Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8368e55b
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
8368e55b
编写于
12月 04, 2017
作者:
S
sweetsky0901
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
modify some doc
上级
531e7b6f
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
38 addition
and
32 deletion
+38
-32
paddle/operators/spp_op.cc
paddle/operators/spp_op.cc
+2
-2
paddle/operators/spp_op.h
paddle/operators/spp_op.h
+24
-23
python/paddle/v2/fluid/tests/test_spp_op.py
python/paddle/v2/fluid/tests/test_spp_op.py
+12
-7
未找到文件。
paddle/operators/spp_op.cc
浏览文件 @
8368e55b
...
...
@@ -29,7 +29,7 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
"(Tensor) The output tensor of spp operator."
"N * M."
"M = C * H * W"
);
AddAttr
<
int
>
(
"pyramid_height"
,
"int"
);
AddAttr
<
int
>
(
"pyramid_height"
,
"int"
,
"multi level pooling"
);
AddComment
(
R"DOC(
"Does spatial pyramid pooling on the input image by taking the max,
etc. within regions so that the result vector of different sized
...
...
@@ -39,7 +39,7 @@ class SppOpMaker : public framework::OpProtoAndCheckerMaker {
Where
$$
H_{out} = N \\
W_{out} = ((
std::pow(4, pyramid_height) - 1) / (4 - 1))
* C_{in}
W_{out} = ((
(4^pyramid_height) - 1) / (4 - 1))$
* C_{in}
$$
)DOC"
);
}
...
...
paddle/operators/spp_op.h
浏览文件 @
8368e55b
...
...
@@ -34,27 +34,27 @@ class SppKernel : public framework::OpKernel<T> {
size_t
output_offset
=
0
;
for
(
int
p
=
0
;
p
<
pyramid_height
;
++
p
)
{
int
bins
=
std
::
pow
(
2
,
p
);
int
ksize_h
=
std
::
ceil
(
input_h
/
static_cast
<
double
>
(
bins
));
int
ksize_w
=
std
::
ceil
(
input_w
/
static_cast
<
double
>
(
bins
));
int
padding_h
=
(
ksize_h
*
bins
-
input_h
+
1
)
/
2
;
int
padding_w
=
(
ksize_w
*
bins
-
input_w
+
1
)
/
2
;
std
::
vector
<
int
>
k
size
({
ksize_h
,
k
size_w
});
std
::
vector
<
int
>
strides
({
k
size_h
,
k
size_w
});
int
k
ernel_
size_h
=
std
::
ceil
(
input_h
/
static_cast
<
double
>
(
bins
));
int
k
ernel_
size_w
=
std
::
ceil
(
input_w
/
static_cast
<
double
>
(
bins
));
int
padding_h
=
(
k
ernel_
size_h
*
bins
-
input_h
+
1
)
/
2
;
int
padding_w
=
(
k
ernel_
size_w
*
bins
-
input_w
+
1
)
/
2
;
std
::
vector
<
int
>
k
ernel_size
({
kernel_size_h
,
kernel_
size_w
});
std
::
vector
<
int
>
strides
({
k
ernel_size_h
,
kernel_
size_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
// pooling output shape
framework
::
Tensor
out_level
;
std
::
vector
<
int64_t
>
output_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
output_shape_vec
.
push_back
(
(
input_h
-
ksize_h
+
2
*
padding_h
)
/
ksize_h
+
1
);
output_shape_vec
.
push_back
(
(
input_w
-
ksize_w
+
2
*
padding_w
)
/
ksize_w
+
1
);
output_shape_vec
.
push_back
(
(
input_h
-
kernel_size_h
+
2
*
padding_h
)
/
kernel_size_h
+
1
);
output_shape_vec
.
push_back
(
(
input_w
-
kernel_size_w
+
2
*
padding_w
)
/
kernel_size_w
+
1
);
framework
::
DDim
output_shape
(
framework
::
make_ddim
(
output_shape_vec
));
out_level
.
mutable_data
<
T
>
(
output_shape
,
context
.
GetPlace
());
// pooling
math
::
Pool2dFunctor
<
Place
,
math
::
MaxPool
<
T
>
,
T
>
pool_forward
;
math
::
MaxPool
<
T
>
max_process
;
pool_forward
(
context
.
device_context
(),
*
in_x
,
k
size
,
strides
,
padding
s
,
max_process
,
&
out_level
);
pool_forward
(
context
.
device_context
(),
*
in_x
,
k
ernel_size
,
stride
s
,
paddings
,
max_process
,
&
out_level
);
// flatten pooling output shape
framework
::
Tensor
out_flatten_level
;
int
output_flatten_w
=
in_x
->
dims
()[
1
]
*
bins
*
bins
;
...
...
@@ -96,12 +96,12 @@ class SppGradKernel : public framework::OpKernel<T> {
size_t
out_offset
=
0
;
for
(
int
p
=
0
;
p
<
pyramid_height
;
++
p
)
{
int
bins
=
std
::
pow
(
2
,
p
);
int
ksize_h
=
std
::
ceil
(
input_h
/
static_cast
<
double
>
(
bins
));
int
ksize_w
=
std
::
ceil
(
input_w
/
static_cast
<
double
>
(
bins
));
int
padding_h
=
(
ksize_h
*
bins
-
input_h
+
1
)
/
2
;
int
padding_w
=
(
ksize_w
*
bins
-
input_w
+
1
)
/
2
;
std
::
vector
<
int
>
k
size
({
ksize_h
,
k
size_w
});
std
::
vector
<
int
>
strides
({
k
size_h
,
k
size_w
});
int
k
ernel_
size_h
=
std
::
ceil
(
input_h
/
static_cast
<
double
>
(
bins
));
int
k
ernel_
size_w
=
std
::
ceil
(
input_w
/
static_cast
<
double
>
(
bins
));
int
padding_h
=
(
k
ernel_
size_h
*
bins
-
input_h
+
1
)
/
2
;
int
padding_w
=
(
k
ernel_
size_w
*
bins
-
input_w
+
1
)
/
2
;
std
::
vector
<
int
>
k
ernel_size
({
kernel_size_h
,
kernel_
size_w
});
std
::
vector
<
int
>
strides
({
k
ernel_size_h
,
kernel_
size_w
});
std
::
vector
<
int
>
paddings
({
padding_h
,
padding_w
});
// split out and outgrad ... to flatten
framework
::
Tensor
out_flatten_level
;
...
...
@@ -129,10 +129,10 @@ class SppGradKernel : public framework::OpKernel<T> {
framework
::
Tensor
out_level
;
framework
::
Tensor
outgrad_level
;
std
::
vector
<
int64_t
>
out_shape_vec
({
in_x
->
dims
()[
0
],
in_x
->
dims
()[
1
]});
out_shape_vec
.
push_back
(
(
input_h
-
ksize_h
+
2
*
padding_h
)
/
ksize_h
+
1
);
out_shape_vec
.
push_back
(
(
input_w
-
ksize_w
+
2
*
padding_w
)
/
ksize_w
+
1
);
out_shape_vec
.
push_back
(
(
input_h
-
kernel_size_h
+
2
*
padding_h
)
/
kernel_size_h
+
1
);
out_shape_vec
.
push_back
(
(
input_w
-
kernel_size_w
+
2
*
padding_w
)
/
kernel_size_w
+
1
);
framework
::
DDim
out_shape
(
framework
::
make_ddim
(
out_shape_vec
));
out_level
.
ShareDataWith
(
out_flatten_level
);
out_level
.
Resize
(
out_shape
);
...
...
@@ -141,7 +141,8 @@ class SppGradKernel : public framework::OpKernel<T> {
// pooling backward
math
::
MaxPool2dGradFunctor
<
Place
,
T
>
pool2d_backward
;
pool2d_backward
(
context
.
device_context
(),
*
in_x
,
*&
out_level
,
*&
outgrad_level
,
ksize
,
strides
,
paddings
,
in_x_grad
);
*&
outgrad_level
,
kernel_size
,
strides
,
paddings
,
in_x_grad
);
}
}
};
...
...
python/paddle/v2/fluid/tests/test_spp_op.py
浏览文件 @
8368e55b
...
...
@@ -13,14 +13,19 @@ class TestSppOp(OpTest):
out_level_flatten
=
[]
for
i
in
xrange
(
self
.
pyramid_height
):
bins
=
np
.
power
(
2
,
i
)
ksize
=
[
0
,
0
]
k
ernel_
size
=
[
0
,
0
]
padding
=
[
0
,
0
]
ksize
[
0
]
=
np
.
ceil
(
hsize
/
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
padding
[
0
]
=
((
ksize
[
0
]
*
bins
-
hsize
+
1
)
/
2
).
astype
(
"int32"
)
ksize
[
1
]
=
np
.
ceil
(
wsize
/
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
padding
[
1
]
=
((
ksize
[
1
]
*
bins
-
wsize
+
1
)
/
2
).
astype
(
"int32"
)
out_level
=
max_pool2D_forward_naive
(
input
,
ksize
,
ksize
,
padding
)
kernel_size
[
0
]
=
np
.
ceil
(
hsize
/
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
padding
[
0
]
=
(
(
kernel_size
[
0
]
*
bins
-
hsize
+
1
)
/
2
).
astype
(
"int32"
)
kernel_size
[
1
]
=
np
.
ceil
(
wsize
/
bins
.
astype
(
"double"
)).
astype
(
"int32"
)
padding
[
1
]
=
(
(
kernel_size
[
1
]
*
bins
-
wsize
+
1
)
/
2
).
astype
(
"int32"
)
out_level
=
max_pool2D_forward_naive
(
input
,
kernel_size
,
kernel_size
,
padding
)
out_level_flatten
.
append
(
out_level
.
reshape
(
nsize
,
bins
*
bins
*
csize
))
if
i
==
0
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录