From 83fb834f8cb31df6707de3dae31958b99e1af38f Mon Sep 17 00:00:00 2001 From: Kexin Zhao Date: Wed, 30 May 2018 14:51:46 -0700 Subject: [PATCH] Modify RNN encoder decoder example using new LoDTensor API (#11021) * initial commit * modify rnn_encoder_docoder example --- ...decoder.py => test_rnn_encoder_decoder.py} | 61 ++++++++----------- 1 file changed, 25 insertions(+), 36 deletions(-) rename python/paddle/fluid/tests/book/{notest_rnn_encoder_decoder.py => test_rnn_encoder_decoder.py} (87%) diff --git a/python/paddle/fluid/tests/book/notest_rnn_encoder_decoder.py b/python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py similarity index 87% rename from python/paddle/fluid/tests/book/notest_rnn_encoder_decoder.py rename to python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py index ce640dece..7ada57def 100644 --- a/python/paddle/fluid/tests/book/notest_rnn_encoder_decoder.py +++ b/python/paddle/fluid/tests/book/test_rnn_encoder_decoder.py @@ -152,29 +152,6 @@ def seq_to_seq_net(): return avg_cost, prediction -def to_lodtensor(data, place): - seq_lens = [len(seq) for seq in data] - cur_len = 0 - lod = [cur_len] - for l in seq_lens: - cur_len += l - lod.append(cur_len) - flattened_data = np.concatenate(data, axis=0).astype("int64") - flattened_data = flattened_data.reshape([len(flattened_data), 1]) - res = core.LoDTensor() - res.set(flattened_data, place) - res.set_lod([lod]) - return res - - -def create_random_lodtensor(lod, place, low, high): - data = np.random.random_integers(low, high, [lod[-1], 1]).astype("int64") - res = fluid.LoDTensor() - res.set(data, place) - res.set_lod([lod]) - return res - - def train(use_cuda, save_dirname=None): [avg_cost, prediction] = seq_to_seq_net() @@ -188,22 +165,20 @@ def train(use_cuda, save_dirname=None): place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = Executor(place) - exe.run(framework.default_startup_program()) + feed_order = ['source_sequence', 'target_sequence', 'label_sequence'] + feed_list = [ + framework.default_main_program().global_block().var(var_name) + for var_name in feed_order + ] + feeder = fluid.DataFeeder(feed_list, place) + batch_id = 0 for pass_id in xrange(2): for data in train_data(): - word_data = to_lodtensor(map(lambda x: x[0], data), place) - trg_word = to_lodtensor(map(lambda x: x[1], data), place) - trg_word_next = to_lodtensor(map(lambda x: x[2], data), place) - outs = exe.run(framework.default_main_program(), - feed={ - 'source_sequence': word_data, - 'target_sequence': trg_word, - 'label_sequence': trg_word_next - }, + feed=feeder.feed(data), fetch_list=[avg_cost]) avg_cost_val = np.array(outs[0]) @@ -237,9 +212,23 @@ def infer(use_cuda, save_dirname=None): [inference_program, feed_target_names, fetch_targets] = fluid.io.load_inference_model(save_dirname, exe) - lod = [0, 4, 10] - word_data = create_random_lodtensor(lod, place, low=0, high=1) - trg_word = create_random_lodtensor(lod, place, low=0, high=1) + # Setup input by creating LoDTensor to represent sequence of words. + # Here each word is the basic element of the LoDTensor and the shape of + # each word (base_shape) should be [1] since it is simply an index to + # look up for the corresponding word vector. + # Suppose the length_based level of detail (lod) info is set to [[4, 6]], + # which has only one lod level. Then the created LoDTensor will have only + # one higher level structure (sequence of words, or sentence) than the basic + # element (word). Hence the LoDTensor will hold data for two sentences of + # length 4 and 6, respectively. + # Note that lod info should be a list of lists. + lod = [[4, 6]] + base_shape = [1] + # The range of random integers is [low, high] + word_data = fluid.create_random_int_lodtensor( + lod, base_shape, place, low=0, high=1) + trg_word = fluid.create_random_int_lodtensor( + lod, base_shape, place, low=0, high=1) # Construct feed as a dictionary of {feed_target_name: feed_target_data} # and results will contain a list of data corresponding to fetch_targets. -- GitLab