]
=
padding_data
[
padding_offset
]
*
scale
;
seq_data
[
seq_data_idx
]
=
pad_data
[
pad_data_idx
]
*
scale
;
}
}
}
}
}
template
<
typename
T
,
PaddingLayout
padding_layout
>
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
T
,
padding_layout
>
{
template
<
typename
T
>
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
const
framework
::
LoDTensor
&
seq_tensor
,
framework
::
Tensor
*
padding_tensor
,
T
padding_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
)
{
ValidateLoD
(
seq_tensor
,
lod_level
);
framework
::
Tensor
*
pad_tensor
,
T
pad_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
,
OutputLayout
output_layout
=
kBatchLengthWidth
)
{
CheckLoD
(
seq_tensor
,
lod_level
);
auto
&
lod
=
seq_tensor
.
lod
();
auto
&
abs
_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
&
seq
_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
seq_dims
=
seq_tensor
.
dims
();
auto
padding_dims
=
padding_tensor
->
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
lod
,
lod_level
);
int64_t
seq_num
=
abs_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
.
numel
()
/
seq_dims
[
0
];
int64_t
numel
=
max_seq_len
*
seq_num
*
seq_width
;
auto
seq_tensor_dims
=
seq_tensor
.
dims
();
auto
pad_tensor_dims
=
pad_tensor
->
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
seq_offset
);
int64_t
seq_num
=
seq_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
.
numel
()
/
seq_tensor_dims
[
0
];
ValidateShape
(
seq_dims
,
abs_offset
.
back
(),
padding
_dims
,
max_seq_len
,
seq_num
,
seq_width
,
padding
_layout
);
CheckDims
(
seq_tensor_dims
,
seq_offset
.
back
(),
pad_tensor
_dims
,
max_seq_len
,
seq_num
,
seq_width
,
output
_layout
);
T
*
pad
ding_data
=
padding
_tensor
->
data
<
T
>
();
T
*
pad
_data
=
pad
_tensor
->
data
<
T
>
();
memset
(
pad
ding_data
,
padding_value
,
numel
*
sizeof
(
T
));
memset
(
pad
_data
,
pad_value
,
max_seq_len
*
seq_num
*
seq_width
*
sizeof
(
T
));
CopyDataCPU
<
T
,
padding_layout
>
(
const_cast
<
framework
::
LoDTensor
*>
(
&
seq_tensor
),
padding_tensor
,
abs_offset
,
max_seq_len
,
seq_width
,
true
/* seq_to_padding */
,
norm_by_times
);
CopyDataCPU
<
T
>
(
const_cast
<
framework
::
LoDTensor
*>
(
&
seq_tensor
),
pad_tensor
,
seq_offset
,
max_seq_len
,
seq_width
,
true
/* seq_to_pad */
,
norm_by_times
,
output_layout
);
}
};
template
<
typename
T
,
PaddingLayout
padding_layout
>
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
T
,
padding_layout
>
{
template
<
typename
T
>
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CPUDeviceContext
&
context
,
framework
::
LoDTensor
*
seq_tensor
,
const
framework
::
Tensor
&
padding_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
)
{
ValidateLoD
(
*
seq_tensor
,
lod_level
);
const
framework
::
Tensor
&
pad_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
,
OutputLayout
output_layout
=
kBatchLengthWidth
)
{
CheckLoD
(
*
seq_tensor
,
lod_level
);
auto
&
lod
=
seq_tensor
->
lod
();
auto
&
abs
_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
&
seq
_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
&
seq_dims
=
seq_tensor
->
dims
();
auto
&
pad
ding_dims
=
padding
_tensor
.
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
lod
,
lod_level
);
int64_t
seq_num
=
abs
_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
->
numel
()
/
seq_dims
[
0
];
auto
&
seq_
tensor_
dims
=
seq_tensor
->
dims
();
auto
&
pad
_tensor_dims
=
pad
_tensor
.
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
seq_offset
);
int64_t
seq_num
=
seq
_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
->
numel
()
/
seq_
tensor_
dims
[
0
];
ValidateShape
(
seq_dims
,
abs_offset
.
back
(),
padding
_dims
,
max_seq_len
,
seq_num
,
seq_width
,
padding
_layout
);
CheckDims
(
seq_tensor_dims
,
seq_offset
.
back
(),
pad_tensor
_dims
,
max_seq_len
,
seq_num
,
seq_width
,
output
_layout
);
T
*
seq_data
=
seq_tensor
->
data
<
T
>
();
memset
(
seq_data
,
static_cast
<
T
>
(
0
),
seq_tensor
->
numel
()
*
sizeof
(
T
));
CopyDataCPU
<
T
,
padding_layout
>
(
seq_tensor
,
const_cast
<
framework
::
Tensor
*>
(
&
padding_tensor
),
abs_offset
,
max_seq_len
,
seq_width
,
false
/* seq_to_padding */
,
norm_by_times
);
CopyDataCPU
<
T
>
(
seq_tensor
,
const_cast
<
framework
::
Tensor
*>
(
&
pad_tensor
),
seq_offset
,
max_seq_len
,
seq_width
,
false
/* seq_to_pad */
,
norm_by_times
,
output_layout
);
}
};
template
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
float
,
LENGTH_BATCH_WIDTH
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
float
,
LENGTH_BATCH_WIDTH
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
int
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
int64_t
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
double
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
int
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
int64_t
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
float
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CPUDeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/sequence_padding.cu
浏览文件 @
8b9938ac
...
...
@@ -21,74 +21,74 @@ namespace math {
template
<
typename
T
,
bool
Padding
>
__global__
void
SequencePaddingKernel
(
T
*
padding_data
,
T
*
seq_data
,
const
size_t
*
abs_offset
,
const
size_t
&
seq_num
,
const
size_t
&
max_seq_len
,
const
size_t
&
seq_width
,
const
PaddingLayout
&
padding_layout
,
bool
norm_by_times
=
false
,
const
T
&
padding_value
=
0
)
{
size_t
padding_idx
=
blockIdx
.
y
;
size_t
seq_start
=
abs_offset
[
padding_idx
];
size_t
seq_len
=
abs_offset
[
padding_idx
+
1
]
-
seq_start
;
T
*
pad_data
,
T
*
seq_data
,
const
size_t
*
seq_offset
,
const
size_t
&
seq_num
,
const
size_t
&
max_seq_len
,
const
size_t
&
seq_width
,
bool
norm_by_times
,
const
T
&
pad_value
,
const
OutputLayout
&
output_layout
)
{
size_t
seq_idx
=
blockIdx
.
y
;
size_t
seq_start
=
seq_offset
[
seq_idx
];
size_t
seq_len
=
seq_offset
[
seq_idx
+
1
]
-
seq_start
;
size_t
seq_idx
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
size_t
seq_
step_
idx
=
blockIdx
.
x
*
blockDim
.
y
+
threadIdx
.
y
;
size_t
seq_
offset
=
(
seq_start
+
seq
_idx
)
*
seq_width
;
size_t
seq_
data_offset
=
(
seq_start
+
seq_step
_idx
)
*
seq_width
;
size_t
pad
ding
_offset
=
0
;
size_t
pad
_data
_offset
=
0
;
if
(
padding_layout
==
LENGTH_BATCH_WIDTH
)
{
pad
ding_offset
=
(
seq_idx
*
seq_num
+
padding
_idx
)
*
seq_width
;
if
(
output_layout
==
kLengthBatchWidth
)
{
pad
_data_offset
=
(
seq_step_idx
*
seq_num
+
seq
_idx
)
*
seq_width
;
}
else
{
pad
ding_offset
=
(
padding_idx
*
max_seq_len
+
seq
_idx
)
*
seq_width
;
pad
_data_offset
=
(
seq_idx
*
max_seq_len
+
seq_step
_idx
)
*
seq_width
;
}
if
(
seq_idx
<
seq_len
)
{
if
(
seq_
step_
idx
<
seq_len
)
{
T
scale
=
norm_by_times
?
(
1.0
f
/
static_cast
<
T
>
(
seq_len
))
:
1.0
f
;
if
(
Padding
)
{
/* seq
uence -> padding
*/
/* seq
-> pad
*/
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq_width
;
i
+=
blockDim
.
x
)
{
pad
ding_data
[
padding_offset
+
i
]
=
scale
*
seq_data
[
seq
_offset
+
i
];
pad
_data
[
pad_data_offset
+
i
]
=
scale
*
seq_data
[
seq_data
_offset
+
i
];
}
}
else
{
/* pad
ding -> sequence
*/
/* pad
-> seq
*/
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq_width
;
i
+=
blockDim
.
x
)
{
seq_data
[
seq_
offset
+
i
]
=
scale
*
padding_data
[
padding
_offset
+
i
];
seq_data
[
seq_
data_offset
+
i
]
=
scale
*
pad_data
[
pad_data
_offset
+
i
];
}
}
}
else
if
(
seq_idx
<
max_seq_len
)
{
}
else
if
(
seq_
step_
idx
<
max_seq_len
)
{
if
(
Padding
)
{
/* seq
uence -> padding
*/
/* seq
-> pad
*/
for
(
size_t
i
=
threadIdx
.
x
;
i
<
seq_width
;
i
+=
blockDim
.
x
)
{
pad
ding_data
[
padding_offset
+
i
]
=
padding
_value
;
pad
_data
[
pad_data_offset
+
i
]
=
pad
_value
;
}
}
}
}
template
<
typename
T
,
PaddingLayout
padding_layout
>
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
T
,
padding_layout
>
{
template
<
typename
T
>
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
const
framework
::
LoDTensor
&
seq_tensor
,
framework
::
Tensor
*
padding_tensor
,
T
padding_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
)
{
ValidateLoD
(
seq_tensor
,
lod_level
);
framework
::
Tensor
*
pad_tensor
,
T
pad_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
,
OutputLayout
output_layout
=
kBatchLengthWidth
)
{
CheckLoD
(
seq_tensor
,
lod_level
);
auto
&
lod
=
seq_tensor
.
lod
();
auto
&
abs
_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
&
seq
_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
seq_dims
=
seq_tensor
.
dims
();
auto
pad
ding_dims
=
padding
_tensor
->
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
lod
,
lod_level
);
const
int64_t
seq_num
=
abs
_offset
.
size
()
-
1
;
const
int64_t
seq_width
=
seq_tensor
.
numel
()
/
seq
_dims
[
0
];
auto
seq_
tensor_
dims
=
seq_tensor
.
dims
();
auto
pad
_tensor_dims
=
pad
_tensor
->
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
seq_offset
);
int64_t
seq_num
=
seq
_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
.
numel
()
/
seq_tensor
_dims
[
0
];
ValidateShape
(
seq_dims
,
abs_offset
.
back
(),
padding
_dims
,
max_seq_len
,
seq_num
,
seq_width
,
padding
_layout
);
CheckDims
(
seq_tensor_dims
,
seq_offset
.
back
(),
pad_tensor
_dims
,
max_seq_len
,
seq_num
,
seq_width
,
output
_layout
);
if
(
!
norm_by_times
&&
seq_num
==
1UL
)
{
TensorCopy
(
seq_tensor
,
context
.
GetPlace
(),
context
,
pad
ding
_tensor
);
pad
ding_tensor
->
Resize
(
padding
_dims
);
TensorCopy
(
seq_tensor
,
context
.
GetPlace
(),
context
,
pad_tensor
);
pad
_tensor
->
Resize
(
pad_tensor
_dims
);
return
;
}
...
...
@@ -107,37 +107,40 @@ class PaddingLoDTensorFunctor<platform::CUDADeviceContext, T, padding_layout> {
dim3
grid
(
grid_dim_x
,
grid_dim_y
);
const
T
*
seq_data
=
seq_tensor
.
data
<
T
>
();
T
*
pad
ding_data
=
padding
_tensor
->
data
<
T
>
();
T
*
pad
_data
=
pad
_tensor
->
data
<
T
>
();
SequencePaddingKernel
<
T
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
pad
ding
_data
,
const_cast
<
T
*>
(
seq_data
),
abs
_offset
.
CUDAData
(
context
.
GetPlace
()),
seq_num
,
max_seq_len
,
seq_width
,
padding_layout
,
norm_by_times
,
padding_value
);
pad_data
,
const_cast
<
T
*>
(
seq_data
),
seq
_offset
.
CUDAData
(
context
.
GetPlace
()),
seq_num
,
max_seq_len
,
seq_width
,
norm_by_times
,
pad_value
,
output_layout
);
}
};
template
<
typename
T
,
PaddingLayout
padding_layout
>
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
T
,
padding_layout
>
{
template
<
typename
T
>
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
T
>
{
public:
void
operator
()(
const
platform
::
CUDADeviceContext
&
context
,
framework
::
LoDTensor
*
seq_tensor
,
const
framework
::
Tensor
&
padding_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
)
{
ValidateLoD
(
*
seq_tensor
,
lod_level
);
const
framework
::
Tensor
&
pad_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
,
OutputLayout
output_layout
=
kBatchLengthWidth
)
{
CheckLoD
(
*
seq_tensor
,
lod_level
);
auto
&
lod
=
seq_tensor
->
lod
();
auto
&
abs
_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
&
seq
_offset
=
framework
::
ToAbsOffset
(
lod
)[
lod_level
];
auto
seq_dims
=
seq_tensor
->
dims
();
auto
padding_dims
=
padding_tensor
.
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
lod
,
lod_level
);
int64_t
seq_num
=
abs_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
->
numel
()
/
seq_dims
[
0
];
auto
seq_tensor_dims
=
seq_tensor
->
dims
();
auto
pad_tensor_dims
=
pad_tensor
.
dims
();
int64_t
max_seq_len
=
MaximumSequenceLength
(
seq_offset
);
int64_t
seq_num
=
seq_offset
.
size
()
-
1
;
int64_t
seq_width
=
seq_tensor
->
numel
()
/
seq_tensor_dims
[
0
];
CheckDims
(
seq_tensor_dims
,
seq_offset
.
back
(),
pad_tensor_dims
,
max_seq_len
,
seq_num
,
seq_width
,
output_layout
);
if
(
!
norm_by_times
&&
seq_num
==
1UL
)
{
TensorCopy
(
pad
ding
_tensor
,
context
.
GetPlace
(),
context
,
seq_tensor
);
seq_tensor
->
Resize
(
seq_dims
);
TensorCopy
(
pad_tensor
,
context
.
GetPlace
(),
context
,
seq_tensor
);
seq_tensor
->
Resize
(
seq_
tensor_
dims
);
return
;
}
...
...
@@ -155,20 +158,25 @@ class UnpaddingLoDTensorFunctor<platform::CUDADeviceContext, T,
size_t
grid_dim_y
=
seq_num
;
dim3
grid
(
grid_dim_x
,
grid_dim_y
);
const
T
*
pad
ding_data
=
padding
_tensor
.
data
<
T
>
();
const
T
*
pad
_data
=
pad
_tensor
.
data
<
T
>
();
T
*
seq_data
=
seq_tensor
->
data
<
T
>
();
SequencePaddingKernel
<
T
,
1
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
const_cast
<
T
*>
(
pad
ding
_data
),
seq_data
,
abs
_offset
.
CUDAData
(
context
.
GetPlace
()),
seq_num
,
max_seq_len
,
seq_width
,
padding_layout
,
norm_by_times
);
SequencePaddingKernel
<
T
,
0
><<<
grid
,
threads
,
0
,
context
.
stream
()
>>>
(
const_cast
<
T
*>
(
pad_data
),
seq_data
,
seq
_offset
.
CUDAData
(
context
.
GetPlace
()),
seq_num
,
max_seq_len
,
seq_width
,
norm_by_times
,
static_cast
<
T
>
(
0
),
output_layout
);
}
};
template
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
float
,
LENGTH_BATCH_WIDTH
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
float
,
LENGTH_BATCH_WIDTH
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
int
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
int64_t
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
PaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
double
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
int
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
int64_t
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
float
>;
template
class
UnpaddingLoDTensorFunctor
<
platform
::
CUDADeviceContext
,
double
>;
}
// namespace math
}
// namespace operators
...
...
paddle/fluid/operators/math/sequence_padding.h
浏览文件 @
8b9938ac
...
...
@@ -22,49 +22,46 @@ namespace paddle {
namespace
operators
{
namespace
math
{
enum
PaddingLayout
{
BATCH_LENGTH_WIDTH
,
LENGTH_BATCH_WIDTH
};
enum
OutputLayout
{
kBatchLengthWidth
=
0
,
kLengthBatchWidth
};
inline
static
size_t
MaximumSequenceLength
(
const
framework
::
LoD
&
lod
,
const
size_t
level
)
{
const
size_t
seq_num
=
lod
[
level
]
.
size
()
-
1
;
inline
static
size_t
MaximumSequenceLength
(
const
framework
::
Vector
<
size_t
>&
seq_offset
)
{
size_t
seq_num
=
seq_offset
.
size
()
-
1
;
size_t
max_seq_len
=
0
;
auto
abs_offset
=
framework
::
ToAbsOffset
(
lod
)[
level
];
for
(
size_t
i
=
0
;
i
<
seq_num
;
++
i
)
{
max_seq_len
=
std
::
max
(
max_seq_len
,
abs_offset
[
i
+
1
]
-
abs
_offset
[
i
]);
max_seq_len
=
std
::
max
(
max_seq_len
,
seq_offset
[
i
+
1
]
-
seq
_offset
[
i
]);
}
return
max_seq_len
;
}
inline
static
void
Validate
LoD
(
const
framework
::
LoDTensor
&
seq_tensor
,
inline
static
void
Check
LoD
(
const
framework
::
LoDTensor
&
seq_tensor
,
const
size_t
&
lod_level
)
{
PADDLE_ENFORCE
(
lod_level
<
seq_tensor
.
lod
().
size
(),
"Invalid
`lod_level`
which should be at least 0 and less "
"than maximum lod level of
`seq_tensor`
."
);
"Invalid
lod level
which should be at least 0 and less "
"than maximum lod level of
sequence tensor
."
);
}
inline
static
void
ValidateShape
(
const
framework
::
DDim
&
seq_tensor_dims
,
const
size_t
&
abs_offset_back_value
,
const
framework
::
DDim
&
padding_tensor_dims
,
const
int64_t
&
max_seq_len
,
const
int64_t
&
seq_num
,
inline
static
void
CheckDims
(
const
framework
::
DDim
&
seq_tensor_dims
,
const
size_t
&
last_offset
,
const
framework
::
DDim
&
pad_tensor_dims
,
const
int64_t
&
max_seq_len
,
const
int64_t
&
seq_num
,
const
int64_t
&
seq_width
,
const
PaddingLayout
&
padding_layout
)
{
PADDLE_ENFORCE_EQ
(
static_cast
<
size_t
>
(
seq_tensor_dims
[
0
]),
abs_offset_back_value
,
"The 1st dimension of `seq_tensor` should be equal to "
"sum of lengths of all sequences."
);
const
OutputLayout
&
output_layout
)
{
PADDLE_ENFORCE_EQ
(
static_cast
<
size_t
>
(
seq_tensor_dims
[
0
]),
last_offset
,
"Value of 1st dimension of the sequence tensor should be "
"equal to sum of lengths of all sequences."
);
PADDLE_ENFORCE_EQ
(
pad
ding
_tensor_dims
.
size
(),
3UL
,
"
`padding_tensor`
should be a 3-D tensor."
);
PADDLE_ENFORCE_EQ
(
pad_tensor_dims
.
size
(),
3UL
,
"
Padded tensor
should be a 3-D tensor."
);
if
(
padding_layout
==
BATCH_LENGTH_WIDTH
)
{
PADDLE_ENFORCE_EQ
(
pad
ding
_tensor_dims
,
if
(
output_layout
==
kBatchLengthWidth
)
{
PADDLE_ENFORCE_EQ
(
pad_tensor_dims
,
framework
::
make_ddim
({
seq_num
,
max_seq_len
,
seq_width
}));
}
else
if
(
padding_layout
==
LENGTH_BATCH_WIDTH
)
{
PADDLE_ENFORCE_EQ
(
pad
ding
_tensor_dims
,
}
else
if
(
output_layout
==
kLengthBatchWidth
)
{
PADDLE_ENFORCE_EQ
(
pad_tensor_dims
,
framework
::
make_ddim
({
max_seq_len
,
seq_num
,
seq_width
}));
}
else
{
PADDLE_THROW
(
"Unsupported
padding
layout."
);
PADDLE_THROW
(
"Unsupported
output
layout."
);
}
}
...
...
@@ -94,23 +91,25 @@ inline static void ValidateShape(const framework::DDim& seq_tensor_dims,
*
* \note transposition is also done in this functor.
*/
template
<
typename
DeviceContext
,
typename
T
,
PaddingLayout
padding_layout
>
template
<
typename
DeviceContext
,
typename
T
>
class
PaddingLoDTensorFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
const
framework
::
LoDTensor
&
seq_tensor
,
framework
::
Tensor
*
padding_tensor
,
T
padding_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
);
framework
::
Tensor
*
pad_tensor
,
T
pad_value
=
static_cast
<
T
>
(
0
),
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
,
OutputLayout
output_layout
=
kBatchLengthWidth
);
};
template
<
typename
DeviceContext
,
typename
T
,
PaddingLayout
padding_layout
>
template
<
typename
DeviceContext
,
typename
T
>
class
UnpaddingLoDTensorFunctor
{
public:
void
operator
()(
const
DeviceContext
&
context
,
framework
::
LoDTensor
*
seq_tensor
,
const
framework
::
Tensor
&
padding_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
);
const
framework
::
Tensor
&
pad_tensor
,
bool
norm_by_times
=
false
,
size_t
lod_level
=
0
,
OutputLayout
output_layout
=
kBatchLengthWidth
);
};
}
// namespace math
...
...
paddle/fluid/operators/math/sequence_padding_test.cc
浏览文件 @
8b9938ac
...
...
@@ -46,20 +46,24 @@ void TestSequencePadding(const paddle::framework::LoD& lod,
}
const
size_t
max_sequence_length
=
paddle
::
operators
::
math
::
MaximumSequenceLength
(
lod
,
level
);
paddle
::
operators
::
math
::
MaximumSequenceLength
(
lod
[
level
]
);
const
size_t
num_sequences
=
lod
[
level
].
size
()
-
1
;
auto
padding_dims
=
paddle
::
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
max_sequence_length
),
static_cast
<
int64_t
>
(
num_sequences
),
static_cast
<
int64_t
>
(
sequence_width
)});
padding
.
mutable_data
<
T
>
(
padding_dims
,
*
place
);
paddle
::
operators
::
math
::
PaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
*
context
,
seq
,
&
padding
,
false
);
*
context
,
seq
,
&
padding
,
0
,
false
,
0
,
paddle
::
operators
::
math
::
kLengthBatchWidth
);
seq_back
.
set_lod
(
lod
);
seq_back
.
mutable_data
<
T
>
(
seq_dims
,
*
place
);
paddle
::
operators
::
math
::
UnpaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
*
context
,
&
seq_back
,
padding
,
false
);
*
context
,
&
seq_back
,
padding
,
false
,
0
,
paddle
::
operators
::
math
::
kLengthBatchWidth
);
if
(
paddle
::
platform
::
is_cpu_place
(
*
place
))
{
cpu_seq_back
=
seq_back
;
...
...
paddle/fluid/operators/sequence_pad_op.cc
浏览文件 @
8b9938ac
...
...
@@ -54,7 +54,7 @@ class SequencePadOp : public framework::OperatorWithKernel {
seq_num
=
x_abs_offset
.
size
()
-
1
;
for
(
size
_t
i
=
1
;
i
<=
seq_num
;
++
i
)
{
for
(
int64
_t
i
=
1
;
i
<=
seq_num
;
++
i
)
{
int64_t
seq_len
=
x_abs_offset
[
i
]
-
x_abs_offset
[
i
-
1
];
max_len
=
max_len
<
seq_len
?
seq_len
:
max_len
;
}
...
...
paddle/fluid/operators/warpctc_op.h
浏览文件 @
8b9938ac
...
...
@@ -155,15 +155,16 @@ class WarpCTCKernel : public framework::OpKernel<T> {
// warpctc needs sequences data stored in transposed padding format
Tensor
warpctc_logits
;
const
size_t
max_sequence_length
=
math
::
MaximumSequenceLength
(
logits_lod
,
level
);
math
::
MaximumSequenceLength
(
logits_lod
[
level
]
);
auto
warpctc_logits_dims
=
framework
::
make_ddim
({
static_cast
<
int64_t
>
(
max_sequence_length
),
static_cast
<
int64_t
>
(
num_sequences
),
static_cast
<
int64_t
>
(
sequence_width
)});
warpctc_logits
.
mutable_data
<
T
>
(
warpctc_logits_dims
,
ctx
.
GetPlace
());
math
::
PaddingLoDTensorFunctor
<
DeviceContext
,
T
,
math
::
LENGTH_BATCH_WIDTH
>
()(
math
::
PaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
*
logits
,
&
warpctc_logits
,
false
);
static_cast
<
T
>
(
0
),
false
/* norm_by_times */
,
0
,
math
::
kLengthBatchWidth
);
const
T
*
warpctc_logits_data
=
warpctc_logits
.
data
<
T
>
();
std
::
vector
<
int
>
warpctc_label_lengths
(
num_sequences
);
...
...
@@ -215,10 +216,9 @@ class WarpCTCGradKernel : public framework::OpKernel<T> {
logits_grad
->
mutable_data
<
T
>
(
ctx
.
GetPlace
());
bool
norm_by_times
=
ctx
.
Attr
<
bool
>
(
"norm_by_times"
);
math
::
UnpaddingLoDTensorFunctor
<
DeviceContext
,
T
,
math
::
LENGTH_BATCH_WIDTH
>
()(
math
::
UnpaddingLoDTensorFunctor
<
DeviceContext
,
T
>
()(
ctx
.
template
device_context
<
DeviceContext
>(),
logits_grad
,
*
warpctc_grad
,
norm_by_times
);
*
warpctc_grad
,
norm_by_times
,
0
,
math
::
kLengthBatchWidth
);
const
T
*
loss_grad_data
=
loss_grad
->
data
<
T
>
();
math
::
ScaleLoDTensorFunctor
<
DeviceContext
,
T
>
()(
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录