未验证 提交 871ac282 编写于 作者: C Cheerego 提交者: GitHub

Merge pull request #15085 from haowang101779990/enapi_improve_dec27

en api improve format Dec 27
...@@ -272,8 +272,7 @@ class DataFeeder(object): ...@@ -272,8 +272,7 @@ class DataFeeder(object):
dict: the result of conversion. dict: the result of conversion.
Raises: Raises:
ValueError: If drop_last is False and the data batch which cannot ValueError: If drop_last is False and the data batch which cannot fit for devices.
fit for devices.
""" """
def __reader_creator__(): def __reader_creator__():
......
...@@ -1638,8 +1638,8 @@ class Program(object): ...@@ -1638,8 +1638,8 @@ class Program(object):
parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need parameters, e.g., :code:`trainable`, :code:`optimize_attr`, need
to print. to print.
Returns Returns:
(str): The debug string. str : The debug string.
Raises: Raises:
ValueError: If any of required fields is not set and throw_on_error is ValueError: If any of required fields is not set and throw_on_error is
......
...@@ -1452,6 +1452,7 @@ class DynamicRNN(object): ...@@ -1452,6 +1452,7 @@ class DynamicRNN(object):
def step_input(self, x): def step_input(self, x):
""" """
Mark a sequence as a dynamic RNN input. Mark a sequence as a dynamic RNN input.
Args: Args:
x(Variable): The input sequence. x(Variable): The input sequence.
...@@ -1505,6 +1506,7 @@ class DynamicRNN(object): ...@@ -1505,6 +1506,7 @@ class DynamicRNN(object):
""" """
Mark a variable as a RNN input. The input will not be scattered into Mark a variable as a RNN input. The input will not be scattered into
time steps. time steps.
Args: Args:
x(Variable): The input variable. x(Variable): The input variable.
...@@ -1629,13 +1631,11 @@ class DynamicRNN(object): ...@@ -1629,13 +1631,11 @@ class DynamicRNN(object):
Args: Args:
init(Variable|None): The initialized variable. init(Variable|None): The initialized variable.
shape(list|tuple): The memory shape. NOTE the shape does not contain shape(list|tuple): The memory shape. NOTE the shape does not contain batch_size.
batch_size.
value(float): the initalized value. value(float): the initalized value.
need_reorder(bool): True if the initialized memory depends on the need_reorder(bool): True if the initialized memory depends on the input sample.
input sample.
dtype(str|numpy.dtype): The data type of the initialized memory. dtype(str|numpy.dtype): The data type of the initialized memory.
...@@ -1714,6 +1714,7 @@ class DynamicRNN(object): ...@@ -1714,6 +1714,7 @@ class DynamicRNN(object):
""" """
Update the memory from ex_mem to new_mem. NOTE that the shape and data Update the memory from ex_mem to new_mem. NOTE that the shape and data
type of :code:`ex_mem` and :code:`new_mem` must be same. type of :code:`ex_mem` and :code:`new_mem` must be same.
Args: Args:
ex_mem(Variable): the memory variable. ex_mem(Variable): the memory variable.
new_mem(Variable): the plain variable generated in RNN block. new_mem(Variable): the plain variable generated in RNN block.
......
...@@ -65,7 +65,7 @@ def rpn_target_assign(bbox_pred, ...@@ -65,7 +65,7 @@ def rpn_target_assign(bbox_pred,
rpn_negative_overlap=0.3, rpn_negative_overlap=0.3,
use_random=True): use_random=True):
""" """
** Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection. ** **Target Assign Layer for region proposal network (RPN) in Faster-RCNN detection.**
This layer can be, for given the Intersection-over-Union (IoU) overlap This layer can be, for given the Intersection-over-Union (IoU) overlap
between anchors and ground truth boxes, to assign classification and between anchors and ground truth boxes, to assign classification and
...@@ -135,19 +135,20 @@ def rpn_target_assign(bbox_pred, ...@@ -135,19 +135,20 @@ def rpn_target_assign(bbox_pred,
Examples: Examples:
.. code-block:: python .. code-block:: python
bbox_pred = layers.data(name='bbox_pred', shape=[100, 4], bbox_pred = layers.data(name='bbox_pred', shape=[100, 4],
append_batch_size=False, dtype='float32') append_batch_size=False, dtype='float32')
cls_logits = layers.data(name='cls_logits', shape=[100, 1], cls_logits = layers.data(name='cls_logits', shape=[100, 1],
append_batch_size=False, dtype='float32') append_batch_size=False, dtype='float32')
anchor_box = layers.data(name='anchor_box', shape=[20, 4], anchor_box = layers.data(name='anchor_box', shape=[20, 4],
append_batch_size=False, dtype='float32') append_batch_size=False, dtype='float32')
gt_boxes = layers.data(name='gt_boxes', shape=[10, 4], gt_boxes = layers.data(name='gt_boxes', shape=[10, 4],
append_batch_size=False, dtype='float32') append_batch_size=False, dtype='float32')
loc_pred, score_pred, loc_target, score_target, bbox_inside_weight = loc_pred, score_pred, loc_target, score_target, bbox_inside_weight =
fluid.layers.rpn_target_assign(bbox_pred=bbox_pred, fluid.layers.rpn_target_assign(bbox_pred=bbox_pred,
cls_logits=cls_logits, cls_logits=cls_logits,
anchor_box=anchor_box, anchor_box=anchor_box,
gt_boxes=gt_boxes) gt_boxes=gt_boxes)
""" """
helper = LayerHelper('rpn_target_assign', **locals()) helper = LayerHelper('rpn_target_assign', **locals())
...@@ -1519,27 +1520,30 @@ def anchor_generator(input, ...@@ -1519,27 +1520,30 @@ def anchor_generator(input,
Args: Args:
input(Variable): The input feature map, the format is NCHW. input(Variable): The input feature map, the format is NCHW.
anchor_sizes(list|tuple|float): The anchor sizes of generated anchors, anchor_sizes(list|tuple|float): The anchor sizes of generated anchors,
given in absolute pixels e.g. [64., 128., 256., 512.]. given in absolute pixels e.g. [64., 128., 256., 512.].
For instance, the anchor size of 64 means the area of this anchor equals to 64**2. For instance, the anchor size of 64 means the area of this anchor equals to 64**2.
aspect_ratios(list|tuple|float): The height / width ratios of generated aspect_ratios(list|tuple|float): The height / width ratios of generated
anchors, e.g. [0.5, 1.0, 2.0]. anchors, e.g. [0.5, 1.0, 2.0].
variance(list|tuple): The variances to be used in box regression deltas. variance(list|tuple): The variances to be used in box regression deltas.
Default:[0.1, 0.1, 0.2, 0.2]. Default:[0.1, 0.1, 0.2, 0.2].
stride(list|turple): The anchors stride across width and height, stride(list|turple): The anchors stride across width and height,e.g. [16.0, 16.0]
e.g. [16.0, 16.0]
offset(float): Prior boxes center offset. Default: 0.5 offset(float): Prior boxes center offset. Default: 0.5
name(str): Name of the prior box op. Default: None. name(str): Name of the prior box op. Default: None.
Returns: Returns:
Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. Anchors(Variable),Variances(Variable):
H is the height of input, W is the width of input,
num_anchors is the box count of each position. two variables:
Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
Variances(Variable): The expanded variances of anchors - Anchors(Variable): The output anchors with a layout of [H, W, num_anchors, 4]. \
with a layout of [H, W, num_priors, 4]. H is the height of input, W is the width of input, \
H is the height of input, W is the width of input num_anchors is the box count of each position. \
num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
Each variance is in (xcenter, ycenter, w, h) format. - Variances(Variable): The expanded variances of anchors \
with a layout of [H, W, num_priors, 4]. \
H is the height of input, W is the width of input \
num_anchors is the box count of each position. \
Each variance is in (xcenter, ycenter, w, h) format.
Examples: Examples:
...@@ -1748,35 +1752,35 @@ def generate_proposals(scores, ...@@ -1748,35 +1752,35 @@ def generate_proposals(scores,
eta=1.0, eta=1.0,
name=None): name=None):
""" """
** Generate proposal Faster-RCNN ** **Generate proposal Faster-RCNN**
This operation proposes RoIs according to each box with their probability to be a foreground object and This operation proposes RoIs according to each box with their probability to be a foreground object and
the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals the box can be calculated by anchors. Bbox_deltais and scores to be an object are the output of RPN. Final proposals
could be used to train detection net. could be used to train detection net.
For generating proposals, this operation performs following steps: For generating proposals, this operation performs following steps:
1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4) 1. Transposes and resizes scores and bbox_deltas in size of (H*W*A, 1) and (H*W*A, 4)
2. Calculate box locations as proposals candidates. 2. Calculate box locations as proposals candidates.
3. Clip boxes to image 3. Clip boxes to image
4. Remove predicted boxes with small area. 4. Remove predicted boxes with small area.
5. Apply NMS to get final proposals as output. 5. Apply NMS to get final proposals as output.
Args:
Args: scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object.
scores(Variable): A 4-D Tensor with shape [N, A, H, W] represents the probability for each box to be an object. N is batch size, A is number of anchors, H and W are height and width of the feature map.
N is batch size, A is number of anchors, H and W are height and width of the feature map. bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location.
bbox_deltas(Variable): A 4-D Tensor with shape [N, 4*A, H, W] represents the differece between predicted box locatoin and anchor location. im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale
im_info(Variable): A 2-D Tensor with shape [N, 3] represents origin image information for N batch. Info contains height, width and scale between origin image size and the size of feature map.
between origin image size and the size of feature map. anchors(Variable): A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map,
anchors(Variable): A 4-D Tensor represents the anchors with a layout of [H, W, A, 4]. H and W are height and width of the feature map, num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized.
num_anchors is the box count of each position. Each anchor is in (xmin, ymin, xmax, ymax) format an unnormalized. variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format.
variances(Variable): The expanded variances of anchors with a layout of [H, W, num_priors, 4]. Each variance is in (xcenter, ycenter, w, h) format. pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default.
pre_nms_top_n(float): Number of total bboxes to be kept per image before NMS. 6000 by default. post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default.
post_nms_top_n(float): Number of total bboxes to be kept per image after NMS. 1000 by default. nms_thresh(float): Threshold in NMS, 0.5 by default.
nms_thresh(float): Threshold in NMS, 0.5 by default. min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default.
min_size(float): Remove predicted boxes with either height or width < min_size. 0.1 by default. eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
eta(float): Apply in adaptive NMS, if adaptive threshold > 0.5, adaptive_threshold = adaptive_threshold * eta in each iteration.
""" """
helper = LayerHelper('generate_proposals', **locals()) helper = LayerHelper('generate_proposals', **locals())
......
...@@ -949,12 +949,11 @@ def shuffle(reader, buffer_size): ...@@ -949,12 +949,11 @@ def shuffle(reader, buffer_size):
is determined by argument buf_size. is determined by argument buf_size.
Args: Args:
param reader: the original reader whose output will be shuffled. reader(callable): the original reader whose output will be shuffled.
type reader: callable buf_size(int): shuffle buffer size.
param buf_size: shuffle buffer size.
type buf_size: int Returns:
return: the new reader whose output is shuffled. callable: the new reader whose output is shuffled.
rtype: callable
""" """
return __create_unshared_decorated_reader__( return __create_unshared_decorated_reader__(
'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)}) 'create_shuffle_reader', reader, {'buffer_size': int(buffer_size)})
......
...@@ -233,7 +233,7 @@ def fc(input, ...@@ -233,7 +233,7 @@ def fc(input,
dimensions will be flatten to form the first dimension of the final matrix (height of dimensions will be flatten to form the first dimension of the final matrix (height of
the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to the matrix), and the rest `rank(X) - num_flatten_dims` dimensions are flattened to
form the second dimension of the final matrix (width of the matrix). For example, suppose form the second dimension of the final matrix (width of the matrix). For example, suppose
`X` is a 6-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3. `X` is a 5-dimensional tensor with a shape [2, 3, 4, 5, 6], and `num_flatten_dims` = 3.
Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30]. Then, the flattened matrix will have a shape [2 x 3 x 4, 5 x 6] = [24, 30].
param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable param_attr (ParamAttr|list of ParamAttr, default None): The parameter attribute for learnable
parameters/weights of this layer. parameters/weights of this layer.
...@@ -502,46 +502,48 @@ def lstm(input, ...@@ -502,46 +502,48 @@ def lstm(input,
If Device is GPU, This op will use cudnn LSTM implementation If Device is GPU, This op will use cudnn LSTM implementation
A four-gate Long Short-Term Memory network with no peephole connections. A four-gate Long Short-Term Memory network with no peephole connections.
In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1, In the forward pass the output ht and cell output ct for a given iteration can be computed from the recurrent input ht-1,
the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations: the cell input ct-1 and the previous layer input xt given matrices W, R and biases bW, bR from the following equations:
$$ i_t = \\sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i) $$ .. math::
$$ f_t = \\sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f) $$ i_t &= \sigma(W_{ix}x_{t} + W_{ih}h_{t-1} + bx_i + bh_i)
$$ o_t = \\sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o) $$ f_t &= \sigma(W_{fx}x_{t} + W_{fh}h_{t-1} + bx_f + bh_f)
$$ \\tilde{c_t} = tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c) $$ o_t &= \sigma(W_{ox}x_{t} + W_{oh}h_{t-1} + bx_o + bh_o)
$$ c_t = f_t \\odot c_{t-1} + i_t \\odot \\tilde{c_t} $$ \\tilde{c_t} &= tanh(W_{cx}x_t + W_{ch}h_{t-1} + bx_c + bh_c)
$$ h_t = o_t \\odot tanh(c_t) $$ c_t &= f_t \odot c_{t-1} + i_t \odot \\tilde{c_t}
- W terms denote weight matrices (e.g. $W_{ix}$ is the matrix h_t &= o_t \odot tanh(c_t)
- $W$ terms denote weight matrices (e.g. $W_{ix}$ is the matrix
of weights from the input gate to the input) of weights from the input gate to the input)
- The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector). - The b terms denote bias vectors ($bx_i$ and $bh_i$ are the input gate bias vector).
- sigmoid is the logistic sigmoid function. - sigmoid is the logistic sigmoid function.
- $i, f, o$ and $c$ are the input gate, forget gate, output gate, - $i, f, o$ and $c$ are the input gate, forget gate, output gate,
and cell activation vectors, respectively, all of which have the same size as and cell activation vectors, respectively, all of which have the same size as
the cell output activation vector $h$. the cell output activation vector $h$.
- The $\odot$ is the element-wise product of the vectors. - The :math:`\odot` is the element-wise product of the vectors.
- `tanh` is the activation functions. - :math:`tanh` is the activation functions.
- $\tilde{c_t}$ is also called candidate hidden state, - :math:`\\tilde{c_t}` is also called candidate hidden state,
which is computed based on the current input and the previous hidden state. which is computed based on the current input and the previous hidden state.
Where sigmoid is the sigmoid operator: sigmoid(x) = 1 / (1 + e^-x), * represents a point-wise multiplication, Where sigmoid is the sigmoid operator: :math:`sigmoid(x) = 1 / (1 + e^{-x})` , * represents a point-wise multiplication,
X represensts a matrix multiplication X represensts a matrix multiplication
Args: Args:
input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size ) input (Variable): LSTM input tensor, shape MUST be ( seq_len x batch_size x input_size )
init_h(Variable): The initial hidden state of the LSTM init_h(Variable): The initial hidden state of the LSTM
This is a tensor with shape ( num_layers x batch_size x hidden_size) This is a tensor with shape ( num_layers x batch_size x hidden_size)
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size) if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
init_c(Variable): The initial cell state of the LSTM. init_c(Variable): The initial cell state of the LSTM.
This is a tensor with shape ( num_layers x batch_size x hidden_size ) This is a tensor with shape ( num_layers x batch_size x hidden_size )
if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size) if is_bidirec = True, shape should be ( num_layers*2 x batch_size x hidden_size)
max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len max_len (int): max length of LSTM. the first dim of input tensor CAN NOT greater than max_len
hidden_size (int): hidden size of the LSTM hidden_size (int): hidden size of the LSTM
num_layers (int): total layers number of the LSTM num_layers (int): total layers number of the LSTM
dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps dropout_prob(float|0.0): dropout prob, dropout ONLY work between rnn layers, NOT between time steps
...@@ -556,14 +558,18 @@ def lstm(input, ...@@ -556,14 +558,18 @@ def lstm(input,
Returns: Returns:
rnn_out(Tensor): result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) rnn_out(Tensor),last_h(Tensor),last_c(Tensor):
if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
last_h(Tensor): the hidden state of the last step of LSTM Three tensors, rnn_out, last_h, last_c:
shape is ( num_layers x batch_size x hidden_size )
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size) - rnn_out is result of LSTM hidden, shape is (seq_len x batch_size x hidden_size) \
last_c(Tensor): the cell state of the last step of LSTM if is_bidirec set to True, shape will be ( seq_len x batch_sze x hidden_size*2)
shape is ( num_layers x batch_size x hidden_size ) - last_h is the hidden state of the last step of LSTM \
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size) shape is ( num_layers x batch_size x hidden_size ) \
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
- last_c(Tensor): the cell state of the last step of LSTM \
shape is ( num_layers x batch_size x hidden_size ) \
if is_bidirec set to True, shape will be ( num_layers*2 x batch_size x hidden_size)
Examples: Examples:
...@@ -1220,6 +1226,8 @@ def dropout(x, ...@@ -1220,6 +1226,8 @@ def dropout(x,
probability) the outputs of some units to zero, while others are remain probability) the outputs of some units to zero, while others are remain
unchanged. unchanged.
dropout op can be removed from the program to make the program more efficient.
Args: Args:
x (Variable): The input tensor variable. x (Variable): The input tensor variable.
dropout_prob (float): Probability of setting units to zero. dropout_prob (float): Probability of setting units to zero.
...@@ -1230,22 +1238,24 @@ def dropout(x, ...@@ -1230,22 +1238,24 @@ def dropout(x,
units will be dropped. DO NOT use a fixed seed in training. units will be dropped. DO NOT use a fixed seed in training.
name (str|None): A name for this layer(optional). If set None, the layer name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
dropout_implementation(string): ['downgrade_in_infer'(defauld)|'upscale_in_train'] dropout_implementation(string): ['downgrade_in_infer'(default)|'upscale_in_train']
1. downgrade_in_infer(default), downgrade the outcome at inference 1. downgrade_in_infer(default), downgrade the outcome at inference
train: out = input * mask
inference: out = input * dropout_prob - train: out = input * mask
(make is a tensor same shape with input, value is 0 or 1 - inference: out = input * dropout_prob
ratio of 0 is dropout_prob)
(mask is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
2. upscale_in_train, upscale the outcome at training time 2. upscale_in_train, upscale the outcome at training time
train: out = input * mask / ( 1.0 - dropout_prob )
inference: out = input
(make is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
dropout op can be removed from the program.
the program will be efficient
- train: out = input * mask / ( 1.0 - dropout_prob )
- inference: out = input
(mask is a tensor same shape with input, value is 0 or 1
ratio of 0 is dropout_prob)
Returns: Returns:
Variable: A tensor variable is the shape with `x`. Variable: A tensor variable is the shape with `x`.
...@@ -1333,11 +1343,15 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex): ...@@ -1333,11 +1343,15 @@ def cross_entropy(input, label, soft_label=False, ignore_index=kIgnoreIndex):
A 2-D tensor with shape [N x 1], the cross entropy loss. A 2-D tensor with shape [N x 1], the cross entropy loss.
Raises: Raises:
`ValueError`: 1) the 1st dimension of `input` and `label` are not equal. ValueError:
2) when `soft_label == True`, and the 2nd dimension of
`input` and `label` are not equal. 1. the 1st dimension of ``input`` and ``label`` are not equal.
3) when `soft_label == False`, and the 2nd dimension of
`label` is not 1. 2. when ``soft_label == True``, and the 2nd dimension of
``input`` and ``label`` are not equal.
3. when ``soft_label == False``, and the 2nd dimension of
``label`` is not 1.
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -1457,8 +1471,8 @@ def chunk_eval(input, ...@@ -1457,8 +1471,8 @@ def chunk_eval(input,
This function computes and outputs the precision, recall and This function computes and outputs the precision, recall and
F1-score of chunk detection. F1-score of chunk detection.
For some basics of chunking, please refer to For some basics of chunking, please refer to
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'. `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection, ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes. and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
...@@ -1823,7 +1837,7 @@ def conv2d(input, ...@@ -1823,7 +1837,7 @@ def conv2d(input,
of conv2d. If it is set to None or one attribute of ParamAttr, conv2d of conv2d. If it is set to None or one attribute of ParamAttr, conv2d
will create ParamAttr as param_attr. If the Initializer of the param_attr will create ParamAttr as param_attr. If the Initializer of the param_attr
is not set, the parameter is initialized with :math:`Normal(0.0, std)`, is not set, the parameter is initialized with :math:`Normal(0.0, std)`,
and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None. and the :math:`std` is :math:`(\\frac{2.0 }{filter\_elem\_num})^{0.5}`. Default: None.
bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d. bias_attr (ParamAttr|bool|None): The parameter attribute for the bias of conv2d.
If it is set to False, no bias will be added to the output units. If it is set to False, no bias will be added to the output units.
If it is set to None or one attribute of ParamAttr, conv2d If it is set to None or one attribute of ParamAttr, conv2d
...@@ -2276,7 +2290,7 @@ def sequence_slice(input, offset, length, name=None): ...@@ -2276,7 +2290,7 @@ def sequence_slice(input, offset, length, name=None):
.. code-block:: text .. code-block:: text
- Case: - Case:
Given the input Variable **input**: Given the input Variable **input**:
...@@ -2292,7 +2306,8 @@ def sequence_slice(input, offset, length, name=None): ...@@ -2292,7 +2306,8 @@ def sequence_slice(input, offset, length, name=None):
out.lod = [[2, 1]], out.lod = [[2, 1]],
out.dims = (3, 2). out.dims = (3, 2).
NOTE: The first dimension size of **input**, **offset** and **length** Note:
The first dimension size of **input**, **offset** and **length**
should be equal. The **offset** should start from 0. should be equal. The **offset** should start from 0.
Args: Args:
...@@ -3013,7 +3028,7 @@ def group_norm(input, ...@@ -3013,7 +3028,7 @@ def group_norm(input,
""" """
**Group Normalization Layer** **Group Normalization Layer**
Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>` Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`_ .
Args: Args:
input(Variable): The input tensor variable. input(Variable): The input tensor variable.
...@@ -3140,8 +3155,8 @@ def conv2d_transpose(input, ...@@ -3140,8 +3155,8 @@ def conv2d_transpose(input,
H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\ H^\prime_{out} &= (H_{in} - 1) * strides[0] - 2 * paddings[0] + dilations[0] * (H_f - 1) + 1 \\\\
W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\ W^\prime_{out} &= (W_{in} - 1) * strides[1] - 2 * paddings[1] + dilations[1] * (W_f - 1) + 1 \\\\
H_{out} \in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\ H_{out} &\in [ H^\prime_{out}, H^\prime_{out} + strides[0] ) \\\\
W_{out} \in [ W^\prime_{out}, W^\prime_{out} + strides[1] ) W_{out} &\in [ W^\prime_{out}, W^\prime_{out} + strides[1] )
Args: Args:
input(Variable): The input image with [N, C, H, W] format. input(Variable): The input image with [N, C, H, W] format.
...@@ -4673,7 +4688,7 @@ def ctc_greedy_decoder(input, blank, name=None): ...@@ -4673,7 +4688,7 @@ def ctc_greedy_decoder(input, blank, name=None):
[0.5, 0.1, 0.3, 0.1]] [0.5, 0.1, 0.3, 0.1]]
input.lod = [[4, 4]] input.lod = [[4, 4]]
Computation: Computation:
step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get: step1: Apply argmax to first input sequence which is input.data[0:4]. Then we get:
...@@ -4704,10 +4719,10 @@ def ctc_greedy_decoder(input, blank, name=None): ...@@ -4704,10 +4719,10 @@ def ctc_greedy_decoder(input, blank, name=None):
name (str): The name of this layer. It is optional. name (str): The name of this layer. It is optional.
Returns: Returns:
Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. Variable: CTC greedy decode result which is a 2-D tensor with shape [Lp, 1]. \
'Lp' is the sum if all output sequences' length. If all the sequences 'Lp' is the sum if all output sequences' length. If all the sequences \
in result were empty, the result LoDTensor will be [-1] with in result were empty, the result LoDTensor will be [-1] with \
LoD [[]] and dims [1, 1]. LoD [[]] and dims [1, 1].
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -5060,7 +5075,7 @@ def hsigmoid(input, ...@@ -5060,7 +5075,7 @@ def hsigmoid(input,
""" """
The hierarchical sigmoid operator is used to accelerate the training The hierarchical sigmoid operator is used to accelerate the training
process of language model. This operator organizes the classes into a process of language model. This operator organizes the classes into a
complete binary tree, or you can use is_custom to pass your own tree to complete binary tree, or you can use is_custom to pass your own tree to
implement hierarchical. Each leaf node represents a class(a word) and each implement hierarchical. Each leaf node represents a class(a word) and each
internal node acts as a binary classifier. For each word there's a unique internal node acts as a binary classifier. For each word there's a unique
path from root to it's leaf node, hsigmoid calculate the cost for each path from root to it's leaf node, hsigmoid calculate the cost for each
...@@ -5072,13 +5087,13 @@ def hsigmoid(input, ...@@ -5072,13 +5087,13 @@ def hsigmoid(input,
<http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_ <http://www.iro.umontreal.ca/~lisa/pointeurs/hierarchical-nnlm-aistats05.pdf>`_
And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first: And if you want to use the costumed tree by set 'is_custom' as true you may need to do following things first:
1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
1. using your word dict to build a binary tree, each leaf node should be an word of your word dict
2. build a dict to store word_id -> word's leaf to root path, we call it path_table.
3. build a dict to store word_id -> code of word's leaf to root path, we call it path_code. Code
means label of each binary classification, using 1 indicate true, 0 indicate false.
4. now, each word should has its path and code along the path, you can pass a batch of path and code
related to the same batch of inputs.
Args: Args:
input (Variable): The input tensor variable with shape input (Variable): The input tensor variable with shape
...@@ -5086,8 +5101,8 @@ def hsigmoid(input, ...@@ -5086,8 +5101,8 @@ def hsigmoid(input,
and :math:`D` is the feature size. and :math:`D` is the feature size.
label (Variable): The tensor variable contains labels of training data. label (Variable): The tensor variable contains labels of training data.
It's a tensor with shape is :math:`[N \\times 1]`. It's a tensor with shape is :math:`[N \\times 1]`.
num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set, num_classes: (int), The number of classes, must not be less than 2. with default tree this has to be set,
it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num it should never be None under is_custom=False, but while is_custom is true, it should be non leaf num
which indicates the num of classes using by binary classify. which indicates the num of classes using by binary classify.
param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights param_attr (ParamAttr|None): The parameter attribute for learnable parameters/weights
of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid of hsigmoid. If it is set to None or one attribute of ParamAttr, hsigmoid
...@@ -5100,15 +5115,15 @@ def hsigmoid(input, ...@@ -5100,15 +5115,15 @@ def hsigmoid(input,
is not set, the bias is initialized zero. Default: None. is not set, the bias is initialized zero. Default: None.
name (str|None): A name for this layer(optional). If set None, the layer name (str|None): A name for this layer(optional). If set None, the layer
will be named automatically. Default: None. will be named automatically. Default: None.
path_table: (Variable|None) this variable can store each batch of samples' path to root, path_table: (Variable|None) this variable can store each batch of samples' path to root,
it should be in leaf -> root order it should be in leaf -> root order
path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like path_table should have the same shape with path_code, and for each sample i path_table[i] indicates a np.array like
structure and each element in this array is indexes in parent nodes' Weight Matrix. structure and each element in this array is indexes in parent nodes' Weight Matrix.
path_code: (Variable|None) this variable can store each batch of samples' code, path_code: (Variable|None) this variable can store each batch of samples' code,
each code consist with every code of parent nodes. it should be in leaf -> root order each code consist with every code of parent nodes. it should be in leaf -> root order
is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is is_custom: (bool|False)using user defined binary tree instead of default complete binary tree, if costum is
set you need to set path_table/path_code/num_classes, otherwise num_classes should be set set you need to set path_table/path_code/num_classes, otherwise num_classes should be set
is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient is_sparse: (bool|False)using sparse update instead of dense update, if set, the gradient
of W and input will be sparse. of W and input will be sparse.
Returns: Returns:
...@@ -5485,11 +5500,11 @@ def softmax_with_cross_entropy(logits, ...@@ -5485,11 +5500,11 @@ def softmax_with_cross_entropy(logits,
.. math:: .. math::
max_j = \\max_{i=0}^{K}{\\text{logit}_i} max_j &= \\max_{i=0}^{K}{\\text{logit}_i}
log\\_max\\_sum_j = \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j) log\\_max\\_sum_j &= \\log\\sum_{i=0}^{K}\\exp(logit_i - max_j)
softmax_j = \\exp(logit_j - max_j - {log\\_max\\_sum}_j) softmax_j &= \\exp(logit_j - max_j - {log\\_max\\_sum}_j)
and then cross entropy loss is calculated by softmax and label. and then cross entropy loss is calculated by softmax and label.
...@@ -5515,11 +5530,11 @@ def softmax_with_cross_entropy(logits, ...@@ -5515,11 +5530,11 @@ def softmax_with_cross_entropy(logits,
along with the cross entropy loss. Default: False along with the cross entropy loss. Default: False
Returns: Returns:
Variable or Tuple of two Variables: Return the cross entropy loss if Variable or Tuple of two Variables: Return the cross entropy loss if \
`return_softmax` is False, otherwise the tuple `return_softmax` is False, otherwise the tuple \
(loss, softmax), where the cross entropy loss is (loss, softmax), where the cross entropy loss is \
a 2-D tensor with shape [N x 1], and softmax is a a 2-D tensor with shape [N x 1], and softmax is a \
2-D tensor with shape [N x K]. 2-D tensor with shape [N x K].
Examples: Examples:
.. code-block:: python .. code-block:: python
...@@ -5792,21 +5807,27 @@ def squeeze(input, axes, name=None): ...@@ -5792,21 +5807,27 @@ def squeeze(input, axes, name=None):
the single dimensions will be removed from the shape. If an axis is the single dimensions will be removed from the shape. If an axis is
selected with shape entry not equal to one, an error is raised. selected with shape entry not equal to one, an error is raised.
Examples: For example:
Case 1:
Given .. code-block:: text
X.shape = (1, 3, 1, 5)
and Case 1:
axes = [0]
we get: Given
Out.shape = (3, 1, 5) X.shape = (1, 3, 1, 5)
Case 2: and
Given axes = [0]
X.shape = (1, 3, 1, 5) we get:
and Out.shape = (3, 1, 5)
axes = []
we get: Case 2:
Out.shape = (3, 5)
Given
X.shape = (1, 3, 1, 5)
and
axes = []
we get:
Out.shape = (3, 5)
Args: Args:
input (Variable): The input variable to be squeezed. input (Variable): The input variable to be squeezed.
...@@ -5842,6 +5863,9 @@ def unsqueeze(input, axes, name=None): ...@@ -5842,6 +5863,9 @@ def unsqueeze(input, axes, name=None):
Dimension indices in axes are as seen in the output tensor. Dimension indices in axes are as seen in the output tensor.
For example: For example:
.. code-block:: text
Given a tensor such that tensor with shape [3, 4, 5], Given a tensor such that tensor with shape [3, 4, 5],
then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1]. then Unsqueezed tensor with axes=[0, 4] has shape [1, 3, 4, 5, 1].
...@@ -6729,8 +6753,11 @@ def sequence_scatter(input, index, updates, name=None): ...@@ -6729,8 +6753,11 @@ def sequence_scatter(input, index, updates, name=None):
the columns to update in each row of X. the columns to update in each row of X.
Here is an example: Here is an example:
Given the following input: Given the following input:
.. code-block:: text .. code-block:: text
input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], input.data = [[1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0], [1.0, 1.0, 1.0, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.0, 1.0, 1.0, 1.0]] [1.0, 1.0, 1.0, 1.0, 1.0, 1.0]]
...@@ -6743,7 +6770,9 @@ def sequence_scatter(input, index, updates, name=None): ...@@ -6743,7 +6770,9 @@ def sequence_scatter(input, index, updates, name=None):
updates.lod = [[ 0, 3, 8, 12]] updates.lod = [[ 0, 3, 8, 12]]
Then we have the output: Then we have the output:
.. code-block:: text .. code-block:: text
out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0], out.data = [[1.3, 1.3, 1.4, 1.0, 1.0, 1.0],
[1.0, 1.0, 1.4, 1.3, 1.2, 1.1], [1.0, 1.0, 1.4, 1.3, 1.2, 1.1],
[1.0, 1.0, 1.3, 1.2, 1.4, 1.1]] [1.0, 1.0, 1.3, 1.2, 1.4, 1.1]]
...@@ -6759,7 +6788,7 @@ def sequence_scatter(input, index, updates, name=None): ...@@ -6759,7 +6788,7 @@ def sequence_scatter(input, index, updates, name=None):
name (str|None): The output variable name. Default None. name (str|None): The output variable name. Default None.
Returns: Returns:
output (Variable): The output is a tensor with the same shape as input. Variable: The output is a tensor with the same shape as input.
Examples: Examples:
...@@ -6933,7 +6962,7 @@ def mean_iou(input, label, num_classes): ...@@ -6933,7 +6962,7 @@ def mean_iou(input, label, num_classes):
.. math:: .. math::
IOU = \\frac{true\_positiv}{(true\_positive + false\_positive + false\_negative)}. IOU = \\frac{true\_positive}{(true\_positive + false\_positive + false\_negative)}.
The predictions are accumulated in a confusion matrix and mean-IOU The predictions are accumulated in a confusion matrix and mean-IOU
is then calculated from it. is then calculated from it.
...@@ -6946,9 +6975,13 @@ def mean_iou(input, label, num_classes): ...@@ -6946,9 +6975,13 @@ def mean_iou(input, label, num_classes):
num_classes (int): The possible number of labels. num_classes (int): The possible number of labels.
Returns: Returns:
mean_iou (Variable): A Tensor representing the mean intersection-over-union with shape [1]. mean_iou (Variable),out_wrong(Variable),out_correct(Variable):
out_wrong(Variable): A Tensor with shape [num_classes]. The wrong numbers of each class.
out_correct(Variable): A Tensor with shape [num_classes]. The correct numbers of each class. Three variables:
- mean_iou : A Tensor representing the mean intersection-over-union with shape [1].
- out_wrong: A Tensor with shape [num_classes]. The wrong numbers of each class.
- out_correct: A Tensor with shape [num_classes]. The correct numbers of each class.
Examples: Examples:
...@@ -7143,8 +7176,8 @@ def affine_grid(theta, out_shape, name=None): ...@@ -7143,8 +7176,8 @@ def affine_grid(theta, out_shape, name=None):
Args: Args:
theta (Variable): A batch of affine transform parameters with shape [N, 2, 3]. theta (Variable): A batch of affine transform parameters with shape [N, 2, 3].
out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W]. out_shape (Variable | list | tuple): The shape of target output with format [N, C, H, W].
out_shape can be a Variable or a list or tuple. ``out_shape`` can be a Variable or a list or tuple.
name(str|None): A name for this layer(optional). If set None, the layer name(str|None): A name for this layer(optional). If set None, the layer
will be named automatically. will be named automatically.
...@@ -7157,6 +7190,7 @@ def affine_grid(theta, out_shape, name=None): ...@@ -7157,6 +7190,7 @@ def affine_grid(theta, out_shape, name=None):
Examples: Examples:
.. code-block:: python .. code-block:: python
theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32") theta = fluid.layers.data(name="x", shape=[2, 3], dtype="float32")
out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32") out_shape = fluid.layers.data(name="y", shape=[-1], dtype="float32")
data = fluid.layers.affine_grid(theta, out_shape) data = fluid.layers.affine_grid(theta, out_shape)
...@@ -7192,9 +7226,10 @@ def affine_grid(theta, out_shape, name=None): ...@@ -7192,9 +7226,10 @@ def affine_grid(theta, out_shape, name=None):
def rank_loss(label, left, right, name=None): def rank_loss(label, left, right, name=None):
""" """
**Rank loss layer for RankNet** **Rank loss layer for RankNet**
RankNet(http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf) `RankNet <http://icml.cc/2015/wp-content/uploads/2015/06/icml_ranking.pdf>`_
is a pairwise ranking model with a training sample consisting of a pair is a pairwise ranking model with a training sample consisting of a pair
of documents, A and B. Label P indicates whether A is ranked higher than B of documents, A and B. Label P indicates whether A is ranked higher than B
or not: or not:
...@@ -7202,16 +7237,19 @@ def rank_loss(label, left, right, name=None): ...@@ -7202,16 +7237,19 @@ def rank_loss(label, left, right, name=None):
P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information P = {0, 1} or {0, 0.5, 1}, where 0.5 means that there is no information
about the rank of the input pair. about the rank of the input pair.
Rank loss layer takes three inputs: left (o_i), right (o_j) and Rank loss layer takes three inputs: left ( :math:`o_i` ), right ( :math:`o_j` ) and
label (P_{i,j}). The inputs respectively represent RankNet's output scores label ( :math:`P_{i,j}` ). The inputs respectively represent RankNet's output scores
for documents A and B and the value of label P. The following equation for documents A and B and the value of label P. The following equation
computes rank loss C_{i,j} from the inputs: computes rank loss C_{i,j} from the inputs:
$$ .. math::
C_{i,j} = -\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\
o_{i,j} = o_i - o_j \\ C_{i,j} &= -\\tilde{P_{ij}} * o_{i,j} + \log(1 + e^{o_{i,j}}) \\\\
\tilde{P_{i,j}} = \left \{0, 0.5, 1 \right \} \ or \ \left \{0, 1 \right \}
$$ o_{i,j} &= o_i - o_j \\\\
\\tilde{P_{i,j}} &= \\left \{0, 0.5, 1 \\right \} \ or \ \\left \{0, 1 \\right \}
Rank loss layer takes batch inputs with size batch_size (batch_size >= 1). Rank loss layer takes batch inputs with size batch_size (batch_size >= 1).
...@@ -7237,7 +7275,6 @@ def rank_loss(label, left, right, name=None): ...@@ -7237,7 +7275,6 @@ def rank_loss(label, left, right, name=None):
right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32") right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
out = fluid.layers.rank_loss(label, left, right) out = fluid.layers.rank_loss(label, left, right)
""" """
helper = LayerHelper('rank_loss', **locals()) helper = LayerHelper('rank_loss', **locals())
...@@ -7269,7 +7306,7 @@ def margin_rank_loss(label, left, right, margin=0.1, name=None): ...@@ -7269,7 +7306,7 @@ def margin_rank_loss(label, left, right, margin=0.1, name=None):
.. math:: .. math::
rank\_loss &= max(0, -label * (left - right) + margin) rank\_loss = max(0, -label * (left - right) + margin)
Args: Args:
label (Variable): Indicates whether the left is ranked higher than the right or not. label (Variable): Indicates whether the left is ranked higher than the right or not.
...@@ -7278,12 +7315,17 @@ def margin_rank_loss(label, left, right, margin=0.1, name=None): ...@@ -7278,12 +7315,17 @@ def margin_rank_loss(label, left, right, margin=0.1, name=None):
margin (float): Indicates the given margin. margin (float): Indicates the given margin.
name (str|None): A name for this layer (optional). If set None, the layer name (str|None): A name for this layer (optional). If set None, the layer
will be named automatically. will be named automatically.
Returns: Returns:
Variable: The ranking loss. Variable: The ranking loss.
Raises: Raises:
ValueError: Any of label, left, and right is not a Variable. ValueError: Any of label, left, and right is not a Variable.
Examples: Examples:
.. code-block:: python .. code-block:: python
label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32") label = fluid.layers.data(name="label", shape=[4, 1], dtype="float32")
left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32") left = fluid.layers.data(name="left", shape=[4, 1], dtype="float32")
right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32") right = fluid.layers.data(name="right", shape=[4, 1], dtype="float32")
...@@ -7587,7 +7629,8 @@ def prelu(x, mode, param_attr=None, name=None): ...@@ -7587,7 +7629,8 @@ def prelu(x, mode, param_attr=None, name=None):
""" """
Equation: Equation:
y = \max(0, x) + alpha * \min(0, x) .. math::
y = \max(0, x) + \\alpha * \min(0, x)
Args: Args:
x (Variable): The input tensor. x (Variable): The input tensor.
...@@ -7653,8 +7696,8 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None): ...@@ -7653,8 +7696,8 @@ def brelu(x, t_min=0.0, t_max=24.0, name=None):
.. code-block:: python .. code-block:: python
x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32") x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0) y = fluid.layers.brelu(x, t_min=1.0, t_max=20.0)
""" """
helper = LayerHelper('brelu', **locals()) helper = LayerHelper('brelu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
...@@ -7683,8 +7726,8 @@ def leaky_relu(x, alpha=0.02, name=None): ...@@ -7683,8 +7726,8 @@ def leaky_relu(x, alpha=0.02, name=None):
.. code-block:: python .. code-block:: python
x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32") x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
y = fluid.layers.leaky_relu(x, alpha=0.01) y = fluid.layers.leaky_relu(x, alpha=0.01)
""" """
helper = LayerHelper('leaky_relu', **locals()) helper = LayerHelper('leaky_relu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
...@@ -7712,8 +7755,8 @@ def soft_relu(x, threshold=40.0, name=None): ...@@ -7712,8 +7755,8 @@ def soft_relu(x, threshold=40.0, name=None):
.. code-block:: python .. code-block:: python
x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32") x = fluid.layers.data(name="x", shape=[2,3,16,16], dtype="float32")
y = fluid.layers.soft_relu(x, threshold=20.0) y = fluid.layers.soft_relu(x, threshold=20.0)
""" """
helper = LayerHelper('soft_relu', **locals()) helper = LayerHelper('soft_relu', **locals())
out = helper.create_variable_for_type_inference(dtype=x.dtype) out = helper.create_variable_for_type_inference(dtype=x.dtype)
...@@ -7729,23 +7772,32 @@ def flatten(x, axis=1, name=None): ...@@ -7729,23 +7772,32 @@ def flatten(x, axis=1, name=None):
""" """
**Flatten layer** **Flatten layer**
Flattens the input tensor into a 2D matrix. Flattens the input tensor into a 2D matrix.
For Example:
.. code-block:: text
Examples: Case 1:
Case 1:
Given Given
X.shape = (3, 100, 100, 4) X.shape = (3, 100, 100, 4)
and
axis = 2 and
We get: axis = 2
Out.shape = (3 * 100, 4 * 100)
We get:
Case 2: Out.shape = (3 * 100, 4 * 100)
Given
X.shape = (3, 100, 100, 4) Case 2:
and
axis = 0 Given
We get: X.shape = (3, 100, 100, 4)
Out.shape = (1, 3 * 100 * 100 * 4)
and
axis = 0
We get:
Out.shape = (1, 3 * 100 * 100 * 4)
Args: Args:
x (Variable): A tensor of rank >= axis. x (Variable): A tensor of rank >= axis.
...@@ -7759,9 +7811,9 @@ def flatten(x, axis=1, name=None): ...@@ -7759,9 +7811,9 @@ def flatten(x, axis=1, name=None):
will be named automatically. will be named automatically.
Returns: Returns:
Variable: A 2D tensor with the contents of the input tensor, with input Variable: A 2D tensor with the contents of the input tensor, with input \
dimensions up to axis flattened to the outer dimension of dimensions up to axis flattened to the outer dimension of \
the output and remaining input dimensions flattened into the the output and remaining input dimensions flattened into the \
inner dimension of the output. inner dimension of the output.
Raises: Raises:
...@@ -7801,19 +7853,23 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None): ...@@ -7801,19 +7853,23 @@ def sequence_enumerate(input, win_size, pad_value=0, name=None):
The enumerated sequence has the same 1st dimension with variable `input`, and The enumerated sequence has the same 1st dimension with variable `input`, and
the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation. the 2nd dimension is `win_size`, padded by `pad_value` if necessary in generation.
Examples: .. code-block:: text
Case 1:
Input: Case 1:
X.lod = [[0, 3, 5]]
X.data = [[1], [2], [3], [4], [5]] Input:
X.dims = [5, 1] X.lod = [[0, 3, 5]]
Attrs: X.data = [[1], [2], [3], [4], [5]]
win_size = 2 X.dims = [5, 1]
pad_value = 0
Output: Attrs:
Out.lod = [[0, 3, 5]] win_size = 2
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]] pad_value = 0
Out.dims = [5, 2]
Output:
Out.lod = [[0, 3, 5]]
Out.data = [[1, 2], [2, 3], [3, 0], [4, 5], [5, 0]]
Out.dims = [5, 2]
Args: Args:
input (Variable): The input variable which is a index sequence. input (Variable): The input variable which is a index sequence.
...@@ -8896,6 +8952,7 @@ def similarity_focus(input, axis, indexes, name=None): ...@@ -8896,6 +8952,7 @@ def similarity_focus(input, axis, indexes, name=None):
SimilarityFocus Operator SimilarityFocus Operator
Generate a similarity focus mask with the same shape of input using the following method: Generate a similarity focus mask with the same shape of input using the following method:
1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding 1. Extract the 3-D tensor(here the first dimension is BatchSize) corresponding
to the axis according to the indexes. For example, if axis=1 and indexes=[a], to the axis according to the indexes. For example, if axis=1 and indexes=[a],
it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X it will get the matrix T=X[:, a, :, :]. In this case, if the shape of input X
...@@ -8969,14 +9026,16 @@ def similarity_focus(input, axis, indexes, name=None): ...@@ -8969,14 +9026,16 @@ def similarity_focus(input, axis, indexes, name=None):
indexes(list): Indicating the indexes of the selected dimension. indexes(list): Indicating the indexes of the selected dimension.
Returns: Returns:
Variable: A tensor variable with the same shape and same type Variable: A tensor variable with the same shape and same type \
as the input. as the input.
Examples: Examples:
.. code-block:: python .. code-block:: python
data = fluid.layers.data( data = fluid.layers.data(
name='data', shape=[2, 3, 2, 2], dtype='float32') name='data', shape=[2, 3, 2, 2], dtype='float32')
x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0]) x = fluid.layers.layer_norm(input=data, axis=1, indexes=[0])
""" """
helper = LayerHelper('similarity_focus', **locals()) helper = LayerHelper('similarity_focus', **locals())
# check attrs # check attrs
...@@ -9055,6 +9114,7 @@ def hash(input, hash_size, num_hash=1, name=None): ...@@ -9055,6 +9114,7 @@ def hash(input, hash_size, num_hash=1, name=None):
Examples: Examples:
.. code-block:: python .. code-block:: python
word_dict = paddle.dataset.imdb.word_dict() word_dict = paddle.dataset.imdb.word_dict()
x = fluid.layers.data(shape[1], dtype='int32', lod_level=1) x = fluid.layers.data(shape[1], dtype='int32', lod_level=1)
out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000) out = fluid.layers.hash(input=x, num_hash=4, hash_size=1000)
...@@ -9075,50 +9135,52 @@ def hash(input, hash_size, num_hash=1, name=None): ...@@ -9075,50 +9135,52 @@ def hash(input, hash_size, num_hash=1, name=None):
def grid_sampler(x, grid, name=None): def grid_sampler(x, grid, name=None):
""" """
This operation samples input X by using bilinear interpolation based on This operation samples input X by using bilinear interpolation based on
flow field grid, which is usually gennerated by affine_grid. The grid of flow field grid, which is usually gennerated by :code:`affine_grid` . The grid of
shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates shape [N, H, W, 2] is the concatenation of (grid_x, grid_y) coordinates
with shape [N, H, W] each, where grid_x is indexing the 4th dimension with shape [N, H, W] each, where grid_x is indexing the 4th dimension
(in width dimension) of input data x and grid_y is indexng the 3rd (in width dimension) of input data x and grid_y is indexng the 3rd
dimention (in height dimension), finally results is the bilinear dimention (in height dimension), finally results is the bilinear
interpolation value of 4 nearest corner points. interpolation value of 4 nearest corner points.
Step 1: .. code-block:: text
Get (x, y) grid coordinates and scale to [0, H-1/W-1].
Step 1:
Get (x, y) grid coordinates and scale to [0, H-1/W-1].
grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1) grid_x = 0.5 * (grid[:, :, :, 0] + 1) * (W - 1)
grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1) grid_y = 0.5 * (grid[:, :, :, 1] + 1) * (H - 1)
Step 2: Step 2:
Indices input data X with grid (x, y) in each [H, W] area, and bilinear Indices input data X with grid (x, y) in each [H, W] area, and bilinear
interpolate point value by 4 nearest points. interpolate point value by 4 nearest points.
wn ------- y_n ------- en wn ------- y_n ------- en
| | | | | |
| d_n | | d_n |
| | | | | |
x_w --d_w-- grid--d_e-- x_e x_w --d_w-- grid--d_e-- x_e
| | | | | |
| d_s | | d_s |
| | | | | |
ws ------- y_s ------- wn ws ------- y_s ------- wn
x_w = floor(x) // west side x coord x_w = floor(x) // west side x coord
x_e = x_w + 1 // east side x coord x_e = x_w + 1 // east side x coord
y_n = floor(y) // north side y coord y_n = floor(y) // north side y coord
y_s = y_s + 1 // south side y coord y_s = y_s + 1 // south side y coord
d_w = grid_x - x_w // distance to west side d_w = grid_x - x_w // distance to west side
d_e = x_e - grid_x // distance to east side d_e = x_e - grid_x // distance to east side
d_n = grid_y - y_n // distance to north side d_n = grid_y - y_n // distance to north side
d_s = y_s - grid_y // distance to south side d_s = y_s - grid_y // distance to south side
wn = X[:, :, y_n, x_w] // north-west point value wn = X[:, :, y_n, x_w] // north-west point value
en = X[:, :, y_n, x_e] // north-east point value en = X[:, :, y_n, x_e] // north-east point value
ws = X[:, :, y_s, x_w] // south-east point value ws = X[:, :, y_s, x_w] // south-east point value
es = X[:, :, y_s, x_w] // north-east point value es = X[:, :, y_s, x_w] // north-east point value
output = wn * d_e * d_s + en * d_w * d_s output = wn * d_e * d_s + en * d_w * d_s
+ ws * d_e * d_n + es * d_w * d_n + ws * d_e * d_n + es * d_w * d_n
Args: Args:
x(Variable): Input data of shape [N, C, H, W]. x(Variable): Input data of shape [N, C, H, W].
...@@ -9126,16 +9188,18 @@ def grid_sampler(x, grid, name=None): ...@@ -9126,16 +9188,18 @@ def grid_sampler(x, grid, name=None):
name (str, default None): The name of this layer. name (str, default None): The name of this layer.
Returns: Returns:
out(Variable): Output of shape [N, C, H, W] data samples input X Variable: Output of shape [N, C, H, W] data samples input X
using bilnear interpolation based on input grid. using bilnear interpolation based on input grid.
Exmples: Examples:
.. code-block:: python
.. code-block:: python
x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
out = fluid.layers.grid_sampler(x=x, grid=grid)
x = fluid.layers.data(name='x', shape=[3, 10, 32, 32], dtype='float32')
theta = fluid.layers.data(name='theta', shape=[3, 2, 3], dtype='float32')
grid = fluid.layers.affine_grid(input=theta, size=[3, 10, 32, 32]})
out = fluid.layers.grid_sampler(x=x, grid=grid)
""" """
helper = LayerHelper("grid_sampler", **locals()) helper = LayerHelper("grid_sampler", **locals())
...@@ -9203,19 +9267,19 @@ def add_position_encoding(input, alpha, beta, name=None): ...@@ -9203,19 +9267,19 @@ def add_position_encoding(input, alpha, beta, name=None):
""" """
**Add Position Encoding Layer** **Add Position Encoding Layer**
This layer accepts an input 3D-Tensor of shape [N x M x P], and return an This layer accepts an input 3D-Tensor of shape [N x M x P], and returns an
output Tensor of shape [N x M x P] with positional encoding value. output Tensor of shape [N x M x P] with positional encoding value.
Refer to `Attention Is All You Need<http://arxiv.org/pdf/1706.03762.pdf>`_ . Refer to `Attention Is All You Need <http://arxiv.org/pdf/1706.03762.pdf>`_ .
.. math:: .. math::
PE(pos, 2i) = \\sin{(pos / 10000^{2i / P})} \\\\ PE(pos, 2i) &= \\sin{(pos / 10000^{2i / P})} \\\\
PE(pos, 2i + 1) = \\cos{(pos / 10000^{2i / P})} \\\\ PE(pos, 2i + 1) &= \\cos{(pos / 10000^{2i / P})} \\\\
Out(:, pos, i) = \\alpha * input(:, pos, i) + \\beta * PE(pos, i) Out(:, pos, i) &= \\alpha * input(:, pos, i) + \\beta * PE(pos, i)
Where: Where:
* PE(pos, 2i): the increment for the number at even position - :math:`PE(pos, 2i)` : the increment for the number at even position
* PE(pos, 2i + 1): the increment for the number at odd position - :math:`PE(pos, 2i + 1)` : the increment for the number at odd position
Args: Args:
input (Variable): 3-D input tensor with shape [N x M x P] input (Variable): 3-D input tensor with shape [N x M x P]
...@@ -9230,6 +9294,7 @@ def add_position_encoding(input, alpha, beta, name=None): ...@@ -9230,6 +9294,7 @@ def add_position_encoding(input, alpha, beta, name=None):
.. code-block:: python .. code-block:: python
position_tensor = fluid.layers.add_position_encoding(input=tensor) position_tensor = fluid.layers.add_position_encoding(input=tensor)
""" """
helper = LayerHelper('add_position_encoding', **locals()) helper = LayerHelper('add_position_encoding', **locals())
dtype = helper.input_dtype() dtype = helper.input_dtype()
...@@ -9262,13 +9327,13 @@ def bilinear_tensor_product(x, ...@@ -9262,13 +9327,13 @@ def bilinear_tensor_product(x,
For example: For example:
.. math:: .. math::
out{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1 out_{i} = x * W_{i} * {y^\mathrm{T}}, i=0,1,...,size-1
In this formula: In this formula:
- :math:`x`: the first input contains M elements, shape is [batch_size, M]. - :math:`x`: the first input contains M elements, shape is [batch_size, M].
- :math:`y`: the second input contains N elements, shape is [batch_size, N]. - :math:`y`: the second input contains N elements, shape is [batch_size, N].
- :math:`W_{i}`: the i-th learned weight, shape is [M, N] - :math:`W_{i}`: the i-th learned weight, shape is [M, N]
- :math:`out{i}`: the i-th element of out, shape is [batch_size, size]. - :math:`out_{i}`: the i-th element of out, shape is [batch_size, size].
- :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`. - :math:`y^\mathrm{T}`: the transpose of :math:`y_{2}`.
Args: Args:
......
...@@ -393,9 +393,6 @@ def fill_constant_batch_size_like(input, ...@@ -393,9 +393,6 @@ def fill_constant_batch_size_like(input,
It also sets *stop_gradient* to True. It also sets *stop_gradient* to True.
>>> data = fluid.layers.fill_constant_batch_size_like(
>>> input=like, shape=[1], value=0, dtype='int64')
Args: Args:
input(${input_type}): ${input_comment}. input(${input_type}): ${input_comment}.
...@@ -411,6 +408,14 @@ def fill_constant_batch_size_like(input, ...@@ -411,6 +408,14 @@ def fill_constant_batch_size_like(input,
Returns: Returns:
${out_comment}. ${out_comment}.
Examples:
.. code-block:: python
data = fluid.layers.fill_constant_batch_size_like(
input=like, shape=[1], value=0, dtype='int64')
""" """
helper = LayerHelper("fill_constant_batch_size_like", **locals()) helper = LayerHelper("fill_constant_batch_size_like", **locals())
out = helper.create_variable_for_type_inference(dtype=dtype) out = helper.create_variable_for_type_inference(dtype=dtype)
......
...@@ -361,8 +361,8 @@ class ChunkEvaluator(MetricBase): ...@@ -361,8 +361,8 @@ class ChunkEvaluator(MetricBase):
Accumulate counter numbers output by chunk_eval from mini-batches and Accumulate counter numbers output by chunk_eval from mini-batches and
compute the precision recall and F1-score using the accumulated counter compute the precision recall and F1-score using the accumulated counter
numbers. numbers.
For some basics of chunking, please refer to For some basics of chunking, please refer to
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'. `Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>`_ .
ChunkEvalEvaluator computes the precision, recall, and F1-score of chunk detection, ChunkEvalEvaluator computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes. and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
...@@ -391,6 +391,7 @@ class ChunkEvaluator(MetricBase): ...@@ -391,6 +391,7 @@ class ChunkEvaluator(MetricBase):
def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks): def update(self, num_infer_chunks, num_label_chunks, num_correct_chunks):
""" """
Update the states based on the layers.chunk_eval() ouputs. Update the states based on the layers.chunk_eval() ouputs.
Args: Args:
num_infer_chunks(int|numpy.array): The number of chunks in Inference on the given minibatch. num_infer_chunks(int|numpy.array): The number of chunks in Inference on the given minibatch.
num_label_chunks(int|numpy.array): The number of chunks in Label on the given mini-batch. num_label_chunks(int|numpy.array): The number of chunks in Label on the given mini-batch.
...@@ -450,9 +451,9 @@ class EditDistance(MetricBase): ...@@ -450,9 +451,9 @@ class EditDistance(MetricBase):
distance, instance_error = distance_evaluator.eval() distance, instance_error = distance_evaluator.eval()
In the above example: In the above example:
'distance' is the average of the edit distance in a pass.
'instance_error' is the instance error rate in a pass. - 'distance' is the average of the edit distance in a pass.
- 'instance_error' is the instance error rate in a pass.
""" """
...@@ -567,12 +568,15 @@ class DetectionMAP(object): ...@@ -567,12 +568,15 @@ class DetectionMAP(object):
Calculate the detection mean average precision (mAP). Calculate the detection mean average precision (mAP).
The general steps are as follows: The general steps are as follows:
1. calculate the true positive and false positive according to the input 1. calculate the true positive and false positive according to the input
of detection and labels. of detection and labels.
2. calculate mAP value, support two versions: '11 point' and 'integral'. 2. calculate mAP value, support two versions: '11 point' and 'integral'.
Please get more information from the following articles: Please get more information from the following articles:
https://sanchom.wordpress.com/tag/average-precision/ https://sanchom.wordpress.com/tag/average-precision/
https://arxiv.org/abs/1512.02325 https://arxiv.org/abs/1512.02325
Args: Args:
...@@ -613,10 +617,12 @@ class DetectionMAP(object): ...@@ -613,10 +617,12 @@ class DetectionMAP(object):
for data in batches: for data in batches:
loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch) loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
In the above example: In the above example:
- 'cur_map_v' is the mAP of current mini-batch.
- 'accum_map_v' is the accumulative mAP of one pass.
'cur_map_v' is the mAP of current mini-batch.
'accum_map_v' is the accumulative mAP of one pass.
""" """
def __init__(self, def __init__(self,
......
...@@ -125,14 +125,23 @@ def slice_variable(var_list, slice_count, min_block_size): ...@@ -125,14 +125,23 @@ def slice_variable(var_list, slice_count, min_block_size):
class DistributeTranspilerConfig(object): class DistributeTranspilerConfig(object):
""" """
Args: .. py:attribute:: slice_var_up (bool)
slice_var_up (bool): Do Tensor slice for pservers, default is True.
split_method (PSDispatcher): RoundRobin or HashName can be used Do Tensor slice for pservers, default is True.
try to choose the best method to balance loads for pservers.
min_block_size (int): Minimum splitted element number in block. .. py:attribute:: split_method (PSDispatcher)
According:https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
RoundRobin or HashName can be used.
Try to choose the best method to balance loads for pservers.
.. py:attribute:: min_block_size (int)
Minimum number of splitted elements in block.
According to : https://github.com/PaddlePaddle/Paddle/issues/8638#issuecomment-369912156
We can use bandwidth effiently when data size is larger than 2MB.If you We can use bandwidth effiently when data size is larger than 2MB.If you
want to change it, please be sure you see the slice_variable function. want to change it, please be sure you have read the slice_variable function.
""" """
slice_var_up = True slice_var_up = True
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册