Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
855ae59d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
855ae59d
编写于
8月 03, 2017
作者:
C
caoying03
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add KmaxSeqScoreLayer implementation.
上级
aa0ca57a
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
217 addition
and
4 deletion
+217
-4
doc/api/v2/config/layer.rst
doc/api/v2/config/layer.rst
+5
-0
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
+115
-0
paddle/gserver/tests/test_KmaxSeqScore.cpp
paddle/gserver/tests/test_KmaxSeqScore.cpp
+75
-2
python/paddle/trainer_config_helpers/layers.py
python/paddle/trainer_config_helpers/layers.py
+22
-2
未找到文件。
doc/api/v2/config/layer.rst
浏览文件 @
855ae59d
...
...
@@ -257,6 +257,11 @@ seq_concat
.. autoclass:: paddle.v2.layer.seq_concat
:noindex:
kmax_sequence_score
-------------------
.. autoclass:: paddle.v2.layer.kmax_sequence_score
:noindex:
Reshaping Layers
================
...
...
paddle/gserver/layers/KmaxSeqScoreLayer.cpp
0 → 100644
浏览文件 @
855ae59d
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Layer.h"
namespace
paddle
{
class
KmaxSeqScoreLayer
:
public
Layer
{
private:
MatrixPtr
scores_
;
size_t
beamSize_
;
void
kmaxScorePerSeq
(
const
real
*
score
,
real
*
sortedRes
,
const
ICpuGpuVectorPtr
seqStartPos
);
public:
explicit
KmaxSeqScoreLayer
(
const
LayerConfig
&
config
)
:
Layer
(
config
)
{}
bool
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
override
;
void
forward
(
PassType
passType
)
override
;
void
backward
(
const
UpdateCallback
&
callback
=
nullptr
)
override
;
};
REGISTER_LAYER
(
kmax_seq_score
,
KmaxSeqScoreLayer
);
bool
KmaxSeqScoreLayer
::
init
(
const
LayerMap
&
layerMap
,
const
ParameterMap
&
parameterMap
)
{
bool
ret
=
Layer
::
init
(
layerMap
,
parameterMap
);
CHECK_EQ
(
1UL
,
inputLayers_
.
size
());
beamSize_
=
config_
.
beam_size
();
CHECK_GE
(
beamSize_
,
1LU
);
setNeedSequenceInfo
(
false
);
return
ret
;
}
void
KmaxSeqScoreLayer
::
kmaxScorePerSeq
(
const
real
*
scores
,
real
*
sortedIds
,
const
ICpuGpuVectorPtr
seqStartPos
)
{
int
*
starts
=
seqStartPos
->
getMutableData
(
false
);
std
::
vector
<
real
>
indices
;
for
(
size_t
i
=
0
;
i
<
seqStartPos
->
getSize
()
-
1
;
++
i
)
{
int
seqLen
=
starts
[
i
+
1
]
-
starts
[
i
];
int
k
=
std
::
min
(
static_cast
<
int
>
(
beamSize_
),
seqLen
);
indices
.
resize
(
seqLen
,
0
);
std
::
iota
(
begin
(
indices
),
end
(
indices
),
0.
);
std
::
vector
<
real
>
tmpScore
(
scores
+
starts
[
i
],
scores
+
starts
[
i
+
1
]);
std
::
partial_sort
(
begin
(
indices
),
begin
(
indices
)
+
k
,
end
(
indices
),
[
&
](
size_t
a
,
size_t
b
)
{
return
tmpScore
[
a
]
>
tmpScore
[
b
];
});
memcpy
(
sortedIds
+
(
i
*
beamSize_
),
indices
.
data
(),
k
*
sizeof
(
real
));
}
}
void
KmaxSeqScoreLayer
::
forward
(
PassType
passType
)
{
Layer
::
forward
(
passType
);
const
Argument
&
input
=
getInput
(
0
);
const
MatrixPtr
inputScore
=
getInputValue
(
0
);
CHECK
(
input
.
hasSeq
()
||
input
.
hasSubseq
())
<<
"input of "
<<
getName
()
<<
" must be a sequence or a nested sequence."
;
CHECK_EQ
(
input
.
value
->
getWidth
(),
1UL
)
<<
"input of "
<<
getName
()
<<
" is score over a sequence or a nested sequence, so its width "
<<
" must be 1."
;
if
(
useGpu_
)
{
// this Layer runs only in CPU, if the model is runing on GPU,
// then copy the input to this layer from GPU to CPU.
Matrix
::
resizeOrCreate
(
scores_
,
inputScore
->
getHeight
(),
1
,
false
/* trans */
,
false
/* useGpu */
);
scores_
->
copyFrom
(
*
inputScore
);
}
else
{
scores_
=
inputScore
;
}
MatrixPtr
outputValue
=
getOutputValue
();
Matrix
::
resizeOrCreate
(
outputValue
,
input
.
hasSubseq
()
?
input
.
getNumSubSequences
()
:
input
.
getNumSequences
(),
beamSize_
);
outputValue
->
one
();
outputValue
->
mulScalar
(
-
1.
);
kmaxScorePerSeq
(
scores_
->
getData
(),
output_
.
value
->
getData
(),
input
.
hasSeq
()
?
input
.
subSequenceStartPositions
:
input
.
sequenceStartPositions
);
}
void
KmaxSeqScoreLayer
::
backward
(
const
UpdateCallback
&
callback
)
{}
}
// namespace paddle
paddle/gserver/tests/test_KmaxSeqScore.cpp
浏览文件 @
855ae59d
...
...
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#include <gtest/gtest.h>
#include <algorithm>
#include <string>
#include <vector>
#include "ModelConfig.pb.h"
...
...
@@ -30,12 +31,84 @@ DECLARE_bool(use_gpu);
DECLARE_int32
(
gpu_id
);
DECLARE_bool
(
thread_local_rand_use_global_seed
);
vector
<
int
>
randSampling
(
int
range
,
int
n
)
{
srand
(
1
);
CHECK_GE
(
range
,
n
);
vector
<
int
>
num
(
range
);
iota
(
begin
(
num
),
end
(
num
),
0
);
if
(
range
==
n
)
return
num
;
random_shuffle
(
begin
(
num
),
end
(
num
));
num
.
resize
(
n
);
return
num
;
}
void
genRandomSeqInfo
(
vector
<
int
>&
seqStartPosition
,
vector
<
int
>&
subSeqStartPosition
)
{
const
int
maxSeqNum
=
5
;
// generate random start position information
int
seqNum
=
1
+
(
rand
()
%
maxSeqNum
);
seqStartPosition
.
resize
(
seqNum
+
1
,
0
);
subSeqStartPosition
.
resize
(
1
,
0
);
for
(
int
i
=
0
;
i
<
seqNum
;
++
i
)
{
int
subSeqLen
=
1
+
(
rand
()
%
maxSeqNum
);
for
(
int
j
=
0
;
j
<
subSeqLen
;
++
j
)
subSeqStartPosition
.
push_back
(
subSeqStartPosition
.
back
()
+
subSeqLen
);
seqStartPosition
[
i
+
1
]
=
subSeqStartPosition
.
back
();
}
}
void
genRandomGroundTruth
(
real
*
values
,
vector
<
vector
<
int
>>&
groundTruth
,
vector
<
int
>&
seqStartPosition
,
vector
<
int
>&
subSeqStartPosition
,
bool
useSubseqInfo
,
size_t
beamSize
)
{
auto
genData
=
[
&
](
real
*
values
,
vector
<
int
>&
startPos
,
size_t
beamSize
)
{
groundTruth
.
resize
(
startPos
.
size
()
-
1
,
vector
<
int
>
(
beamSize
,
-
1
));
for
(
size_t
i
=
0
;
i
<
startPos
.
size
()
-
1
;
++
i
)
{
int
seqLen
=
startPos
[
i
+
1
]
-
startPos
[
i
];
vector
<
int
>
pos
=
randSampling
(
seqLen
,
min
(
static_cast
<
int
>
(
beamSize
),
seqLen
));
for
(
size_t
j
=
0
;
j
<
pos
.
size
();
++
j
)
{
groundTruth
[
i
][
j
]
=
pos
[
j
];
values
[
subSeqStartPosition
[
i
]
+
pos
[
j
]]
=
1.
;
}
}
};
if
(
useSubseqInfo
)
genData
(
values
,
subSeqStartPosition
,
beamSize
);
else
genData
(
values
,
seqStartPosition
,
beamSize
);
}
// Test that the batchNormLayer can be followed by a ConvLayer
TEST
(
Layer
,
kmaxSeqScoreLayer
)
{
for
(
auto
hasSubseq
:
{
true
,
false
})
{
for
(
auto
useGpu
:
{
true
,
false
})
{
const
size_t
beamSize
=
5
;
vector
<
int
>
seqStartPosition
;
vector
<
int
>
subSeqStartPosition
;
genRandomSeqInfo
(
seqStartPosition
,
subSeqStartPosition
);
MatrixPtr
inValue
=
Matrix
::
create
(
subSeqStartPosition
.
back
(),
1
,
false
,
false
);
inValue
->
randomizeUniform
();
for
(
auto
hasSubseq
:
{
false
,
true
})
{
vector
<
vector
<
int
>>
groundTruth
;
genRandomGroundTruth
(
inValue
->
getData
(),
groundTruth
,
seqStartPosition
,
subSeqStartPosition
,
hasSubseq
,
beamSize
);
for
(
auto
useGpu
:
{
false
,
true
})
{
TestConfig
config
;
config
.
layerConfig
.
set_type
(
"kmax_seq_score"
);
config
.
layerConfig
.
set_beam_size
(
beamSize
);
config
.
inputDefs
.
push_back
(
{
hasSubseq
?
INPUT_HASSUB_SEQUENCE_DATA
:
INPUT_SEQUENCE_DATA
,
"layer_0"
,
...
...
python/paddle/trainer_config_helpers/layers.py
浏览文件 @
855ae59d
...
...
@@ -6112,7 +6112,8 @@ def clip_layer(input, min, max, name=None):
:type min: double
:param max: The upper threshold for clipping.
:type max: double
:return: LayerOutput
:return: LayerOutput object.
:rtype: LayerOutput
"""
Layer
(
name
=
name
,
...
...
@@ -6127,8 +6128,27 @@ def clip_layer(input, min, max, name=None):
@
wrap_name_default
()
@
layer_support
()
def
kmax_sequence_score_layer
(
input
,
name
=
None
,
beam_size
=
1
):
"""
This layer accepts one input which is scores over a sequence or a nested
sequence, and returns indices of beam_size sequences with highest scores.
.. code-block:: python
kmax_indices = kmax_sequence_score_layer(input=input_layer, beam_size)
:param name: The Layer Name.
:type name: basestring
:param input: The input layer. It is scores over a sequence or a nested
sequence and its size must be 1.
:type input: LayerOutput.
:param beam_size: squence indices with top beam_size scores are returned.
:type beam_size: double
:return: LayerOutput object.
:rtype: LayerOutput
"""
assert
isinstance
(
input
,
LayerOutput
),
(
"kmax_sequence_score_layer "
"accept only one input."
)
"accept
s
only one input."
)
assert
input
.
size
==
1
,
(
"input of kmax_sequence_score_layer is a score"
"over a sequence or a nested sequence, so its width must be 1."
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录