Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
82aa5693
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
699
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
82aa5693
编写于
11月 04, 2017
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
follow comments
上级
1431f251
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
145 addition
and
180 deletion
+145
-180
paddle/operators/conv_transpose_op.h
paddle/operators/conv_transpose_op.h
+145
-180
未找到文件。
paddle/operators/conv_transpose_op.h
浏览文件 @
82aa5693
...
@@ -63,29 +63,25 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
...
@@ -63,29 +63,25 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
const
Tensor
*
input
=
context
.
Input
<
Tensor
>
(
"Input"
);
// The filter will be reshaped, so it should not be constant pointer
// The filter will be reshaped, so it should not be constant pointer
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
// TODO(Zhuoyuan): Paddings can be added in future.
// TODO(Zhuoyuan): Paddings can be added in future.
// groups will alway be disabled in conv2dtranspose.
// groups will alway be disabled in conv2dtranspose.
const
int
batch_size
=
input
->
dims
()[
0
]
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
])
;
const
int
m
=
input
->
dims
()[
1
];
const
int
64_t
m
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
64_t
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
64_t
w
=
input
->
dims
()[
3
];
const
int
k_h
=
filter
.
dims
()[
2
];
const
int
64_t
k_h
=
filter
.
dims
()[
2
];
const
int
k_w
=
filter
.
dims
()[
3
];
const
int
64_t
k_w
=
filter
.
dims
()[
3
];
const
int
c
=
output
->
dims
()[
1
];
// output channels
const
int
64_t
c
=
output
->
dims
()[
1
];
// output channels
const
int
o_h
=
output
->
dims
()[
2
];
const
int
64_t
o_h
=
output
->
dims
()[
2
];
const
int
o_w
=
output
->
dims
()[
3
];
const
int
64_t
o_w
=
output
->
dims
()[
3
];
paddle
::
operators
::
math
::
Col2ImFunctor
<
math
::
Col2ImFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Place
,
T
>
col2im
;
// use col_shape in the im2col and col2im calculation
// use col_shape in the im2col and col2im calculation
DDim
col_shape
=
{
c
,
k_h
,
k_w
,
h
,
w
};
DDim
col_shape
=
{
c
,
k_h
,
k_w
,
h
,
w
};
...
@@ -105,19 +101,18 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
...
@@ -105,19 +101,18 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
DDim
output_shape
=
{
c
,
o_h
,
o_w
};
DDim
output_shape
=
{
c
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
h
*
w
};
DDim
input_matrix_shape
=
{
m
,
h
*
w
};
// filter size: (m, c * k_h * k_w)
DDim
filter_matrix_shape
=
{
m
,
c
*
k_h
*
k_w
};
DDim
filter_matrix_shape
=
{
m
,
c
*
k_h
*
k_w
};
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
// convolution transpose: gemm + col2im (similar to conv-backward on input)
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
output
)
;
math
::
SetConstant
<
Place
,
T
>
set_zero
;
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
set_zero
(
context
.
device_context
(),
output
,
static_cast
<
T
>
(
0
));
// convolution transpose: gemm + col2im (similar to conv-backward on input)
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (
M
, h * w)
// batch with size (
m
, h * w)
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// filter size: (M, c * k_h * k_w)
// output size: (c, o_h, o_w)
// output size: (c, o_h, o_w)
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
...
@@ -125,7 +120,11 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
...
@@ -125,7 +120,11 @@ class GemmConv2DTransposeKernel : public framework::OpKernel<T> {
// col_matrix = filter * input_batch
// col_matrix = filter * input_batch
// of shape (c * k_h * k_w, h * w)
// of shape (c * k_h * k_w, h * w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
input_batch
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
));
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
// col2im: col_matrix -> dy
// from (c * k_h * k_w, h * w) to (c, o_h, o_w)
col2im
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
col2im
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
strides
[
1
],
0
,
0
,
0
,
0
);
strides
[
1
],
0
,
0
,
0
,
0
);
}
}
...
@@ -143,7 +142,6 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -143,7 +142,6 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
// For filter, we do not use const pointer b/c we will do reshape,
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
// but we should avoid modifying its value.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
input_grad
=
Tensor
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
Tensor
*
filter_grad
=
...
@@ -153,35 +151,24 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -153,35 +151,24 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
// Actually, no paddings and groups allowed in conv transpose.
// Actually, no paddings and groups allowed in conv transpose.
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
const
int
batch_size
=
input
->
dims
()[
0
]
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
])
;
const
int
m
=
input
->
dims
()[
1
];
const
int
64_t
m
=
input
->
dims
()[
1
];
const
int
h
=
input
->
dims
()[
2
];
const
int
64_t
h
=
input
->
dims
()[
2
];
const
int
w
=
input
->
dims
()[
3
];
const
int
64_t
w
=
input
->
dims
()[
3
];
const
int
k_h
=
filter
.
dims
()[
2
];
const
int
64_t
k_h
=
filter
.
dims
()[
2
];
const
int
k_w
=
filter
.
dims
()[
3
];
const
int
64_t
k_w
=
filter
.
dims
()[
3
];
const
int
c
=
output_grad
->
dims
()[
1
];
// output channels
const
int
64_t
c
=
output_grad
->
dims
()[
1
];
// output channels
const
int
o_h
=
output_grad
->
dims
()[
2
];
const
int
64_t
o_h
=
output_grad
->
dims
()[
2
];
const
int
o_w
=
output_grad
->
dims
()[
3
];
const
int
64_t
o_w
=
output_grad
->
dims
()[
3
];
// Only im2col functor required for bp to get to the right shape
// Only im2col functor required for bp to get to the right shape
paddle
::
operators
::
math
::
Im2ColFunctor
<
math
::
Im2ColFunctor
<
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
paddle
::
operators
::
math
::
ColFormat
::
kCFO
,
Place
,
T
>
im2col
;
// use col_shape in the im2col and col2im calculation
// use col_shape in the im2col and col2im calculation
DDim
col_shape
=
{
c
,
k_h
,
k_w
,
h
,
w
};
DDim
col_shape
=
{
c
,
k_h
,
k_w
,
h
,
w
};
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape_f
=
{
c
*
h
*
w
,
k_h
*
k_w
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
DDim
output_shape
=
{
c
,
o_h
,
o_w
};
DDim
output_shape
=
{
c
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
h
*
w
};
DDim
input_matrix_shape
=
{
m
,
h
*
w
};
...
@@ -191,67 +178,60 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -191,67 +178,60 @@ class GemmConv2DTransposeGradKernel : public framework::OpKernel<T> {
// convolution transpose grad on input:
// convolution transpose grad on input:
// im2col + gemm (similar to conv-forward)
// im2col + gemm (similar to conv-forward)
// input need to compute gradient
// input need to compute gradient
if
(
input_grad
)
{
if
(
input_grad
||
filter_grad
)
{
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor
col_matrix
;
Tensor
col_matrix
;
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
DDim
col_matrix_shape
=
{
c
*
k_h
*
k_w
,
h
*
w
};
DDim
col_matrix_shape
=
{
c
*
k_h
*
k_w
,
h
*
w
};
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
filter_grad_
;
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
math
::
SetConstant
<
Place
,
T
>
set_zero
;
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (c, o_h * o_w)
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// filter of size (m, c * k_h * k_w)
// batch with size (m, h, w)
Tensor
input_grad_batch
=
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// im2col: dy from (c, o_h, o_w) -> (c * k_h * k_w, h * w)
if
(
input_grad
)
{
i
m2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
i
nput_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
strides
[
1
],
paddings
[
0
],
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]
);
set_zero
(
context
.
device_context
(),
input_grad
,
static_cast
<
T
>
(
0
)
);
}
// gemm: dx = filter * dy
if
(
filter_grad
)
{
// filter size (m, c, k_h, k_w)
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, c, h)
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
set_zero
(
context
.
device_context
(),
filter_grad
,
static_cast
<
T
>
(
0
));
col_matrix
,
false
,
T
(
1.0
),
&
input_grad_batch
,
filter_grad_
=
*
filter_grad
;
T
(
0.0
)
);
filter_grad_
.
Resize
(
filter_matrix_shape
);
}
}
}
// filter gradient required
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
if
(
filter_grad
)
{
// batch with size (c, o_h * o_w)
Tensor
col_matrix_f
;
col_matrix_f
.
ShareDataWith
(
col
);
DDim
col_matrix_shape_f
=
{
c
*
h
*
w
,
k_h
*
k_w
};
col_matrix_f
.
Resize
(
col_matrix_shape_f
);
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
filter_grad_
=
*
filter_grad
;
filter_grad_
.
Resize
(
filter_matrix_shape
);
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
filter_grad_
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
// batch with size (c, o_h, o_w)
Tensor
output_grad_batch
=
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// input batch
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// im2col: (c * h * w, k_h * k_w)
// im2col: dy -> col matrix
// from (c, o_h, o_w) to (c * k_h * k_w, h * w)
im2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
im2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
paddings
[
0
],
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
strides
[
1
],
paddings
[
0
],
paddings
[
0
],
paddings
[
1
],
paddings
[
1
]);
// gemm: d_filter = x * y_grad^T
if
(
input_grad
)
{
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, c, h)
// batch with size (m, h, w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
Tensor
input_grad_batch
=
col_matrix_f
,
true
,
T
(
1.0
),
&
filter_grad_
,
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
T
(
1.0
));
// gemm: dx = filter * dy
// (m, c * k_h * k_w) * (c * k_h * k_w, h * w) -> (m, h * w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
col_matrix
,
false
,
static_cast
<
T
>
(
1.0
),
&
input_grad_batch
,
static_cast
<
T
>
(
0.0
));
}
if
(
filter_grad
)
{
// input batch
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// gemm: d_filter = x * dy^T
// (m, c * h * w) * (k_h * k_w, c * h * w) -> (m, k_h * k_w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
col_matrix
,
true
,
static_cast
<
T
>
(
1.0
),
&
filter_grad_
,
static_cast
<
T
>
(
1.0
));
}
}
}
}
}
}
}
...
@@ -267,30 +247,28 @@ class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
...
@@ -267,30 +247,28 @@ class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
Tensor
*
output
=
context
.
Output
<
Tensor
>
(
"Output"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
std
::
vector
<
int
>
strides
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"strides"
);
// TODO(chengduo): Paddings can be added in future.
// TODO(chengduo): Paddings can be added in future.
// groups will alway be disabled in conv3dtranspose.
// groups will alway be disabled in conv3dtranspose.
const
int
batch_size
=
input
->
dims
()[
0
]
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
])
;
const
int
m
=
input
->
dims
()[
1
];
const
int
64_t
m
=
input
->
dims
()[
1
];
const
int
d
=
input
->
dims
()[
2
];
const
int
64_t
d
=
input
->
dims
()[
2
];
const
int
h
=
input
->
dims
()[
3
];
const
int
64_t
h
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
4
];
const
int
64_t
w
=
input
->
dims
()[
4
];
const
int
k_d
=
filter
.
dims
()[
2
];
const
int
64_t
k_d
=
filter
.
dims
()[
2
];
const
int
k_h
=
filter
.
dims
()[
3
];
const
int
64_t
k_h
=
filter
.
dims
()[
3
];
const
int
k_w
=
filter
.
dims
()[
4
];
const
int
64_t
k_w
=
filter
.
dims
()[
4
];
const
int
c
=
output
->
dims
()[
1
];
// output channels
const
int
64_t
c
=
output
->
dims
()[
1
];
// output channels
const
int
o_d
=
output
->
dims
()[
2
];
const
int
64_t
o_d
=
output
->
dims
()[
2
];
const
int
o_h
=
output
->
dims
()[
3
];
const
int
64_t
o_h
=
output
->
dims
()[
3
];
const
int
o_w
=
output
->
dims
()[
4
];
const
int
64_t
o_w
=
output
->
dims
()[
4
];
paddle
::
operators
::
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
paddle
::
operators
::
math
::
Col2VolFunctor
<
Place
,
T
>
col2vol
;
// use col_shape in the vol2col and col2vol calculation
// use col_shape in the vol2col and col2vol calculation
DDim
col_shape
=
{
c
,
k_d
,
k_h
,
k_w
,
d
,
h
,
w
};
DDim
col_shape
=
{
c
,
k_d
,
k_h
,
k_w
,
d
,
h
,
w
};
// use col_matrix_shape in the gemm calculation
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape
=
{
c
*
k_d
*
k_h
*
k_w
,
d
*
h
*
w
};
DDim
col_matrix_shape
=
{
c
*
k_d
*
k_h
*
k_w
,
d
*
h
*
w
};
...
@@ -306,19 +284,18 @@ class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
...
@@ -306,19 +284,18 @@ class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
DDim
output_shape
=
{
c
,
o_d
,
o_h
,
o_w
};
DDim
output_shape
=
{
c
,
o_d
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
d
*
h
*
w
};
DDim
input_matrix_shape
=
{
m
,
d
*
h
*
w
};
// filter size: (m, c * k_d * k_h * k_w)
DDim
filter_matrix_shape
=
{
m
,
c
*
k_d
*
k_h
*
k_w
};
DDim
filter_matrix_shape
=
{
m
,
c
*
k_d
*
k_h
*
k_w
};
filter
.
Resize
(
filter_matrix_shape
);
filter
.
Resize
(
filter_matrix_shape
);
// convolution transpose: gemm + col2vol (similar to conv-backward on input)
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
output
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
output
)
;
math
::
SetConstant
<
Place
,
T
>
set_zero
;
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
set_zero
(
context
.
device_context
(),
output
,
static_cast
<
T
>
(
0
));
// convolution transpose: gemm + col2vol (similar to conv-backward on input)
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
// batch with size (
M
, d * h * w)
// batch with size (
m
, d * h * w)
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
Tensor
input_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// filter size: (M, c * k_d * k_h * k_w)
// output size: (c, o_d, o_h, o_w)
// output size: (c, o_d, o_h, o_w)
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
Tensor
output_batch
=
output
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
...
@@ -326,7 +303,10 @@ class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
...
@@ -326,7 +303,10 @@ class GemmConv3DTransposeKernel : public framework::OpKernel<T> {
// col_matrix = filter * input_batch
// col_matrix = filter * input_batch
// of shape (c * k_d * k_h * k_w, d * h * w)
// of shape (c * k_d * k_h * k_w, d * h * w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
true
,
input_batch
,
false
,
T
(
1.0
),
&
col_matrix
,
T
(
0.0
));
input_batch
,
false
,
static_cast
<
T
>
(
1.0
),
&
col_matrix
,
static_cast
<
T
>
(
0.0
));
// col2vol: col_matrix -> dy
// from (c * k_d * k_h * k_w, d * h * w) to (c, o_d, o_h, o_w)
col2vol
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
col2vol
(
context
.
device_context
(),
output_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
0
,
0
,
0
);
strides
[
1
],
strides
[
2
],
0
,
0
,
0
);
}
}
...
@@ -344,7 +324,6 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -344,7 +324,6 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
// For filter, we do not use const pointer b/c we will do reshape,
// For filter, we do not use const pointer b/c we will do reshape,
// but we should avoid modifying its value.
// but we should avoid modifying its value.
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
filter
=
*
context
.
Input
<
Tensor
>
(
"Filter"
);
Tensor
*
input_grad
=
Tensor
*
input_grad
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"Input"
));
Tensor
*
filter_grad
=
Tensor
*
filter_grad
=
...
@@ -354,20 +333,20 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -354,20 +333,20 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
// Actually, no paddings and groups allowed in conv transpose.
// Actually, no paddings and groups allowed in conv transpose.
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
std
::
vector
<
int
>
paddings
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"paddings"
);
const
int
batch_size
=
input
->
dims
()[
0
]
;
const
int
batch_size
=
static_cast
<
int
>
(
input
->
dims
()[
0
])
;
const
int
m
=
input
->
dims
()[
1
];
const
int
64_t
m
=
input
->
dims
()[
1
];
const
int
d
=
input
->
dims
()[
2
];
const
int
64_t
d
=
input
->
dims
()[
2
];
const
int
h
=
input
->
dims
()[
3
];
const
int
64_t
h
=
input
->
dims
()[
3
];
const
int
w
=
input
->
dims
()[
4
];
const
int
64_t
w
=
input
->
dims
()[
4
];
const
int
k_d
=
filter
.
dims
()[
2
];
const
int
64_t
k_d
=
filter
.
dims
()[
2
];
const
int
k_h
=
filter
.
dims
()[
3
];
const
int
64_t
k_h
=
filter
.
dims
()[
3
];
const
int
k_w
=
filter
.
dims
()[
4
];
const
int
64_t
k_w
=
filter
.
dims
()[
4
];
const
int
c
=
output_grad
->
dims
()[
1
];
// output channels
const
int
64_t
c
=
output_grad
->
dims
()[
1
];
// output channels
const
int
o_d
=
output_grad
->
dims
()[
2
];
const
int
64_t
o_d
=
output_grad
->
dims
()[
2
];
const
int
o_h
=
output_grad
->
dims
()[
3
];
const
int
64_t
o_h
=
output_grad
->
dims
()[
3
];
const
int
o_w
=
output_grad
->
dims
()[
4
];
const
int
64_t
o_w
=
output_grad
->
dims
()[
4
];
// Only vol2col functor required for bp to get to the right shape
// Only vol2col functor required for bp to get to the right shape
paddle
::
operators
::
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
paddle
::
operators
::
math
::
Vol2ColFunctor
<
Place
,
T
>
vol2col
;
...
@@ -378,12 +357,6 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -378,12 +357,6 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
// use col_matrix_shape in the gemm calculation
// use col_matrix_shape in the gemm calculation
DDim
col_matrix_shape_f
=
{
c
*
d
*
h
*
w
,
k_d
*
k_h
*
k_w
};
DDim
col_matrix_shape_f
=
{
c
*
d
*
h
*
w
,
k_d
*
k_h
*
k_w
};
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
DDim
output_shape
=
{
c
,
o_d
,
o_h
,
o_w
};
DDim
output_shape
=
{
c
,
o_d
,
o_h
,
o_w
};
DDim
input_matrix_shape
=
{
m
,
d
*
h
*
w
};
DDim
input_matrix_shape
=
{
m
,
d
*
h
*
w
};
...
@@ -393,70 +366,62 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
...
@@ -393,70 +366,62 @@ class GemmConv3DTransposeGradKernel : public framework::OpKernel<T> {
// convolution transpose grad on input:
// convolution transpose grad on input:
// vol2col + gemm (similar to conv-forward)
// vol2col + gemm (similar to conv-forward)
// input need to compute gradient
// input need to compute gradient
if
(
input_grad
)
{
if
(
input_grad
||
filter_grad
)
{
Tensor
col
;
col
.
mutable_data
<
T
>
(
col_shape
,
context
.
GetPlace
());
// col_matrix shares the same piece of data with col,
// but will be reshaped into a two-dimensional matrix shape
// to call the matrix multiplication interface.
Tensor
col_matrix
;
Tensor
col_matrix
;
col_matrix
.
ShareDataWith
(
col
);
col_matrix
.
ShareDataWith
(
col
);
DDim
col_matrix_shape
=
{
c
*
k_d
*
k_h
*
k_w
,
d
*
h
*
w
};
DDim
col_matrix_shape
=
{
c
*
k_d
*
k_h
*
k_w
,
d
*
h
*
w
};
col_matrix
.
Resize
(
col_matrix_shape
);
col_matrix
.
Resize
(
col_matrix_shape
);
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
filter_grad_
;
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
*
input_grad
);
math
::
SetConstant
<
Place
,
T
>
set_zero
;
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
if
(
input_grad
)
{
// batch with size (c, o_d * o_h * o_w)
input_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
output_grad_batch
=
set_zero
(
context
.
device_context
(),
input_grad
,
static_cast
<
T
>
(
0
));
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
}
// filter of size (m, c * k_d * k_h * k_w)
if
(
filter_grad
)
{
// filter size (m, c * k_d * k_h * k_w)
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
// batch with size (m, d, h, w)
set_zero
(
context
.
device_context
(),
filter_grad
,
static_cast
<
T
>
(
0
));
Tensor
input_grad_batch
=
filter_grad_
=
*
filter_grad
;
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
filter_grad_
.
Resize
(
filter_matrix_shape
);
// vol2col: dy from (c, o_d, o_h, o_w) -> (c * k_d * k_h * k_w, d * h *
// w)
vol2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
// gemm: dx = filter * dy
// (m, c *k_d * k_h * k_w) * (c * k_d * k_h * k_w, d* h * w) -> (m, c,
// d, h, w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
col_matrix
,
false
,
T
(
1.0
),
&
input_grad_batch
,
T
(
0.0
));
}
}
}
// filter gradient required
for
(
int
i
=
0
;
i
<
batch_size
;
i
++
)
{
if
(
filter_grad
)
{
// batch with size (c, o_d * o_h * o_w)
Tensor
col_matrix_f
;
col_matrix_f
.
ShareDataWith
(
col
);
DDim
col_matrix_shape_f
=
{
c
*
d
*
h
*
w
,
k_d
*
k_h
*
k_w
};
col_matrix_f
.
Resize
(
col_matrix_shape_f
);
filter_grad
->
mutable_data
<
T
>
(
context
.
GetPlace
());
Tensor
filter_grad_
=
*
filter_grad
;
filter_grad_
.
Resize
(
filter_matrix_shape
);
auto
t
=
framework
::
EigenVector
<
T
>::
Flatten
(
filter_grad_
);
t
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
t
.
constant
(
static_cast
<
T
>
(
0
));
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
// batch with size (c, o_d, o_h, o_w)
Tensor
output_grad_batch
=
Tensor
output_grad_batch
=
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
output_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
output_shape
);
// input batch
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// vol2col: (c * d * h * w, k_d * k_h * k_w)
// vol2col: dy -> col_matrix
// from (c, o_d, o_h, o_w) to (c * k_d * k_h * k_w, d * h * w)
vol2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
vol2col
(
context
.
device_context
(),
output_grad_batch
,
col
,
strides
[
0
],
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
strides
[
1
],
strides
[
2
],
paddings
[
0
],
paddings
[
1
],
paddings
[
2
]);
// gemm: d_filter = x * y_grad^T
if
(
input_grad
)
{
// (m, c * d * h * w) * (k_d * k_h * k_w, c * d * h * w) -> (m, c, d, h,
// batch with size (m, d, h, w)
// w)
Tensor
input_grad_batch
=
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
input_grad
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
col_matrix_f
,
true
,
T
(
1.0
),
&
filter_grad_
,
// gemm: dx = filter * dy
T
(
1.0
));
// (m, c * k_d * k_h * k_w) * (c * k_d * k_h * k_w, d * h * w) -> (m,
// d, h, w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
filter
,
false
,
col_matrix
,
false
,
static_cast
<
T
>
(
1.0
),
&
input_grad_batch
,
static_cast
<
T
>
(
0.0
));
}
if
(
filter_grad
)
{
// input batch
Tensor
in_batch
=
input
->
Slice
(
i
,
i
+
1
).
Resize
(
input_matrix_shape
);
// gemm: d_filter = x * dy^T
// (m, d * h * w) * (d * h * w, c * k_d * k_h * k_w) -> (m, c * k_d *
// k_h * k_w)
math
::
matmul
<
Place
,
T
>
(
context
.
device_context
(),
in_batch
,
false
,
col_matrix
,
true
,
static_cast
<
T
>
(
1.0
),
&
filter_grad_
,
static_cast
<
T
>
(
1.0
));
}
}
}
}
}
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录