Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
85218f9a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
85218f9a
编写于
10月 21, 2021
作者:
Z
zhiboniu
提交者:
GitHub
10月 21, 2021
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
lite deploy: fix pose visualize (#4349)
上级
4f0aa7ef
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
36 addition
and
33 deletion
+36
-33
deploy/lite/include/keypoint_detector.h
deploy/lite/include/keypoint_detector.h
+4
-2
deploy/lite/src/keypoint_detector.cc
deploy/lite/src/keypoint_detector.cc
+31
-28
deploy/lite/src/main.cc
deploy/lite/src/main.cc
+1
-3
未找到文件。
deploy/lite/include/keypoint_detector.h
浏览文件 @
85218f9a
...
...
@@ -43,7 +43,8 @@ struct KeyPointResult {
// Visualiztion KeyPoint Result
cv
::
Mat
VisualizeKptsResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
KeyPointResult
>&
results
,
const
std
::
vector
<
int
>&
colormap
);
const
std
::
vector
<
int
>&
colormap
,
float
threshold
=
0.2
);
class
KeyPointDetector
{
public:
...
...
@@ -67,7 +68,6 @@ class KeyPointDetector {
void
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
std
::
vector
<
std
::
vector
<
float
>>&
center
,
std
::
vector
<
std
::
vector
<
float
>>&
scale
,
const
double
threshold
=
0.5
,
const
int
warmup
=
0
,
const
int
repeats
=
1
,
std
::
vector
<
KeyPointResult
>*
result
=
nullptr
,
...
...
@@ -80,6 +80,8 @@ class KeyPointDetector {
bool
use_dark
(){
return
this
->
use_dark_
;}
inline
float
get_threshold
()
{
return
threshold_
;};
private:
// Preprocess image and copy data to input buffer
void
Preprocess
(
const
cv
::
Mat
&
image_mat
);
...
...
deploy/lite/src/keypoint_detector.cc
浏览文件 @
85218f9a
...
...
@@ -32,7 +32,8 @@ void KeyPointDetector::LoadModel(std::string model_file, int num_theads) {
// Visualiztion MaskDetector results
cv
::
Mat
VisualizeKptsResult
(
const
cv
::
Mat
&
img
,
const
std
::
vector
<
KeyPointResult
>&
results
,
const
std
::
vector
<
int
>&
colormap
)
{
const
std
::
vector
<
int
>&
colormap
,
float
threshold
)
{
const
int
edge
[][
2
]
=
{{
0
,
1
},
{
0
,
2
},
{
1
,
3
},
...
...
@@ -53,7 +54,7 @@ cv::Mat VisualizeKptsResult(const cv::Mat& img,
cv
::
Mat
vis_img
=
img
.
clone
();
for
(
int
batchid
=
0
;
batchid
<
results
.
size
();
batchid
++
)
{
for
(
int
i
=
0
;
i
<
results
[
batchid
].
num_joints
;
i
++
)
{
if
(
results
[
batchid
].
keypoints
[
i
*
3
]
>
0.5
)
{
if
(
results
[
batchid
].
keypoints
[
i
*
3
]
>
threshold
)
{
int
x_coord
=
int
(
results
[
batchid
].
keypoints
[
i
*
3
+
1
]);
int
y_coord
=
int
(
results
[
batchid
].
keypoints
[
i
*
3
+
2
]);
cv
::
circle
(
vis_img
,
...
...
@@ -64,6 +65,8 @@ cv::Mat VisualizeKptsResult(const cv::Mat& img,
}
}
for
(
int
i
=
0
;
i
<
results
[
batchid
].
num_joints
;
i
++
)
{
if
(
results
[
batchid
].
keypoints
[
edge
[
i
][
0
]
*
3
]
>
threshold
&&
results
[
batchid
].
keypoints
[
edge
[
i
][
1
]
*
3
]
>
threshold
)
{
int
x_start
=
int
(
results
[
batchid
].
keypoints
[
edge
[
i
][
0
]
*
3
+
1
]);
int
y_start
=
int
(
results
[
batchid
].
keypoints
[
edge
[
i
][
0
]
*
3
+
2
]);
int
x_end
=
int
(
results
[
batchid
].
keypoints
[
edge
[
i
][
1
]
*
3
+
1
]);
...
...
@@ -75,6 +78,7 @@ cv::Mat VisualizeKptsResult(const cv::Mat& img,
1
);
}
}
}
return
vis_img
;
}
...
...
@@ -119,7 +123,6 @@ void KeyPointDetector::Postprocess(std::vector<float>& output,
void
KeyPointDetector
::
Predict
(
const
std
::
vector
<
cv
::
Mat
>
imgs
,
std
::
vector
<
std
::
vector
<
float
>>&
center_bs
,
std
::
vector
<
std
::
vector
<
float
>>&
scale_bs
,
const
double
threshold
,
const
int
warmup
,
const
int
repeats
,
std
::
vector
<
KeyPointResult
>*
result
,
...
...
deploy/lite/src/main.cc
浏览文件 @
85218f9a
...
...
@@ -238,7 +238,6 @@ void PredictImage(const std::vector<std::string> all_img_paths,
keypoint
->
Predict
(
imgs_kpts
,
center_bs
,
scale_bs
,
0.5
,
10
,
10
,
&
result_kpts
,
...
...
@@ -247,7 +246,6 @@ void PredictImage(const std::vector<std::string> all_img_paths,
keypoint
->
Predict
(
imgs_kpts
,
center_bs
,
scale_bs
,
0.5
,
0
,
1
,
&
result_kpts
,
...
...
@@ -265,7 +263,7 @@ void PredictImage(const std::vector<std::string> all_img_paths,
output_path
+
"keypoint_"
+
image_file_path
.
substr
(
image_file_path
.
find_last_of
(
'/'
)
+
1
);
cv
::
Mat
kpts_vis_img
=
VisualizeKptsResult
(
im
,
result_kpts
,
colormap_kpts
);
VisualizeKptsResult
(
im
,
result_kpts
,
colormap_kpts
,
keypoint
->
get_threshold
()
);
cv
::
imwrite
(
kpts_savepath
,
kpts_vis_img
,
compression_params
);
printf
(
"Visualized output saved as %s
\n
"
,
kpts_savepath
.
c_str
());
}
else
{
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录