Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
897d86ac
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
897d86ac
编写于
7月 21, 2020
作者:
S
sunxl1988
提交者:
GitHub
7月 21, 2020
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
test=dygraph sync reader from static ppdet (#1084)
sync reader from static ppdet
上级
ce71cdc2
变更
6
展开全部
显示空白变更内容
内联
并排
Showing
6 changed file
with
701 addition
and
143 deletion
+701
-143
ppdet/data/reader.py
ppdet/data/reader.py
+29
-5
ppdet/data/source/widerface.py
ppdet/data/source/widerface.py
+75
-50
ppdet/data/transform/batch_operators.py
ppdet/data/transform/batch_operators.py
+113
-55
ppdet/data/transform/gridmask_utils.py
ppdet/data/transform/gridmask_utils.py
+83
-0
ppdet/data/transform/op_helper.py
ppdet/data/transform/op_helper.py
+24
-4
ppdet/data/transform/operators.py
ppdet/data/transform/operators.py
+377
-29
未找到文件。
ppdet/data/reader.py
浏览文件 @
897d86ac
...
...
@@ -16,6 +16,7 @@ from __future__ import absolute_import
from
__future__
import
division
from
__future__
import
print_function
import
os
import
copy
import
functools
import
collections
...
...
@@ -167,6 +168,8 @@ class Reader(object):
Default True.
mixup_epoch (int): mixup epoc number. Default is -1, meaning
not use mixup.
cutmix_epoch (int): cutmix epoc number. Default is -1, meaning
not use cutmix.
class_aware_sampling (bool): whether use class-aware sampling or not.
Default False.
worker_num (int): number of working threads/processes.
...
...
@@ -191,6 +194,7 @@ class Reader(object):
drop_last
=
False
,
drop_empty
=
True
,
mixup_epoch
=-
1
,
cutmix_epoch
=-
1
,
class_aware_sampling
=
False
,
worker_num
=-
1
,
use_process
=
False
,
...
...
@@ -241,6 +245,7 @@ class Reader(object):
# sampling
self
.
_mixup_epoch
=
mixup_epoch
self
.
_cutmix_epoch
=
cutmix_epoch
self
.
_class_aware_sampling
=
class_aware_sampling
self
.
_load_img
=
False
...
...
@@ -253,6 +258,8 @@ class Reader(object):
self
.
_pos
=
-
1
self
.
_epoch
=
-
1
self
.
_curr_iter
=
0
# multi-process
self
.
_worker_num
=
worker_num
self
.
_parallel
=
None
...
...
@@ -274,6 +281,11 @@ class Reader(object):
def
reset
(
self
):
"""implementation of Dataset.reset
"""
if
self
.
_epoch
<
0
:
self
.
_epoch
=
0
else
:
self
.
_epoch
+=
1
self
.
indexes
=
[
i
for
i
in
range
(
self
.
size
())]
if
self
.
_class_aware_sampling
:
self
.
indexes
=
np
.
random
.
choice
(
...
...
@@ -283,17 +295,18 @@ class Reader(object):
p
=
self
.
img_weights
)
if
self
.
_shuffle
:
trainer_id
=
int
(
os
.
getenv
(
"PADDLE_TRAINER_ID"
,
0
))
np
.
random
.
seed
(
self
.
_epoch
+
trainer_id
)
np
.
random
.
shuffle
(
self
.
indexes
)
if
self
.
_mixup_epoch
>
0
and
len
(
self
.
indexes
)
<
2
:
logger
.
debug
(
"Disable mixup for dataset samples "
"less than 2 samples"
)
self
.
_mixup_epoch
=
-
1
if
self
.
_epoch
<
0
:
self
.
_epoch
=
0
else
:
self
.
_epoch
+=
1
if
self
.
_cutmix_epoch
>
0
and
len
(
self
.
indexes
)
<
2
:
logger
.
info
(
"Disable cutmix for dataset samples "
"less than 2 samples"
)
self
.
_cutmix_epoch
=
-
1
self
.
_pos
=
0
...
...
@@ -306,6 +319,7 @@ class Reader(object):
if
self
.
drained
():
raise
StopIteration
batch
=
self
.
_load_batch
()
self
.
_curr_iter
+=
1
if
self
.
_drop_last
and
len
(
batch
)
<
self
.
_batch_size
:
raise
StopIteration
if
self
.
_worker_num
>
-
1
:
...
...
@@ -321,6 +335,7 @@ class Reader(object):
break
pos
=
self
.
indexes
[
self
.
_pos
]
sample
=
copy
.
deepcopy
(
self
.
_roidbs
[
pos
])
sample
[
"curr_iter"
]
=
self
.
_curr_iter
self
.
_pos
+=
1
if
self
.
_drop_empty
and
self
.
_fields
and
'gt_mask'
in
self
.
_fields
:
...
...
@@ -343,9 +358,18 @@ class Reader(object):
mix_idx
=
np
.
random
.
randint
(
1
,
num
)
mix_idx
=
self
.
indexes
[(
mix_idx
+
self
.
_pos
-
1
)
%
num
]
sample
[
'mixup'
]
=
copy
.
deepcopy
(
self
.
_roidbs
[
mix_idx
])
sample
[
'mixup'
][
"curr_iter"
]
=
self
.
_curr_iter
if
self
.
_load_img
:
sample
[
'mixup'
][
'image'
]
=
self
.
_load_image
(
sample
[
'mixup'
][
'im_file'
])
if
self
.
_epoch
<
self
.
_cutmix_epoch
:
num
=
len
(
self
.
indexes
)
mix_idx
=
np
.
random
.
randint
(
1
,
num
)
sample
[
'cutmix'
]
=
copy
.
deepcopy
(
self
.
_roidbs
[
mix_idx
])
sample
[
'cutmix'
][
"curr_iter"
]
=
self
.
_curr_iter
if
self
.
_load_img
:
sample
[
'cutmix'
][
'image'
]
=
self
.
_load_image
(
sample
[
'cutmix'
][
'im_file'
])
batch
.
append
(
sample
)
bs
+=
1
...
...
ppdet/data/source/widerface.py
浏览文件 @
897d86ac
...
...
@@ -41,7 +41,8 @@ class WIDERFaceDataSet(DataSet):
image_dir
=
None
,
anno_path
=
None
,
sample_num
=-
1
,
with_background
=
True
):
with_background
=
True
,
with_lmk
=
False
):
super
(
WIDERFaceDataSet
,
self
).
__init__
(
image_dir
=
image_dir
,
anno_path
=
anno_path
,
...
...
@@ -53,6 +54,7 @@ class WIDERFaceDataSet(DataSet):
self
.
with_background
=
with_background
self
.
roidbs
=
None
self
.
cname2cid
=
None
self
.
with_lmk
=
with_lmk
def
load_roidb_and_cname2cid
(
self
):
anno_path
=
os
.
path
.
join
(
self
.
dataset_dir
,
self
.
anno_path
)
...
...
@@ -62,33 +64,23 @@ class WIDERFaceDataSet(DataSet):
records
=
[]
ct
=
0
file_lists
=
_load_file_list
(
txt_file
)
file_lists
=
self
.
_load_file_list
(
txt_file
)
cname2cid
=
widerface_label
(
self
.
with_background
)
for
item
in
file_lists
:
im_fname
=
item
[
0
]
im_id
=
np
.
array
([
ct
])
gt_bbox
=
np
.
zeros
((
len
(
item
)
-
2
,
4
),
dtype
=
np
.
float32
)
gt_class
=
np
.
ones
((
len
(
item
)
-
2
,
1
),
dtype
=
np
.
int32
)
gt_bbox
=
np
.
zeros
((
len
(
item
)
-
1
,
4
),
dtype
=
np
.
float32
)
gt_class
=
np
.
ones
((
len
(
item
)
-
1
,
1
),
dtype
=
np
.
int32
)
gt_lmk_labels
=
np
.
zeros
((
len
(
item
)
-
1
,
10
),
dtype
=
np
.
float32
)
lmk_ignore_flag
=
np
.
zeros
((
len
(
item
)
-
1
,
1
),
dtype
=
np
.
int32
)
for
index_box
in
range
(
len
(
item
)):
if
index_box
>=
2
:
temp_info_box
=
item
[
index_box
].
split
(
' '
)
xmin
=
float
(
temp_info_box
[
0
])
ymin
=
float
(
temp_info_box
[
1
])
w
=
float
(
temp_info_box
[
2
])
h
=
float
(
temp_info_box
[
3
])
# Filter out wrong labels
if
w
<
0
or
h
<
0
:
logger
.
warn
(
'Illegal box with w: {}, h: {} in '
'img: {}, and it will be ignored'
.
format
(
w
,
h
,
im_fname
))
if
index_box
<
1
:
continue
xmin
=
max
(
0
,
xmin
)
ymin
=
max
(
0
,
ymin
)
xmax
=
xmin
+
w
ymax
=
ymin
+
h
gt_bbox
[
index_box
-
2
]
=
[
xmin
,
ymin
,
xmax
,
ymax
]
gt_bbox
[
index_box
-
1
]
=
item
[
index_box
][
0
]
if
self
.
with_lmk
:
gt_lmk_labels
[
index_box
-
1
]
=
item
[
index_box
][
1
]
lmk_ignore_flag
[
index_box
-
1
]
=
item
[
index_box
][
2
]
im_fname
=
os
.
path
.
join
(
image_dir
,
im_fname
)
if
image_dir
else
im_fname
widerface_rec
=
{
...
...
@@ -97,7 +89,10 @@ class WIDERFaceDataSet(DataSet):
'gt_bbox'
:
gt_bbox
,
'gt_class'
:
gt_class
,
}
# logger.debug
if
self
.
with_lmk
:
widerface_rec
[
'gt_keypoint'
]
=
gt_lmk_labels
widerface_rec
[
'keypoint_ignore'
]
=
lmk_ignore_flag
if
len
(
item
)
!=
0
:
records
.
append
(
widerface_rec
)
...
...
@@ -108,8 +103,7 @@ class WIDERFaceDataSet(DataSet):
logger
.
debug
(
'{} samples in file {}'
.
format
(
ct
,
anno_path
))
self
.
roidbs
,
self
.
cname2cid
=
records
,
cname2cid
def
_load_file_list
(
input_txt
):
def
_load_file_list
(
self
,
input_txt
):
with
open
(
input_txt
,
'r'
)
as
f_dir
:
lines_input_txt
=
f_dir
.
readlines
()
...
...
@@ -123,17 +117,48 @@ def _load_file_list(input_txt):
file_dict
[
num_class
]
=
[]
file_dict
[
num_class
].
append
(
line_txt
)
if
'.jpg'
not
in
line_txt
:
if
len
(
line_txt
)
>
6
:
if
len
(
line_txt
)
<=
6
:
continue
result_boxs
=
[]
split_str
=
line_txt
.
split
(
' '
)
x1_min
=
float
(
split_str
[
0
])
y1_min
=
float
(
split_str
[
1
])
x2_max
=
float
(
split_str
[
2
])
y2_max
=
float
(
split_str
[
3
])
line_txt
=
str
(
x1_min
)
+
' '
+
str
(
y1_min
)
+
' '
+
str
(
x2_max
)
+
' '
+
str
(
y2_max
)
file_dict
[
num_class
].
append
(
line_txt
)
else
:
file_dict
[
num_class
].
append
(
line_txt
)
xmin
=
float
(
split_str
[
0
])
ymin
=
float
(
split_str
[
1
])
w
=
float
(
split_str
[
2
])
h
=
float
(
split_str
[
3
])
# Filter out wrong labels
if
w
<
0
or
h
<
0
:
logger
.
warn
(
'Illegal box with w: {}, h: {} in '
'img: {}, and it will be ignored'
.
format
(
w
,
h
,
file_dict
[
num_class
][
0
]))
continue
xmin
=
max
(
0
,
xmin
)
ymin
=
max
(
0
,
ymin
)
xmax
=
xmin
+
w
ymax
=
ymin
+
h
gt_bbox
=
[
xmin
,
ymin
,
xmax
,
ymax
]
result_boxs
.
append
(
gt_bbox
)
if
self
.
with_lmk
:
assert
len
(
split_str
)
>
18
,
'When `with_lmk=True`, the number'
\
'of characters per line in the annotation file should'
\
'exceed 18.'
lmk0_x
=
float
(
split_str
[
5
])
lmk0_y
=
float
(
split_str
[
6
])
lmk1_x
=
float
(
split_str
[
8
])
lmk1_y
=
float
(
split_str
[
9
])
lmk2_x
=
float
(
split_str
[
11
])
lmk2_y
=
float
(
split_str
[
12
])
lmk3_x
=
float
(
split_str
[
14
])
lmk3_y
=
float
(
split_str
[
15
])
lmk4_x
=
float
(
split_str
[
17
])
lmk4_y
=
float
(
split_str
[
18
])
lmk_ignore_flag
=
0
if
lmk0_x
==
-
1
else
1
gt_lmk_label
=
[
lmk0_x
,
lmk0_y
,
lmk1_x
,
lmk1_y
,
lmk2_x
,
lmk2_y
,
lmk3_x
,
lmk3_y
,
lmk4_x
,
lmk4_y
]
result_boxs
.
append
(
gt_lmk_label
)
result_boxs
.
append
(
lmk_ignore_flag
)
file_dict
[
num_class
].
append
(
result_boxs
)
return
list
(
file_dict
.
values
())
...
...
ppdet/data/transform/batch_operators.py
浏览文件 @
897d86ac
...
...
@@ -26,13 +26,17 @@ import cv2
import
numpy
as
np
from
.operators
import
register_op
,
BaseOperator
from
.op_helper
import
jaccard_overlap
from
.op_helper
import
jaccard_overlap
,
gaussian2D
logger
=
logging
.
getLogger
(
__name__
)
__all__
=
[
'PadBatch'
,
'RandomShape'
,
'PadMultiScaleTest'
,
'Gt2YoloTarget'
,
'Gt2FCOSTarget'
'PadBatch'
,
'RandomShape'
,
'PadMultiScaleTest'
,
'Gt2YoloTarget'
,
'Gt2FCOSTarget'
,
'Gt2TTFTarget'
,
]
...
...
@@ -41,17 +45,15 @@ class PadBatch(BaseOperator):
"""
Pad a batch of samples so they can be divisible by a stride.
The layout of each image should be 'CHW'.
Args:
pad_to_stride (int): If `pad_to_stride > 0`, pad zeros to ensure
height and width is divisible by `pad_to_stride`.
"""
def
__init__
(
self
,
pad_to_stride
=
0
,
use_padded_im_info
=
True
,
pad_gt
=
False
):
def
__init__
(
self
,
pad_to_stride
=
0
,
use_padded_im_info
=
True
):
super
(
PadBatch
,
self
).
__init__
()
self
.
pad_to_stride
=
pad_to_stride
self
.
use_padded_im_info
=
use_padded_im_info
self
.
pad_gt
=
pad_gt
def
__call__
(
self
,
samples
,
context
=
None
):
"""
...
...
@@ -61,9 +63,9 @@ class PadBatch(BaseOperator):
coarsest_stride
=
self
.
pad_to_stride
if
coarsest_stride
==
0
:
return
samples
max_shape
=
np
.
array
([
data
[
'image'
].
shape
for
data
in
samples
]).
max
(
axis
=
0
)
if
coarsest_stride
>
0
:
max_shape
[
1
]
=
int
(
np
.
ceil
(
max_shape
[
1
]
/
coarsest_stride
)
*
coarsest_stride
)
...
...
@@ -80,52 +82,6 @@ class PadBatch(BaseOperator):
data
[
'image'
]
=
padding_im
if
self
.
use_padded_im_info
:
data
[
'im_info'
][:
2
]
=
max_shape
[
1
:
3
]
if
self
.
pad_gt
:
gt_num
=
[]
if
data
[
'gt_poly'
]
is
not
None
and
len
(
data
[
'gt_poly'
])
>
0
:
pad_mask
=
True
else
:
pad_mask
=
False
if
pad_mask
:
poly_num
=
[]
poly_part_num
=
[]
point_num
=
[]
for
data
in
samples
:
gt_num
.
append
(
data
[
'gt_bbox'
].
shape
[
0
])
if
pad_mask
:
poly_num
.
append
(
len
(
data
[
'gt_poly'
]))
for
poly
in
data
[
'gt_poly'
]:
poly_part_num
.
append
(
int
(
len
(
poly
)))
for
p_p
in
poly
:
point_num
.
append
(
int
(
len
(
p_p
)
/
2
))
gt_num_max
=
max
(
gt_num
)
gt_box_data
=
np
.
zeros
([
gt_num_max
,
4
])
gt_class_data
=
np
.
zeros
([
gt_num_max
])
is_crowd_data
=
np
.
ones
([
gt_num_max
])
if
pad_mask
:
poly_num_max
=
max
(
poly_num
)
poly_part_num_max
=
max
(
poly_part_num
)
point_num_max
=
max
(
point_num
)
gt_masks_data
=
-
np
.
ones
(
[
poly_num_max
,
poly_part_num_max
,
point_num_max
,
2
])
for
i
,
data
in
enumerate
(
samples
):
gt_num
=
data
[
'gt_bbox'
].
shape
[
0
]
gt_box_data
[
0
:
gt_num
,
:]
=
data
[
'gt_bbox'
]
gt_class_data
[
0
:
gt_num
]
=
np
.
squeeze
(
data
[
'gt_class'
])
is_crowd_data
[
0
:
gt_num
]
=
np
.
squeeze
(
data
[
'is_crowd'
])
if
pad_mask
:
for
j
,
poly
in
enumerate
(
data
[
'gt_poly'
]):
for
k
,
p_p
in
enumerate
(
poly
):
pp_np
=
np
.
array
(
p_p
).
reshape
(
-
1
,
2
)
gt_masks_data
[
j
,
k
,
:
pp_np
.
shape
[
0
],
:]
=
pp_np
data
[
'gt_poly'
]
=
gt_masks_data
data
[
'gt_bbox'
]
=
gt_box_data
data
[
'gt_class'
]
=
gt_class_data
data
[
'is_crowd_data'
]
=
is_crowd_data
return
samples
...
...
@@ -136,13 +92,12 @@ class RandomShape(BaseOperator):
select one an interpolation algorithm [cv2.INTER_NEAREST, cv2.INTER_LINEAR,
cv2.INTER_AREA, cv2.INTER_CUBIC, cv2.INTER_LANCZOS4]. If random_inter is
False, use cv2.INTER_NEAREST.
Args:
sizes (list): list of int, random choose a size from these
random_inter (bool): whether to randomly interpolation, defalut true.
"""
def
__init__
(
self
,
sizes
=
[],
random_inter
=
False
):
def
__init__
(
self
,
sizes
=
[],
random_inter
=
False
,
resize_box
=
False
):
super
(
RandomShape
,
self
).
__init__
()
self
.
sizes
=
sizes
self
.
random_inter
=
random_inter
...
...
@@ -153,6 +108,7 @@ class RandomShape(BaseOperator):
cv2
.
INTER_CUBIC
,
cv2
.
INTER_LANCZOS4
,
]
if
random_inter
else
[]
self
.
resize_box
=
resize_box
def
__call__
(
self
,
samples
,
context
=
None
):
shape
=
np
.
random
.
choice
(
self
.
sizes
)
...
...
@@ -166,6 +122,12 @@ class RandomShape(BaseOperator):
im
=
cv2
.
resize
(
im
,
None
,
None
,
fx
=
scale_x
,
fy
=
scale_y
,
interpolation
=
method
)
samples
[
i
][
'image'
]
=
im
if
self
.
resize_box
and
'gt_bbox'
in
samples
[
i
]
and
len
(
samples
[
0
][
'gt_bbox'
])
>
0
:
scale_array
=
np
.
array
([
scale_x
,
scale_y
]
*
2
,
dtype
=
np
.
float32
)
samples
[
i
][
'gt_bbox'
]
=
np
.
clip
(
samples
[
i
][
'gt_bbox'
]
*
scale_array
,
0
,
float
(
shape
)
-
1
)
return
samples
...
...
@@ -525,3 +487,99 @@ class Gt2FCOSTarget(BaseOperator):
sample
[
'centerness{}'
.
format
(
lvl
)]
=
np
.
reshape
(
ctn_targets_by_level
[
lvl
],
newshape
=
[
grid_h
,
grid_w
,
1
])
return
samples
@
register_op
class
Gt2TTFTarget
(
BaseOperator
):
"""
Gt2TTFTarget
Generate TTFNet targets by ground truth data
Args:
num_classes(int): the number of classes.
down_ratio(int): the down ratio from images to heatmap, 4 by default.
alpha(float): the alpha parameter to generate gaussian target.
0.54 by default.
"""
def
__init__
(
self
,
num_classes
,
down_ratio
=
4
,
alpha
=
0.54
):
super
(
Gt2TTFTarget
,
self
).
__init__
()
self
.
down_ratio
=
down_ratio
self
.
num_classes
=
num_classes
self
.
alpha
=
alpha
def
__call__
(
self
,
samples
,
context
=
None
):
output_size
=
samples
[
0
][
'image'
].
shape
[
1
]
feat_size
=
output_size
//
self
.
down_ratio
for
sample
in
samples
:
heatmap
=
np
.
zeros
(
(
self
.
num_classes
,
feat_size
,
feat_size
),
dtype
=
'float32'
)
box_target
=
np
.
ones
(
(
4
,
feat_size
,
feat_size
),
dtype
=
'float32'
)
*
-
1
reg_weight
=
np
.
zeros
((
1
,
feat_size
,
feat_size
),
dtype
=
'float32'
)
gt_bbox
=
sample
[
'gt_bbox'
]
gt_class
=
sample
[
'gt_class'
]
bbox_w
=
gt_bbox
[:,
2
]
-
gt_bbox
[:,
0
]
+
1
bbox_h
=
gt_bbox
[:,
3
]
-
gt_bbox
[:,
1
]
+
1
area
=
bbox_w
*
bbox_h
boxes_areas_log
=
np
.
log
(
area
)
boxes_ind
=
np
.
argsort
(
boxes_areas_log
,
axis
=
0
)[::
-
1
]
boxes_area_topk_log
=
boxes_areas_log
[
boxes_ind
]
gt_bbox
=
gt_bbox
[
boxes_ind
]
gt_class
=
gt_class
[
boxes_ind
]
feat_gt_bbox
=
gt_bbox
/
self
.
down_ratio
feat_gt_bbox
=
np
.
clip
(
feat_gt_bbox
,
0
,
feat_size
-
1
)
feat_hs
,
feat_ws
=
(
feat_gt_bbox
[:,
3
]
-
feat_gt_bbox
[:,
1
],
feat_gt_bbox
[:,
2
]
-
feat_gt_bbox
[:,
0
])
ct_inds
=
np
.
stack
(
[(
gt_bbox
[:,
0
]
+
gt_bbox
[:,
2
])
/
2
,
(
gt_bbox
[:,
1
]
+
gt_bbox
[:,
3
])
/
2
],
axis
=
1
)
/
self
.
down_ratio
h_radiuses_alpha
=
(
feat_hs
/
2.
*
self
.
alpha
).
astype
(
'int32'
)
w_radiuses_alpha
=
(
feat_ws
/
2.
*
self
.
alpha
).
astype
(
'int32'
)
for
k
in
range
(
len
(
gt_bbox
)):
cls_id
=
gt_class
[
k
]
fake_heatmap
=
np
.
zeros
((
feat_size
,
feat_size
),
dtype
=
'float32'
)
self
.
draw_truncate_gaussian
(
fake_heatmap
,
ct_inds
[
k
],
h_radiuses_alpha
[
k
],
w_radiuses_alpha
[
k
])
heatmap
[
cls_id
]
=
np
.
maximum
(
heatmap
[
cls_id
],
fake_heatmap
)
box_target_inds
=
fake_heatmap
>
0
box_target
[:,
box_target_inds
]
=
gt_bbox
[
k
][:,
None
]
local_heatmap
=
fake_heatmap
[
box_target_inds
]
ct_div
=
np
.
sum
(
local_heatmap
)
local_heatmap
*=
boxes_area_topk_log
[
k
]
reg_weight
[
0
,
box_target_inds
]
=
local_heatmap
/
ct_div
sample
[
'ttf_heatmap'
]
=
heatmap
sample
[
'ttf_box_target'
]
=
box_target
sample
[
'ttf_reg_weight'
]
=
reg_weight
return
samples
def
draw_truncate_gaussian
(
self
,
heatmap
,
center
,
h_radius
,
w_radius
):
h
,
w
=
2
*
h_radius
+
1
,
2
*
w_radius
+
1
sigma_x
=
w
/
6
sigma_y
=
h
/
6
gaussian
=
gaussian2D
((
h
,
w
),
sigma_x
,
sigma_y
)
x
,
y
=
int
(
center
[
0
]),
int
(
center
[
1
])
height
,
width
=
heatmap
.
shape
[
0
:
2
]
left
,
right
=
min
(
x
,
w_radius
),
min
(
width
-
x
,
w_radius
+
1
)
top
,
bottom
=
min
(
y
,
h_radius
),
min
(
height
-
y
,
h_radius
+
1
)
masked_heatmap
=
heatmap
[
y
-
top
:
y
+
bottom
,
x
-
left
:
x
+
right
]
masked_gaussian
=
gaussian
[
h_radius
-
top
:
h_radius
+
bottom
,
w_radius
-
left
:
w_radius
+
right
]
if
min
(
masked_gaussian
.
shape
)
>
0
and
min
(
masked_heatmap
.
shape
)
>
0
:
heatmap
[
y
-
top
:
y
+
bottom
,
x
-
left
:
x
+
right
]
=
np
.
maximum
(
masked_heatmap
,
masked_gaussian
)
return
heatmap
ppdet/data/transform/gridmask_utils.py
0 → 100644
浏览文件 @
897d86ac
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from
__future__
import
absolute_import
from
__future__
import
print_function
from
__future__
import
division
import
numpy
as
np
from
PIL
import
Image
class
GridMask
(
object
):
def
__init__
(
self
,
use_h
=
True
,
use_w
=
True
,
rotate
=
1
,
offset
=
False
,
ratio
=
0.5
,
mode
=
1
,
prob
=
0.7
,
upper_iter
=
360000
):
super
(
GridMask
,
self
).
__init__
()
self
.
use_h
=
use_h
self
.
use_w
=
use_w
self
.
rotate
=
rotate
self
.
offset
=
offset
self
.
ratio
=
ratio
self
.
mode
=
mode
self
.
prob
=
prob
self
.
st_prob
=
prob
self
.
upper_iter
=
upper_iter
def
__call__
(
self
,
x
,
curr_iter
):
self
.
prob
=
self
.
st_prob
*
min
(
1
,
1.0
*
curr_iter
/
self
.
upper_iter
)
if
np
.
random
.
rand
()
>
self
.
prob
:
return
x
_
,
h
,
w
=
x
.
shape
hh
=
int
(
1.5
*
h
)
ww
=
int
(
1.5
*
w
)
d
=
np
.
random
.
randint
(
2
,
h
)
self
.
l
=
min
(
max
(
int
(
d
*
self
.
ratio
+
0.5
),
1
),
d
-
1
)
mask
=
np
.
ones
((
hh
,
ww
),
np
.
float32
)
st_h
=
np
.
random
.
randint
(
d
)
st_w
=
np
.
random
.
randint
(
d
)
if
self
.
use_h
:
for
i
in
range
(
hh
//
d
):
s
=
d
*
i
+
st_h
t
=
min
(
s
+
self
.
l
,
hh
)
mask
[
s
:
t
,
:]
*=
0
if
self
.
use_w
:
for
i
in
range
(
ww
//
d
):
s
=
d
*
i
+
st_w
t
=
min
(
s
+
self
.
l
,
ww
)
mask
[:,
s
:
t
]
*=
0
r
=
np
.
random
.
randint
(
self
.
rotate
)
mask
=
Image
.
fromarray
(
np
.
uint8
(
mask
))
mask
=
mask
.
rotate
(
r
)
mask
=
np
.
asarray
(
mask
)
mask
=
mask
[(
hh
-
h
)
//
2
:(
hh
-
h
)
//
2
+
h
,
(
ww
-
w
)
//
2
:(
ww
-
w
)
//
2
+
w
].
astype
(
np
.
float32
)
if
self
.
mode
==
1
:
mask
=
1
-
mask
mask
=
np
.
expand_dims
(
mask
,
axis
=
0
)
if
self
.
offset
:
offset
=
(
2
*
(
np
.
random
.
rand
(
h
,
w
)
-
0.5
)).
astype
(
np
.
float32
)
x
=
(
x
*
mask
+
offset
*
(
1
-
mask
)).
astype
(
x
.
dtype
)
else
:
x
=
(
x
*
mask
).
astype
(
x
.
dtype
)
return
x
ppdet/data/transform/op_helper.py
浏览文件 @
897d86ac
...
...
@@ -61,10 +61,13 @@ def is_overlap(object_bbox, sample_bbox):
return
True
def
filter_and_process
(
sample_bbox
,
bboxes
,
labels
,
scores
=
None
):
def
filter_and_process
(
sample_bbox
,
bboxes
,
labels
,
scores
=
None
,
keypoints
=
None
):
new_bboxes
=
[]
new_labels
=
[]
new_scores
=
[]
new_keypoints
=
[]
new_kp_ignore
=
[]
for
i
in
range
(
len
(
bboxes
)):
new_bbox
=
[
0
,
0
,
0
,
0
]
obj_bbox
=
[
bboxes
[
i
][
0
],
bboxes
[
i
][
1
],
bboxes
[
i
][
2
],
bboxes
[
i
][
3
]]
...
...
@@ -84,9 +87,24 @@ def filter_and_process(sample_bbox, bboxes, labels, scores=None):
new_labels
.
append
([
labels
[
i
][
0
]])
if
scores
is
not
None
:
new_scores
.
append
([
scores
[
i
][
0
]])
if
keypoints
is
not
None
:
sample_keypoint
=
keypoints
[
0
][
i
]
for
j
in
range
(
len
(
sample_keypoint
)):
kp_len
=
sample_height
if
j
%
2
else
sample_width
sample_coord
=
sample_bbox
[
1
]
if
j
%
2
else
sample_bbox
[
0
]
sample_keypoint
[
j
]
=
(
sample_keypoint
[
j
]
-
sample_coord
)
/
kp_len
sample_keypoint
[
j
]
=
max
(
min
(
sample_keypoint
[
j
],
1.0
),
0.0
)
new_keypoints
.
append
(
sample_keypoint
)
new_kp_ignore
.
append
(
keypoints
[
1
][
i
])
bboxes
=
np
.
array
(
new_bboxes
)
labels
=
np
.
array
(
new_labels
)
scores
=
np
.
array
(
new_scores
)
if
keypoints
is
not
None
:
keypoints
=
np
.
array
(
new_keypoints
)
new_kp_ignore
=
np
.
array
(
new_kp_ignore
)
return
bboxes
,
labels
,
scores
,
(
keypoints
,
new_kp_ignore
)
return
bboxes
,
labels
,
scores
...
...
@@ -420,7 +438,8 @@ def gaussian_radius(bbox_size, min_overlap):
def
draw_gaussian
(
heatmap
,
center
,
radius
,
k
=
1
,
delte
=
6
):
diameter
=
2
*
radius
+
1
gaussian
=
gaussian2D
((
diameter
,
diameter
),
sigma
=
diameter
/
delte
)
sigma
=
diameter
/
delte
gaussian
=
gaussian2D
((
diameter
,
diameter
),
sigma_x
=
sigma
,
sigma_y
=
sigma
)
x
,
y
=
center
...
...
@@ -435,10 +454,11 @@ def draw_gaussian(heatmap, center, radius, k=1, delte=6):
np
.
maximum
(
masked_heatmap
,
masked_gaussian
*
k
,
out
=
masked_heatmap
)
def
gaussian2D
(
shape
,
sigma
=
1
):
def
gaussian2D
(
shape
,
sigma
_x
=
1
,
sigma_y
=
1
):
m
,
n
=
[(
ss
-
1.
)
/
2.
for
ss
in
shape
]
y
,
x
=
np
.
ogrid
[
-
m
:
m
+
1
,
-
n
:
n
+
1
]
h
=
np
.
exp
(
-
(
x
*
x
+
y
*
y
)
/
(
2
*
sigma
*
sigma
))
h
=
np
.
exp
(
-
(
x
*
x
/
(
2
*
sigma_x
*
sigma_x
)
+
y
*
y
/
(
2
*
sigma_y
*
sigma_y
)))
h
[
h
<
np
.
finfo
(
h
.
dtype
).
eps
*
h
.
max
()]
=
0
return
h
ppdet/data/transform/operators.py
浏览文件 @
897d86ac
此差异已折叠。
点击以展开。
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录