diff --git a/.clang_format.hook b/.clang_format.hook new file mode 100755 index 0000000000000000000000000000000000000000..1d928216867c0ba3897d71542fea44debf8d72a0 --- /dev/null +++ b/.clang_format.hook @@ -0,0 +1,15 @@ +#!/bin/bash +set -e + +readonly VERSION="3.8" + +version=$(clang-format -version) + +if ! [[ $version == *"$VERSION"* ]]; then + echo "clang-format version check failed." + echo "a version contains '$VERSION' is needed, but get '$version'" + echo "you can install the right version, and make an soft-link to '\$PATH' env" + exit -1 +fi + +clang-format $@ diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml index bb8c88787d37faf9ce4d7d856a307c11f1085d98..a772125df64aaf2eafe6cb9e022f62cc29043eb7 100644 --- a/.pre-commit-config.yaml +++ b/.pre-commit-config.yaml @@ -19,10 +19,10 @@ - id: end-of-file-fixer - repo: local hooks: - - id: clang-format + - id: clang-format-with-version-check name: clang-format description: Format files with ClangFormat. - entry: clang-format -i + entry: ./.clang_format.hook -i language: system files: \.(c|cc|cxx|cpp|cu|h|hpp|hxx|proto)$ - repo: https://github.com/PaddlePaddle/pre-commit-golang diff --git a/Dockerfile b/Dockerfile index da0047102572d203810d2f9e5ce8ec76063d0cba..98f61ba586a681e53b435d592c8e43b1cc964139 100644 --- a/Dockerfile +++ b/Dockerfile @@ -71,20 +71,6 @@ RUN pip install -r /root/requirements.txt RUN apt-get install -y libssl-dev libffi-dev RUN pip install certifi urllib3[secure] -# TODO(qijun) The template library Eigen doesn't work well with GCC 5 -# coming with the default Docker image, so we switch to use GCC 4.8 -# by default. And I will check Eigen library later. - -RUN ln -sf gcc-4.8 /usr/bin/gcc && \ - ln -sf gcc-ar-4.8 /usr/bin/gcc-ar && \ - ln -sf gcc-nm-4.8 /usr/bin/gcc-nm && \ - ln -sf gcc-ranlib-4.8 /usr/bin/gcc-ranlib && \ - ln -sf gcc-4.8 /usr/bin/x86_64-linux-gnu-gcc && \ - ln -sf gcc-ar-4.8 /usr/bin/x86_64-linux-gnu-gcc-ar && \ - ln -sf gcc-nm-4.8 /usr/bin/x86_64-linux-gnu-gcc-nm && \ - ln -sf gcc-ranlib-4.8 /usr/bin/x86_64-linux-gnu-gcc-ranlib && \ - ln -sf g++-4.8 /usr/bin/g++ && \ - ln -sf g++-4.8 /usr/bin/x86_64-linux-gnu-g++ # Install woboq_codebrowser to /woboq RUN git clone https://github.com/woboq/woboq_codebrowser /woboq && \ diff --git a/cmake/flags.cmake b/cmake/flags.cmake index b27eb71550b68b5c27e47bf067ae0df329bbd628..ff246b2eb4ed97dd14d45763569b661cefd203c8 100644 --- a/cmake/flags.cmake +++ b/cmake/flags.cmake @@ -9,13 +9,6 @@ function(CheckCompilerCXX11Flag) if(${CMAKE_CXX_COMPILER_VERSION} VERSION_LESS 4.8) message(FATAL_ERROR "Unsupported GCC version. GCC >= 4.8 required.") endif() - if(NOT ANDROID) - # TODO(qijun) gcc 4.9 or later versions raise SEGV due to the optimization problem. - # Use Debug mode instead for now. - if(CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 4.9 OR CMAKE_CXX_COMPILER_VERSION VERSION_EQUAL 4.9) - set(CMAKE_BUILD_TYPE "Debug" CACHE STRING "" FORCE) - endif() - endif() elseif(CMAKE_CXX_COMPILER_ID STREQUAL "AppleClang" OR CMAKE_CXX_COMPILER_ID STREQUAL "Clang") # cmake >= 3.0 compiler id "AppleClang" on Mac OS X, otherwise "Clang" # Apple Clang is a different compiler than upstream Clang which havs different version numbers. @@ -160,7 +153,7 @@ set(CUDA_PROPAGATE_HOST_FLAGS OFF) # Release/Debug flags set by cmake. Such as -O3 -g -DNDEBUG etc. # So, don't set these flags here. -LIST(APPEND CUDA_NVCC_FLAGS -std=c++11 --default-stream per-thread) +LIST(APPEND CUDA_NVCC_FLAGS -std=c++11) LIST(APPEND CUDA_NVCC_FLAGS --use_fast_math) if(CMAKE_BUILD_TYPE STREQUAL "Debug") diff --git a/doc/design/cluster_train/large_model_dist_train.md b/doc/design/cluster_train/large_model_dist_train.md new file mode 100644 index 0000000000000000000000000000000000000000..0c4b5bc24c854b7062d509249bea9c50d42bd5f1 --- /dev/null +++ b/doc/design/cluster_train/large_model_dist_train.md @@ -0,0 +1,101 @@ +# Alalysis of large model distributed training in Paddle + +***NOTE: This is only some note for how we implemeted this scheme in V1, not a new design.*** + +## What is it + +We often encounter cases that the embedding layer parameters(sparse) are so large that we can not store it in the trainer's memory when training. So we need to put them to several servers, and fetch them row by row instead of fetch all of the parameters. + +## How to use + +Specify command-line argument like `--loadsave_parameters_in_pserver=true --ports_num_for_sparse=1 --use_old_updater=1` when starting the paddle trainer. And also add something like `--ports_num_for_sparse=1 --pserver_num_threads=5` when starting pserver processes. + +Accrodingly, configure your embedding layers like: + +```python +SPARSE_REMOTE=True + +w1 = data_layer(name="w1", size=dict_size) +emb1 = embedding_layer(input=w1, size=32, param_attr=ParameterAttribute(sparse_update=SPARSE_REMOTE)) +w2 = data_layer(name="w2", size=dict_size) +emb2 = embedding_layer(input=w2, size=32, param_attr=ParameterAttribute(sparse_update=SPARSE_REMOTE)) +... +``` + +## Implementation details + +```c++ +enum MatType { + MAT_NORMAL, + MAT_NORMAL_SHARED, + MAT_VALUE_SHARED, + MAT_SPARSE_ROW_IDS, + MAT_SPARSE_ROW_AUTO_GROW, + MAT_CACHE_ROW, + MAT_SPARSE_ROW, + MAT_SPARSE_ROW_PREFETCH, + MAT_SPARSE_ROW_PREFETCH_FULL_SIZE, +}; +``` + +`MAT_SPARSE_ROW_PREFETCH` is what we use when configured to fetch only row of matrix when training. + +In `trainer_internal.cpp:L93 trainOneBatch`: + +```c++ + if (config_->getOptConfig().use_sparse_remote_updater()) { + REGISTER_TIMER("prefetch"); + gradientMachine_->prefetch(inArgs); + parameterUpdater_->getParametersRemote(); + } +``` + +When doing actual network forward and backward, at the beginning of each batch, the trainer will try to download one row of data from pserver. + +In `trainer/RemoteParameterUpdater.cpp`: `parameterUpdater_->getParametersRemote();`: + +```c++ +if (fullSize) { + ... +} else { +getParams = [&] { + parameterClient_->getParameterSparse( + /* recvParameterType= */ PARAMETER_VALUE, sendBackParameterType); +}; +applyL1 = [](Parameter& para, real decayRate) { + para.getMat(PARAMETER_VALUE)->applyL1(/*lr=*/1.0f, decayRate); +}; +} +``` + +Calling `parameterClient_->getParameterSparse` will do remote call to pserver's `getParameterSparse`: + +```c++ +void ParameterServer2::getParameterSparse(const SendParameterRequest& request, + std::vector& inputBuffers, + SendParameterResponse* response, + std::vector* outputBuffers) { + (void)inputBuffers; + auto& buffer = *readWriteBuffer_; + size_t numReals = 0; + for (const auto& block : request.blocks()) { + numReals += getParameterConfig(block).dims(1); + } + buffer.resize(numReals); + + VLOG(3) << "pserver: getParameterSparse, numReals=" << numReals; + + ReadLockGuard guard(parameterMutex_); + size_t offset = 0; + for (const auto& block : request.blocks()) { + size_t width = getParameterConfig(block).dims(1); + Buffer buf = {buffer.data() + offset, width}; + int type = request.send_back_parameter_type(); + sendBackParameterSparse(block, type, response, &buf, width, outputBuffers); + offset += width; + } +} +``` + +`getParameterConfig(block).dims(1)` returns the width of the current "parameter block"(a shard of parameter object), +then `getParameterSparse` remote call returns only one row of data to the client. diff --git a/doc/design/mkldnn/README.MD b/doc/design/mkldnn/README.MD index e956994431fbb43438c56dcd96ad8313cf516090..fe8da907d9d45a2164031430ac5b7a3d5523967a 100644 --- a/doc/design/mkldnn/README.MD +++ b/doc/design/mkldnn/README.MD @@ -101,6 +101,7 @@ if use_mkldnn 5. 在**Argument**里添加两个`MkldnnMatrixPtr`,取名为`mkldnnValue`和`mkldnnGrad`,用于存放`MkldnnLayer`会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。 6. 在父类`Layer`中的`getOutput`函数中添加一段逻辑,用于判断`deviceId`,并针对device在MKL-DNN和CPU之间不统一的情况,做一个前期转换。 也就是调用`Argument`的cvt函数把output统一到需要的device上。 7. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。 +8. 关于MKLDNN参数的保存。由于MKLDNN参数的格式与PaddlePaddle原有的格式存在不一样的情况,所以需要在保存参数时同时保存该格式信息。目前准备扩展[Header](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/parameter/Parameter.h#L247)里面的`int32_t version`。这个值不管是在v1还是在v2里面,一直保存的是0,所以可以充分利用这个信息,定义一个枚举处理所有MKLDNN的参数格式,从而`MKLDNNLayer`就可以从输入的参数中获取需要的格式信息。 ## References diff --git a/doc/getstarted/build_and_install/build_from_source_en.md b/doc/getstarted/build_and_install/build_from_source_en.md index c0608ede8e57b224dae4b3d510d704a8b0918b53..2f1461489495618718d5abaeab9cbeda9b93700f 100644 --- a/doc/getstarted/build_and_install/build_from_source_en.md +++ b/doc/getstarted/build_and_install/build_from_source_en.md @@ -68,7 +68,7 @@ As a simple example, consider the following: 1. **BLAS Dependencies(optional)** - CMake will search BLAS libraries from system. If not found, OpenBLAS will be downloaded, built and installed automatically. + CMake will search BLAS libraries from the system. If not found, OpenBLAS will be downloaded, built and installed automatically. To utilize preinstalled BLAS, you can simply specify MKL, OpenBLAS or ATLAS via `MKL_ROOT`, `OPENBLAS_ROOT` or `ATLAS_ROOT`. ```bash @@ -131,9 +131,9 @@ As a simple example, consider the following: To build GPU version, you will need the following installed: 1. a CUDA-capable GPU - 2. A supported version of Linux with a gcc compiler and toolchain + 2. A supported version of Linux with a GCC compiler and toolchain 3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads) - 4. NVIDIA cuDNN Library (availabel at https://developer.nvidia.com/cudnn) + 4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn) The CUDA development environment relies on tight integration with the host development environment, including the host compiler and C runtime libraries, and is therefore only supported on @@ -172,6 +172,7 @@ export PATH=/bin:$PATH # install PaddlePaddle Python modules. sudo pip install /opt/paddle/share/wheels/*.whl ``` + ## Build on Centos 7 ### Install Dependencies @@ -192,9 +193,9 @@ sudo pip install /opt/paddle/share/wheels/*.whl To build GPU version, you will need the following installed: 1. a CUDA-capable GPU - 2. A supported version of Linux with a gcc compiler and toolchain + 2. A supported version of Linux with a GCC compiler and toolchain 3. NVIDIA CUDA Toolkit (available at http://developer.nvidia.com/cuda-downloads) - 4. NVIDIA cuDNN Library (availabel at https://developer.nvidia.com/cudnn) + 4. NVIDIA cuDNN Library (available at https://developer.nvidia.com/cudnn) The CUDA development environment relies on tight integration with the host development environment, including the host compiler and C runtime libraries, and is therefore only supported on @@ -222,7 +223,7 @@ mkdir build && cd build ``` Finally, you can build and install PaddlePaddle: - + ```bash # you can add build option here, such as: cmake3 .. -DCMAKE_INSTALL_PREFIX= diff --git a/paddle/capi/gradient_machine.cpp b/paddle/capi/gradient_machine.cpp index b3287552db87d25edbf6e7f3d5e68121df49e9d6..629449bbd497a7444144c533ad079b3ae6b51438 100644 --- a/paddle/capi/gradient_machine.cpp +++ b/paddle/capi/gradient_machine.cpp @@ -146,3 +146,19 @@ paddle_error paddle_gradient_machine_randomize_param( m->machine->randParameters(); return kPD_NO_ERROR; } + +paddle_error paddle_gradient_machine_get_layer_output( + paddle_gradient_machine machine, + const char* layerName, + paddle_arguments args) { + auto m = cast(machine); + auto out = paddle::capi::cast(args); + if (m == nullptr || layerName == nullptr || out == nullptr || + m->machine == nullptr) { + return kPD_NULLPTR; + } + + auto layerOutput = m->machine->getLayerOutput(layerName); + out->args.push_back(layerOutput); + return kPD_NO_ERROR; +} diff --git a/paddle/capi/gradient_machine.h b/paddle/capi/gradient_machine.h index c613ade5b24efbbf52f21c7ee86dd3189981c5ef..28eeb23e3bbdd4cc22a25c14170bf56c294f8cd7 100644 --- a/paddle/capi/gradient_machine.h +++ b/paddle/capi/gradient_machine.h @@ -39,7 +39,11 @@ PD_API paddle_error paddle_gradient_machine_create_for_inference( /** * @brief Create a gradient machine used for model inference, using config with * parameters which is generated by `paddle merge_model`. - * @param [out] machine that used for model inference. + * Example: + * paddle merge_model \ + * --model_dir="pass-00000" \ + * --model_file="merged_model.paddle" + * @param [out] machine that used for model inference * @param [in] mergedModel * @param [in] size * @return paddle_error @@ -97,6 +101,18 @@ paddle_gradient_machine_randomize_param(paddle_gradient_machine machine); PD_API paddle_error paddle_gradient_machine_destroy(paddle_gradient_machine machine); +/** + * @brief Get the output of the layer named `layerName`. + * @param [in] gradient machine that have run a inference + * @param [in] layerName name of specified layer + * @param [out] args output of the specified layer + * @return paddle_error + */ +PD_API paddle_error +paddle_gradient_machine_get_layer_output(paddle_gradient_machine machine, + const char* layerName, + paddle_arguments args); + #ifdef __cplusplus } #endif diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt index 03985260241689a099ae9ebc136bd04831a44167..68304c9fc8b8fa13cb1f99b82517abc87c71496c 100644 --- a/paddle/framework/CMakeLists.txt +++ b/paddle/framework/CMakeLists.txt @@ -38,7 +38,7 @@ add_custom_command(TARGET framework_py_proto POST_BUILD WORKING_DIRECTORY ${CMAKE_CURRENT_BINARY_DIR}) cc_library(backward SRCS backward.cc DEPS net_op) -cc_test(backward_test SRCS backward_test.cc DEPS backward) +cc_test(backward_test SRCS backward_test.cc DEPS backward recurrent_op device_context) if(WITH_PYTHON) cc_library(paddle_pybind SHARED diff --git a/paddle/framework/backward.cc b/paddle/framework/backward.cc index 83b7e4cdac9bc79ebf687cf199f6d2bc8d1695cf..9d30887224fe0020ff5665f362e7403bf5c724ee 100644 --- a/paddle/framework/backward.cc +++ b/paddle/framework/backward.cc @@ -15,8 +15,11 @@ #include "paddle/framework/backward.h" #include +#include + #include "paddle/framework/op_registry.h" #include "paddle/operators/net_op.h" +#include "paddle/operators/recurrent_op.h" namespace paddle { namespace framework { @@ -42,11 +45,11 @@ static bool AllInSet( return all_in_set; } -static std::shared_ptr NOP() { - auto net_op = std::make_shared(); +static std::unique_ptr NOP() { + auto net_op = new operators::NetOp(); net_op->SetType("@NOP@"); net_op->CompleteAddOp(); - return net_op; + return std::unique_ptr(net_op); } // Get backward operator from a forward operator, a recursive implementation. @@ -61,11 +64,7 @@ static std::shared_ptr NOP() { // operator, in a complex situation, it maybe a NetOp. // // See Backward.h for details -static std::shared_ptr BackwardRecursive( - const OperatorBase& forwardOp, - std::unordered_set& no_grad_names, size_t& uniq_id); - -std::shared_ptr BackwardRecursive( +static std::unique_ptr BackwardRecursive( const OperatorBase& forwardOp, std::unordered_set& no_grad_names, size_t& uniq_id) { // If all input gradients of forwarding operator do not need to calculate, @@ -90,7 +89,7 @@ std::shared_ptr BackwardRecursive( } // Returned gradient network - auto net = std::make_shared(); + auto net = std::unique_ptr(new operators::NetOp()); if (forwardOp.IsNetOp()) { // Because forwardOp is a net op, it can static_cast. @@ -104,14 +103,14 @@ std::shared_ptr BackwardRecursive( // reversely travel forwardNet and collect all duplicate outputs. for (auto it = forwardNet.ops_.rbegin(); it != forwardNet.ops_.rend(); ++it, ++local_op_id) { - auto fwd = *it; + auto& fwd = *it; auto bwd = BackwardRecursive(*fwd, no_grad_names, uniq_id); - net->AddOp(bwd); ForEachVarName(bwd->Outputs(), [&dup_output_ops, local_op_id](const std::string& out) { dup_output_ops[out].emplace_back(local_op_id); return false; }); + net->AddOp(std::move(bwd)); } // Get unique ID for this method. auto uid = uniq_id++; @@ -121,7 +120,7 @@ std::shared_ptr BackwardRecursive( // to handle this case. For each duplicate output, rename it to an alias // (original name with a offset), append an `add` op for its operator, // and finally sum all the alias variable to the final output variable y. - using Pos = std::pair>; + using Pos = std::pair>; std::list insert_position; for (auto& dup_output_op : dup_output_ops) { const std::string& name = dup_output_op.first; @@ -149,13 +148,13 @@ std::shared_ptr BackwardRecursive( [](const Pos& l, const Pos& r) { return l.first > r.first; }); for (auto& pos : insert_position) { - net->InsertOp(pos.first + 1, pos.second); + net->InsertOp(pos.first + 1, std::move(pos.second)); } } else { - std::shared_ptr grad_op = OpRegistry::CreateGradOp(forwardOp); + std::unique_ptr grad_op(OpRegistry::CreateGradOp(forwardOp)); - ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, - grad_op](const std::string& grad_input) { + ForEachVarName(grad_op->Inputs(), [&no_grad_names, &net, &grad_op]( + const std::string& grad_input) { if (no_grad_names.count(grad_input)) { // +1 for \0 std::string prefix = grad_input.substr( @@ -178,18 +177,34 @@ std::shared_ptr BackwardRecursive( return false; }); + // process recurrent gradient op as a special operator. + if (forwardOp.Type() == "recurrent_op") { + // NOTE clean up cycle call somewhere (RNN's stepnet constains itself), or + // this will result in infinite loop. + const auto& rnnop = + *static_cast(&forwardOp); + auto rnn_grad_op = + static_cast(grad_op.get()); + const auto& stepnet_op = + *static_cast(&rnnop.stepnet()); + // create stepnet's gradient op + rnn_grad_op->set_stepnet( + BackwardRecursive(stepnet_op, no_grad_names, uniq_id)); + } + if (net->ops_.empty()) { // Current no aux op is added to network return grad_op; } - net->AddOp(grad_op); + net->AddOp(std::move(grad_op)); } net->SetType("@GENERATED_BACKWARD@"); net->CompleteAddOp(); - return net; -} // namespace framework + return std::unique_ptr( + static_cast(net.release())); +} // See header for comments -std::shared_ptr Backward( +std::unique_ptr Backward( const OperatorBase& forwardOp, const std::unordered_set& no_grad_vars) { std::unordered_set no_grad_names; diff --git a/paddle/framework/backward.h b/paddle/framework/backward.h index c181919dc165cf0b49362f85e22ceb4131bbd387..1ecf69881b3126c2904920b9f4b77bfcccc9cf86 100644 --- a/paddle/framework/backward.h +++ b/paddle/framework/backward.h @@ -20,7 +20,7 @@ namespace framework { // Create the backward operator from a forward operator. // TODO(yuyang18): Add more API reference comment. -extern std::shared_ptr Backward( +extern std::unique_ptr Backward( const OperatorBase& forwardOp, const std::unordered_set& no_grad_vars); } // namespace framework diff --git a/paddle/framework/backward_test.cc b/paddle/framework/backward_test.cc index d942604bf05998ab9e1ee147b28586e7e4e9777d..1003b1ccd83c85c54f07c8d2b84f993203408941 100644 --- a/paddle/framework/backward_test.cc +++ b/paddle/framework/backward_test.cc @@ -180,8 +180,7 @@ TEST(Backward, simple_op_not_need_grad) { auto no_input_gop = f::Backward(*fwd, {"x", "b"}); ASSERT_NE(no_input_gop, nullptr); ASSERT_TRUE(no_input_gop->IsNetOp()); - ASSERT_EQ(0UL, - std::static_pointer_cast(no_input_gop)->ops_.size()); + ASSERT_EQ(0UL, static_cast(no_input_gop.get())->ops_.size()); } TEST(Backward, net_fc_backward_normal) { diff --git a/paddle/framework/op_registry.cc b/paddle/framework/op_registry.cc index 1caa02a2a1d046778f875d04eeaef957be741302..8eae86e9605da74cdc37caeb9569e7500aac2a63 100644 --- a/paddle/framework/op_registry.cc +++ b/paddle/framework/op_registry.cc @@ -17,5 +17,48 @@ limitations under the License. */ #include namespace paddle { -namespace framework {} // namespace framework +namespace framework { + +std::unique_ptr OpRegistry::CreateOp(const std::string& type, + const VarNameMap& inputs, + const VarNameMap& outputs, + AttributeMap attrs) { + auto it = op_info_map().find(type); + PADDLE_ENFORCE(it != op_info_map().end(), + "Operator '%s' has not been registered.", type); + it->second.checker_->Check(attrs); + auto op = it->second.creator_(type, inputs, outputs, attrs); + return std::unique_ptr(op); +} + +std::unique_ptr OpRegistry::CreateOp(const OpDesc& op_desc) { + VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); + VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); + AttributeMap attrs; + for (auto& attr : op_desc.attrs()) { + attrs[attr.name()] = GetAttrValue(attr); + } + + return CreateOp(op_desc.type(), inputs, outputs, attrs); +} + +OperatorBase::VarNameMap OpRegistry::ConvertOpDescVarsToVarNameMap( + const google::protobuf::RepeatedPtrField& op_desc_vars) { + VarNameMap ret_val; + for (auto& var : op_desc_vars) { + auto& var_names = ret_val[var.parameter()]; + auto& var_names_in_proto = var.arguments(); + var_names.reserve(static_cast(var_names_in_proto.size())); + std::copy(var_names_in_proto.begin(), var_names_in_proto.end(), + std::back_inserter(var_names)); + } + return ret_val; +} + +std::unique_ptr OpRegistry::CreateGradOp(const OperatorBase& op) { + PADDLE_ENFORCE(!op.IsNetOp(), "Use framework::Backward to get backward ops"); + return std::unique_ptr(BuildGradOp(&op)); +} + +} // namespace framework } // namespace paddle diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h index 120f4ede6ba21e31683a8d19f0b39072c3f5c309..4c2d13d639005d2d2710c19f63988333d89bce13 100644 --- a/paddle/framework/op_registry.h +++ b/paddle/framework/op_registry.h @@ -29,103 +29,6 @@ limitations under the License. */ namespace paddle { namespace framework { -// this class not only make proto but also init attribute checkers. -class OpProtoAndCheckerMaker { - public: - OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) - : proto_(proto), op_checker_(op_checker) {} - - ~OpProtoAndCheckerMaker() { - PADDLE_ENFORCE(validated_, "should call Validate after build"); - } - - void Validate() { - validated_ = true; - CheckNoDuplicatedInOutAttrs(); - } - - protected: - struct VariableBuilder { - OpProto::Var* var_; - - VariableBuilder& AsDuplicable() { - var_->set_duplicable(true); - return *this; - } - - VariableBuilder& AsIntermediate() { - var_->set_intermediate(true); - return *this; - } - - // TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it - // means that input/output is not needed when calculate gradient. It does - // not mean no gradient when backward. It should be changed soon. - VariableBuilder& AsNoGradient() { - var_->set_no_gradient(true); - return *this; - } - }; - - VariableBuilder AddInput(const std::string& name, - const std::string& comment) { - auto* input = proto_->add_inputs(); - input->set_name(name); - input->set_comment(comment); - return VariableBuilder{input}; - } - - VariableBuilder AddOutput(const std::string& name, - const std::string& comment) { - auto* output = proto_->add_outputs(); - output->set_name(name); - output->set_comment(comment); - return VariableBuilder{output}; - } - - template - TypedAttrChecker& AddAttr(const std::string& name, - const std::string& comment, - bool generated = false) { - auto* attr = proto_->add_attrs(); - attr->set_name(name); - attr->set_comment(comment); - attr->set_generated(generated); - attr->set_type(AttrTypeID()); - return op_checker_->AddAttrChecker(name); - } - - void AddComment(const std::string& comment) { proto_->set_comment(comment); } - - private: - void CheckNoDuplicatedInOutAttrs() { - std::unordered_set names; - auto checker = [&](const std::string& name) { - PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name); - names.insert(name); - }; - for (auto& attr : proto_->attrs()) { - checker(attr.name()); - } - for (auto& input : proto_->inputs()) { - checker(input.name()); - } - for (auto& output : proto_->outputs()) { - checker(output.name()); - } - } - - OpProto* proto_; - OpAttrChecker* op_checker_; - bool validated_{false}; -}; - -class NOPMaker : public OpProtoAndCheckerMaker { - public: - NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) - : OpProtoAndCheckerMaker(proto, op_checker) {} -}; - class OpRegistry { using VarNameMap = OperatorBase::VarNameMap; using OpCreator = std::function CreateOp(const std::string& type, + static std::unique_ptr CreateOp(const std::string& type, const VarNameMap& inputs, const VarNameMap& outputs, - AttributeMap attrs) { - auto it = op_info_map().find(type); - PADDLE_ENFORCE(it != op_info_map().end(), - "Operator '%s' has not been registered.", type); - it->second.checker_->Check(attrs); - auto op = it->second.creator_(type, inputs, outputs, attrs); - return std::shared_ptr(op); - } - - static VarNameMap ConvertOpDescVarsToVarNameMap( - const google::protobuf::RepeatedPtrField& op_desc_vars) { - VarNameMap ret_val; - for (auto& var : op_desc_vars) { - auto& var_names = ret_val[var.parameter()]; - auto& var_names_in_proto = var.arguments(); - var_names.reserve(static_cast(var_names_in_proto.size())); - std::copy(var_names_in_proto.begin(), var_names_in_proto.end(), - std::back_inserter(var_names)); - } - return ret_val; - } + AttributeMap attrs); - static std::shared_ptr CreateOp(const OpDesc& op_desc) { - VarNameMap inputs = ConvertOpDescVarsToVarNameMap(op_desc.inputs()); - VarNameMap outputs = ConvertOpDescVarsToVarNameMap(op_desc.outputs()); - AttributeMap attrs; - for (auto& attr : op_desc.attrs()) { - attrs[attr.name()] = GetAttrValue(attr); - } + static std::unique_ptr CreateOp(const OpDesc& op_desc); - return CreateOp(op_desc.type(), inputs, outputs, attrs); - } + static VarNameMap ConvertOpDescVarsToVarNameMap( + const google::protobuf::RepeatedPtrField& op_desc_vars); - static std::shared_ptr CreateGradOp(const OperatorBase& op) { - PADDLE_ENFORCE(!op.IsNetOp(), - "Use framework::Backward to get backward ops"); - std::shared_ptr grad_op(BuildGradOp(&op)); - return grad_op; - } + static std::unique_ptr CreateGradOp(const OperatorBase& op); static std::unordered_map& op_info_map() { static std::unordered_map op_info_map_; @@ -272,8 +144,18 @@ class OpKernelRegistrar : public Registrar { grad_op_class) \ STATIC_ASSERT_GLOBAL_NAMESPACE( \ __reg_op__##op_type, "REGISTER_OP must be called in global namespace"); \ - static ::paddle::framework::OpRegistrar \ + class _OpClass_##op_type##_ : public op_class { \ + public: \ + DEFINE_OP_CLONE_METHOD(_OpClass_##op_type##_); \ + DEFINE_OP_CONSTRUCTOR(_OpClass_##op_type##_, op_class); \ + }; \ + class _OpGradClass_##op_type##_ : public grad_op_class { \ + public: \ + DEFINE_OP_CLONE_METHOD(_OpGradClass_##op_type##_); \ + DEFINE_OP_CONSTRUCTOR(_OpGradClass_##op_type##_, grad_op_class); \ + }; \ + static ::paddle::framework::OpRegistrar< \ + _OpClass_##op_type##_, op_maker_class, _OpGradClass_##op_type##_> \ __op_registrar_##op_type##__(#op_type, #grad_op_type); \ int TouchOpRegistrar_##op_type() { \ __op_registrar_##op_type##__.Touch(); \ @@ -304,7 +186,8 @@ class OpKernelRegistrar : public Registrar { REGISTER_OP_KERNEL(op_type, CPU, ::paddle::platform::CPUPlace, __VA_ARGS__) /** - * Macro to mark what Operator and Kernel we will use and tell the compiler to + * Macro to mark what Operator and Kernel + * we will use and tell the compiler to * link them into target. */ #define USE_OP_ITSELF(op_type) \ @@ -324,7 +207,8 @@ class OpKernelRegistrar : public Registrar { __attribute__((unused)) = \ TouchOpKernelRegistrar_##op_type##_##DEVICE_TYPE() -// TODO(fengjiayi): The following macros seems ugly, do we have better method? +// TODO(fengjiayi): The following macros +// seems ugly, do we have better method? #ifdef PADDLE_ONLY_CPU #define USE_OP_KERNEL(op_type) USE_OP_DEVICE_KERNEL(op_type, CPU) diff --git a/paddle/framework/op_registry_test.cc b/paddle/framework/op_registry_test.cc index 1a85d568350dc04ca1df28129de19cd45b5204b8..50c45919c53af22665feeeebe753da283ded2b0c 100644 --- a/paddle/framework/op_registry_test.cc +++ b/paddle/framework/op_registry_test.cc @@ -76,8 +76,7 @@ TEST(OpRegistry, CreateOp) { attr->set_type(paddle::framework::AttrType::FLOAT); attr->set_f(scale); - std::shared_ptr op = - paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc); paddle::framework::Scope scope; paddle::platform::CPUDeviceContext dev_ctx; op->Run(scope, dev_ctx); @@ -118,8 +117,7 @@ TEST(OpRegistry, DefaultValue) { ASSERT_TRUE(op_desc.IsInitialized()); - std::shared_ptr op = - paddle::framework::OpRegistry::CreateOp(op_desc); + auto op = paddle::framework::OpRegistry::CreateOp(op_desc); paddle::framework::Scope scope; paddle::platform::CPUDeviceContext dev_ctx; op->Run(scope, dev_ctx); diff --git a/paddle/framework/operator.cc b/paddle/framework/operator.cc index 0daf12e7f5f3539d460ce67d39ca1c06f5aa2237..eadd8f3316ff1ebffb94a56b2e62d661e4e0b38f 100644 --- a/paddle/framework/operator.cc +++ b/paddle/framework/operator.cc @@ -164,5 +164,43 @@ std::vector OperatorBase::OutputVars(bool has_intermediate) const { return ret_val; } +void OpProtoAndCheckerMaker::Validate() { + validated_ = true; + CheckNoDuplicatedInOutAttrs(); +} + +OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddInput( + const std::string& name, const std::string& comment) { + auto* input = proto_->add_inputs(); + input->set_name(name); + input->set_comment(comment); + return OpProtoAndCheckerMaker::VariableBuilder{input}; +} + +OpProtoAndCheckerMaker::VariableBuilder OpProtoAndCheckerMaker::AddOutput( + const std::string& name, const std::string& comment) { + auto* output = proto_->add_outputs(); + output->set_name(name); + output->set_comment(comment); + return OpProtoAndCheckerMaker::VariableBuilder{output}; +} + +void OpProtoAndCheckerMaker::CheckNoDuplicatedInOutAttrs() { + std::unordered_set names; + auto checker = [&](const std::string& name) { + PADDLE_ENFORCE(!names.count(name), "[%s] is duplicated", name); + names.insert(name); + }; + for (auto& attr : proto_->attrs()) { + checker(attr.name()); + } + for (auto& input : proto_->inputs()) { + checker(input.name()); + } + for (auto& output : proto_->outputs()) { + checker(output.name()); + } +} + } // namespace framework } // namespace paddle diff --git a/paddle/framework/operator.h b/paddle/framework/operator.h index 60d4f06c7e6f8849800f238242a340ef5dbf771e..848baeeeb6493f61c41193a5cc0fc69e93934bfb 100644 --- a/paddle/framework/operator.h +++ b/paddle/framework/operator.h @@ -67,10 +67,6 @@ class OperatorBase { OperatorBase(const std::string& type, const VarNameMap& inputs, const VarNameMap& outputs, const AttributeMap& attrs); - OperatorBase(const OperatorBase& o) = delete; - OperatorBase& operator=(const OperatorBase& o) = delete; - OperatorBase(OperatorBase&& o) = delete; - virtual ~OperatorBase() {} template @@ -116,10 +112,14 @@ class OperatorBase { void SetType(const std::string& type) { type_ = type; } const AttributeMap& Attrs() const { return attrs_; } + // Return a new operator instance, which is as same as this. + // Use unique_ptr to prevent caller forget to delete this pointer. + virtual std::unique_ptr Clone() const = 0; + protected: std::string type_; // NOTE: in case of OpGrad, inputs_ contains: - // I (Inputs) + // I (Inputs)opear // O (Outputs) // OG (Output Gradients) VarNameMap inputs_; @@ -130,12 +130,100 @@ class OperatorBase { AttributeMap attrs_; }; +// Macro for define a clone method. +// If you are writing an kernel operator, `Clone` will be defined when you +// register it. i.e. `Clone` method is not needed to define by yourself. +#define DEFINE_OP_CLONE_METHOD(CLS) \ + std::unique_ptr Clone() const final { \ + return std::unique_ptr(new CLS(*this)); \ + } + +// Macro for define a default constructor for Operator. +// You can also use +// using PARENT_CLASS::PARENT_CLASS; +// to use parent's constructor. +#define DEFINE_OP_CONSTRUCTOR(CLS, PARENT_CLS) \ + CLS(const std::string& type, const VarNameMap& inputs, \ + const VarNameMap& outputs, const paddle::framework::AttributeMap& attrs) \ + : PARENT_CLS(type, inputs, outputs, attrs) {} + class NOP : public OperatorBase { public: using OperatorBase::OperatorBase; void InferShape(const Scope& scope) const override {} void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override {} + std::unique_ptr Clone() const override { + return std::unique_ptr(new NOP(*this)); + } +}; + +// this class not only make proto but also init attribute checkers. +class OpProtoAndCheckerMaker { + public: + OpProtoAndCheckerMaker(OpProto* proto, OpAttrChecker* op_checker) + : proto_(proto), op_checker_(op_checker) {} + + ~OpProtoAndCheckerMaker() { + PADDLE_ENFORCE(validated_, "should call Validate after build"); + } + + void Validate(); + + protected: + struct VariableBuilder { + OpProto::Var* var_; + + VariableBuilder& AsDuplicable() { + var_->set_duplicable(true); + return *this; + } + + VariableBuilder& AsIntermediate() { + var_->set_intermediate(true); + return *this; + } + + // TODO(FengJiayi, yuyang18): `AsNoGradient` is a very bad name, because it + // means that input/output is not needed when calculate gradient. It does + // not mean no gradient when backward. It should be changed soon. + VariableBuilder& AsNoGradient() { + var_->set_no_gradient(true); + return *this; + } + }; + + VariableBuilder AddInput(const std::string& name, const std::string& comment); + + VariableBuilder AddOutput(const std::string& name, + const std::string& comment); + + template + TypedAttrChecker& AddAttr(const std::string& name, + const std::string& comment, + bool generated = false) { + auto* attr = proto_->add_attrs(); + attr->set_name(name); + attr->set_comment(comment); + attr->set_generated(generated); + attr->set_type(AttrTypeID()); + return op_checker_->AddAttrChecker(name); + } + + void AddComment(const std::string& comment) { proto_->set_comment(comment); } + + private: + void CheckNoDuplicatedInOutAttrs(); + + OpProto* proto_; + OpAttrChecker* op_checker_; + bool validated_{false}; +}; + +class NOPMaker : public OpProtoAndCheckerMaker { + public: + NOPMaker(framework::OpProto* proto, framework::OpAttrChecker* op_checker) + : OpProtoAndCheckerMaker(proto, op_checker) {} }; class InferShapeContext { diff --git a/paddle/framework/operator_test.cc b/paddle/framework/operator_test.cc index 0441cec9f6d10246fba38b02b4de3cbe2ee4766b..2425b87779f6af01b0e8a91b5f574a28385f0efd 100644 --- a/paddle/framework/operator_test.cc +++ b/paddle/framework/operator_test.cc @@ -245,3 +245,21 @@ TEST(OpKernel, multi_inputs) { auto op = paddle::framework::OpRegistry::CreateOp(op_desc); op->Run(scope, cpu_device_context); } + +class OperatorClone : public paddle::framework::OperatorBase { + public: + DEFINE_OP_CLONE_METHOD(OperatorClone); + OperatorClone(const std::string& type, const VarNameMap& inputs, + const VarNameMap& outputs, + const paddle::framework::AttributeMap& attrs) + : OperatorBase(type, inputs, outputs, attrs) {} + void InferShape(const paddle::framework::Scope& scope) const override {} + void Run(const paddle::framework::Scope& scope, + const paddle::platform::DeviceContext& dev_ctx) const override {} +}; + +TEST(Operator, Clone) { + OperatorClone a("ABC", {}, {}, {}); + auto b = a.Clone(); + ASSERT_EQ(a.Type(), b->Type()); +} \ No newline at end of file diff --git a/paddle/framework/pybind.cc b/paddle/framework/pybind.cc index fe0c87bc570825014222807cb90a3bb341b44e8e..f0114b9e4908d65b3fddb493230777f9e500b4e1 100644 --- a/paddle/framework/pybind.cc +++ b/paddle/framework/pybind.cc @@ -48,29 +48,6 @@ namespace framework { using Tensor = framework::Tensor; -template -void ExposeOperator(ClassType &m) { - m.def("infer_shape", &ClassType::type::InferShape) - .def("run", &ClassType::type::Run) - .def("type", - [](const typename ClassType::type &op) -> std::string { - return op.Type(); - }) - .def("outputs", - [](const typename ClassType::type &op) - -> std::map> { - return op.Outputs(); - }) - .def("inputs", - [](const typename ClassType::type &op) { return op.Inputs(); }) - .def("__str__", &ClassType::type::DebugString) - .def("no_intermediate_outputs", - [](const typename ClassType::type &op) { - return op.OutputVars(false); - }) - .def("support_gpu", &ClassType::type::SupportGPU); -} - static size_t UniqueIntegerGenerator() { static std::atomic generator; return generator.fetch_add(1); @@ -207,75 +184,69 @@ All parameter, weight, gradient are variables in Paddle. .def(py::init<>()) .def("__str__", string::to_string); - py::class_> operator_base( - m, "Operator"); - - operator_base.def_static("create", [](py::bytes protobin) { - OpDesc desc; - PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), - "Cannot parse user input to OpDesc"); - PADDLE_ENFORCE(desc.IsInitialized(), - "User OpDesc is not initialized, reason %s", - desc.InitializationErrorString()); - return OpRegistry::CreateOp(desc); - }); - - operator_base.def("backward", - [](const OperatorBase &forwardOp, - const std::unordered_set &no_grad_vars) { - return Backward(forwardOp, no_grad_vars); - }); - - ExposeOperator(operator_base); - - py::class_> net(m, "Net"); - - net.def_static("create", - []() -> std::shared_ptr { - auto retv = std::make_shared(); - retv->SetType("plain_net"); - return retv; - }) - .def("add_op", &operators::NetOp::AddOp) - .def("add_op", - [](operators::NetOp &self, - const std::shared_ptr &net) -> void { - self.AddOp(std::static_pointer_cast(net)); - }) - .def("add_op", - [](operators::NetOp &self, - const std::shared_ptr &rnn) -> void { - self.AddOp(std::static_pointer_cast(rnn)); + py::class_(m, "Operator") + .def_static("create", + [](py::bytes protobin) { + OpDesc desc; + PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), + "Cannot parse user input to OpDesc"); + PADDLE_ENFORCE(desc.IsInitialized(), + "User OpDesc is not initialized, reason %s", + desc.InitializationErrorString()); + return OpRegistry::CreateOp(desc); + }) + .def("backward", + [](const OperatorBase &forwardOp, + const std::unordered_set &no_grad_vars) { + return Backward(forwardOp, no_grad_vars).release(); }) + .def("infer_shape", &OperatorBase::InferShape) + .def("run", &OperatorBase::Run) + .def("type", + [](const OperatorBase &op) -> std::string { return op.Type(); }) + .def("outputs", + [](const OperatorBase &op) + -> std::map> { + return op.Outputs(); + }) + .def("inputs", [](const OperatorBase &op) { return op.Inputs(); }) + .def("__str__", &OperatorBase::DebugString) + .def("no_intermediate_outputs", + [](const OperatorBase &op) { return op.OutputVars(false); }) + .def("support_gpu", &OperatorBase::SupportGPU); + + py::class_(m, "Net") + .def_static("create", + []() -> operators::NetOp * { + auto *retv = new operators::NetOp; + retv->SetType("plain_net"); + return retv; + }) + .def("add_op", [](operators::NetOp &self, + const OperatorBase &op) { self.AddOp(op); }) .def("complete_add_op", &operators::NetOp::CompleteAddOp) .def("complete_add_op", [](std::shared_ptr &self) { self->CompleteAddOp(); }); - ExposeOperator(net); - // recurrent_op - py::class_> - rnn(m, "RecurrentOp"); - - rnn.def_static( - "create", - [](py::bytes protobin) -> std::shared_ptr { - OpDesc desc; - PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), - "Cannot parse user input to OpDesc"); - PADDLE_ENFORCE(desc.IsInitialized(), - "User OpDesc is not initialized, reason %s", - desc.InitializationErrorString()); - auto rnn_op = OpRegistry::CreateOp(desc); - return std::dynamic_pointer_cast(rnn_op); - }) - .def("set_stepnet", - [](operators::RecurrentOp &self, - const std::shared_ptr &net) -> void { - self.set_stepnet(net); - }); - ExposeOperator(rnn); + py::class_(m, "RecurrentOp") + .def_static( + "create", + [](py::bytes protobin) -> operators::RecurrentOp * { + OpDesc desc; + PADDLE_ENFORCE(desc.ParsePartialFromString(protobin), + "Cannot parse user input to OpDesc"); + PADDLE_ENFORCE(desc.IsInitialized(), + "User OpDesc is not initialized, reason %s", + desc.InitializationErrorString()); + auto rnn_op = OpRegistry::CreateOp(desc); + return static_cast(rnn_op.release()); + }) + .def("set_stepnet", [](operators::RecurrentOp &self, + const operators::NetOp &net) -> void { + self.set_stepnet(net.Clone()); + }); m.def("unique_integer", UniqueIntegerGenerator); diff --git a/paddle/gserver/layers/MKLDNNFcLayer.cpp b/paddle/gserver/layers/MKLDNNFcLayer.cpp index 30f567eaf8248a8fba1b461a2bdbf2aab13f9e08..d201fac65e0459050304195140e1aae081468f43 100644 --- a/paddle/gserver/layers/MKLDNNFcLayer.cpp +++ b/paddle/gserver/layers/MKLDNNFcLayer.cpp @@ -57,11 +57,14 @@ bool MKLDNNFcLayer::init(const LayerMap& layerMap, } void MKLDNNFcLayer::convertWeightsFromPaddle() { - if (FLAGS_use_mkldnn_wgt) { + if (hasInitedWgt_) { return; } - if (hasInitedWgt_) { + // TODO(TJ): dst format should get from wgtVal_ + int dstFmt = PARAM_FORMAT_MKLDNN_OI; + int srcFmt = weight_->getParameterPtr()->getHeaderFormat(); + if (srcFmt == dstFmt) { return; } @@ -78,6 +81,7 @@ void MKLDNNFcLayer::convertWeightsFromPaddle() { MatrixPtr paddleWgtT; paddleWgt->transpose(paddleWgtT, true); weight_->getW()->copyFrom(*paddleWgtT); + weight_->getParameterPtr()->setHeaderFormat(dstFmt); hasInitedWgt_ = true; } diff --git a/paddle/gserver/tests/MKLDNNTester.cpp b/paddle/gserver/tests/MKLDNNTester.cpp index 99c8c4948c9b05ad15d1217ebb70026bbd48453f..de1635be2af37cd0ba49010199a417090865b0e4 100644 --- a/paddle/gserver/tests/MKLDNNTester.cpp +++ b/paddle/gserver/tests/MKLDNNTester.cpp @@ -330,9 +330,7 @@ void MKLDNNTester::run(const TestConfig& dnn, log_ = log; lvl_ = level; - // Firstly test FLAGS_use_mkldnn_wgt = false - FLAGS_use_mkldnn_wgt = false; - // reset and run once + // Firstly test mkldnn init from PARAM_FORMAT_ORIGINAL weight reset(dnn, ref, batchSize); randomWgtDatas(); clearWgtDiffs(); @@ -342,17 +340,32 @@ void MKLDNNTester::run(const TestConfig& dnn, runOnce(); } - // Then test FLAGS_use_mkldnn_wgt = true - FLAGS_use_mkldnn_wgt = true; - // after run once the mkldnn weight has been stored in dnnlayer + if (parameters_[DNN].empty()) { + // has no paramters + return; + } + + // After run some iterations, the mkldnn weight has been stored in dnnLayer + // and we can also get the mkldnn weight parameter header format. + // Weight parameter should always be index 0 (and bias index 1). + // TODO(TJ): should also consider mean and var format when batchnorm ready + int dnnWgtFmt = parameters_[DNN][0]->getHeaderFormat(); + int refWgtFmt = parameters_[REF][0]->getHeaderFormat(); + if (dnnWgtFmt == refWgtFmt) { + // weight format are equal, so no need check more + return; + } + // then save the weights and restart again vector dnnWgts, refWgts; CHECK_EQ(parameters_[DNN].size(), parameters_[REF].size()); saveWgt(parameters_[DNN], dnnWgts); saveWgt(parameters_[REF], refWgts); - // restart again with flag true + // restart again with dnn weight format reset(dnn, ref, batchSize); + // TODO(TJ): should also considerate mean and var format when batchnorm ready + parameters_[DNN][0]->setHeaderFormat(dnnWgtFmt); // restore wgt restoreWgt(dnnWgts, parameters_[DNN]); diff --git a/paddle/gserver/tests/MKLDNNTester.h b/paddle/gserver/tests/MKLDNNTester.h index 522eeaf24b1949abac057a1e59e9977610be23c0..e55e4493ffdfe45b8cfdee423febd1878b8b3d8a 100644 --- a/paddle/gserver/tests/MKLDNNTester.h +++ b/paddle/gserver/tests/MKLDNNTester.h @@ -108,7 +108,7 @@ private: * if many(>failRate) wrong(abs(dnn-ref)/abs(ref)>thres) points return the * max(diff/ref) * else return sum(abs(a-b)) / sum(abs(b)) - * The return value should smaller than eps when passing. + * The return value should be smaller than eps when passing. */ double getDelta(const real* d1, const real* d2, diff --git a/paddle/memory/CMakeLists.txt b/paddle/memory/CMakeLists.txt index 8035d93bfec75b20a54c5af0521ab724cafba8ca..9cc4233e43267472d405c3e4e617f0782e1430ea 100644 --- a/paddle/memory/CMakeLists.txt +++ b/paddle/memory/CMakeLists.txt @@ -1,7 +1,7 @@ add_subdirectory(detail) cc_library(memory SRCS memory.cc) -cc_library(memcpy SRCS memcpy.cc DEPS device_context) +cc_library(memcpy SRCS memcpy.cc) cc_library(paddle_memory DEPS diff --git a/paddle/memory/detail/system_allocator.cc b/paddle/memory/detail/system_allocator.cc index f61e67a32906083881dd7f47433521876be9b355..a270bd59581520859d43cddd2fc0cfa72080f46d 100644 --- a/paddle/memory/detail/system_allocator.cc +++ b/paddle/memory/detail/system_allocator.cc @@ -27,7 +27,7 @@ limitations under the License. */ // between host and device. Allocates too much would reduce the amount // of memory available to the system for paging. So, by default, we // should set false to use_pinned_memory. -DEFINE_bool(use_pinned_memory, false, "If set, allocate cpu pinned memory."); +DEFINE_bool(use_pinned_memory, true, "If set, allocate cpu pinned memory."); namespace paddle { namespace memory { diff --git a/paddle/memory/memcpy.cc b/paddle/memory/memcpy.cc index aaab1142ca18d3319469a4d685fde9d30929113f..a19a3e3675e3e2e7cc0c3594f21191f932d6379f 100644 --- a/paddle/memory/memcpy.cc +++ b/paddle/memory/memcpy.cc @@ -16,8 +16,6 @@ limitations under the License. */ #include // for memcpy -#include "paddle/platform/device_context.h" - namespace paddle { namespace memory { diff --git a/paddle/memory/memory.cc b/paddle/memory/memory.cc index 207025f9b1c64f0f8943f9fae5edefc9328a1d26..0266bf4f7d65c7aafd4242af41cbd1c71f44bff8 100644 --- a/paddle/memory/memory.cc +++ b/paddle/memory/memory.cc @@ -13,22 +13,33 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/memory/memory.h" + +#include // for transform +#include // for memcpy +#include // for unique_ptr +#include // for call_once + #include "paddle/memory/detail/buddy_allocator.h" #include "paddle/memory/detail/system_allocator.h" -#include // for memcpy - namespace paddle { namespace memory { -detail::BuddyAllocator* GetCPUBuddyAllocator() { - static detail::BuddyAllocator* a = nullptr; - if (a == nullptr) { - a = new detail::BuddyAllocator(new detail::CPUAllocator, - platform::CpuMinChunkSize(), - platform::CpuMaxChunkSize()); - } - return a; +using BuddyAllocator = detail::BuddyAllocator; + +std::once_flag cpu_allocator_flag; +std::once_flag gpu_allocator_flag; + +BuddyAllocator* GetCPUBuddyAllocator() { + static std::unique_ptr a{nullptr}; + + std::call_once(cpu_allocator_flag, [&]() { + a.reset(new BuddyAllocator(new detail::CPUAllocator, + platform::CpuMinChunkSize(), + platform::CpuMaxChunkSize())); + }); + + return a.get(); } template <> @@ -48,20 +59,31 @@ size_t Used(platform::CPUPlace place) { #ifndef PADDLE_ONLY_CPU -detail::BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { - static detail::BuddyAllocator** as = NULL; - if (as == NULL) { +BuddyAllocator* GetGPUBuddyAllocator(int gpu_id) { + using BuddyAllocVec = std::vector; + static std::unique_ptr as{ + new BuddyAllocVec, [](BuddyAllocVec* p) { + std::for_each(p->begin(), p->end(), + [](BuddyAllocator* p) { delete p; }); + }}; + + // GPU buddy allocators + auto& allocators = *as.get(); + + // GPU buddy allocator initialization + std::call_once(gpu_allocator_flag, [&]() { int gpu_num = platform::GetDeviceCount(); - as = new detail::BuddyAllocator*[gpu_num]; + allocators.reserve(gpu_num); for (int gpu = 0; gpu < gpu_num; gpu++) { platform::SetDeviceId(gpu); - as[gpu] = new detail::BuddyAllocator(new detail::GPUAllocator, - platform::GpuMinChunkSize(), - platform::GpuMaxChunkSize()); + allocators.emplace_back(new BuddyAllocator(new detail::GPUAllocator, + platform::GpuMinChunkSize(), + platform::GpuMaxChunkSize())); } - } + }); + platform::SetDeviceId(gpu_id); - return as[gpu_id]; + return allocators[gpu_id]; } template <> diff --git a/paddle/operators/gather_test.cc b/paddle/operators/gather_test.cc index d24d83f299fdb071e60fa3cc7b223c0228cb29af..0ae1e99452973feb6d085dd6ef51e2afca988f59 100644 --- a/paddle/operators/gather_test.cc +++ b/paddle/operators/gather_test.cc @@ -45,4 +45,8 @@ TEST(Gather, GatherData) { for (int i = 0; i < 4; ++i) EXPECT_EQ(p_output[i], i + 4); for (int i = 4; i < 8; ++i) EXPECT_EQ(p_output[i], i - 4); + + delete src; + delete index; + delete output; } diff --git a/paddle/operators/mean_op.h b/paddle/operators/mean_op.h index fcb703e63bd5a82f9ffac2bf64e06fd0218dbdaa..9848af280b62729bef9243052ceae0b7d8f4c6f5 100644 --- a/paddle/operators/mean_op.h +++ b/paddle/operators/mean_op.h @@ -55,9 +55,10 @@ class MeanGradKernel : public framework::OpKernel { IG->mutable_data(context.GetPlace()); T ig_size = (T)framework::product(IG->dims()); + Eigen::DSizes bcast(ig_size); EigenVector::Flatten(*IG).device(context.GetEigenDevice()) = - EigenScalar::From(*OG) / ig_size; + (EigenVector::From(*OG) / ig_size).broadcast(bcast); } }; diff --git a/paddle/operators/net_op.cc b/paddle/operators/net_op.cc index c36fe8d6b58a0afa568e31e43567baa5f261c7d0..a7d710511093dfbe13a13b1222b0230bba0398bd 100644 --- a/paddle/operators/net_op.cc +++ b/paddle/operators/net_op.cc @@ -85,7 +85,14 @@ NetOp::NetOp(const std::string& type, const framework::OperatorBase::VarNameMap& inputs, const framework::OperatorBase::VarNameMap& outputs, const framework::AttributeMap& attrs) - : OperatorBase(type, inputs, outputs, attrs) {} + : framework::OperatorBase(type, inputs, outputs, attrs) {} + +std::unique_ptr NetOp::Clone() const { + PADDLE_ENFORCE( + add_op_done_, + "Must clone a sealed NetOp, invoke Net::CompleteAddOp before clone"); + return std::unique_ptr(new NetOp(*this)); +} } // namespace operators } // namespace paddle diff --git a/paddle/operators/net_op.h b/paddle/operators/net_op.h index 4a3408c158a029a96740717280c1562671fa938f..885ac6eeca65998dea62c1db40b9261cceb97805 100644 --- a/paddle/operators/net_op.h +++ b/paddle/operators/net_op.h @@ -41,6 +41,16 @@ class NetOp : public framework::OperatorBase { NetOp(const std::string& type, const VarNameMap& inputs, const VarNameMap& outputs, const framework::AttributeMap& attrs); + NetOp(const NetOp& o) : framework::OperatorBase(o.type_, {}, {}, o.attrs_) { + this->ops_.reserve(o.ops_.size()); + std::transform( + o.ops_.begin(), o.ops_.end(), std::back_inserter(this->ops_), + [](const std::unique_ptr& op) { + return std::unique_ptr(op->Clone()); + }); + this->CompleteAddOp(); + } + /** * Infer all the operators' input and output variables' shapes, will be called * before every mini-batch @@ -74,21 +84,27 @@ class NetOp : public framework::OperatorBase { return true; } + void AddOp(const framework::OperatorBase& op) { AddOp(op.Clone()); } + /** * @brief Add an operator by ptr */ - void AddOp(const std::shared_ptr& op) { + void AddOp(std::unique_ptr op) { PADDLE_ENFORCE(!add_op_done_, "Cannot AddOp when this network is sealed"); PADDLE_ENFORCE_NOT_NULL(op, "Cannot Insert Null op"); - ops_.push_back(op); + ops_.push_back(std::move(op)); } - void InsertOp(size_t pos, const std::shared_ptr& op) { + void InsertOp(size_t pos, std::unique_ptr op) { PADDLE_ENFORCE(!add_op_done_, "Cannot InsertOp when this network is sealed"); PADDLE_ENFORCE_NOT_NULL(op, "Cannot Insert Null op"); PADDLE_ENFORCE_LE(pos, ops_.size(), "Out of range"); - ops_.insert(ops_.begin() + pos, op); + ops_.insert(ops_.begin() + pos, std::move(op)); + } + + void InsertOp(size_t pos, const framework::OperatorBase& op) { + InsertOp(pos, op.Clone()); } void CompleteAddOp(bool calculate = true); @@ -98,7 +114,9 @@ class NetOp : public framework::OperatorBase { bool IsNetOp() const override; std::vector OutputVars(bool has_intermediate) const override; - std::vector> ops_; + std::unique_ptr Clone() const override; + + std::vector> ops_; private: bool add_op_done_{false}; diff --git a/paddle/operators/net_op_test.cc b/paddle/operators/net_op_test.cc index 0cef71de6a032674a54387986f65f17ca99b400e..e9598610c0a74e08a613a397109ad65994821498 100644 --- a/paddle/operators/net_op_test.cc +++ b/paddle/operators/net_op_test.cc @@ -13,6 +13,7 @@ static int run_cnt = 0; class TestOp : public framework::OperatorBase { public: using framework::OperatorBase::OperatorBase; + DEFINE_OP_CLONE_METHOD(TestOp); void InferShape(const Scope& scope) const override { ++infer_shape_cnt; } void Run(const Scope& scope, const platform::DeviceContext& dev_ctx) const override { @@ -37,15 +38,12 @@ TEST(OpKernel, all) { auto net = std::make_shared(); ASSERT_NE(net, nullptr); - auto op1 = std::shared_ptr( + net->AddOp(std::unique_ptr( new TestOp("test", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, - {{"Out", {"y"}}}, {})); - net->AddOp(op1); - - auto op2 = std::shared_ptr( + {{"Out", {"y"}}}, {}))); + net->AddOp(std::unique_ptr( new TestOp("test", {{"X", {"y"}}, {"W", {"w2"}}, {"b", {"b2"}}}, - {{"Out", {"z"}}}, {})); - net->AddOp(op2); + {{"Out", {"z"}}}, {}))); net->CompleteAddOp(); AssertSameVectorWithoutOrder({"x", "w1", "b1", "w2", "b2"}, @@ -60,15 +58,31 @@ TEST(OpKernel, all) { TEST(NetOp, insert_op) { NetOp net; - auto op1 = std::shared_ptr( + auto op1 = std::unique_ptr( new framework::NOP("empty", {{"X", {"x"}}, {"W", {"w1"}}, {"b", {"b1"}}}, {{"Out", {"y"}}}, {})); - net.AddOp(op1); - net.InsertOp(0, op1); + net.AddOp(*op1); + net.InsertOp(0, *op1); ASSERT_EQ(2UL, net.ops_.size()); - net.InsertOp(2, op1); + net.InsertOp(2, std::move(op1)); ASSERT_EQ(3UL, net.ops_.size()); } +TEST(NetOp, Clone) { + NetOp net; + net.AddOp( + std::unique_ptr(new framework::NOP{"empty", {}, {}, {}})); + net.AddOp(std::unique_ptr( + new framework::NOP{"empty2", {}, {}, {}})); + net.CompleteAddOp(true); + auto new_net_op = net.Clone(); + ASSERT_NE(new_net_op, nullptr); + ASSERT_TRUE(new_net_op->IsNetOp()); + auto* new_net = static_cast(new_net_op.get()); + ASSERT_EQ(2, new_net->ops_.size()); + ASSERT_EQ(new_net->ops_[0]->Type(), "empty"); + ASSERT_EQ(new_net->ops_[1]->Type(), "empty2"); +} + } // namespace operators } // namespace paddle diff --git a/paddle/operators/recurrent_op.h b/paddle/operators/recurrent_op.h index caca644c96c3f8c741bac4a3b5a6239d2a4555c7..bcfa817de8242153b164fa091309f19a6ad8a246 100644 --- a/paddle/operators/recurrent_op.h +++ b/paddle/operators/recurrent_op.h @@ -34,7 +34,8 @@ class RecurrentAlgorithm { void Run(const framework::Scope& scope, const platform::DeviceContext& dev_ctx) const; - void Init(rnn::Argument* arg, std::shared_ptr* stepnet) { + void Init(rnn::Argument* arg, + std::unique_ptr* stepnet) { PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before."); arg_ = arg; stepnet_ = stepnet; @@ -63,7 +64,7 @@ class RecurrentAlgorithm { void InitMemories(framework::Scope* step_scopes, bool infer_shape_mode) const; private: - std::shared_ptr* stepnet_; + std::unique_ptr* stepnet_; rnn::Argument* arg_; mutable size_t seq_len_; }; @@ -80,7 +81,8 @@ class RecurrentGradientAlgorithm { * operator. */ public: - void Init(rnn::Argument* arg, std::shared_ptr* stepnet) { + void Init(rnn::Argument* arg, + std::unique_ptr* stepnet) { PADDLE_ENFORCE_NOT_NULL(stepnet, "stepnet should be set before."); arg_ = std::move(arg); stepnet_ = stepnet; @@ -107,16 +109,23 @@ class RecurrentGradientAlgorithm { private: rnn::Argument* arg_; mutable size_t seq_len_; - std::shared_ptr* stepnet_; + std::unique_ptr* stepnet_; }; -class RecurrentOp final : public framework::OperatorBase { +class RecurrentOp : public framework::OperatorBase { public: RecurrentOp(const std::string& type, const VarNameMap& inputs, const VarNameMap& outputs, const framework::AttributeMap& attrs); + + RecurrentOp(const RecurrentOp& o) + : framework::OperatorBase( + static_cast(o)) { + // TODO(yuyang18): Implement copy ctor well. + PADDLE_THROW("Not implemented"); + } /** - * InferShape must be called before Run. - */ + * InferShape must be called before Run. + */ void InferShape(const framework::Scope& scope) const override { alg_.InferShape(scope); } @@ -126,23 +135,32 @@ class RecurrentOp final : public framework::OperatorBase { alg_.Run(scope, dev_ctx); } - void set_stepnet(std::shared_ptr net) { stepnet_ = net; } - const NetOp* stepnet() const { return stepnet_.get(); } + void set_stepnet(std::unique_ptr net) { + stepnet_ = std::move(net); + } + const OperatorBase& stepnet() const { return *stepnet_; } static const rnn::ArgumentName kArgName; private: RecurrentAlgorithm alg_; rnn::Argument arg_; - std::shared_ptr stepnet_; + std::unique_ptr stepnet_; }; -class RecurrentGradientOp final : public framework::OperatorBase { +class RecurrentGradientOp : public framework::OperatorBase { public: RecurrentGradientOp(const std::string& type, const VarNameMap& inputs, const VarNameMap& outputs, const framework::AttributeMap& attrs); + RecurrentGradientOp(const RecurrentGradientOp& o) + : framework::OperatorBase( + static_cast(o)) { + // TODO(yuyang18): Implement Copy ctor. + PADDLE_THROW("Not Implemented"); + } + /** * InferShape must be called before Run. */ @@ -157,12 +175,14 @@ class RecurrentGradientOp final : public framework::OperatorBase { static const rnn::ArgumentName kArgName; - void set_stepnet(const std::shared_ptr& net) { stepnet_ = net; } - const NetOp* stepnet() const { return stepnet_.get(); } + void set_stepnet(std::unique_ptr net) { + stepnet_ = std::move(net); + } + const OperatorBase& stepnet() const { return *stepnet_; } private: RecurrentGradientAlgorithm alg_; - std::shared_ptr stepnet_; + std::unique_ptr stepnet_; rnn::Argument arg_; }; diff --git a/paddle/operators/scatter_test.cc b/paddle/operators/scatter_test.cc index 4449ce6564396f1971506efb7458c00c834db19f..26fdaff1460a297fa638181641991f732533fe52 100644 --- a/paddle/operators/scatter_test.cc +++ b/paddle/operators/scatter_test.cc @@ -49,4 +49,8 @@ TEST(scatter, ScatterUpdate) { EXPECT_EQ(output->data()[i], float(i - 4)); for (size_t i = 8; i < 16; ++i) EXPECT_EQ(p_output[i], float(0)); for (size_t i = 8; i < 16; ++i) EXPECT_EQ(output->data()[i], float(0)); + + delete src; + delete index; + delete output; } diff --git a/paddle/operators/sigmoid_op.cc b/paddle/operators/sigmoid_op.cc index d773a4f2d50e82146a729b1cda085ce86ade89cc..761c6de8d4d2150b30b97b58da95da3d5f33db63 100644 --- a/paddle/operators/sigmoid_op.cc +++ b/paddle/operators/sigmoid_op.cc @@ -44,7 +44,8 @@ class SigmoidOpGrad : public framework::OperatorWithKernel { protected: void InferShape(const framework::InferShapeContext &ctx) const override { - ctx.Output(0)->Resize(ctx.Input(0)->dims()); + ctx.Output(framework::GradVarName("X")) + ->Resize(ctx.Input("Y")->dims()); } }; diff --git a/paddle/operators/sigmoid_op.h b/paddle/operators/sigmoid_op.h index 11ab923eb346c1f8de3a6bbebdfa874b6530004a..b01a9b3f23283471f8846325075719ba0e75ed35 100644 --- a/paddle/operators/sigmoid_op.h +++ b/paddle/operators/sigmoid_op.h @@ -37,7 +37,7 @@ class SigmoidKernel : public framework::OpKernel { auto Y = EigenVector::Flatten(*output); auto place = context.GetEigenDevice(); - Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp()); + Y.device(place) = 1. / (1. + (-X).exp()); } }; diff --git a/paddle/parameter/Parameter.cpp b/paddle/parameter/Parameter.cpp index ebe36d49376882fe4c1013e19dcf71f452b3e501..f0311095012d944768d80abe423d4a9bfc0e97f5 100644 --- a/paddle/parameter/Parameter.cpp +++ b/paddle/parameter/Parameter.cpp @@ -48,7 +48,8 @@ Parameter::Parameter(const ParameterConfig& config, bool useGpu, bool doInit) deviceId_(-1), sharedCount_(0), updateCounter_(0), - updated_(false) { + updated_(false), + headerFormat_(PARAM_FORMAT_ORIGINAL) { setID(-1); /* capture uninitialized id */ if (useGpu_ && FLAGS_parallel_nn) { /* gpu environment is specified by device property */ @@ -285,7 +286,7 @@ bool Parameter::save(const std::string& filename) const { bool Parameter::save(std::ostream& s) const { CpuVector vec(*bufs_[PARAMETER_VALUE].get()); Header header; - header.version = kFormatVersion; + header.format = headerFormat_; header.valueSize = sizeof(real); header.size = getSize(); @@ -344,8 +345,9 @@ bool Parameter::load(std::istream& s) { Header header; CHECK(s.read(reinterpret_cast(&header), sizeof(header))) << "Fail to read parameter " << getName(); - CHECK_EQ(header.version, kFormatVersion) << "Incorrect format version: " - << header.version; + CHECK(isHeaderFormatSupported(header.format)) << "Incorrect format version: " + << header.format; + headerFormat_ = header.format; CHECK_EQ(header.size, getSize()) << "The size (" << header.size << ") in the file does not match the size " << "(" << getSize() << ") of the parameter: " << getName(); diff --git a/paddle/parameter/Parameter.h b/paddle/parameter/Parameter.h index 0bac76f068ec22bec52766b43e331fe109a34188..e31cbc3dee6c57851c241e117dbbd9b701db9d2c 100644 --- a/paddle/parameter/Parameter.h +++ b/paddle/parameter/Parameter.h @@ -34,6 +34,20 @@ limitations under the License. */ namespace paddle { +typedef enum { + /// The paddle original basic format + PARAM_FORMAT_ORIGINAL = 0, + + /// See mkldnn_memory_format_t in + /// https://github.com/01org/mkl-dnn/blob/master/include/mkldnn_types.h + /// for a detailed description. + /// 2D weights tensor in the format (output channels, input channels). + PARAM_FORMAT_MKLDNN_OI, + + /// The total format items numbers + PARAM_FORMAT_ITEMS, +} PARAM_FORMAT; + class SparsePrefetchRowCpuMatrix; class Parameter; @@ -242,14 +256,30 @@ public: /// Initialize the value to 0 void zeroMem(); - static const int kFormatVersion = 0; /// file header structure struct Header { - int32_t version; // = 0, file format version + int32_t format; // = PARAM_FORMAT uint32_t valueSize; // = sizeof(real) uint64_t size; // = getSize() }; + /** + * @brief Is the header format supported. + */ + static bool isHeaderFormatSupported(int32_t fmt) { + return fmt < PARAM_FORMAT_ITEMS; + } + + /** + * @brief Get the format in header. + */ + int getHeaderFormat() { return headerFormat_; } + + /** + * @brief Set the format in header. + */ + void setHeaderFormat(int32_t fmt) { headerFormat_ = fmt; } + /** * @brief Parameter Update Hook. * @@ -321,6 +351,9 @@ protected: bool updated_; SparseFormat format_; + /// The header format for saving or loading param + int32_t headerFormat_; + std::vector> updaterHooks_; public: diff --git a/paddle/platform/CMakeLists.txt b/paddle/platform/CMakeLists.txt index 4154aad15c39119e2f155cb2c7b5177b5aa78022..acfc0639736beb82df41b851664e7bcd079b5eb1 100644 --- a/paddle/platform/CMakeLists.txt +++ b/paddle/platform/CMakeLists.txt @@ -16,5 +16,8 @@ ELSE() set(GPU_CTX_DEPS) ENDIF() -cc_library(device_context SRCS device_context.cc DEPS place eigen3 ${GPU_CTX_DEPS}) +# memcpy deoends on device_context, here add deps individually for +# avoiding cycle dependencies +cc_library(device_context SRCS device_context.cc DEPS memory buddy_allocator + system_allocator memory_block meta_data meta_cache place eigen3 ${GPU_CTX_DEPS}) nv_test(device_context_test SRCS device_context_test.cc DEPS device_context gpu_info) diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc index a928e097787db9deebe1c6eab263190caacac7eb..f92c15ae450e94de44d27e77763e791e6bae4426 100644 --- a/paddle/platform/device_context.cc +++ b/paddle/platform/device_context.cc @@ -10,6 +10,7 @@ See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/platform/device_context.h" +#include "paddle/memory/memory.h" namespace paddle { namespace platform { @@ -36,6 +37,59 @@ Place CPUDeviceContext::GetPlace() const { return CPUPlace(); } #ifndef PADDLE_ONLY_CPU +class EigenCudaStreamDevice : public Eigen::StreamInterface { + public: + EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) { + Eigen::initializeDeviceProp(); + } + ~EigenCudaStreamDevice() override {} + + void Reinitialize(const cudaStream_t* cuda_stream, GPUPlace place) { + stream_ = cuda_stream; + place_ = place; + device_prop_ = &Eigen::m_deviceProperties[place.device]; + } + + const cudaStream_t& stream() const override { return *stream_; } + + const cudaDeviceProp& deviceProperties() const override { + return *device_prop_; + } + + void* allocate(size_t num_bytes) const override { + return paddle::memory::Alloc(place_, num_bytes); + } + + void deallocate(void* buffer) const override { + paddle::memory::Free(place_, buffer); + } + + void* scratchpad() const override { + if (scratch_ == NULL) { + scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int)); + } + return scratch_; + } + + unsigned int* semaphore() const override { + if (semaphore_ == NULL) { + char* scratch = + static_cast(scratchpad()) + Eigen::kCudaScratchSize; + semaphore_ = reinterpret_cast(scratch); + PADDLE_ENFORCE( + cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_)); + } + return semaphore_; + } + + private: + GPUPlace place_; + const cudaStream_t* stream_; // not owned; + const cudaDeviceProp* device_prop_; // not owned; + mutable void* scratch_; + mutable unsigned int* semaphore_; +}; + template <> Eigen::GpuDevice* DeviceContext::get_eigen_device() const { return reinterpret_cast(this)->eigen_device(); @@ -43,19 +97,9 @@ Eigen::GpuDevice* DeviceContext::get_eigen_device() const { CUDADeviceContext::CUDADeviceContext(GPUPlace place) : place_(place) { SetDeviceId(place_.device); - // TODO(qijun) Pass a created cuda stream to Eigen::CudaStreamDevice directly - // here will cause segment fault. We must implement a class derived from - // Eigen::StreamInterface, and reinitialize it with a cuda stream and a gpu id - // later. Please refer to the implementation of class EigenCudaStreamDevice - // in TensorFlow. - // - // We find that CUDA 7 introduces a new option, the per-thread default stream, - // that has two effects. Please refer to https://devblogs.nvidia.com/ - // parallelforall/gpu-pro-tip-cuda-7-streams-simplify-concurrency/ - // - // So, we decide to use default stream and add –default-stream per-thread nvcc - // flag. Than, two threads with two CUDADeviceContexts will run parallelly. - eigen_stream_.reset(new Eigen::CudaStreamDevice()); + PADDLE_ENFORCE(cudaStreamCreate(&stream_)); + eigen_stream_.reset(new EigenCudaStreamDevice()); + eigen_stream_->Reinitialize(&stream_, place); eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get())); } @@ -75,12 +119,13 @@ CUDADeviceContext::~CUDADeviceContext() { } eigen_stream_.reset(); eigen_device_.reset(); + PADDLE_ENFORCE(cudaStreamDestroy(stream_)); } Place CUDADeviceContext::GetPlace() const { return place_; } void CUDADeviceContext::Wait() const { - PADDLE_ENFORCE(cudaStreamSynchronize(0)); + PADDLE_ENFORCE(cudaStreamSynchronize(stream_)); } Eigen::GpuDevice* CUDADeviceContext::eigen_device() const { @@ -91,6 +136,7 @@ cublasHandle_t CUDADeviceContext::cublas_handle() { if (!cublas_handle_) { SetDeviceId(place_.device); PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_)); + PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_)); } return cublas_handle_; } @@ -99,10 +145,13 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() { if (!cudnn_handle_) { SetDeviceId(place_.device); PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_)); + PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_)); } return cudnn_handle_; } +cudaStream_t CUDADeviceContext::stream() { return stream_; } + curandGenerator_t CUDADeviceContext::curand_generator() { if (!curand_generator_) { SetDeviceId(place_.device); @@ -110,6 +159,8 @@ curandGenerator_t CUDADeviceContext::curand_generator() { CURAND_RNG_PSEUDO_DEFAULT)); PADDLE_ENFORCE( dynload::curandSetPseudoRandomGeneratorSeed(curand_generator_, seed_)); + + PADDLE_ENFORCE(dynload::curandSetStream(curand_generator_, stream_)); } return curand_generator_; } diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h index 08b5b2cff900cc4239a615fe7d7f6b5faa13510b..c5042ae33e47e04521e59e0d91ddd8d4efffe50a 100644 --- a/paddle/platform/device_context.h +++ b/paddle/platform/device_context.h @@ -52,6 +52,7 @@ class CPUDeviceContext : public DeviceContext { }; #ifndef PADDLE_ONLY_CPU +class EigenCudaStreamDevice; class CUDADeviceContext : public DeviceContext { public: @@ -76,6 +77,9 @@ class CUDADeviceContext : public DeviceContext { /*! \brief Return curand handle in the device context. */ curandGenerator_t curand_generator(); + + /*! \brief Return cuda stream in the device context. */ + cudaStream_t stream(); // clang-format on private: @@ -83,15 +87,16 @@ class CUDADeviceContext : public DeviceContext { private: std::unique_ptr eigen_device_; - std::unique_ptr eigen_stream_; + std::unique_ptr eigen_stream_; private: uint64_t seed_; // clang-format off - cudnnHandle_t cudnn_handle_ = nullptr; - cublasHandle_t cublas_handle_ = nullptr; - curandGenerator_t curand_generator_ = nullptr; + cudaStream_t stream_{nullptr}; + cudnnHandle_t cudnn_handle_{nullptr}; + cublasHandle_t cublas_handle_{nullptr}; + curandGenerator_t curand_generator_{nullptr}; // clang-format on }; diff --git a/paddle/platform/device_context_test.cc b/paddle/platform/device_context_test.cc index 65345c433c0a328e7f89038a39312edba35eb8c7..8b764bdcd9d92e6b2203e45160acee35ec110538 100644 --- a/paddle/platform/device_context_test.cc +++ b/paddle/platform/device_context_test.cc @@ -45,6 +45,7 @@ TEST(Device, CUDADeviceContext) { ASSERT_NE(nullptr, cublas_handle); curandGenerator_t curand_handle = device_context->curand_generator(); ASSERT_NE(nullptr, curand_handle); + ASSERT_NE(nullptr, device_context->stream()); delete device_context; } } diff --git a/paddle/platform/enforce.h b/paddle/platform/enforce.h index 15fdf7a94f462a87f7edae1429eb0c4da0b17a84..81448897e95eb05f4ce7de8683d98e05bade77cb 100644 --- a/paddle/platform/enforce.h +++ b/paddle/platform/enforce.h @@ -86,7 +86,7 @@ struct EnforceNotMet : public std::exception { 2 + sizeof(void*) * 2, call_stack[i], demangled, addr_offset); } else { - sout << string::Sprintf("%-3d %*0p %s\n", i, 2 + sizeof(void*) * 2, + sout << string::Sprintf("%-3d %*0p\n", i, 2 + sizeof(void*) * 2, call_stack[i]); } } diff --git a/paddle/pserver/ParameterServer2.cpp b/paddle/pserver/ParameterServer2.cpp index d7c1d4f788f44c6bfcec040ba24bdc454348c911..54f5c4c0fb4994871edc7a1e52237c9f903ce63b 100644 --- a/paddle/pserver/ParameterServer2.cpp +++ b/paddle/pserver/ParameterServer2.cpp @@ -1032,8 +1032,8 @@ void ParameterServer2::loadValueVector(const LoadValueRequest& request, Parameter::Header header; CHECK(fs.read(reinterpret_cast(&header), sizeof(header))) << "Fail to read parameters in pserver"; - CHECK_EQ(header.version, Parameter::kFormatVersion) - << "Incorrect format version: " << header.version; + CHECK(Parameter::isHeaderFormatSupported(header.format)) + << "Incorrect format version: " << header.format; CHECK_EQ(header.size, (size_t)size_) << "The size (" << header.size << ") in the file does not match the size " << "(" << size_ << ") of the pserver: " << serverId_; @@ -1063,7 +1063,8 @@ void ParameterServer2::saveValueVector(const SaveValueRequest& request, CpuVector& vec = vectors_[PARAMETER_APPLY] ? *vectors_[PARAMETER_APPLY] : *vectors_[PARAMETER_VALUE]; Parameter::Header header; - header.version = Parameter::kFormatVersion; + // TODO(TJ): save param headerFormat_ + header.format = PARAM_FORMAT_ORIGINAL; header.valueSize = sizeof(real); header.size = size_; diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh index 2f0205b7702b6d73b5348430f39166ec78f6c143..2941662f349baf57d1fe8188e88ce21d5de07750 100644 --- a/paddle/scripts/docker/build.sh +++ b/paddle/scripts/docker/build.sh @@ -82,10 +82,6 @@ EOF fi -# To build documentation, we need to run cmake again after installing -# PaddlePaddle. This awkwardness is due to -# https://github.com/PaddlePaddle/Paddle/issues/1854. It also -# describes a solution. if [[ ${WITH_DOC:-OFF} == "ON" ]]; then cat <> /paddle/build/Dockerfile </dev/null) - BASEDIR=$(dirname "$0") - pip install ${BASEDIR}/../opt/paddle/share/wheels/*-${PYTHON_PADDLE_VERSION}-*.whl - if [ $? -ne 0 ]; then - echo "pip install wheels failed. " - echo "Please use 'sudo paddle' at the first time you use PaddlePaddle" - echo "PaddlePaddle will install some python dependencies automatically." - exit 1 - fi - echo "Python dependencies are installed." -fi case "$1" in "train") - ${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_trainer ${@:2} + ${DEBUGGER} $PADDLE_BIN_PATH/paddle_trainer ${@:2} ;; "merge_model") - ${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_merge_model ${@:2} + ${DEBUGGER} $PADDLE_BIN_PATH/paddle_merge_model ${@:2} ;; "pserver") - ${DEBUGGER} $MYDIR/../opt/paddle/bin/paddle_pserver_main ${@:2} + ${DEBUGGER} $PADDLE_BIN_PATH/paddle_pserver_main ${@:2} ;; "dump_config") python -m paddle.utils.dump_config ${@:2} @@ -129,7 +110,7 @@ case "$1" in python -m paddle.utils.make_model_diagram ${@:2} ;; "usage") - $MYDIR/../opt/paddle/bin/paddle_usage ${@:2} + $PADDLE_BIN_PATH/paddle_usage ${@:2} ;; "version") version diff --git a/paddle/trainer/TrainerConfigHelper.cpp b/paddle/trainer/TrainerConfigHelper.cpp index eba40862b926cfe863c569e73a6a3ceabcf1f3b4..a0a365aa0bb0ac26939a02c1cd626d0c17c6a9fe 100644 --- a/paddle/trainer/TrainerConfigHelper.cpp +++ b/paddle/trainer/TrainerConfigHelper.cpp @@ -29,7 +29,6 @@ DECLARE_bool(with_gpu); DECLARE_bool(parallel_nn); DECLARE_string(config_args); DECLARE_bool(use_mkldnn); -DECLARE_bool(use_mkldnn_wgt); const char *kConfigParserModuleName = "paddle.trainer.config_parser"; const char *kConfigParserFuncName = "parse_config_and_serialize"; @@ -47,7 +46,6 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath) << ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu << ",parallel_nn=" << FLAGS_parallel_nn << ",use_mkldnn=" << FLAGS_use_mkldnn - << ",use_mkldnn_wgt=" << FLAGS_use_mkldnn_wgt << ",cudnn_version=" << hl_get_cudnn_lib_version(); if (!FLAGS_config_args.empty()) { configArgs << "," << FLAGS_config_args; diff --git a/paddle/utils/Flags.cpp b/paddle/utils/Flags.cpp index 600c83a8487191895de635dd8433f6c44e86ce77..ab1c181c62cdbee8cc5f804ec9aaf63ac5464ad6 100644 --- a/paddle/utils/Flags.cpp +++ b/paddle/utils/Flags.cpp @@ -27,7 +27,6 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training"); DEFINE_bool(use_mkldnn, false, "Only support CPU training"); #endif -DEFINE_bool(use_mkldnn_wgt, false, "Init weight from CPU weight"); DEFINE_bool(parallel_nn, false, "Whether to use multi-threads to calculate one neural network." diff --git a/paddle/utils/Flags.h b/paddle/utils/Flags.h index 0aca4c0ee036ee8490c0ceca7279df876dc21947..1832bb515ec85df3d7733e01b063a01ad6a3b282 100644 --- a/paddle/utils/Flags.h +++ b/paddle/utils/Flags.h @@ -41,4 +41,3 @@ DECLARE_string(predict_file); DECLARE_bool(prev_batch_state); DECLARE_string(init_model_path); DECLARE_bool(use_mkldnn); -DECLARE_bool(use_mkldnn_wgt); diff --git a/python/CMakeLists.txt b/python/CMakeLists.txt index d2f064bea00ff55f29df9269c2aab7619f2a94c5..7bd6d59b0096c23bb791b9b50702130057628879 100644 --- a/python/CMakeLists.txt +++ b/python/CMakeLists.txt @@ -50,8 +50,11 @@ add_custom_command(OUTPUT ${PADDLE_PYTHON_BUILD_DIR}/.timestamp COMMAND ${CMAKE_COMMAND} -E copy_directory ${PADDLE_PYTHON_BUILD_DIR}/lib* ${PADDLE_PYTHON_BUILD_DIR}/lib-python DEPENDS gen_proto_py copy_paddle_pybind framework_py_proto ${PY_FILES} ${external_project_dependencies} ${COPY_PADDLE_MASTER}) -add_custom_target(paddle_python ALL DEPENDS - ${PADDLE_PYTHON_BUILD_DIR}/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model python_api_wheel ${MKL_DEPENDS}) +set(paddle_python_deps ${PADDLE_PYTHON_BUILD_DIR}/.timestamp paddle_pserver_main paddle_trainer paddle_merge_model ${MKL_DEPENDS}) +if(WITH_SWIG_PY) + list(APPEND paddle_python_deps python_api_wheel) +endif() +add_custom_target(paddle_python ALL DEPENDS ${paddle_python_deps}) set(PADDLE_PYTHON_PACKAGE_DIR ${CMAKE_CURRENT_BINARY_DIR}/dist/) diff --git a/python/paddle/v2/framework/tests/CMakeLists.txt b/python/paddle/v2/framework/tests/CMakeLists.txt index 96fad9b42e04a88fdcbda093683b57451b2a3e41..4c088e7612a93be1b52bc015babee382bbd9026d 100644 --- a/python/paddle/v2/framework/tests/CMakeLists.txt +++ b/python/paddle/v2/framework/tests/CMakeLists.txt @@ -25,3 +25,4 @@ py_test(test_operator SRCS test_operator.py) # py_test(test_gaussian_random_op SRCS test_gaussian_random_op.py) py_test(test_uniform_random_op SRCS test_uniform_random_op.py) py_test(test_recurrent_op SRCS test_recurrent_op.py) +py_test(test_gradient_checker SRCS test_gradient_checker.py) diff --git a/python/paddle/v2/framework/tests/gradient_checker.py b/python/paddle/v2/framework/tests/gradient_checker.py index 501cf6110ff745b8a6022b463bc9cc3a70145c60..8b8e2f444be1169c23784321721c5d8154541fcf 100644 --- a/python/paddle/v2/framework/tests/gradient_checker.py +++ b/python/paddle/v2/framework/tests/gradient_checker.py @@ -1,6 +1,7 @@ import unittest import numpy +import itertools import paddle.v2.framework.core as core from paddle.v2.framework.op import Operator @@ -8,6 +9,7 @@ __all__ = ['get_numeric_gradient'] def create_op(op_type): + # TODO need to set attrs kwargs = dict() for in_name in Operator.get_op_input_names(op_type): kwargs[in_name] = in_name @@ -66,7 +68,6 @@ def get_numeric_gradient(op, local_scope.find_var(output).get_tensor().alloc_float(core.CPUPlace( )) - # TODO(yuyang18): Only CPU is support now. cpu_ctx = core.DeviceContext.create(core.CPUPlace()) def get_output(): @@ -109,12 +110,110 @@ def get_numeric_gradient(op, class GradientChecker(unittest.TestCase): - def assert_is_close(self, numeric_grads, scope, max_relative_error, - msg_prefix): - for name in numeric_grads: - b = numpy.array(scope.find_var(grad_var_name(name)).get_tensor()) - a = numeric_grads[name] + def __get_gradient(self, forward_op, backward_op, input_value, grad_names, + place): + """Get the input gradients after running forward and backward operators + on the given places. + + :param forward_op: forward operator + :type forward_op: Operator + :param backward_op: backward operator + :type backward_op: Operator + :param input_value: input values. + :type input_value: dict{string:numpy.array} + :param grad_names: the names of returned input gradients. + :type input_value: a list of string + :param place: the device type. + :type place: CPUPlace or GPUPlace + :return: the input grdients of given grad_names. + :rtype: a list of numpy.array + """ + scope = core.Scope() + ctx = core.DeviceContext.create(place) + + inputs = forward_op.inputs() + in_names = [item for k in inputs for item in inputs[k]] + outputs = forward_op.outputs() + out_names = [item for k in outputs for item in outputs[k]] + + # create input var and set value + for name, value in input_value.iteritems(): + if name not in in_names: + raise ValueError(name + "does not exist in Op's inputs.") + var = scope.new_var(name).get_tensor() + var.set_dims(value.shape) + var.set(value, place) + + # run forward op + for out_name in out_names: + scope.new_var(out_name) + forward_op.infer_shape(scope) + forward_op.run(scope, ctx) + + # set output var's shape + # set output grad to ones + for name in out_names: + out_tensor = scope.find_var(name).get_tensor() + grad_tensor = scope.new_var(grad_var_name(name)).get_tensor() + grad_tensor.set_dims(out_tensor.shape()) + data = numpy.ones(out_tensor.shape(), dtype=numpy.float32) + grad_tensor.set(data, place) + + # run backward op + for name in backward_op.outputs(): + scope.new_var(name) + backward_op.infer_shape(scope) + backward_op.run(scope, ctx) + + outs = [ + numpy.array(scope.find_var(name).get_tensor()) + for name in grad_names + ] + return outs + + def compare_grad(self, forward_op, input_value): + """ Compare the input gradients between CPU and GPU for the given forward + operator. + + :param forward_op: forward operator + :type forward_op: Operator + :param input_value: input values. + :type input_value: dict{string:numpy.array} + :raises: AssertionError, there is different gradient value. + """ + backward_op = core.Operator.backward(forward_op, set()) + # return if not compile with GPU or not implementing GPU kernel + if not (core.is_compile_gpu() and backward_op.support_gpu()): + return + outputs = backward_op.outputs() + out_names = [item for k in outputs for item in outputs[k]] + cpu_grads = self.__get_gradient(forward_op, backward_op, input_value, + out_names, core.CPUPlace()) + gpu_grads = self.__get_gradient(forward_op, backward_op, input_value, + out_names, core.GPUPlace(0)) + + for c_grad, g_grad, name in itertools.izip(cpu_grads, gpu_grads, + out_names): + self.assertTrue( + numpy.allclose( + c_grad, g_grad, atol=1e-4), + "output name: " + name + " has diff") + + def __assert_is_close(self, numeric_grads, analytic_grads, names, + max_relative_error, msg_prefix): + """Use relative error for the comparison. + + :param numeric_grads: the numerical graidents. + :type numeric_grads: a list of numpy.array + :param analytic_grads: the analytical graidents. + :type analytic_grads: a list of numpy.array + :param name: the names of gradients, used to print for debug. + :type names: a list of string + :param msg_prefix: string info, used to print for debug. + :type msf_prefix: string + """ + for a, b, name in itertools.izip(numeric_grads, analytic_grads, names): abs_a = numpy.abs(a) # if abs_a is nearly zero, then use abs error for a, not relative # error. @@ -159,106 +258,26 @@ class GradientChecker(unittest.TestCase): inputs = forward_op.inputs() in_names = [item for k in inputs for item in inputs[k]] - outputs = forward_op.outputs() - out_names = [item for k in outputs for item in outputs[k]] - for no_grad in no_grad_set: if no_grad not in in_names: raise ValueError("no_grad should be in in_names") - backward_op = core.Operator.backward(forward_op, no_grad_set) - bwd_outputs = backward_op.outputs() - bwd_out_names = [item for k in bwd_outputs for item in bwd_outputs[k]] - places = [core.CPUPlace()] if not only_cpu and core.is_compile_gpu() and backward_op.support_gpu(): places.append(core.GPUPlace(0)) - numeric_grad = dict() - # get numeric gradient - for check_name in inputs_to_check: - numeric_grad[check_name] = \ - get_numeric_gradient(forward_op, input_vars, output_name, - check_name) + # get numerical gradients + numeric_grads = [ + get_numeric_gradient(forward_op, input_vars, output_name, name) + for name in inputs_to_check + ] - # get operator gradient according to different device + check_names = [grad_var_name(name) for name in inputs_to_check] for place in places: - scope = core.Scope() - ctx = core.DeviceContext.create(place) - - # create input var and set value - for name, value in input_vars.iteritems(): - if name not in in_names: - raise ValueError(name + " not in op.inputs_") - var = scope.new_var(name).get_tensor() - var.set_dims(value.shape) - var.set(value, place) - - # create output var - for out_name in out_names: - scope.new_var(out_name).get_tensor() - - # infer the shape of output var and compute/set value of output var - forward_op.infer_shape(scope) - forward_op.run(scope, ctx) - - # create output grad var - # set shape as the output var - # set value of this grad to ones - for name in out_names: - out_tensor = scope.find_var(name).get_tensor() - grad_tensor = scope.new_var(grad_var_name(name)).get_tensor() - grad_tensor.set_dims(out_tensor.shape()) - data = 1.0 * numpy.ones(out_tensor.shape()) - grad_tensor.set(data, place) - - # create input grad var - for name in bwd_out_names: - scope.new_var(name).get_tensor() - - # infer the shape of input gradient var and compute/set it's value - # with backward op - backward_op.infer_shape(scope) - backward_op.run(scope, ctx) - - self.assert_is_close(numeric_grad, scope, max_relative_error, - "Gradient Check On %s" % str(place)) - - -if __name__ == '__main__': - - class GetNumericGradientTest(unittest.TestCase): - def test_add_op(self): - add_op = Operator('add_two', X="X", Y="Y", Out="Z") - x = numpy.random.random((10, 1)).astype("float32") - y = numpy.random.random((10, 1)).astype("float32") - - arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X') - self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-2) - - def test_softmax_op(self): - def stable_softmax(x): - """Compute the softmax of vector x in a numerically stable way.""" - shiftx = x - numpy.max(x) - exps = numpy.exp(shiftx) - return exps / numpy.sum(exps) - - def label_softmax_grad(Y, dY): - dX = Y * 0.0 - for i in range(Y.shape[0]): - d = numpy.dot(Y[i, :], dY[i, :]) - dX[i, :] = Y[i, :] * (dY[i, :] - d) - return dX - - softmax_op = Operator("softmax", X="X", Y="Y") - - X = numpy.random.random((2, 2)).astype("float32") - Y = numpy.apply_along_axis(stable_softmax, 1, X) - dY = numpy.ones(Y.shape) - dX = label_softmax_grad(Y, dY) - - arr = get_numeric_gradient(softmax_op, {"X": X}, 'Y', 'X') - numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2) - - unittest.main() + # get analytical gradients according to different device + analytic_grads = self.__get_gradient(forward_op, backward_op, + input_vars, check_names, place) + self.__assert_is_close(numeric_grads, analytic_grads, check_names, + max_relative_error, + "Gradient Check On %s" % str(place)) diff --git a/python/paddle/v2/framework/tests/test_gradient_checker.py b/python/paddle/v2/framework/tests/test_gradient_checker.py new file mode 100644 index 0000000000000000000000000000000000000000..e0b315120862bea284e067070492dcdfbb661081 --- /dev/null +++ b/python/paddle/v2/framework/tests/test_gradient_checker.py @@ -0,0 +1,43 @@ +import unittest +import numpy +from paddle.v2.framework.op import Operator +from gradient_checker import GradientChecker +from gradient_checker import get_numeric_gradient + + +class GetNumericGradientTest(unittest.TestCase): + def test_add_op(self): + add_op = Operator('add_two', X="X", Y="Y", Out="Z") + x = numpy.random.random((10, 1)).astype("float32") + y = numpy.random.random((10, 1)).astype("float32") + + arr = get_numeric_gradient(add_op, {'X': x, "Y": y}, 'Z', 'X') + self.assertAlmostEqual(arr.mean(), 1.0, delta=1e-4) + + def test_softmax_op(self): + def stable_softmax(x): + """Compute the softmax of vector x in a numerically stable way.""" + shiftx = x - numpy.max(x) + exps = numpy.exp(shiftx) + return exps / numpy.sum(exps) + + def label_softmax_grad(Y, dY): + dX = Y * 0.0 + for i in range(Y.shape[0]): + d = numpy.dot(Y[i, :], dY[i, :]) + dX[i, :] = Y[i, :] * (dY[i, :] - d) + return dX + + softmax_op = Operator("softmax", X="X", Y="Y") + + X = numpy.random.random((2, 2)).astype("float32") + Y = numpy.apply_along_axis(stable_softmax, 1, X) + dY = numpy.ones(Y.shape) + dX = label_softmax_grad(Y, dY) + + arr = get_numeric_gradient(softmax_op, {"X": X}, 'Y', 'X') + numpy.testing.assert_almost_equal(arr, dX, decimal=1e-2) + + +if __name__ == '__main__': + unittest.main() diff --git a/python/paddle/v2/framework/tests/test_mean_op.py b/python/paddle/v2/framework/tests/test_mean_op.py index b5d52b90567bcd0c9f376147145d8638049f7bab..f32b3160d651a290823223c46c45bb3b6950a505 100644 --- a/python/paddle/v2/framework/tests/test_mean_op.py +++ b/python/paddle/v2/framework/tests/test_mean_op.py @@ -1,5 +1,6 @@ import unittest from op_test_util import OpTestMeta +from gradient_checker import GradientChecker, create_op import numpy as np @@ -12,5 +13,12 @@ class TestMeanOp(unittest.TestCase): self.outputs = {'Out': np.mean(self.inputs['X'])} +class MeanGradOpTest(GradientChecker): + def test_normal(self): + op = create_op("mean") + inputs = {"X": np.random.random((10, 10)).astype("float32")} + self.check_grad(op, inputs, set("X"), "Out") + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/framework/tests/test_sigmoid_op.py b/python/paddle/v2/framework/tests/test_sigmoid_op.py index 2a57a41ed8b718fd420062ba68e853a4861b7359..273c2e5ab1a84d12621fe9568c4cf22073b6aed4 100644 --- a/python/paddle/v2/framework/tests/test_sigmoid_op.py +++ b/python/paddle/v2/framework/tests/test_sigmoid_op.py @@ -1,6 +1,7 @@ import unittest -from op_test_util import OpTestMeta import numpy as np +from op_test_util import OpTestMeta +from gradient_checker import GradientChecker, create_op class TestSigmoidOp(unittest.TestCase): @@ -8,12 +9,20 @@ class TestSigmoidOp(unittest.TestCase): def setUp(self): self.type = "sigmoid" - self.inputs = {'X': np.random.random((32, 100)).astype("float32")} + self.inputs = {'X': np.random.random((15, 31)).astype("float32")} self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))} -#class TestSigmoidGradOp(unittest.TestCase): -#TODO(qingqing) add unit test +class TestSigmoidGradOp(GradientChecker): + def test_grad(self): + op = create_op("sigmoid") + inputs = {"X": np.random.uniform(0.1, 1, [11, 17]).astype("float32")} + # compare gpu and cpu results for backward op. + # this test will be skiped if only compiling CPU version. + self.compare_grad(op, inputs) + # check gradients + self.check_grad(op, inputs, set("X"), "Y", max_relative_error=0.007) + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/reader/creator.py b/python/paddle/v2/reader/creator.py index d0f18e4b6611fa56654e7f2a0144758339cb9e19..97e844b92c77a7c58105dc5df2b4092fa5571d6f 100644 --- a/python/paddle/v2/reader/creator.py +++ b/python/paddle/v2/reader/creator.py @@ -57,7 +57,7 @@ def text_file(path): return reader -def recordio_local(paths, buf_size=100): +def recordio(paths, buf_size=100): """ Creates a data reader from given RecordIO file paths separated by ",", glob pattern is supported. @@ -67,15 +67,19 @@ def recordio_local(paths, buf_size=100): import recordio as rec import paddle.v2.reader.decorator as dec + import cPickle as pickle def reader(): - a = ','.join(paths) - f = rec.reader(a) + if isinstance(paths, basestring): + path = paths + else: + path = ",".join(paths) + f = rec.reader(path) while True: r = f.read() if r is None: break - yield r + yield pickle.loads(r) f.close() return dec.buffered(reader, buf_size) diff --git a/python/paddle/v2/reader/tests/creator_test.py b/python/paddle/v2/reader/tests/creator_test.py index 359f3eeefbe8efeb343cc875c707c9251a7087fb..cf190aa6645f9a5bed891a3a47c03efa03813d65 100644 --- a/python/paddle/v2/reader/tests/creator_test.py +++ b/python/paddle/v2/reader/tests/creator_test.py @@ -34,5 +34,27 @@ class TestTextFile(unittest.TestCase): self.assertEqual(e, str(idx * 2) + " " + str(idx * 2 + 1)) +class TestRecordIO(unittest.TestCase): + def do_test(self, path): + reader = paddle.v2.reader.creator.recordio(path) + idx = 0 + for e in reader(): + if idx == 0: + self.assertEqual(e, (1, 2, 3)) + elif idx == 1: + self.assertEqual(e, (4, 5, 6)) + idx += 1 + self.assertEqual(idx, 2) + + def test_recordIO(self): + self.do_test( + os.path.join( + os.path.dirname(__file__), "test_reader_recordio.dat")) + self.do_test([ + os.path.join( + os.path.dirname(__file__), "test_reader_recordio.dat") + ]) + + if __name__ == '__main__': unittest.main() diff --git a/python/paddle/v2/reader/tests/test_reader_recordio.dat b/python/paddle/v2/reader/tests/test_reader_recordio.dat new file mode 100644 index 0000000000000000000000000000000000000000..a99a35bb829e066c4845d0b85b96cd1eb3a12491 Binary files /dev/null and b/python/paddle/v2/reader/tests/test_reader_recordio.dat differ diff --git a/python/paddle/v2/trainer.py b/python/paddle/v2/trainer.py index 9c4dd5f25083d210bbd218a85d8dbb3cce2c3d0e..0654a301049dcb347b79879076a869a0c14a07ae 100644 --- a/python/paddle/v2/trainer.py +++ b/python/paddle/v2/trainer.py @@ -27,16 +27,24 @@ class SGD(object): SGD Trainer combines data reader, network topolopy and update_equation together to train/test a neural network. - :param update_equation: The optimizer object. - :type update_equation: paddle.v2.optimizer.Optimizer :param cost: Target cost that neural network should be optimized. :type cost: paddle.v2.config_base.Layer :param parameters: The parameters dictionary. :type parameters: paddle.v2.parameters.Parameters + :param update_equation: The optimizer object. + :type update_equation: paddle.v2.optimizer.Optimizer :param extra_layers: Some layers in the neural network graph are not in the path of cost layer. - :param pserver_spec: pserver location, eg: localhost:3000 :type extra_layers: paddle.v2.config_base.Layer + :param is_local: Whether trainning locally + :type is_local: bool + :param pserver_spec: comma string for pserver location, + eg:127.10.0.10:3000,127.10.0.11:3000, + and this parameter is only used for fault + tolerant mode cluster training. + :type pserver_spec: string + :param use_etcd: Whether using etcd pserver. + :param use_etcd: bool """ def __init__(self, diff --git a/python/requirements.txt b/python/requirements.txt index 3df822bd76d2a64a0a35f84b4ec309ce7150c221..e19453c25da1ec78773c00a72b8e517b0d798fff 100644 --- a/python/requirements.txt +++ b/python/requirements.txt @@ -1,7 +1,7 @@ requests==2.9.2 numpy>=1.12 protobuf==3.1 -recordio +recordio>=0.1.0 matplotlib rarfile scipy>=0.19.0 diff --git a/python/setup.py.in b/python/setup.py.in index 287442e013f91df1eed9c629b7767a660d5e30d7..87b3823e52604b889cdee76bc696a1ae9b9de802 100644 --- a/python/setup.py.in +++ b/python/setup.py.in @@ -24,14 +24,17 @@ if '${CMAKE_SYSTEM_PROCESSOR}' not in ['arm', 'armv7-a', 'aarch64']: setup_requires+=["opencv-python"] # the prefix is sys.prefix which should always be usr -paddle_bin_dir = 'local/opt/paddle/bin' +paddle_bin_dir = 'opt/paddle/bin' paddle_bins = ['${PADDLE_BINARY_DIR}/paddle/scripts/paddle_usage', '${PADDLE_BINARY_DIR}/paddle/trainer/paddle_trainer', '${PADDLE_BINARY_DIR}/paddle/trainer/paddle_merge_model', - '${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main'] + '${PADDLE_BINARY_DIR}/paddle/pserver/paddle_pserver_main', + '${PADDLE_BINARY_DIR}/paddle/scripts/paddle'] -paddle_rt_lib_dir = 'local/lib' -paddle_rt_libs = [] if '${MKL_SHARED_LIBS}'== '' else '${MKL_SHARED_LIBS}'.split(';') +paddle_rt_lib_dir = 'lib' +paddle_rt_libs = ['${WARPCTC_LIBRARIES}'] +if '${MKL_SHARED_LIBS}'!= '': + paddle_rt_libs += '${MKL_SHARED_LIBS}'.split(';') setup(name='paddlepaddle', version='${PADDLE_VERSION}', @@ -50,8 +53,7 @@ setup(name='paddlepaddle', 'paddle.v2.framework.proto': '${PADDLE_BINARY_DIR}/paddle/framework', 'py_paddle': '${PADDLE_SOURCE_DIR}/paddle/py_paddle' }, - scripts=['${PADDLE_BINARY_DIR}/paddle/scripts/paddle'], + scripts=paddle_bins, distclass=BinaryDistribution, - data_files=[(paddle_bin_dir, paddle_bins), - (paddle_rt_lib_dir, paddle_rt_libs)] + data_files=[(paddle_rt_lib_dir, paddle_rt_libs)] )