提交 822496f6 编写于 作者: T tangwei12

merge cpu and gpu

上级 9f09d686
......@@ -12,67 +12,13 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <algorithm>
#include <iostream>
#include <iterator>
#include <random>
#include <sstream>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/sampling_id_op.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class SamplingIdKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("X");
const int batch_size = static_cast<int>(input->dims()[0]);
const int width = static_cast<int>(input->dims()[1]);
PADDLE_ENFORCE_GE(batch_size, 0,
"batch_size(dims[0]) must be nonnegative.");
PADDLE_ENFORCE_GE(width, 0, "width(dims[1]) must be nonnegative.");
std::vector<T> ins_vector;
framework::TensorToVector(*input, context.device_context(), &ins_vector);
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::uniform_real_distribution<T> dist(
static_cast<T>(context.Attr<float>("min")),
static_cast<T>(context.Attr<float>("max")));
std::vector<T> ids(batch_size);
for (size_t i = 0; i < batch_size; ++i) {
T r = dist(engine);
int idx = width - 1;
for (int j = 0; j < width; ++j) {
if ((r -= ins_vector[i * width + j]) < 0) {
idx = j;
break;
}
}
ids[i] = ins_vector[i * width + idx];
}
std::vector<int64_t> out_dim;
out_dim.push_back(static_cast<int64_t>(batch_size));
Tensor* output = context.Output<Tensor>("Out");
output->Resize(framework::make_ddim(out_dim));
output->mutable_data<T>(context.GetPlace());
framework::TensorFromVector(ids, context.device_context(), output);
}
};
class SamplingIdOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
......
......@@ -11,83 +11,9 @@
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include <thrust/random.h>
#include <thrust/transform.h>
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
template <typename T>
struct UniformGenerator {
T min_, max_;
unsigned int seed_;
#include "paddle/fluid/operators/sampling_id_op.h"
__host__ __device__ UniformGenerator(T min, T max, int seed)
: min_(min), max_(max), seed_(seed) {}
__host__ __device__ T operator()(const unsigned int n) const {
thrust::minstd_rand rng;
rng.seed(seed_);
thrust::uniform_real_distribution<T> dist(min_, max_);
rng.discard(n);
return dist(rng);
}
};
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class SamplingIdGPUKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("X");
const int batch_size = static_cast<int>(input->dims()[0]);
const int width = static_cast<int>(input->dims()[1]);
PADDLE_ENFORCE_GE(batch_size, 0,
"batch_size(dims[0]) must be nonnegative.");
PADDLE_ENFORCE_GE(width, 0, "width(dims[1]) must be nonnegative.");
std::vector<T> ins_vector;
framework::TensorToVector(*input, context.device_context(), &ins_vector);
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
if (seed == 0) {
std::random_device rd;
seed = rd();
}
T min = static_cast<T>(context.Attr<float>("min"));
T max = static_cast<T>(context.Attr<float>("max"));
UniformGenerator<T> gen = UniformGenerator<T>(min, max, seed);
std::vector<T> ids(batch_size);
for (size_t i = 0; i < batch_size; ++i) {
T r = gen(0);
int idx = width - 1;
for (int j = 0; j < width; ++j) {
if ((r -= ins_vector[i * width + j]) < 0) {
idx = j;
break;
}
}
ids[i] = ins_vector[i * width + idx];
}
std::vector<int64_t> out_dim;
out_dim.push_back(static_cast<int64_t>(batch_size));
Tensor* output = context.Output<Tensor>("Out");
output->Resize(framework::make_ddim(out_dim));
output->mutable_data<T>(context.GetPlace());
framework::TensorFromVector(ids, context.device_context(), output);
}
};
} // namespace operators
} // namespace paddle
REGISTER_OP_CUDA_KERNEL(sampling_id,
paddle::operators::SamplingIdGPUKernel<float>,
paddle::operators::SamplingIdGPUKernel<double>);
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(sampling_id, paddle::operators::SamplingIdKernel<float>,
paddle::operators::SamplingIdKernel<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <algorithm>
#include <iostream>
#include <iterator>
#include <random>
#include <sstream>
#include <vector>
#include "paddle/fluid/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
template <typename T>
class SamplingIdKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
const Tensor* input = context.Input<Tensor>("X");
const int batch_size = static_cast<int>(input->dims()[0]);
const int width = static_cast<int>(input->dims()[1]);
PADDLE_ENFORCE_GE(batch_size, 0,
"batch_size(dims[0]) must be nonnegative.");
PADDLE_ENFORCE_GE(width, 0, "width(dims[1]) must be nonnegative.");
std::vector<T> ins_vector;
framework::TensorToVector(*input, context.device_context(), &ins_vector);
unsigned int seed = static_cast<unsigned int>(context.Attr<int>("seed"));
std::minstd_rand engine;
if (seed == 0) {
seed = std::random_device()();
}
engine.seed(seed);
std::uniform_real_distribution<T> dist(
static_cast<T>(context.Attr<float>("min")),
static_cast<T>(context.Attr<float>("max")));
std::vector<T> ids(batch_size);
for (size_t i = 0; i < batch_size; ++i) {
T r = dist(engine);
int idx = width - 1;
for (int j = 0; j < width; ++j) {
if ((r -= ins_vector[i * width + j]) < 0) {
idx = j;
break;
}
}
ids[i] = ins_vector[i * width + idx];
}
std::vector<int64_t> out_dim;
out_dim.push_back(static_cast<int64_t>(batch_size));
Tensor* output = context.Output<Tensor>("Out");
output->Resize(framework::make_ddim(out_dim));
output->mutable_data<T>(context.GetPlace());
framework::TensorFromVector(ids, context.device_context(), output);
}
};
} // namespace operators
} // namespace paddle
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册