diff --git a/ppdet/utils/map_utils.py b/ppdet/utils/map_utils.py index e6e18a25c890cf6c0eeffed3c5dd24549b931238..fe0530596bb54920a81235ee6716e2d43918899a 100644 --- a/ppdet/utils/map_utils.py +++ b/ppdet/utils/map_utils.py @@ -22,9 +22,7 @@ import numpy as np import logging logger = logging.getLogger(__name__) -__all__ = [ - 'bbox_area', 'jaccard_overlap', 'DetectionMAP' -] +__all__ = ['bbox_area', 'jaccard_overlap', 'DetectionMAP'] def bbox_area(bbox, is_bbox_normalized): @@ -48,13 +46,11 @@ def jaccard_overlap(pred, gt, is_bbox_normalized=False): inter_ymin = max(pred[1], gt[1]) inter_xmax = min(pred[2], gt[2]) inter_ymax = min(pred[3], gt[3]) - inter_size = bbox_area([inter_xmin, inter_ymin, - inter_xmax, inter_ymax], - is_bbox_normalized) + inter_size = bbox_area([inter_xmin, inter_ymin, inter_xmax, inter_ymax], + is_bbox_normalized) pred_size = bbox_area(pred, is_bbox_normalized) gt_size = bbox_area(gt, is_bbox_normalized) - overlap = float(inter_size) / ( - pred_size + gt_size - inter_size) + overlap = float(inter_size) / (pred_size + gt_size - inter_size) return overlap @@ -117,7 +113,7 @@ class DetectionMAP(object): for i, gl in enumerate(gt_label): if int(gl) == int(label): overlap = jaccard_overlap(pred, gt_box[i], - self.is_bbox_normalized) + self.is_bbox_normalized) if overlap > max_overlap: max_overlap = overlap max_idx = i @@ -126,16 +122,13 @@ class DetectionMAP(object): if self.evaluate_difficult or \ int(np.array(difficult[max_idx])) == 0: if not visited[max_idx]: - self.class_score_poss[ - int(label)].append([score, 1.0]) + self.class_score_poss[int(label)].append([score, 1.0]) visited[max_idx] = True else: - self.class_score_poss[ - int(label)].append([score, 0.0]) + self.class_score_poss[int(label)].append([score, 0.0]) else: - self.class_score_poss[ - int(label)].append([score, 0.0]) - + self.class_score_poss[int(label)].append([score, 0.0]) + def reset(self): """ Reset metric statics @@ -150,7 +143,7 @@ class DetectionMAP(object): """ mAP = 0. valid_cnt = 0 - for score_pos, count in zip(self.class_score_poss, + for score_pos, count in zip(self.class_score_poss, self.class_gt_counts): if count == 0 or len(score_pos) == 0: continue @@ -176,7 +169,7 @@ class DetectionMAP(object): else: if max_precisions[j] < precision[i]: max_precisions[j] = precision[i] - mAP += sum(max_precisions) / 11. + mAP += sum(max_precisions) / 11. valid_cnt += 1 elif self.map_type == 'integral': import math @@ -190,7 +183,7 @@ class DetectionMAP(object): mAP += ap valid_cnt += 1 else: - logger.error("Unspported mAP type {}".format(map_type)) + logger.error("Unspported mAP type {}".format(self.map_type)) sys.exit(1) self.mAP = mAP / float(valid_cnt) if valid_cnt > 0 else mAP @@ -208,9 +201,7 @@ class DetectionMAP(object): Calculate accumulating true/false positive results from [score, pos] records """ - sorted_list = sorted(score_pos_list, - key=lambda s: s[0], - reverse=True) + sorted_list = sorted(score_pos_list, key=lambda s: s[0], reverse=True) accum_tp = 0 accum_fp = 0 accum_tp_list = [] @@ -221,4 +212,3 @@ class DetectionMAP(object): accum_fp += 1 - int(pos) accum_fp_list.append(accum_fp) return accum_tp_list, accum_fp_list -