diff --git a/configs/face_detection/README.md b/configs/face_detection/README.md index a2154891bd32b6670eb2e042a7e2a47059a0453b..8b9c1ec59e933cc5168ff821cf36a7002aed1581 100644 --- a/configs/face_detection/README.md +++ b/configs/face_detection/README.md @@ -217,7 +217,7 @@ EvalReader: ... dataset: dataset_dir: dataset/fddb - annotation: FDDB-folds/fddb_annotFile.txt + anno_path: FDDB-folds/fddb_annotFile.txt ... ``` 评估并生成结果文件: diff --git a/configs/face_detection/README_en.md b/configs/face_detection/README_en.md index 43020612659e600c7b607e5dd22ff4b14191b7e2..412086890fc992c6a6b09d49fe63c969cd3e430f 100644 --- a/configs/face_detection/README_en.md +++ b/configs/face_detection/README_en.md @@ -234,7 +234,7 @@ EvalReader: ... dataset: dataset_dir: dataset/fddb - annotation: FDDB-folds/fddb_annotFile.txt + anno_path: FDDB-folds/fddb_annotFile.txt ... ``` Evaluate and generate results files: diff --git a/configs/face_detection/blazeface.yml b/configs/face_detection/blazeface.yml index ee382ac2239e22f93a957147d953dde24d7dab74..53c6c993a208891fbbeaaf29da9071186468a1a1 100644 --- a/configs/face_detection/blazeface.yml +++ b/configs/face_detection/blazeface.yml @@ -81,6 +81,7 @@ TrainReader: std: [127.502231, 127.502231, 127.502231] batch_size: 8 use_process: true + worker_num: 8 shuffle: true EvalReader: diff --git a/configs/face_detection/blazeface_nas.yml b/configs/face_detection/blazeface_nas.yml index 7739bf9da7fa8658f6a5642913162a55d5b8f660..b0d3d23b43b263445565865b3bc5965a670d1d75 100644 --- a/configs/face_detection/blazeface_nas.yml +++ b/configs/face_detection/blazeface_nas.yml @@ -83,6 +83,7 @@ TrainReader: std: [127.502231, 127.502231, 127.502231] batch_size: 8 use_process: true + worker_num: 8 shuffle: true EvalReader: diff --git a/configs/face_detection/faceboxes.yml b/configs/face_detection/faceboxes.yml index 7d9b1c940c0540d1c2d382601548485ab7ca0a8a..22636614618e68836959c602ea7c57d10fdfa09b 100644 --- a/configs/face_detection/faceboxes.yml +++ b/configs/face_detection/faceboxes.yml @@ -43,6 +43,7 @@ OptimizerBuilder: TrainReader: batch_size: 8 use_process: True + worker_num: 8 shuffle: true inputs_def: image_shape: [3, 640, 640] diff --git a/configs/face_detection/faceboxes_lite.yml b/configs/face_detection/faceboxes_lite.yml index 5878259948b683746bcfc2e3a9ba782ac3e1d906..1f126de6991a737ca96058d9e76e0e5798405327 100644 --- a/configs/face_detection/faceboxes_lite.yml +++ b/configs/face_detection/faceboxes_lite.yml @@ -43,6 +43,7 @@ OptimizerBuilder: TrainReader: batch_size: 8 use_process: True + worker_num: 8 shuffle: true inputs_def: image_shape: [3, 640, 640] diff --git a/configs/ssd/ssd_vgg16_300_voc.yml b/configs/ssd/ssd_vgg16_300_voc.yml index 4ce91f2c36870938f3cefe2793e15228737b36dd..75944286c4662f599d2166db7c8a1134c81ffc04 100644 --- a/configs/ssd/ssd_vgg16_300_voc.yml +++ b/configs/ssd/ssd_vgg16_300_voc.yml @@ -94,7 +94,7 @@ TrainReader: shuffle: true worker_num: 8 bufsize: 32 - use_process: 8 + use_process: true EvalReader: inputs_def: diff --git a/configs/ssd/ssd_vgg16_512.yml b/configs/ssd/ssd_vgg16_512.yml index 9dabca2555437a76cc2e50172ef3de6568f280d0..9e037cc2df545381378280d950d221123dc8d44e 100644 --- a/configs/ssd/ssd_vgg16_512.yml +++ b/configs/ssd/ssd_vgg16_512.yml @@ -97,7 +97,7 @@ TrainReader: shuffle: true worker_num: 8 bufsize: 32 - use_process: 8 + use_process: true EvalReader: inputs_def: diff --git a/configs/ssd/ssd_vgg16_512_voc.yml b/configs/ssd/ssd_vgg16_512_voc.yml index 1fd12a2f14f7807f35911dc826c9215353f590af..dc567de7c86e1abff93d9e830ab13b02e22e4e3e 100644 --- a/configs/ssd/ssd_vgg16_512_voc.yml +++ b/configs/ssd/ssd_vgg16_512_voc.yml @@ -98,7 +98,7 @@ TrainReader: shuffle: true worker_num: 8 bufsize: 32 - use_process: 8 + use_process: true EvalReader: inputs_def: diff --git a/dataset/fddb/download.sh b/dataset/fddb/download.sh index 9cb36a1737d7c02268efb0d70dca99705a77280a..29375d791269d684a99dc82e0ab5973d6ebdf267 100755 --- a/dataset/fddb/download.sh +++ b/dataset/fddb/download.sh @@ -14,7 +14,7 @@ cd "$DIR" # Download the data. echo "Downloading..." # external link to the Faces in the Wild data set and annotations file -#wget http://tamaraberg.com/faceDataset/originalPics.tar.gz +wget http://tamaraberg.com/faceDataset/originalPics.tar.gz wget http://vis-www.cs.umass.edu/fddb/FDDB-folds.tgz wget http://vis-www.cs.umass.edu/fddb/evaluation.tgz diff --git a/slim/nas/README.md b/slim/nas/README.md new file mode 100644 index 0000000000000000000000000000000000000000..51f164a8180a17f5349d87caffa5c07d4c8b5cf7 --- /dev/null +++ b/slim/nas/README.md @@ -0,0 +1,90 @@ +>运行该示例前请安装Paddle1.6或更高版本 + +# 检测模型神经网络搜索(NAS)示例 + +## 概述 + +我们选取人脸检测的BlazeFace模型作为神经网络搜索示例,该示例使用[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim) +辅助完成神经网络搜索实验,具体技术细节,请您参考[神经网络搜索策略](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/docs/tutorials/nas_demo.md)。 + + +## 定义搜索空间 +在BlazeFace模型的搜索实验中,我们采用了SANAS的方式进行搜索,本次实验会对网络模型中的通道数和卷积核尺寸进行搜索。 +所以我们定义了如下搜索空间: +- 初始化通道模块`blaze_filter_num1`:定义了BlazeFace第一个模块中通道数变化区间,人为定义了较小的通道数区间; +- 单blaze模块`blaze_filter_num2`: 定义了BlazeFace单blaze模块中通道数变化区间,人为定义了适中的通道数区间; +- 过渡blaze模块`mid_filter_num`:定义了BlazeFace由单blaze模块到双blaze模块的过渡区间; +- 双blaze模块`double_filter_num`:定义了BlazeFace双blaze模块中通道数变化区间,人为定义了较大的通道数区间; +- 卷积核尺寸`use_5x5kernel`:定义了BlazeFace中卷积和尺寸大小是3x3或者5x5。 + +根据定义的搜索空间各个区间,我们的搜索空间tokens共9位,变化区间在([0, 0, 0, 0, 0, 0, 0, 0, 0], [7, 9, 12, 12, 6, 6, 6, 6, 2])范围内。 + +9位tokens分别表示: + +- tokens[0]:初始化通道数 = blaze_filter_num1[tokens[0]] +- tokens[1]:单blaze模块通道数 = blaze_filter_num2[tokens[1]] +- tokens[2]-tokens[3]:双blaze模块起始通道数 = double_filter_num[tokens[2/3]] +- tokens[4]-tokens[7]:过渡blaze模块通道数 = [tokens[4/5/6/7]] +- tokens[8]:卷积核尺寸使用5x5 = True if use_5x5kernel[tokens[8]] else False + +我们人为定义三个单blaze模块与4个双blaze模块,定义规则如下: +``` +blaze_filters = [[self.blaze_filter_num1[tokens[0]], self.blaze_filter_num1[tokens[0]]], + [self.blaze_filter_num1[tokens[0]], self.blaze_filter_num2[tokens[1]], 2], + [self.blaze_filter_num2[tokens[1]], self.blaze_filter_num2[tokens[1]]]] + +double_blaze_filters = [ + [self.blaze_filter_num2[tokens[1]], self.mid_filter_num[tokens[4]], self.double_filter_num[tokens[2]], 2], + [self.double_filter_num[tokens[2]], self.mid_filter_num[tokens[5]], self.double_filter_num[tokens[2]]], + [self.double_filter_num[tokens[2]], self.mid_filter_num[tokens[6]], self.double_filter_num[tokens[3]], 2], + [self.double_filter_num[tokens[3]], self.mid_filter_num[tokens[7]], self.double_filter_num[tokens[3]]]] +``` +blaze_filters与double_blaze_filters字段请参考[blazenet.py](../../ppdet/modeling/backbones/blazenet.py)中定义。 + +初始化tokens为:[2, 1, 3, 8, 2, 1, 2, 1, 1]。 + +## 开始搜索 +首先需要安装PaddleSlim,请参考[安装教程](https://paddlepaddle.github.io/PaddleSlim/#_2)。 + +然后进入 `slim/nas`目录中,修改blazeface.yml配置,配置文件中搜索配置字段含义请参考[NAS-API文档](https://github.com/PaddlePaddle/PaddleSlim/blob/develop/docs/docs/api/nas_api.md), +然后开始搜索实验: +``` +cd slim/nas +python -u train_nas.py -c blazeface.yml +``` +**注意:** + +搜索过程中为了加速,在`blazeface.yml`中去掉了数据预处理`CropImageWithDataAchorSampling`的操作。 + +训练完成后会获得最佳tokens,以及对应的`BlazeFace-NAS`的网络结构: +``` +------------->>> BlazeFace-NAS structure start: <<<---------------- +BlazeNet: + blaze_filters: XXX + double_blaze_filters: XXX + use_5x5kernel: XXX + with_extra_blocks: XXX + lite_edition: XXX +-------------->>> BlazeFace-NAS structure end! <<<----------------- +``` + +## 训练、评估与预测 +- (1)修改配置文件: + +根据搜索得到的`BlazeFace-NAS`的网络结构修改`blazeface.yml`中的`BlazeNet`模块。 + +- (2)训练、评估与预测: + +启动完整的训练评估实验,可参考PaddleDetection的[训练、评估与预测流程](../../docs/GETTING_STARTED_cn.md) + +## 实验结果 +请参考[人脸检测模型库](../../configs/face_detection/README.md#模型库与基线)中BlazeFace-NAS的实验结果。 + +## FAQ +- 运行报错:`socket.error: [Errno 98] Address already in use`。 + +解决方法:当前端口被占用,请修改blazeface.yml中的`server_port`端口。 + +- 运行报错:`not enough space for reason[failed to malloc 601 pages...` + +解决方法:当前reader的共享存储队列空间不足,请增大blazeface.yml中的`memsize`。 diff --git a/slim/nas/blazeface.yml b/slim/nas/blazeface.yml new file mode 100644 index 0000000000000000000000000000000000000000..486d7a7349f7b85d1117f257a1e6e852bb2e0e45 --- /dev/null +++ b/slim/nas/blazeface.yml @@ -0,0 +1,88 @@ +architecture: BlazeFace +max_iters: 5000 +use_gpu: true +log_smooth_window: 20 +log_iter: 20 +metric: WIDERFACE +save_dir: nas_checkpoint +# 1(label_class) + 1(background) +num_classes: 2 + +# nas config +reduce_rate: 0.85 +init_temperature: 10.24 +is_server: true +max_flops: 531558400 +search_steps: 300 +server_ip: "" +server_port: 8999 +search_space: BlazeFaceNasSpace + +LearningRate: + base_lr: 0.001 + schedulers: + - !PiecewiseDecay + gamma: 0.1 + milestones: [240000, 300000] + +OptimizerBuilder: + optimizer: + momentum: 0.0 + type: RMSPropOptimizer + regularizer: + factor: 0.0005 + type: L2 + +TrainReader: + inputs_def: + image_shape: [3, 640, 640] + fields: ['image', 'gt_bbox', 'gt_class'] + dataset: + !WIDERFaceDataSet + dataset_dir: dataset/wider_face + anno_path: wider_face_split/wider_face_train_bbx_gt.txt + image_dir: WIDER_train/images + sample_transforms: + - !DecodeImage + to_rgb: true + - !NormalizeBox {} + - !RandomDistort + brightness_lower: 0.875 + brightness_upper: 1.125 + is_order: true + - !ExpandImage + max_ratio: 4 + prob: 0.5 + - !RandomInterpImage + target_size: 640 + - !RandomFlipImage + is_normalized: true + - !Permute {} + - !NormalizeImage + is_scale: false + mean: [104, 117, 123] + std: [127.502231, 127.502231, 127.502231] + batch_size: 8 + use_process: True + worker_num: 8 + shuffle: true + memsize: 6G + +EvalReader: + inputs_def: + fields: ['image', 'im_id', 'im_shape', 'gt_bbox'] + dataset: + !WIDERFaceDataSet + dataset_dir: dataset/wider_face + anno_path: wider_face_split/wider_face_val_bbx_gt.txt + image_dir: WIDER_val/images + sample_transforms: + - !DecodeImage + to_rgb: true + - !NormalizeBox {} + - !Permute {} + - !NormalizeImage + is_scale: false + mean: [104, 117, 123] + std: [127.502231, 127.502231, 127.502231] + batch_size: 1 diff --git a/slim/nas/search_space/__init__.py b/slim/nas/search_space/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..4e42eadfa010e686b94069c649b1c54a74aabca0 --- /dev/null +++ b/slim/nas/search_space/__init__.py @@ -0,0 +1,3 @@ +from .blazefacespace_nas import BlazeFaceNasSpace + +__all__ = ['BlazeFaceNasSpace'] diff --git a/slim/nas/search_space/blazefacespace_nas.py b/slim/nas/search_space/blazefacespace_nas.py new file mode 100644 index 0000000000000000000000000000000000000000..342a2c8129aa968007f5a14779f7d737aaa40398 --- /dev/null +++ b/slim/nas/search_space/blazefacespace_nas.py @@ -0,0 +1,115 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License" +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import numpy as np +import paddle.fluid as fluid +from paddle.fluid.param_attr import ParamAttr +from paddleslim.nas.search_space.search_space_base import SearchSpaceBase +from paddleslim.nas.search_space.search_space_registry import SEARCHSPACE +from ppdet.modeling.backbones.blazenet import BlazeNet +from ppdet.modeling.architectures.blazeface import BlazeFace + + +@SEARCHSPACE.register +class BlazeFaceNasSpace(SearchSpaceBase): + def __init__(self, input_size, output_size, block_num, block_mask): + super(BlazeFaceNasSpace, self).__init__(input_size, output_size, + block_num, block_mask) + self.blaze_filter_num1 = np.array([4, 8, 12, 16, 20, 24, 32]) + self.blaze_filter_num2 = np.array([8, 12, 16, 20, 24, 32, 40, 48, 64]) + self.mid_filter_num = np.array([8, 12, 16, 20, 24, 32]) + self.double_filter_num = np.array( + [8, 12, 16, 24, 32, 40, 48, 64, 72, 80, 88, 96]) + self.use_5x5kernel = np.array([0, 1]) + + def init_tokens(self): + return [2, 1, 3, 8, 2, 1, 2, 1, 1] + + def range_table(self): + return [ + len(self.blaze_filter_num1), len(self.blaze_filter_num2), + len(self.double_filter_num), len(self.double_filter_num), + len(self.mid_filter_num), len(self.mid_filter_num), + len(self.mid_filter_num), len(self.mid_filter_num), + len(self.use_5x5kernel) + ] + + def get_nas_cnf(self, tokens=None): + if tokens is None: + tokens = self.init_tokens() + + blaze_filters = [[ + self.blaze_filter_num1[tokens[0]], self.blaze_filter_num1[tokens[0]] + ], [ + self.blaze_filter_num1[tokens[0]], + self.blaze_filter_num2[tokens[1]], 2 + ], [ + self.blaze_filter_num2[tokens[1]], self.blaze_filter_num2[tokens[1]] + ]] + + double_blaze_filters = [[ + self.blaze_filter_num2[tokens[1]], self.mid_filter_num[tokens[4]], + self.double_filter_num[tokens[2]], 2 + ], [ + self.double_filter_num[tokens[2]], self.mid_filter_num[tokens[5]], + self.double_filter_num[tokens[2]] + ], [ + self.double_filter_num[tokens[2]], self.mid_filter_num[tokens[6]], + self.double_filter_num[tokens[3]], 2 + ], [ + self.double_filter_num[tokens[3]], self.mid_filter_num[tokens[7]], + self.double_filter_num[tokens[3]] + ]] + + is_5x5kernel = True if self.use_5x5kernel[tokens[8]] else False + return blaze_filters, double_blaze_filters, is_5x5kernel + + def token2arch(self, tokens=None): + + blaze_filters, double_blaze_filters, is_5x5kernel = self.get_nas_cnf( + tokens) + self.print_nas_structure(tokens) + + def net_arch(input, mode, cfg): + self.output_decoder = cfg.BlazeFace['output_decoder'] + self.min_sizes = cfg.BlazeFace['min_sizes'] + self.use_density_prior_box = cfg.BlazeFace['use_density_prior_box'] + + my_backbone = BlazeNet( + blaze_filters=blaze_filters, + double_blaze_filters=double_blaze_filters, + use_5x5kernel=is_5x5kernel) + my_blazeface = BlazeFace( + my_backbone, + output_decoder=self.output_decoder, + min_sizes=self.min_sizes, + use_density_prior_box=self.use_density_prior_box) + return my_blazeface.build(input, mode=mode) + + return net_arch + + def print_nas_structure(self, tokens=None): + blaze_filters, double_filters, is_5x5kernel = self.get_nas_cnf(tokens) + print('---------->>> BlazeFace-NAS structure start: <<<------------') + print('BlazeNet:') + print(' blaze_filters: {}'.format(blaze_filters)) + print(' double_blaze_filters: {}'.format(double_filters)) + print(' use_5x5kernel: {}'.format(is_5x5kernel)) + print(' with_extra_blocks: true') + print(' lite_edition: false') + print('---------->>> BlazeFace-NAS structure end! <<<------------') diff --git a/slim/nas/train_nas.py b/slim/nas/train_nas.py new file mode 100644 index 0000000000000000000000000000000000000000..b3c41ef5686df517e447ffbb77c83c372d2f6d98 --- /dev/null +++ b/slim/nas/train_nas.py @@ -0,0 +1,378 @@ +# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +from __future__ import absolute_import +from __future__ import division +from __future__ import print_function + +import os +import time +import numpy as np +import datetime +from collections import deque + + +def set_paddle_flags(**kwargs): + for key, value in kwargs.items(): + if os.environ.get(key, None) is None: + os.environ[key] = str(value) + + +# NOTE(paddle-dev): All of these flags should be set before +# `import paddle`. Otherwise, it would not take any effect. +set_paddle_flags( + FLAGS_eager_delete_tensor_gb=0, # enable GC to save memory +) + +from paddle import fluid +import sys + +sys.path.append("../../") +from ppdet.experimental import mixed_precision_context +from ppdet.core.workspace import load_config, merge_config, create +from ppdet.data.reader import create_reader + +from ppdet.utils import dist_utils +from ppdet.utils.eval_utils import parse_fetches, eval_run +from ppdet.utils.stats import TrainingStats +from ppdet.utils.cli import ArgsParser +from ppdet.utils.check import check_gpu, check_version +import ppdet.utils.checkpoint as checkpoint +from paddleslim.analysis import flops +from paddleslim.nas import SANAS +import search_space + +import logging +FORMAT = '%(asctime)s-%(levelname)s: %(message)s' +logging.basicConfig(level=logging.INFO, format=FORMAT) +logger = logging.getLogger(__name__) + + +def get_bboxes_scores(result): + bboxes = result['bbox'][0] + gt_bbox = result['gt_bbox'][0] + bbox_lengths = result['bbox'][1][0] + gt_lengths = result['gt_bbox'][1][0] + bbox_list = [] + gt_box_list = [] + for i in range(len(bbox_lengths)): + num = bbox_lengths[i] + for j in range(num): + dt = bboxes[j] + clsid, score, xmin, ymin, xmax, ymax = dt.tolist() + im_shape = result['im_shape'][0][i].tolist() + im_height, im_width = int(im_shape[0]), int(im_shape[1]) + xmin *= im_width + ymin *= im_height + xmax *= im_width + ymax *= im_height + bbox_list.append([xmin, ymin, xmax, ymax, score]) + faces_num_gt = 0 + for i in range(len(gt_lengths)): + num = gt_lengths[i] + for j in range(num): + gt = gt_bbox[j] + xmin, ymin, xmax, ymax = gt.tolist() + im_shape = result['im_shape'][0][i].tolist() + im_height, im_width = int(im_shape[0]), int(im_shape[1]) + xmin *= im_width + ymin *= im_height + xmax *= im_width + ymax *= im_height + gt_box_list.append([xmin, ymin, xmax, ymax]) + faces_num_gt += 1 + return gt_box_list, bbox_list, faces_num_gt + + +def calculate_ap_py(results): + def cal_iou(rect1, rect2): + lt_x = max(rect1[0], rect2[0]) + lt_y = max(rect1[1], rect2[1]) + rb_x = min(rect1[2], rect2[2]) + rb_y = min(rect1[3], rect2[3]) + if (rb_x > lt_x) and (rb_y > lt_y): + intersection = (rb_x - lt_x) * (rb_y - lt_y) + else: + return 0 + + area1 = (rect1[2] - rect1[0]) * (rect1[3] - rect1[1]) + area2 = (rect2[2] - rect2[0]) * (rect2[3] - rect2[1]) + + intersection = min(intersection, area1, area2) + union = area1 + area2 - intersection + return float(intersection) / union + + def is_same_face(face_gt, face_pred): + iou = cal_iou(face_gt, face_pred) + return iou >= 0.5 + + def eval_single_image(faces_gt, faces_pred): + pred_is_true = [False] * len(faces_pred) + gt_been_pred = [False] * len(faces_gt) + for i in range(len(faces_pred)): + isface = False + for j in range(len(faces_gt)): + if gt_been_pred[j] == 0: + isface = is_same_face(faces_gt[j], faces_pred[i]) + if isface == 1: + gt_been_pred[j] = True + break + pred_is_true[i] = isface + return pred_is_true + + score_res_pair = {} + faces_num_gt = 0 + for t in results: + gt_box_list, bbox_list, face_num_gt = get_bboxes_scores(t) + faces_num_gt += face_num_gt + pred_is_true = eval_single_image(gt_box_list, bbox_list) + + for i in range(0, len(pred_is_true)): + now_score = bbox_list[i][-1] + if now_score in score_res_pair: + score_res_pair[now_score].append(int(pred_is_true[i])) + else: + score_res_pair[now_score] = [int(pred_is_true[i])] + keys = score_res_pair.keys() + keys = sorted(keys, reverse=True) + tp_num = 0 + predict_num = 0 + precision_list = [] + recall_list = [] + for i in range(len(keys)): + k = keys[i] + v = score_res_pair[k] + predict_num += len(v) + tp_num += sum(v) + recall = float(tp_num) / faces_num_gt + precision_list.append(float(tp_num) / predict_num) + recall_list.append(recall) + ap = precision_list[0] * recall_list[0] + for i in range(1, len(precision_list)): + ap += precision_list[i] * (recall_list[i] - recall_list[i - 1]) + return ap + + +def main(): + env = os.environ + FLAGS.dist = 'PADDLE_TRAINER_ID' in env and 'PADDLE_TRAINERS_NUM' in env + if FLAGS.dist: + trainer_id = int(env['PADDLE_TRAINER_ID']) + import random + local_seed = (99 + trainer_id) + random.seed(local_seed) + np.random.seed(local_seed) + + cfg = load_config(FLAGS.config) + if 'architecture' in cfg: + main_arch = cfg.architecture + else: + raise ValueError("'architecture' not specified in config file.") + + merge_config(FLAGS.opt) + + if 'log_iter' not in cfg: + cfg.log_iter = 20 + + # check if set use_gpu=True in paddlepaddle cpu version + check_gpu(cfg.use_gpu) + # check if paddlepaddle version is satisfied + check_version() + + if cfg.use_gpu: + devices_num = fluid.core.get_cuda_device_count() + else: + devices_num = int(os.environ.get('CPU_NUM', 1)) + + if 'FLAGS_selected_gpus' in env: + device_id = int(env['FLAGS_selected_gpus']) + else: + device_id = 0 + place = fluid.CUDAPlace(device_id) if cfg.use_gpu else fluid.CPUPlace() + exe = fluid.Executor(place) + + lr_builder = create('LearningRate') + optim_builder = create('OptimizerBuilder') + + # add NAS + config = ([(cfg.search_space)]) + server_address = (cfg.server_ip, cfg.server_port) + load_checkpoint = FLAGS.resume_checkpoint if FLAGS.resume_checkpoint else None + sa_nas = SANAS( + config, + server_addr=server_address, + init_temperature=cfg.init_temperature, + reduce_rate=cfg.reduce_rate, + search_steps=cfg.search_steps, + save_checkpoint=cfg.save_dir, + load_checkpoint=load_checkpoint, + is_server=cfg.is_server) + start_iter = 0 + train_reader = create_reader(cfg.TrainReader, (cfg.max_iters - start_iter) * + devices_num, cfg) + eval_reader = create_reader(cfg.EvalReader) + + for step in range(cfg.search_steps): + logger.info('----->>> search step: {} <<<------'.format(step)) + archs = sa_nas.next_archs()[0] + + # build program + startup_prog = fluid.Program() + train_prog = fluid.Program() + with fluid.program_guard(train_prog, startup_prog): + with fluid.unique_name.guard(): + model = create(main_arch) + if FLAGS.fp16: + assert (getattr(model.backbone, 'norm_type', None) + != 'affine_channel'), \ + '--fp16 currently does not support affine channel, ' \ + ' please modify backbone settings to use batch norm' + + with mixed_precision_context(FLAGS.loss_scale, + FLAGS.fp16) as ctx: + inputs_def = cfg['TrainReader']['inputs_def'] + feed_vars, train_loader = model.build_inputs(**inputs_def) + train_fetches = archs(feed_vars, 'train', cfg) + loss = train_fetches['loss'] + if FLAGS.fp16: + loss *= ctx.get_loss_scale_var() + lr = lr_builder() + optimizer = optim_builder(lr) + optimizer.minimize(loss) + if FLAGS.fp16: + loss /= ctx.get_loss_scale_var() + current_flops = flops(train_prog) + logger.info('current steps: {}, flops {}'.format(step, current_flops)) + if current_flops > cfg.max_flops: + continue + + # parse train fetches + train_keys, train_values, _ = parse_fetches(train_fetches) + train_values.append(lr) + + if FLAGS.eval: + eval_prog = fluid.Program() + with fluid.program_guard(eval_prog, startup_prog): + with fluid.unique_name.guard(): + model = create(main_arch) + inputs_def = cfg['EvalReader']['inputs_def'] + feed_vars, eval_loader = model.build_inputs(**inputs_def) + fetches = archs(feed_vars, 'eval', cfg) + eval_prog = eval_prog.clone(True) + + eval_loader.set_sample_list_generator(eval_reader, place) + extra_keys = ['im_id', 'im_shape', 'gt_bbox'] + eval_keys, eval_values, eval_cls = parse_fetches(fetches, eval_prog, + extra_keys) + + # compile program for multi-devices + build_strategy = fluid.BuildStrategy() + build_strategy.fuse_all_optimizer_ops = False + build_strategy.fuse_elewise_add_act_ops = True + + exec_strategy = fluid.ExecutionStrategy() + # iteration number when CompiledProgram tries to drop local execution scopes. + # Set it to be 1 to save memory usages, so that unused variables in + # local execution scopes can be deleted after each iteration. + exec_strategy.num_iteration_per_drop_scope = 1 + if FLAGS.dist: + dist_utils.prepare_for_multi_process(exe, build_strategy, + startup_prog, train_prog) + exec_strategy.num_threads = 1 + + exe.run(startup_prog) + compiled_train_prog = fluid.CompiledProgram( + train_prog).with_data_parallel( + loss_name=loss.name, + build_strategy=build_strategy, + exec_strategy=exec_strategy) + if FLAGS.eval: + compiled_eval_prog = fluid.compiler.CompiledProgram(eval_prog) + + train_loader.set_sample_list_generator(train_reader, place) + + train_stats = TrainingStats(cfg.log_smooth_window, train_keys) + train_loader.start() + end_time = time.time() + + cfg_name = os.path.basename(FLAGS.config).split('.')[0] + save_dir = os.path.join(cfg.save_dir, cfg_name) + time_stat = deque(maxlen=cfg.log_smooth_window) + ap = 0 + for it in range(start_iter, cfg.max_iters): + start_time = end_time + end_time = time.time() + time_stat.append(end_time - start_time) + time_cost = np.mean(time_stat) + eta_sec = (cfg.max_iters - it) * time_cost + eta = str(datetime.timedelta(seconds=int(eta_sec))) + outs = exe.run(compiled_train_prog, fetch_list=train_values) + stats = { + k: np.array(v).mean() + for k, v in zip(train_keys, outs[:-1]) + } + + train_stats.update(stats) + logs = train_stats.log() + if it % cfg.log_iter == 0 and (not FLAGS.dist or trainer_id == 0): + strs = 'iter: {}, lr: {:.6f}, {}, time: {:.3f}, eta: {}'.format( + it, np.mean(outs[-1]), logs, time_cost, eta) + logger.info(strs) + + if (it > 0 and it == cfg.max_iters - 1) and (not FLAGS.dist or + trainer_id == 0): + save_name = str( + it) if it != cfg.max_iters - 1 else "model_final" + checkpoint.save(exe, train_prog, + os.path.join(save_dir, save_name)) + if FLAGS.eval: + # evaluation + results = eval_run(exe, compiled_eval_prog, eval_loader, + eval_keys, eval_values, eval_cls) + ap = calculate_ap_py(results) + + train_loader.reset() + eval_loader.reset() + logger.info('rewards: ap is {}'.format(ap)) + sa_nas.reward(float(ap)) + current_best_tokens = sa_nas.current_info()['best_tokens'] + logger.info("All steps end, the best BlazeFace-NAS structure is: ") + sa_nas.tokens2arch(current_best_tokens) + + +if __name__ == '__main__': + parser = ArgsParser() + parser.add_argument( + "-r", + "--resume_checkpoint", + default=None, + type=str, + help="Checkpoint path for resuming training.") + parser.add_argument( + "--fp16", + action='store_true', + default=False, + help="Enable mixed precision training.") + parser.add_argument( + "--loss_scale", + default=8., + type=float, + help="Mixed precision training loss scale.") + parser.add_argument( + "--eval", + action='store_true', + default=True, + help="Whether to perform evaluation in train") + FLAGS = parser.parse_args() + main() diff --git a/tools/face_eval.py b/tools/face_eval.py index 52a4557a819b868771fd45cf771908d86a30a696..09580cfe3db2769e00bd2e296623e16308e04c2a 100644 --- a/tools/face_eval.py +++ b/tools/face_eval.py @@ -249,7 +249,9 @@ def main(): annotation_file = dataset.get_anno() dataset_dir = dataset.dataset_dir - image_dir = dataset.image_dir + image_dir = os.path.join( + dataset_dir, + dataset.image_dir) if FLAGS.eval_mode == 'widerface' else dataset_dir pred_dir = FLAGS.output_eval if FLAGS.output_eval else 'output/pred' face_eval_run(