Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
86657dbe
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
86657dbe
编写于
2月 12, 2018
作者:
C
chengduo
提交者:
GitHub
2月 12, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #8382 from chengduoZH/feature/multiBoxHead
Add MultiBox API
上级
24509f4a
6e79d01b
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
296 addition
and
260 deletion
+296
-260
python/paddle/v2/fluid/layers/detection.py
python/paddle/v2/fluid/layers/detection.py
+276
-221
python/paddle/v2/fluid/tests/test_detection.py
python/paddle/v2/fluid/tests/test_detection.py
+20
-39
未找到文件。
python/paddle/v2/fluid/layers/detection.py
浏览文件 @
86657dbe
...
...
@@ -17,13 +17,13 @@ All layers just related to the detection neural network.
from
layer_function_generator
import
generate_layer_fn
from
..layer_helper
import
LayerHelper
import
nn
import
ops
import
tensor
import
ops
import
nn
import
math
__all__
=
[
'
prior_box
'
,
'
multi_box_head
'
,
'bipartite_match'
,
'target_assign'
,
'detection_output'
,
...
...
@@ -54,7 +54,7 @@ def detection_output(scores,
"""
**Detection Output Layer**
This layer applies the NMS to the output of network and computes the
This layer applies the NMS to the output of network and computes the
predict bounding box location. The output's shape of this layer could
be zero if there is no valid bounding box.
...
...
@@ -132,211 +132,6 @@ def detection_output(scores,
return
nmsed_outs
def
prior_box
(
inputs
,
image
,
min_ratio
,
max_ratio
,
aspect_ratios
,
base_size
,
steps
=
None
,
step_w
=
None
,
step_h
=
None
,
offset
=
0.5
,
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
flip
=
False
,
clip
=
False
,
min_sizes
=
None
,
max_sizes
=
None
,
name
=
None
):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the
section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list): The list of input Variables, the format
of all Variables is NCHW.
image(Variable): The input image data of PriorBoxOp,
the layout is NCHW.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
aspect_ratios(list): the aspect ratios of generated prior
boxes. The length of input and aspect_ratios must be equal.
base_size(int): the base_size is used to get min_size
and max_size according to min_ratio and max_ratio.
step_w(list, optional, default=None): Prior boxes step
across width. If step_w[i] == 0.0, the prior boxes step
across width of the inputs[i] will be automatically calculated.
step_h(list, optional, default=None): Prior boxes step
across height, If step_h[i] == 0.0, the prior boxes
step across height of the inputs[i] will be automatically calculated.
offset(float, optional, default=0.5): Prior boxes center offset.
variance(list, optional, default=[0.1, 0.1, 0.1, 0.1]): the variances
to be encoded in prior boxes.
flip(bool, optional, default=False): Whether to flip
aspect ratios.
clip(bool, optional, default=False): Whether to clip
out-of-boundary boxes.
min_sizes(list, optional, default=None): If `len(inputs) <=2`,
min_sizes must be set up, and the length of min_sizes
should equal to the length of inputs.
max_sizes(list, optional, default=None): If `len(inputs) <=2`,
max_sizes must be set up, and the length of min_sizes
should equal to the length of inputs.
name(str, optional, None): Name of the prior box layer.
Returns:
boxes(Variable): the output prior boxes of PriorBoxOp.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBoxOp.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs
Examples:
.. code-block:: python
prior_box(
inputs = [conv1, conv2, conv3, conv4, conv5, conv6],
image = data,
min_ratio = 20, # 0.20
max_ratio = 90, # 0.90
offset = 0.5,
base_size = 300,
variance = [0.1,0.1,0.1,0.1],
aspect_ratios = [[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
flip=True,
clip=True)
"""
def
_prior_box_
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
{
'min_sizes'
:
min_sizes
,
'max_sizes'
:
max_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
step_w
,
'step_h'
:
step_h
,
'offset'
:
offset
})
return
box
,
var
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than "
"the arity of input and bigger than 0."
)
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
ops
.
reshape
(
x
=
input
,
shape
=
new_shape
)
return
out
assert
isinstance
(
inputs
,
list
),
'inputs should be a list.'
num_layer
=
len
(
inputs
)
if
num_layer
<=
2
:
assert
min_sizes
is
not
None
and
max_sizes
is
not
None
assert
len
(
min_sizes
)
==
num_layer
and
len
(
max_sizes
)
==
num_layer
else
:
min_sizes
=
[]
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
:
if
not
(
isinstance
(
aspect_ratios
,
list
)
and
len
(
aspect_ratios
)
==
num_layer
):
raise
ValueError
(
'aspect_ratios should be list and the length of inputs '
'and aspect_ratios should be the same.'
)
if
step_h
:
if
not
(
isinstance
(
step_h
,
list
)
and
len
(
step_h
)
==
num_layer
):
raise
ValueError
(
'step_h should be list and the length of inputs and '
'step_h should be the same.'
)
if
step_w
:
if
not
(
isinstance
(
step_w
,
list
)
and
len
(
step_w
)
==
num_layer
):
raise
ValueError
(
'step_w should be list and the length of inputs and '
'step_w should be the same.'
)
if
steps
:
if
not
(
isinstance
(
steps
,
list
)
and
len
(
steps
)
==
num_layer
):
raise
ValueError
(
'steps should be list and the length of inputs and '
'step_w should be the same.'
)
step_w
=
steps
step_h
=
steps
box_results
=
[]
var_results
=
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
max_size
=
max_sizes
[
i
]
aspect_ratio
=
[]
if
not
isinstance
(
min_size
,
list
):
min_size
=
[
min_size
]
if
not
isinstance
(
max_size
,
list
):
max_size
=
[
max_size
]
if
aspect_ratios
:
aspect_ratio
=
aspect_ratios
[
i
]
if
not
isinstance
(
aspect_ratio
,
list
):
aspect_ratio
=
[
aspect_ratio
]
box
,
var
=
_prior_box_
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
variance
,
flip
,
clip
,
step_w
[
i
]
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
,
offset
)
box_results
.
append
(
box
)
var_results
.
append
(
var
)
if
len
(
box_results
)
==
1
:
box
=
box_results
[
0
]
var
=
var_results
[
0
]
else
:
reshaped_boxes
=
[]
reshaped_vars
=
[]
for
i
in
range
(
len
(
box_results
)):
reshaped_boxes
.
append
(
_reshape_with_axis_
(
box_results
[
i
],
axis
=
3
))
reshaped_vars
.
append
(
_reshape_with_axis_
(
var_results
[
i
],
axis
=
3
))
box
=
tensor
.
concat
(
reshaped_boxes
)
var
=
tensor
.
concat
(
reshaped_vars
)
return
box
,
var
def
bipartite_match
(
dist_matrix
,
name
=
None
):
"""
**Bipartite matchint operator**
...
...
@@ -348,13 +143,13 @@ def bipartite_match(dist_matrix, name=None):
each column. And this operator only calculate matched indices from column
to row. For each instance, the number of matched indices is the number of
of columns of the input ditance matrix.
There are two outputs to save matched indices and distance.
A simple description, this algothrim matched the best (maximum distance)
row entity to the column entity and the matched indices are not duplicated
in each row of ColToRowMatchIndices. If the column entity is not matched
any row entity, set -1 in ColToRowMatchIndices.
Please note that the input DistMat can be LoDTensor (with LoD) or Tensor.
If LoDTensor with LoD, the height of ColToRowMatchIndices is batch size.
If Tensor, the height of ColToRowMatchIndices is 1.
...
...
@@ -407,30 +202,30 @@ def target_assign(input,
to assign classification and regression targets to each prediction as well as
weights to prediction. The weights is used to specify which prediction would
not contribute to training loss.
For each instance, the output `out` and`out_weight` are assigned based on
`match_indices` and `negative_indices`.
Assumed that the row offset for each instance in `input` is called lod,
this operator assigns classification/regression targets by performing the
following steps:
1. Assigning all outpts based on `match_indices`:
If id = match_indices[i][j] > 0,
out[i][j][0 : K] = X[lod[i] + id][j % P][0 : K]
out_weight[i][j] = 1.
Otherwise,
Otherwise,
out[j][j][0 : K] = {mismatch_value, mismatch_value, ...}
out_weight[i][j] = 0.
2. Assigning out_weight based on `neg_indices` if `neg_indices` is provided:
Assumed that the row offset for each instance in `neg_indices` is called neg_lod,
for i-th instance and each `id` of neg_indices in this instance:
out[i][id][0 : K] = {mismatch_value, mismatch_value, ...}
out_weight[i][id] = 1.0
...
...
@@ -660,3 +455,263 @@ def ssd_loss(location,
# 5.3 Compute overall weighted loss.
loss
=
conf_loss_weight
*
conf_loss
+
loc_loss_weight
*
loc_loss
return
loss
def
multi_box_head
(
inputs
,
image
,
base_size
,
num_classes
,
aspect_ratios
,
min_ratio
,
max_ratio
,
min_sizes
=
None
,
max_sizes
=
None
,
steps
=
None
,
step_w
=
None
,
step_h
=
None
,
offset
=
0.5
,
variance
=
[
0.1
,
0.1
,
0.1
,
0.1
],
flip
=
False
,
clip
=
False
,
kernel_size
=
1
,
pad
=
0
,
stride
=
1
,
name
=
None
):
"""
**Prior_boxes**
Generate prior boxes for SSD(Single Shot MultiBox Detector)
algorithm. The details of this algorithm, please refer the
section 2.2 of SSD paper (SSD: Single Shot MultiBox Detector)
<https://arxiv.org/abs/1512.02325>`_ .
Args:
inputs(list|tuple): The list of input Variables, the format
of all Variables is NCHW.
image(Variable): The input image data of PriorBoxOp,
the layout is NCHW.
base_size(int): the base_size is used to get min_size
and max_size according to min_ratio and max_ratio.
num_classes(int): The number of classes.
aspect_ratios(list|tuple): the aspect ratios of generated prior
boxes. The length of input and aspect_ratios must be equal.
min_ratio(int): the min ratio of generated prior boxes.
max_ratio(int): the max ratio of generated prior boxes.
min_sizes(list|tuple|None): If `len(inputs) <=2`,
min_sizes must be set up, and the length of min_sizes
should equal to the length of inputs. Default: None.
max_sizes(list|tuple|None): If `len(inputs) <=2`,
max_sizes must be set up, and the length of min_sizes
should equal to the length of inputs. Default: None.
steps(list|tuple): If step_w and step_h are the same,
step_w and step_h can be replaced by steps.
step_w(list|tuple): Prior boxes step
across width. If step_w[i] == 0.0, the prior boxes step
across width of the inputs[i] will be automatically
calculated. Default: None.
step_h(list|tuple): Prior boxes step across height, If
step_h[i] == 0.0, the prior boxes step across height of
the inputs[i] will be automatically calculated. Default: None.
offset(float): Prior boxes center offset. Default: 0.5
variance(list|tuple): the variances to be encoded in prior boxes.
Default:[0.1, 0.1, 0.1, 0.1].
flip(bool): Whether to flip aspect ratios. Default:False.
clip(bool): Whether to clip out-of-boundary boxes. Default: False.
kernel_size(int): The kernel size of conv2d. Default: 1.
pad(int|list|tuple): The padding of conv2d. Default:0.
stride(int|list|tuple): The stride of conv2d. Default:1,
name(str): Name of the prior box layer. Default: None.
Returns:
mbox_loc(list): The predicted boxes' location of the inputs.
The layout of each element is [N, H, W, Priors]. Priors
is the number of predicted boxof each position of each input.
mbox_conf(list): The predicted boxes' confidence of the inputs.
The layout of each element is [N, H, W, Priors]. Priors
is the number of predicted box of each position of each input.
boxes(Variable): the output prior boxes of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs.
Variances(Variable): the expanded variances of PriorBox.
The layout is [num_priors, 4]. num_priors is the total
box count of each position of inputs
Examples:
.. code-block:: python
mbox_locs, mbox_confs, box, var = layers.multi_box_head(
inputs=[conv1, conv2, conv3, conv4, conv5, conv5],
image=images,
num_classes=21,
min_ratio=20,
max_ratio=90,
aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]],
base_size=300,
offset=0.5,
flip=True,
clip=True)
"""
def
_prior_box_
(
input
,
image
,
min_sizes
,
max_sizes
,
aspect_ratios
,
variance
,
flip
=
False
,
clip
=
False
,
step_w
=
0.0
,
step_h
=
0.0
,
offset
=
0.5
,
name
=
None
):
helper
=
LayerHelper
(
"prior_box"
,
**
locals
())
dtype
=
helper
.
input_dtype
()
box
=
helper
.
create_tmp_variable
(
dtype
)
var
=
helper
.
create_tmp_variable
(
dtype
)
helper
.
append_op
(
type
=
"prior_box"
,
inputs
=
{
"Input"
:
input
,
"Image"
:
image
},
outputs
=
{
"Boxes"
:
box
,
"Variances"
:
var
},
attrs
=
{
'min_sizes'
:
min_sizes
,
'max_sizes'
:
max_sizes
,
'aspect_ratios'
:
aspect_ratios
,
'variances'
:
variance
,
'flip'
:
flip
,
'clip'
:
clip
,
'step_w'
:
step_w
,
'step_h'
:
step_h
,
'offset'
:
offset
})
return
box
,
var
def
_reshape_with_axis_
(
input
,
axis
=
1
):
if
not
(
axis
>
0
and
axis
<
len
(
input
.
shape
)):
raise
ValueError
(
"The axis should be smaller than "
"the arity of input and bigger than 0."
)
new_shape
=
[
-
1
,
reduce
(
lambda
x
,
y
:
x
*
y
,
input
.
shape
[
axis
:
len
(
input
.
shape
)])
]
out
=
ops
.
reshape
(
x
=
input
,
shape
=
new_shape
)
return
out
def
_is_list_or_tuple_
(
data
):
return
(
isinstance
(
data
,
list
)
or
isinstance
(
data
,
tuple
))
def
_is_list_or_tuple_and_equal
(
data
,
length
,
err_info
):
if
not
(
_is_list_or_tuple_
(
data
)
and
len
(
data
)
==
length
):
raise
ValueError
(
err_info
)
if
not
_is_list_or_tuple_
(
inputs
):
raise
ValueError
(
'inputs should be a list or tuple.'
)
num_layer
=
len
(
inputs
)
if
num_layer
<=
2
:
assert
min_sizes
is
not
None
and
max_sizes
is
not
None
assert
len
(
min_sizes
)
==
num_layer
and
len
(
max_sizes
)
==
num_layer
else
:
min_sizes
=
[]
max_sizes
=
[]
step
=
int
(
math
.
floor
(((
max_ratio
-
min_ratio
))
/
(
num_layer
-
2
)))
for
ratio
in
xrange
(
min_ratio
,
max_ratio
+
1
,
step
):
min_sizes
.
append
(
base_size
*
ratio
/
100.
)
max_sizes
.
append
(
base_size
*
(
ratio
+
step
)
/
100.
)
min_sizes
=
[
base_size
*
.
10
]
+
min_sizes
max_sizes
=
[
base_size
*
.
20
]
+
max_sizes
if
aspect_ratios
:
_is_list_or_tuple_and_equal
(
aspect_ratios
,
num_layer
,
'aspect_ratios should be list or tuple, and the length of inputs '
'and aspect_ratios should be the same.'
)
if
step_h
:
_is_list_or_tuple_and_equal
(
step_h
,
num_layer
,
'step_h should be list or tuple, and the length of inputs and '
'step_h should be the same.'
)
if
step_w
:
_is_list_or_tuple_and_equal
(
step_w
,
num_layer
,
'step_w should be list or tuple, and the length of inputs and '
'step_w should be the same.'
)
if
steps
:
_is_list_or_tuple_and_equal
(
steps
,
num_layer
,
'steps should be list or tuple, and the length of inputs and '
'step_w should be the same.'
)
step_w
=
steps
step_h
=
steps
mbox_locs
=
[]
mbox_confs
=
[]
box_results
=
[]
var_results
=
[]
for
i
,
input
in
enumerate
(
inputs
):
min_size
=
min_sizes
[
i
]
max_size
=
max_sizes
[
i
]
if
not
_is_list_or_tuple_
(
min_size
):
min_size
=
[
min_size
]
if
not
_is_list_or_tuple_
(
max_size
):
max_size
=
[
max_size
]
if
not
(
len
(
max_size
)
==
len
(
min_size
)):
raise
ValueError
(
'the length of max_size and min_size should be equal.'
)
aspect_ratio
=
[]
if
aspect_ratios
is
not
None
:
aspect_ratio
=
aspect_ratios
[
i
]
if
not
_is_list_or_tuple_
(
aspect_ratio
):
aspect_ratio
=
[
aspect_ratio
]
box
,
var
=
_prior_box_
(
input
,
image
,
min_size
,
max_size
,
aspect_ratio
,
variance
,
flip
,
clip
,
step_w
[
i
]
if
step_w
else
0.0
,
step_h
[
i
]
if
step_w
else
0.0
,
offset
)
box_results
.
append
(
box
)
var_results
.
append
(
var
)
num_boxes
=
box
.
shape
[
2
]
# get box_loc
num_loc_output
=
num_boxes
*
num_classes
*
4
mbox_loc
=
nn
.
conv2d
(
input
=
input
,
num_filters
=
num_loc_output
,
filter_size
=
kernel_size
,
padding
=
pad
,
stride
=
stride
)
mbox_loc
=
nn
.
transpose
(
mbox_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_locs
.
append
(
mbox_loc
)
# get conf_loc
num_conf_output
=
num_boxes
*
num_classes
conf_loc
=
nn
.
conv2d
(
input
=
input
,
num_filters
=
num_conf_output
,
filter_size
=
kernel_size
,
padding
=
pad
,
stride
=
stride
)
conf_loc
=
nn
.
transpose
(
conf_loc
,
perm
=
[
0
,
2
,
3
,
1
])
mbox_confs
.
append
(
conf_loc
)
if
len
(
box_results
)
==
1
:
box
=
box_results
[
0
]
var
=
var_results
[
0
]
else
:
reshaped_boxes
=
[]
reshaped_vars
=
[]
for
i
in
range
(
len
(
box_results
)):
reshaped_boxes
.
append
(
_reshape_with_axis_
(
box_results
[
i
],
axis
=
3
))
reshaped_vars
.
append
(
_reshape_with_axis_
(
var_results
[
i
],
axis
=
3
))
box
=
tensor
.
concat
(
reshaped_boxes
)
var
=
tensor
.
concat
(
reshaped_vars
)
return
mbox_locs
,
mbox_confs
,
box
,
var
python/paddle/v2/fluid/tests/test_detection.py
浏览文件 @
86657dbe
...
...
@@ -13,6 +13,7 @@
# limitations under the License.
from
__future__
import
print_function
import
paddle.v2.fluid
as
fluid
import
paddle.v2.fluid.layers
as
layers
from
paddle.v2.fluid.framework
import
Program
,
program_guard
import
unittest
...
...
@@ -108,60 +109,40 @@ class TestDetection(unittest.TestCase):
print
(
str
(
program
))
class
Test
PriorBox
(
unittest
.
TestCase
):
def
test_
prior_box
(
self
):
class
Test
MultiBoxHead
(
unittest
.
TestCase
):
def
test_
multi_box_head
(
self
):
data_shape
=
[
3
,
224
,
224
]
box
,
var
=
self
.
prior_box
_output
(
data_shape
)
mbox_locs
,
mbox_confs
,
box
,
var
=
self
.
multi_box_head
_output
(
data_shape
)
assert
len
(
box
.
shape
)
==
2
assert
box
.
shape
==
var
.
shape
assert
box
.
shape
[
1
]
==
4
def
prior_box_output
(
self
,
data_shape
):
images
=
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
layers
.
conv2d
(
input
=
images
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv2
=
layers
.
conv2d
(
input
=
conv1
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv3
=
layers
.
conv2d
(
input
=
conv2
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv4
=
layers
.
conv2d
(
input
=
conv3
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
conv5
=
layers
.
conv2d
(
input
=
conv4
,
num_filters
=
3
,
filter_size
=
3
,
stride
=
2
,
use_cudnn
=
False
)
box
,
var
=
layers
.
prior_box
(
for
loc
,
conf
in
zip
(
mbox_locs
,
mbox_confs
):
assert
loc
.
shape
[
1
:
3
]
==
conf
.
shape
[
1
:
3
]
def
multi_box_head_output
(
self
,
data_shape
):
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
data_shape
,
dtype
=
'float32'
)
conv1
=
fluid
.
layers
.
conv2d
(
images
,
3
,
3
,
2
)
conv2
=
fluid
.
layers
.
conv2d
(
conv1
,
3
,
3
,
2
)
conv3
=
fluid
.
layers
.
conv2d
(
conv2
,
3
,
3
,
2
)
conv4
=
fluid
.
layers
.
conv2d
(
conv3
,
3
,
3
,
2
)
conv5
=
fluid
.
layers
.
conv2d
(
conv4
,
3
,
3
,
2
)
mbox_locs
,
mbox_confs
,
box
,
var
=
layers
.
multi_box_head
(
inputs
=
[
conv1
,
conv2
,
conv3
,
conv4
,
conv5
,
conv5
],
image
=
images
,
num_classes
=
21
,
min_ratio
=
20
,
max_ratio
=
90
,
# steps=[8, 16, 32, 64, 100, 300],
aspect_ratios
=
[[
2.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
,
3.
],
[
2.
],
[
2.
]],
base_size
=
300
,
offset
=
0.5
,
flip
=
True
,
clip
=
True
)
return
box
,
var
return
mbox_locs
,
mbox_confs
,
box
,
var
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录