Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
8202e25d
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
1 年多 前同步成功
通知
696
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
8202e25d
编写于
6月 21, 2019
作者:
N
nhzlx
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'incubate/lite' of
http://10.87.145.36/inference/paddlelite
into xzl/incubate/lite
上级
f4cc504f
dfbc4b50
变更
33
隐藏空白更改
内联
并排
Showing
33 changed file
with
932 addition
and
685 deletion
+932
-685
.gitlab-ci.yml
.gitlab-ci.yml
+81
-3
CMakeLists.txt
CMakeLists.txt
+10
-9
paddle/fluid/lite/CMakeLists.txt
paddle/fluid/lite/CMakeLists.txt
+4
-1
paddle/fluid/lite/api/CMakeLists.txt
paddle/fluid/lite/api/CMakeLists.txt
+28
-15
paddle/fluid/lite/api/cxx_api_test.cc
paddle/fluid/lite/api/cxx_api_test.cc
+0
-35
paddle/fluid/lite/api/inceptionv4_test.cc
paddle/fluid/lite/api/inceptionv4_test.cc
+65
-0
paddle/fluid/lite/api/mobilenetv1_test.cc
paddle/fluid/lite/api/mobilenetv1_test.cc
+64
-0
paddle/fluid/lite/api/mobilenetv2_test.cc
paddle/fluid/lite/api/mobilenetv2_test.cc
+63
-0
paddle/fluid/lite/api/resnet50_test.cc
paddle/fluid/lite/api/resnet50_test.cc
+64
-0
paddle/fluid/lite/arm/math/CMakeLists.txt
paddle/fluid/lite/arm/math/CMakeLists.txt
+1
-1
paddle/fluid/lite/arm/math/type_trans.cpp
paddle/fluid/lite/arm/math/type_trans.cpp
+0
-579
paddle/fluid/lite/core/mir/CMakeLists.txt
paddle/fluid/lite/core/mir/CMakeLists.txt
+5
-2
paddle/fluid/lite/kernels/arm/CMakeLists.txt
paddle/fluid/lite/kernels/arm/CMakeLists.txt
+2
-0
paddle/fluid/lite/kernels/arm/calib_compute.cc
paddle/fluid/lite/kernels/arm/calib_compute.cc
+57
-0
paddle/fluid/lite/kernels/arm/calib_compute.h
paddle/fluid/lite/kernels/arm/calib_compute.h
+38
-0
paddle/fluid/lite/kernels/arm/calib_compute_test.cc
paddle/fluid/lite/kernels/arm/calib_compute_test.cc
+149
-0
paddle/fluid/lite/kernels/arm/dropout_compute.cc
paddle/fluid/lite/kernels/arm/dropout_compute.cc
+1
-0
paddle/fluid/lite/kernels/use_kernels.h
paddle/fluid/lite/kernels/use_kernels.h
+2
-0
paddle/fluid/lite/kernels/x86/relu_compute.h
paddle/fluid/lite/kernels/x86/relu_compute.h
+4
-4
paddle/fluid/lite/kernels/x86/relu_compute_test.cc
paddle/fluid/lite/kernels/x86/relu_compute_test.cc
+3
-3
paddle/fluid/lite/operators/CMakeLists.txt
paddle/fluid/lite/operators/CMakeLists.txt
+3
-0
paddle/fluid/lite/operators/calib_op.cc
paddle/fluid/lite/operators/calib_op.cc
+56
-0
paddle/fluid/lite/operators/calib_op.h
paddle/fluid/lite/operators/calib_op.h
+59
-0
paddle/fluid/lite/operators/calib_op_test.cc
paddle/fluid/lite/operators/calib_op_test.cc
+64
-0
paddle/fluid/lite/operators/dropout_op.cc
paddle/fluid/lite/operators/dropout_op.cc
+7
-4
paddle/fluid/lite/operators/elementwise_ops.h
paddle/fluid/lite/operators/elementwise_ops.h
+1
-0
paddle/fluid/lite/operators/fusion_elementwise_activation_ops.cc
...fluid/lite/operators/fusion_elementwise_activation_ops.cc
+44
-2
paddle/fluid/lite/operators/fusion_elementwise_activation_ops.h
.../fluid/lite/operators/fusion_elementwise_activation_ops.h
+16
-5
paddle/fluid/lite/operators/op_params.h
paddle/fluid/lite/operators/op_params.h
+8
-5
paddle/fluid/lite/operators/relu_op.cc
paddle/fluid/lite/operators/relu_op.cc
+8
-8
paddle/fluid/lite/operators/relu_op.h
paddle/fluid/lite/operators/relu_op.h
+1
-1
paddle/fluid/lite/operators/use_ops.h
paddle/fluid/lite/operators/use_ops.h
+1
-0
paddle/fluid/lite/tools/build.sh
paddle/fluid/lite/tools/build.sh
+23
-8
未找到文件。
.gitlab-ci.yml
浏览文件 @
8202e25d
...
...
@@ -114,6 +114,32 @@ build:mobile_armlinux:
-
$MOBILE_LITE_CACHE1
-
~/.ccache
build:mobile_model_mobilenetv1:
tags
:
-
lite
stage
:
build_mobile
image
:
$MOBILE_LITE_DOCKER_IMAGE
cache
:
key
:
mobile_thirdparty
paths
:
-
$MOBILE_LITE_CACHE0
-
$MOBILE_LITE_CACHE1
-
~/.ccache
script
:
-
export CCACHE_DIR=$CI_PROJECT_DIR/build_mobile_model_mobilenetv1
-
./paddle/fluid/lite/tools/build.sh build_test_arm_model_mobilenetv1
dependencies
:
-
build:server
cache
:
key
:
mobile_thirdparty
paths
:
-
$MOBILE_LITE_CACHE0
-
$MOBILE_LITE_CACHE1
-
~/.ccache
-
$CI_PROJECT_DIR/build_mobile_model_mobilenetv1
build:mobile_model_mobilenetv2:
tags
:
-
lite
...
...
@@ -126,8 +152,34 @@ build:mobile_model_mobilenetv2:
-
$MOBILE_LITE_CACHE1
-
~/.ccache
script
:
-
export CCACHE_DIR=$CI_PROJECT_DIR/build_mobile_model1
-
./paddle/fluid/lite/tools/build.sh build_test_arm_model1
-
export CCACHE_DIR=$CI_PROJECT_DIR/build_mobile_model_mobilenetv2
-
./paddle/fluid/lite/tools/build.sh build_test_arm_model_mobilenetv2
dependencies
:
-
build:server
cache
:
key
:
mobile_thirdparty
paths
:
-
$MOBILE_LITE_CACHE0
-
$MOBILE_LITE_CACHE1
-
~/.ccache
-
$CI_PROJECT_DIR/build_mobile_model_mobilenetv2
build:mobile_model_resnet50:
tags
:
-
lite
stage
:
build_mobile
image
:
$MOBILE_LITE_DOCKER_IMAGE
cache
:
key
:
mobile_thirdparty
paths
:
-
$MOBILE_LITE_CACHE0
-
$MOBILE_LITE_CACHE1
-
~/.ccache
script
:
-
export CCACHE_DIR=$CI_PROJECT_DIR/build_mobile_model_resnet50
-
./paddle/fluid/lite/tools/build.sh build_test_arm_model_resnet50
dependencies
:
-
build:server
...
...
@@ -138,4 +190,30 @@ build:mobile_model_mobilenetv2:
-
$MOBILE_LITE_CACHE0
-
$MOBILE_LITE_CACHE1
-
~/.ccache
-
$CI_PROJECT_DIR/build_mobile_model1
-
$CI_PROJECT_DIR/build_mobile_model_resnet50
#build:mobile_model_inceptionv4:
# tags:
# - lite
# stage: build_mobile
# image: $MOBILE_LITE_DOCKER_IMAGE
# cache:
# key: mobile_thirdparty
# paths:
# - $MOBILE_LITE_CACHE0
# - $MOBILE_LITE_CACHE1
# - ~/.ccache
# script:
# - export CCACHE_DIR=$CI_PROJECT_DIR/build_mobile_model_inceptionv4
# - ./paddle/fluid/lite/tools/build.sh build_test_arm_model_inceptionv4
#
# dependencies:
# - build:server
#
# cache:
# key: mobile_thirdparty
# paths:
# - $MOBILE_LITE_CACHE0
# - $MOBILE_LITE_CACHE1
# - ~/.ccache
# - $CI_PROJECT_DIR/build_mobile_model_inceptionv4
CMakeLists.txt
浏览文件 @
8202e25d
...
...
@@ -56,6 +56,16 @@ if(LITE_WITH_LIGHT_WEIGHT_FRAMEWORK)
include
(
cross_compiling/host
)
include
(
cross_compiling/armlinux
)
include
(
cross_compiling/android
)
if
(
NOT CMAKE_BUILD_TYPE
)
set
(
CMAKE_BUILD_TYPE
"Release"
CACHE STRING
"Default use Release in android"
FORCE
)
endif
()
if
(
NOT THIRD_PARTY_BUILD_TYPE
)
set
(
THIRD_PARTY_BUILD_TYPE
"MinSizeRel"
CACHE STRING
"Default use MinSizeRel in android"
FORCE
)
endif
()
endif
()
project
(
paddle CXX C
)
...
...
@@ -133,15 +143,6 @@ if(ANDROID OR IOS OR ARMLINUX)
"Disable RDMA when cross-compiling for Android and iOS"
FORCE
)
set
(
WITH_MKL OFF CACHE STRING
"Disable MKL when cross-compiling for Android and iOS"
FORCE
)
if
(
NOT CMAKE_BUILD_TYPE
)
set
(
CMAKE_BUILD_TYPE
"Release"
CACHE STRING
"Default use Release in android"
FORCE
)
endif
()
if
(
NOT THIRD_PARTY_BUILD_TYPE
)
set
(
THIRD_PARTY_BUILD_TYPE
"MinSizeRel"
CACHE STRING
"Default use MinSizeRel in android"
FORCE
)
endif
()
endif
()
# for lite, both server and mobile framework.
...
...
paddle/fluid/lite/CMakeLists.txt
浏览文件 @
8202e25d
...
...
@@ -190,6 +190,9 @@ add_subdirectory(gen_code)
if
(
WITH_TESTING
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"lite_naive_model.tar.gz"
)
if
(
LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2_relu.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v1.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"mobilenet_v2.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"resnet50.tar.gz"
)
lite_download_and_uncompress
(
${
LITE_MODEL_DIR
}
${
LITE_URL
}
"inception_v4.tar.gz"
)
endif
()
endif
()
paddle/fluid/lite/api/CMakeLists.txt
浏览文件 @
8202e25d
...
...
@@ -33,24 +33,37 @@ include(ExternalProject)
set
(
LITE_DEMO_INSTALL_DIR
"
${
THIRD_PARTY_PATH
}
/inference_demo"
CACHE STRING
"A path setting inference demo download directories."
)
if
(
WITH_TESTING
)
set
(
eval_model_dir
""
)
set
(
test_cxx_api_deps cxx_api_lite mir_passes
${
ops_lite
}
${
host_kernels
}
${
x86_kernels
}
)
if
(
LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
)
set
(
eval_model_dir
${
LITE_MODEL_DIR
}
/mobilenet_v2_relu
)
set
(
test_cxx_api_deps
${
test_cxx_api_deps
}
${
arm_kernels
}
)
endif
()
if
(
NOT LITE_WITH_LIGHT_WEIGHT_FRAMEWORK AND WITH_TESTING
)
lite_cc_test
(
test_cxx_api_lite SRCS cxx_api_test.cc
DEPS
${
test_cxx_api_deps
}
DEPS cxx_api_lite mir_passes
${
ops_lite
}
${
host_kernels
}
${
x86_kernels
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/lite_naive_model
--optimized_model=
${
LITE_MODEL_DIR
}
/lite_naive_model_opt
--eval_model_dir=eval_model_dir SERIAL
)
--optimized_model=
${
LITE_MODEL_DIR
}
/lite_naive_model_opt SERIAL
)
add_dependencies
(
test_cxx_api_lite extern_lite_download_lite_naive_model_tar_gz
)
if
(
LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
)
add_dependencies
(
test_cxx_api_lite extern_lite_download_mobilenet_v2_relu_tar_gz
)
endif
()
endif
()
if
(
LITE_WITH_LIGHT_WEIGHT_FRAMEWORK AND WITH_TESTING
)
set
(
lite_model_test_DEPS cxx_api_lite mir_passes
${
ops_lite
}
${
host_kernels
}
${
arm_kernels
}
)
lite_cc_test
(
test_mobilenetv1_lite SRCS mobilenetv1_test.cc
DEPS
${
lite_model_test_DEPS
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/mobilenet_v1 SERIAL
)
add_dependencies
(
test_mobilenetv1_lite extern_lite_download_mobilenet_v1_tar_gz
)
lite_cc_test
(
test_mobilenetv2_lite SRCS mobilenetv2_test.cc
DEPS
${
lite_model_test_DEPS
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/mobilenet_v2 SERIAL
)
add_dependencies
(
test_mobilenetv2_lite extern_lite_download_mobilenet_v2_tar_gz
)
lite_cc_test
(
test_resnet50_lite SRCS resnet50_test.cc
DEPS
${
lite_model_test_DEPS
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/resnet50 SERIAL
)
add_dependencies
(
test_resnet50_lite extern_lite_download_resnet50_tar_gz
)
lite_cc_test
(
test_inceptionv4_lite SRCS inceptionv4_test.cc
DEPS
${
lite_model_test_DEPS
}
ARGS --model_dir=
${
LITE_MODEL_DIR
}
/inception_v4 SERIAL
)
add_dependencies
(
test_inceptionv4_lite extern_lite_download_inception_v4_tar_gz
)
endif
()
# These tests needs CLI arguments, and is not supported in ARM CI.
...
...
paddle/fluid/lite/api/cxx_api_test.cc
浏览文件 @
8202e25d
...
...
@@ -27,9 +27,6 @@
DEFINE_string
(
startup_program_path
,
""
,
""
);
DEFINE_string
(
main_program_path
,
""
,
""
);
// for eval
DEFINE_string
(
eval_model_dir
,
""
,
""
);
namespace
paddle
{
namespace
lite
{
...
...
@@ -88,37 +85,5 @@ TEST(CXXApi, save_model) {
}*/
#endif // LITE_WITH_LIGHT_WEIGHT_FRAMEWORK
#ifdef LITE_WITH_ARM
TEST
(
CXXApi
,
eval
)
{
DeviceInfo
::
Init
();
lite
::
ExecutorLite
predictor
;
std
::
vector
<
Place
>
valid_places
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)},
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)}});
predictor
.
Build
(
FLAGS_eval_model_dir
,
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
valid_places
);
auto
*
input_tensor
=
predictor
.
GetInput
(
0
);
input_tensor
->
Resize
(
DDim
(
std
::
vector
<
DDim
::
value_type
>
({
1
,
3
,
224
,
224
})));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
input_tensor
->
dims
().
production
();
i
++
)
{
data
[
i
]
=
1
;
}
predictor
.
Run
();
auto
*
out
=
predictor
.
GetOutput
(
0
);
std
::
vector
<
float
>
results
({
0.00097802
,
0.00099822
,
0.00103093
,
0.00100121
,
0.00098268
,
0.00104065
,
0.00099962
,
0.00095181
,
0.00099694
,
0.00099406
});
for
(
int
i
=
0
;
i
<
results
.
size
();
++
i
)
{
EXPECT_NEAR
(
out
->
data
<
float
>
()[
i
],
results
[
i
],
1e-5
);
}
ASSERT_EQ
(
out
->
dims
().
size
(),
2
);
ASSERT_EQ
(
out
->
dims
()[
0
],
1
);
ASSERT_EQ
(
out
->
dims
()[
1
],
1000
);
}
#endif
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/api/inceptionv4_test.cc
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/core/mir/use_passes.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/kernels/use_kernels.h"
#include "paddle/fluid/lite/operators/use_ops.h"
// for eval
DEFINE_string
(
model_dir
,
""
,
""
);
namespace
paddle
{
namespace
lite
{
#ifdef LITE_WITH_ARM
TEST
(
InceptionV4
,
test
)
{
DeviceInfo
::
Init
();
lite
::
ExecutorLite
predictor
;
std
::
vector
<
Place
>
valid_places
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)},
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)}});
predictor
.
Build
(
FLAGS_model_dir
,
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
valid_places
);
auto
*
input_tensor
=
predictor
.
GetInput
(
0
);
input_tensor
->
Resize
(
DDim
(
std
::
vector
<
DDim
::
value_type
>
({
1
,
3
,
224
,
224
})));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
input_tensor
->
dims
().
production
();
i
++
)
{
data
[
i
]
=
1
;
}
predictor
.
Run
();
auto
*
out
=
predictor
.
GetOutput
(
0
);
std
::
vector
<
float
>
results
({
0.00078033
,
0.00083865
,
0.00060029
,
0.00057083
,
0.00070094
,
0.00080584
,
0.00044525
,
0.00074907
,
0.00059774
,
0.00063654
});
for
(
int
i
=
0
;
i
<
results
.
size
();
++
i
)
{
// TODO(sangoly): fix assert
// EXPECT_NEAR(out->data<float>()[i], results[i], 1e-5);
LOG
(
INFO
)
<<
"out -> "
<<
out
->
data
<
float
>
()[
i
];
}
ASSERT_EQ
(
out
->
dims
().
size
(),
2
);
ASSERT_EQ
(
out
->
dims
()[
0
],
1
);
ASSERT_EQ
(
out
->
dims
()[
1
],
1000
);
}
#endif
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/api/mobilenetv1_test.cc
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/core/mir/use_passes.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/kernels/use_kernels.h"
#include "paddle/fluid/lite/operators/use_ops.h"
// for eval
DEFINE_string
(
model_dir
,
""
,
""
);
namespace
paddle
{
namespace
lite
{
#ifdef LITE_WITH_ARM
TEST
(
MobileNetV1
,
test
)
{
DeviceInfo
::
Init
();
lite
::
ExecutorLite
predictor
;
std
::
vector
<
Place
>
valid_places
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)},
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)}});
predictor
.
Build
(
FLAGS_model_dir
,
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
valid_places
);
auto
*
input_tensor
=
predictor
.
GetInput
(
0
);
input_tensor
->
Resize
(
DDim
(
std
::
vector
<
DDim
::
value_type
>
({
1
,
3
,
224
,
224
})));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
input_tensor
->
dims
().
production
();
i
++
)
{
data
[
i
]
=
1
;
}
predictor
.
Run
();
auto
*
out
=
predictor
.
GetOutput
(
0
);
std
::
vector
<
float
>
results
({
1.91308980e-04
,
5.92055148e-04
,
1.12303176e-04
,
6.27335685e-05
,
1.27507330e-04
,
1.32147351e-03
,
3.13812525e-05
,
6.52209565e-05
,
4.78087313e-05
,
2.58822285e-04
});
for
(
int
i
=
0
;
i
<
results
.
size
();
++
i
)
{
EXPECT_NEAR
(
out
->
data
<
float
>
()[
i
],
results
[
i
],
1e-5
);
}
ASSERT_EQ
(
out
->
dims
().
size
(),
2
);
ASSERT_EQ
(
out
->
dims
()[
0
],
1
);
ASSERT_EQ
(
out
->
dims
()[
1
],
1000
);
}
#endif
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/api/mobilenetv2_test.cc
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/core/mir/use_passes.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/kernels/use_kernels.h"
#include "paddle/fluid/lite/operators/use_ops.h"
// for eval
DEFINE_string
(
model_dir
,
""
,
""
);
namespace
paddle
{
namespace
lite
{
#ifdef LITE_WITH_ARM
TEST
(
MobileNetV2
,
test
)
{
DeviceInfo
::
Init
();
lite
::
ExecutorLite
predictor
;
std
::
vector
<
Place
>
valid_places
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)},
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)}});
predictor
.
Build
(
FLAGS_model_dir
,
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
valid_places
);
auto
*
input_tensor
=
predictor
.
GetInput
(
0
);
input_tensor
->
Resize
(
DDim
(
std
::
vector
<
DDim
::
value_type
>
({
1
,
3
,
224
,
224
})));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
input_tensor
->
dims
().
production
();
i
++
)
{
data
[
i
]
=
1
;
}
predictor
.
Run
();
auto
*
out
=
predictor
.
GetOutput
(
0
);
std
::
vector
<
float
>
results
({
0.00097802
,
0.00099822
,
0.00103093
,
0.00100121
,
0.00098268
,
0.00104065
,
0.00099962
,
0.00095181
,
0.00099694
,
0.00099406
});
for
(
int
i
=
0
;
i
<
results
.
size
();
++
i
)
{
EXPECT_NEAR
(
out
->
data
<
float
>
()[
i
],
results
[
i
],
1e-5
);
}
ASSERT_EQ
(
out
->
dims
().
size
(),
2
);
ASSERT_EQ
(
out
->
dims
()[
0
],
1
);
ASSERT_EQ
(
out
->
dims
()[
1
],
1000
);
}
#endif
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/api/resnet50_test.cc
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <gflags/gflags.h>
#include <gtest/gtest.h>
#include <vector>
#include "paddle/fluid/lite/api/cxx_api.h"
#include "paddle/fluid/lite/core/mir/use_passes.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/kernels/use_kernels.h"
#include "paddle/fluid/lite/operators/use_ops.h"
// for eval
DEFINE_string
(
model_dir
,
""
,
""
);
namespace
paddle
{
namespace
lite
{
#ifdef LITE_WITH_ARM
TEST
(
ResNet50
,
test
)
{
DeviceInfo
::
Init
();
lite
::
ExecutorLite
predictor
;
std
::
vector
<
Place
>
valid_places
({
Place
{
TARGET
(
kHost
),
PRECISION
(
kFloat
)},
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)}});
predictor
.
Build
(
FLAGS_model_dir
,
Place
{
TARGET
(
kARM
),
PRECISION
(
kFloat
)},
valid_places
);
auto
*
input_tensor
=
predictor
.
GetInput
(
0
);
input_tensor
->
Resize
(
DDim
(
std
::
vector
<
DDim
::
value_type
>
({
1
,
3
,
224
,
224
})));
auto
*
data
=
input_tensor
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
input_tensor
->
dims
().
production
();
i
++
)
{
data
[
i
]
=
1
;
}
predictor
.
Run
();
auto
*
out
=
predictor
.
GetOutput
(
0
);
std
::
vector
<
float
>
results
({
2.41399175e-04
,
4.13724629e-04
,
2.64324830e-04
,
9.68795503e-05
,
2.01968738e-04
,
8.14945495e-04
,
7.45922662e-05
,
1.76479152e-04
,
7.47223166e-05
,
6.06825110e-04
});
for
(
int
i
=
0
;
i
<
results
.
size
();
++
i
)
{
EXPECT_NEAR
(
out
->
data
<
float
>
()[
i
],
results
[
i
],
1e-5
);
}
ASSERT_EQ
(
out
->
dims
().
size
(),
2
);
ASSERT_EQ
(
out
->
dims
()[
0
],
1
);
ASSERT_EQ
(
out
->
dims
()[
1
],
1000
);
}
#endif
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/arm/math/CMakeLists.txt
浏览文件 @
8202e25d
...
...
@@ -16,7 +16,7 @@ cc_library(math_arm SRCS
elementwise.cc
concat.cc
sgemv.cc
type_trans.c
pp
type_trans.c
c
conv_impl.cc
conv_direct_3x3s1.cc
conv_direct_3x3s2.cc
...
...
paddle/fluid/lite/arm/math/type_trans.cpp
已删除
100644 → 0
浏览文件 @
f4cc504f
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/arm/math/type_trans.h"
#include <arm_neon.h>
#include <string.h>
#include "paddle/fluid/lite/arm/math/saturate.h"
namespace
paddle
{
namespace
lite
{
namespace
arm
{
namespace
math
{
template
<
typename
dtype
>
void
int32_to_dtype
(
const
int
*
din
,
dtype
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
);
void
fp32_to_int8
(
const
float
*
din
,
signed
char
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
cnt
=
inner_size
/
16
;
int
remain
=
inner_size
&
15
;
int64_t
loop_size
=
outer_size
*
axis_size
;
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
loop_size
;
++
j
)
{
float
inv_scale
=
1.
f
/
scale
[
j
%
axis_size
];
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
float32x4_t
vscale
=
vdupq_n_f32
(
inv_scale
);
float32x4_t
vpoff
=
vdupq_n_f32
(
0.5
f
);
float32x4_t
vnoff
=
vdupq_n_f32
(
-
0.5
f
);
const
float
*
din_c
=
din
+
j
*
inner_size
;
signed
char
*
dout_c
=
dout
+
j
*
inner_size
;
if
(
cnt
>
0
)
{
int
cnt_loop
=
cnt
;
const
float
*
din_ptr
=
din_c
;
signed
char
*
dout_ptr
=
dout_c
;
#ifdef __aarch64__
asm
volatile
(
"ldp q0, q1, [%[in]], #32
\n
"
"ldp q2, q3, [%[in]], #32
\n
"
"0:
\n
"
/* main loop */
"fmul v4.4s, v0.4s, %[scale].4s
\n
"
"fmul v5.4s, v1.4s, %[scale].4s
\n
"
"fmul v6.4s, v2.4s, %[scale].4s
\n
"
"fmul v7.4s, v3.4s, %[scale].4s
\n
"
"ldp q0, q1, [%[in]], #32
\n
"
"subs %[cnt], %[cnt], #1
\n
"
"FCVTAS v8.4s, v4.4s
\n
"
"FCVTAS v9.4s, v5.4s
\n
"
"FCVTAS v10.4s, v6.4s
\n
"
"FCVTAS v11.4s, v7.4s
\n
"
"ldp q2, q3, [%[in]], #32
\n
"
"sqxtn v4.4h, v8.4s
\n
"
"sqxtn2 v4.8h, v9.4s
\n
"
"sqxtn v5.4h, v10.4s
\n
"
"sqxtn2 v5.8h, v11.4s
\n
"
"sqxtn v8.8b, v4.8h
\n
"
"sqxtn2 v8.16b, v5.8h
\n
"
"str q8, [%[out]], #16
\n
"
"bne 0b
\n
"
:
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
),
[
cnt
]
"+r"
(
cnt_loop
)
:
[
scale
]
"w"
(
vscale
)
:
"v0"
,
"v1"
,
"v2"
,
"v3"
,
"v4"
,
"v5"
,
"v6"
,
"v7"
,
"v8"
,
"v9"
,
"v10"
,
"v11"
);
#else
asm
volatile
(
"vld1.32 {d0-d3}, [%[din]]! @ load in0~in7
\n
"
"vld1.32 {d4-d7}, [%[din]]! @ load in8~in16
\n
"
"0: @ main loop
\n
"
"vand.i32 q4, %q[vpoff], %q[vpoff] @ set offset, 0.5
\n
"
"vand.i32 q5, q4, q4 @ set offset, 0.5
\n
"
"vand.i32 q6, q4, q4 @ set offset, 0.5
\n
"
"vand.i32 q7, q4, q4 @ set offset, 0.5
\n
"
"vcgt.f32 q8, q0, %q[vzero] @ get mask > 0, in0
\n
"
"vcgt.f32 q9, q1, %q[vzero] @ get mask > 0, in1
\n
"
"vcgt.f32 q10, q2, %q[vzero] @ get mask > 0, in2
\n
"
"vcgt.f32 q11, q3, %q[vzero] @ get mask > 0, in3
\n
"
"vbif.f32 q4, %q[vnoff], q8 @ get right offset
\n
"
"vbif.f32 q5, %q[vnoff], q9 @ get right offset
\n
"
"vbif.f32 q6, %q[vnoff], q10 @ get right offset
\n
"
"vbif.f32 q7, %q[vnoff], q11 @ get right offset
\n
"
"vmla.f32 q4, q0, %q[vscale] @ mul scale
\n
"
"vmla.f32 q5, q1, %q[vscale] @ mul scale
\n
"
"vmla.f32 q6, q2, %q[vscale] @ mul scale
\n
"
"vmla.f32 q7, q3, %q[vscale] @ mul scale
\n
"
"vcvt.s32.f32 q0, q4 @ cvt to int32
\n
"
"vcvt.s32.f32 q1, q5 @ cvt to int32
\n
"
"vcvt.s32.f32 q2, q6 @ cvt to int32
\n
"
"vcvt.s32.f32 q3, q7 @ cvt to int32
\n
"
"vqmovn.s32 d8, q0 @ cnt to int16
\n
"
"vqmovn.s32 d9, q1 @ cnt to int16
\n
"
"vqmovn.s32 d10, q2 @ cnt to int16
\n
"
"vqmovn.s32 d11, q3 @ cnt to int16
\n
"
"vld1.32 {d0-d3}, [%[din]]! @ load in0~in7
\n
"
"vqmovn.s16 d12, q4 @ cnt to int8
\n
"
"vqmovn.s16 d13, q5 @ cnt to int8
\n
"
"vld1.32 {d4-d7}, [%[din]]! @ load in8~in16
\n
"
"vst1.32 {d12-d13}, [%[dout]]! @ write to output
\n
"
"subs %[cnt], #1 @ loop count -1
\n
"
"bne 0b @ to main loop
\n
"
:
[
dout
]
"+r"
(
dout_ptr
),
[
din
]
"+r"
(
din_ptr
),
[
cnt
]
"+r"
(
cnt_loop
)
:
[
vscale
]
"w"
(
vscale
),
[
vpoff
]
"w"
(
vpoff
),
[
vnoff
]
"w"
(
vnoff
),
[
vzero
]
"w"
(
vzero
)
:
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
);
#endif
}
const
float
*
din_r
=
din_c
+
16
*
cnt
;
signed
char
*
dout_r
=
dout_c
+
16
*
cnt
;
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
dout_r
[
i
]
=
saturate_cast
<
int8_t
>
(
roundf
(
inv_scale
*
din_r
[
i
]));
}
}
}
void
fp32_to_int16
(
const
float
*
din
,
int16_t
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
cnt
=
inner_size
/
8
;
int
remain
=
inner_size
&
7
;
int64_t
loop_size
=
outer_size
*
axis_size
;
#pragma omp parallel for
for
(
int
j
=
0
;
j
<
loop_size
;
++
j
)
{
float
inv_scale
=
1.
f
/
scale
[
j
%
axis_size
];
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
float32x4_t
vscale
=
vdupq_n_f32
(
inv_scale
);
float32x4_t
vpoff
=
vdupq_n_f32
(
0.5
f
);
float32x4_t
vnoff
=
vdupq_n_f32
(
-
0.5
f
);
const
float
*
din_c
=
din
+
j
*
inner_size
;
int16_t
*
dout_c
=
dout
+
j
*
inner_size
;
if
(
cnt
>
0
)
{
int
cnt_loop
=
cnt
;
const
float
*
din_ptr
=
din_c
;
int16_t
*
dout_ptr
=
dout_c
;
#ifdef __aarch64__
asm
volatile
(
"ldp q0, q1, [%[in]], #32
\n
"
"0:
\n
"
/* main loop */
"fmul v4.4s, v0.4s, %[scale].4s
\n
"
"fmul v5.4s, v1.4s, %[scale].4s
\n
"
"ldp q0, q1, [%[in]], #32
\n
"
"subs %[cnt], %[cnt], #1
\n
"
"FCVTAS v8.4s, v4.4s
\n
"
"FCVTAS v9.4s, v5.4s
\n
"
"sqxtn v4.4h, v8.4s
\n
"
"sqxtn2 v4.8h, v9.4s
\n
"
"str q4, [%[out]], #16
\n
"
"bne 0b
\n
"
:
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
),
[
cnt
]
"+r"
(
cnt_loop
)
:
[
scale
]
"w"
(
vscale
)
:
"v0"
,
"v1"
,
"v4"
,
"v5"
,
"v8"
,
"v9"
);
#else
asm
volatile
(
"vld1.32 {d0-d3}, [%[din]]! @ load in0~in7
\n
"
"0: @ main loop
\n
"
"vand.i32 q4, %q[vpoff], %q[vpoff] @ set offset, 0.5
\n
"
"vand.i32 q5, q4, q4 @ set offset, 0.5
\n
"
"vand.i32 q6, q4, q4 @ set offset, 0.5
\n
"
"vand.i32 q7, q4, q4 @ set offset, 0.5
\n
"
"vcgt.f32 q8, q0, %q[vzero] @ get mask > 0, in0
\n
"
"vcgt.f32 q9, q1, %q[vzero] @ get mask > 0, in1
\n
"
"vbif.f32 q4, %q[vnoff], q8 @ get right offset
\n
"
"vbif.f32 q5, %q[vnoff], q9 @ get right offset
\n
"
"vmla.f32 q4, q0, %q[vscale] @ mul scale
\n
"
"vmla.f32 q5, q1, %q[vscale] @ mul scale
\n
"
"vcvt.s32.f32 q0, q4 @ cvt to int32
\n
"
"vcvt.s32.f32 q1, q5 @ cvt to int32
\n
"
"vqmovn.s32 d8, q0 @ cnt to int16
\n
"
"vqmovn.s32 d9, q1 @ cnt to int16
\n
"
"vld1.32 {d0-d3}, [%[din]]! @ load in0~in7
\n
"
"vst1.32 {d8-d9}, [%[dout]]! @ write to output
\n
"
"subs %[cnt], #1 @ loop count -1
\n
"
"bne 0b @ to main loop
\n
"
:
[
dout
]
"+r"
(
dout_ptr
),
[
din
]
"+r"
(
din_ptr
),
[
cnt
]
"+r"
(
cnt_loop
)
:
[
vscale
]
"w"
(
vscale
),
[
vpoff
]
"w"
(
vpoff
),
[
vnoff
]
"w"
(
vnoff
),
[
vzero
]
"w"
(
vzero
)
:
"q0"
,
"q1"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
);
#endif
}
const
float
*
din_r
=
din_c
+
8
*
cnt
;
int16_t
*
dout_r
=
dout_c
+
8
*
cnt
;
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
dout_r
[
i
]
=
saturate_cast
<
int16_t
>
(
roundf
(
inv_scale
*
din_r
[
i
]));
}
}
}
void
int8_to_fp32
(
const
signed
char
*
in
,
float
*
out
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
cnt
=
inner_size
/
16
;
int
remain
=
inner_size
&
15
;
int64_t
loop_size
=
axis_size
*
outer_size
;
#pragma omp parallel for
for
(
int64_t
n
=
0
;
n
<
loop_size
;
++
n
)
{
float
in_scale
=
scale
[
n
%
axis_size
];
const
signed
char
*
din_c
=
in
+
n
*
inner_size
;
float
*
dout_c
=
out
+
n
*
inner_size
;
float32x4_t
vscale
=
vdupq_n_f32
(
in_scale
);
if
(
cnt
>
0
)
{
int
loop
=
cnt
;
const
signed
char
*
din_ptr
=
din_c
;
float
*
dout_ptr
=
dout_c
;
#ifdef __aarch64__
asm
volatile
(
"ldp d0, d1, [%[in]], #16
\n
"
/* load 16 int8*/
"0:
\n
"
/* main loop */
"sshll v2.8h, v0.8b, #0
\n
"
/* trans to int16*/
"sshll v3.8h, v1.8b, #0
\n
"
/* trans to int16*/
"sshll v4.4s, v2.4h, #0
\n
"
/* trans to int32*/
"sshll2 v5.4s, v2.8h, #0
\n
"
/* trans to int32*/
"sshll v6.4s, v3.4h, #0
\n
"
/* trans to int32*/
"sshll2 v7.4s, v3.8h, #0
\n
"
/* trans to int32*/
"ldp d0, d1, [%[in]], #16
\n
"
/* load 16 int8*/
"scvtf v8.4s, v4.4s
\n
"
/* trans to fp32*/
"scvtf v9.4s, v5.4s
\n
"
/* trans to fp32*/
"scvtf v10.4s, v6.4s
\n
"
/* trans to fp32*/
"scvtf v11.4s, v7.4s
\n
"
/* trans to fp32*/
"subs %[loop], %[loop], #1
\n
"
"fmul v4.4s, v8.4s, %[scale].4s
\n
"
/* mul with scale*/
"fmul v5.4s, v9.4s, %[scale].4s
\n
"
/* mul with scale*/
"fmul v6.4s, v10.4s, %[scale].4s
\n
"
/* mul with scale*/
"fmul v7.4s, v11.4s, %[scale].4s
\n
"
/* mul with scale*/
"stp q4, q5, [%[out]], #32
\n
"
/* write to memory*/
"stp q6, q7, [%[out]], #32
\n
"
/* write to memory*/
"bne 0b
\n
"
:
[
loop
]
"+r"
(
loop
),
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
)
:
[
scale
]
"w"
(
vscale
)
:
"v0"
,
"v1"
,
"v2"
,
"v3"
,
"v4"
,
"v5"
,
"v6"
,
"v7"
,
"v8"
,
"v9"
,
"v10"
,
"v11"
);
#else
asm
volatile
(
"vld1.32 {d0-d1}, [%[in]]! @ load 16 int8
\n
"
"0: @ main loop
\n
"
"vmovl.s8 q2, d0 @ trans to int16
\n
"
"vmovl.s8 q3, d1 @ trans to int16
\n
"
"vmovl.s16 q4, d4 @ trans to int32
\n
"
"vmovl.s16 q5, d5 @ trans to int32
\n
"
"vmovl.s16 q6, d6 @ trans to int32
\n
"
"vmovl.s16 q7, d7 @ trans to int32
\n
"
"vcvt.f32.s32 q0, q4 @ trans to fp32
\n
"
"vcvt.f32.s32 q1, q5 @ trans to fp32
\n
"
"vcvt.f32.s32 q2, q6 @ trans to fp32
\n
"
"vcvt.f32.s32 q3, q7 @ trans to fp32
\n
"
"vmul.f32 q4, q0, %q[scale] @ mul with scale
\n
"
"vmul.f32 q5, q1, %q[scale] @ mul with scale
\n
"
"vmul.f32 q6, q2, %q[scale] @ mul with scale
\n
"
"vmul.f32 q7, q3, %q[scale] @ mul with scale
\n
"
"vld1.32 {d0-d1}, [%[in]]! @ load 16 int8
\n
"
"subs %[loop], #1
\n
"
"vst1.f32 {d8-d11}, [%[out]]! @ write to memory
\n
"
"vst1.f32 {d12-d15}, [%[out]]! @ write to memory
\n
"
"bne 0b
\n
"
:
[
loop
]
"+r"
(
loop
),
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
)
:
[
scale
]
"w"
(
vscale
)
:
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
);
#endif // __aarch64__
}
const
signed
char
*
din_r
=
din_c
+
16
*
cnt
;
float
*
dout_r
=
dout_c
+
16
*
cnt
;
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
dout_r
[
i
]
=
in_scale
*
din_r
[
i
];
}
}
}
void
int16_to_fp32
(
const
int16_t
*
in
,
float
*
out
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
cnt
=
inner_size
/
16
;
int
remain
=
inner_size
&
15
;
int64_t
loop_size
=
axis_size
*
outer_size
;
#pragma omp parallel for
for
(
int64_t
n
=
0
;
n
<
loop_size
;
++
n
)
{
float
in_scale
=
scale
[
n
%
axis_size
];
const
int16_t
*
din_c
=
in
+
n
*
inner_size
;
float
*
dout_c
=
out
+
n
*
inner_size
;
float32x4_t
vscale
=
vdupq_n_f32
(
in_scale
);
if
(
cnt
>
0
)
{
int
loop
=
cnt
;
const
int16_t
*
din_ptr
=
din_c
;
float
*
dout_ptr
=
dout_c
;
#ifdef __aarch64__
asm
volatile
(
"ldp q0, q1, [%[in]], #32
\n
"
/* load 16 int16*/
"0:
\n
"
/* main loop */
"sshll v4.4s, v0.4h, #0
\n
"
/* trans to int32*/
"sshll2 v5.4s, v0.8h, #0
\n
"
/* trans to int32*/
"sshll v6.4s, v1.4h, #0
\n
"
/* trans to int32*/
"sshll2 v7.4s, v1.8h, #0
\n
"
/* trans to int32*/
"ldp q0, q1, [%[in]], #32
\n
"
/* load 16 int16*/
"scvtf v8.4s, v4.4s
\n
"
/* trans to fp32*/
"scvtf v9.4s, v5.4s
\n
"
/* trans to fp32*/
"scvtf v10.4s, v6.4s
\n
"
/* trans to fp32*/
"scvtf v11.4s, v7.4s
\n
"
/* trans to fp32*/
"subs %[loop], %[loop], #1
\n
"
"fmul v4.4s, v8.4s, %[scale].4s
\n
"
/* mul with scale*/
"fmul v5.4s, v9.4s, %[scale].4s
\n
"
/* mul with scale*/
"fmul v6.4s, v10.4s, %[scale].4s
\n
"
/* mul with scale*/
"fmul v7.4s, v11.4s, %[scale].4s
\n
"
/* mul with scale*/
"stp q4, q5, [%[out]], #32
\n
"
/* write to memory*/
"stp q6, q7, [%[out]], #32
\n
"
/* write to memory*/
"bne 0b
\n
"
:
[
loop
]
"+r"
(
loop
),
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
)
:
[
scale
]
"w"
(
vscale
)
:
"v0"
,
"v1"
,
"v4"
,
"v5"
,
"v6"
,
"v7"
,
"v8"
,
"v9"
,
"v10"
,
"v11"
);
#else
asm
volatile
(
"vld1.32 {d0-d3}, [%[in]]! @ load 16 int16
\n
"
"0: @ main loop
\n
"
"vmovl.s16 q4, d0 @ trans to int32
\n
"
"vmovl.s16 q5, d1 @ trans to int32
\n
"
"vmovl.s16 q6, d2 @ trans to int32
\n
"
"vmovl.s16 q7, d3 @ trans to int32
\n
"
"vcvt.f32.s32 q0, q4 @ trans to fp32
\n
"
"vcvt.f32.s32 q1, q5 @ trans to fp32
\n
"
"vcvt.f32.s32 q2, q6 @ trans to fp32
\n
"
"vcvt.f32.s32 q3, q7 @ trans to fp32
\n
"
"vmul.f32 q4, q0, %q[scale] @ mul with scale
\n
"
"vmul.f32 q5, q1, %q[scale] @ mul with scale
\n
"
"vmul.f32 q6, q2, %q[scale] @ mul with scale
\n
"
"vmul.f32 q7, q3, %q[scale] @ mul with scale
\n
"
"vld1.32 {d0-d3}, [%[in]]! @ load 16 int8
\n
"
"subs %[loop], #1
\n
"
"vst1.f32 {d8-d11}, [%[out]]! @ write to memory
\n
"
"vst1.f32 {d12-d15}, [%[out]]! @ write to memory
\n
"
"bne 0b
\n
"
:
[
loop
]
"+r"
(
loop
),
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
)
:
[
scale
]
"w"
(
vscale
)
:
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
);
#endif // __aarch64__
}
const
int16_t
*
din_r
=
din_c
+
16
*
cnt
;
float
*
dout_r
=
dout_c
+
16
*
cnt
;
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
dout_r
[
i
]
=
in_scale
*
din_r
[
i
];
}
}
}
void
int32_to_fp32
(
const
int
*
din
,
float
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
cnt
=
inner_size
/
16
;
int
remain
=
inner_size
&
15
;
int64_t
loop_size
=
axis_size
*
outer_size
;
#pragma omp parallel for
for
(
int64_t
n
=
0
;
n
<
loop_size
;
++
n
)
{
float
in_scale
=
scale
[
n
%
axis_size
];
const
int
*
din_c
=
din
+
n
*
inner_size
;
float
*
dout_c
=
dout
+
n
*
inner_size
;
float32x4_t
vscale
=
vdupq_n_f32
(
in_scale
);
if
(
cnt
>
0
)
{
int
loop
=
cnt
;
const
int
*
din_ptr
=
din_c
;
float
*
dout_ptr
=
dout_c
;
#ifdef __aarch64__
asm
volatile
(
"ldp q0, q1, [%[in]], #32
\n
"
"ldp q2, q3, [%[in]], #32
\n
"
"0:
\n
"
"scvtf v4.4s, v0.4s
\n
"
"scvtf v5.4s, v1.4s
\n
"
"scvtf v6.4s, v2.4s
\n
"
"scvtf v7.4s, v3.4s
\n
"
"ldp q0, q1, [%[in]], #32
\n
"
"fmul v8.4s, v4.4s, %[scale].4s
\n
"
"fmul v9.4s, v5.4s, %[scale].4s
\n
"
"fmul v10.4s, v6.4s, %[scale].4s
\n
"
"fmul v11.4s, v7.4s, %[scale].4s
\n
"
"ldp q2, q3, [%[in]], #32
\n
"
"stp q8, q9, [%[out]], #32
\n
"
"stp q10, q11, [%[out]], #32
\n
"
"subs %[loop], %[loop], #1
\n
"
"bne 0b
\n
"
:
[
loop
]
"+r"
(
loop
),
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
)
:
[
scale
]
"w"
(
vscale
)
:
"v0"
,
"v1"
,
"v2"
,
"v3"
,
"v4"
,
"v5"
,
"v6"
,
"v7"
,
"v8"
,
"v9"
,
"v10"
,
"v11"
);
#else
asm
volatile
(
"vld1.s32 {d0-d3}, [%[in]]!
\n
"
"vld1.s32 {d4-d7}, [%[in]]!
\n
"
"0:
\n
"
"vcvt.f32.s32 q4, q0
\n
"
"vcvt.f32.s32 q5, q1
\n
"
"vcvt.f32.s32 q6, q2
\n
"
"vcvt.f32.s32 q7, q3
\n
"
"vld1.s32 {d0-d3}, [%[in]]!
\n
"
"vmul.f32 q8, q4, %q[scale]
\n
"
"vmul.f32 q9, q5, %q[scale]
\n
"
"vmul.f32 q10, q6, %q[scale]
\n
"
"vmul.f32 q11, q7, %q[scale]
\n
"
"vld1.s32 {d4-d7}, [%[in]]!
\n
"
"subs %[loop], #1
\n
"
"vst1.f32 {d16-d19}, [%[out]]!
\n
"
"vst1.f32 {d20-d23}, [%[out]]!
\n
"
"bne 0b
\n
"
:
[
loop
]
"+r"
(
loop
),
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
)
:
[
scale
]
"w"
(
vscale
)
:
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
);
#endif // __aarch64__
}
const
int
*
din_r
=
din_c
+
16
*
cnt
;
float
*
dout_r
=
dout_c
+
16
*
cnt
;
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
dout_r
[
i
]
=
in_scale
*
din_r
[
i
];
}
}
}
void
int32_to_int8
(
const
int
*
din
,
signed
char
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
cnt
=
inner_size
/
16
;
int
remain
=
inner_size
&
15
;
int64_t
loop_size
=
outer_size
*
axis_size
;
#pragma omp parallel for
for
(
int64_t
n
=
0
;
n
<
loop_size
;
++
n
)
{
float
in_scale
=
scale
[
n
%
axis_size
];
const
int
*
din_c
=
din
+
n
*
inner_size
;
signed
char
*
dout_c
=
dout
+
n
*
inner_size
;
float32x4_t
vscale
=
vdupq_n_f32
(
in_scale
);
float32x4_t
vzero
=
vdupq_n_f32
(
0.
f
);
float32x4_t
vpoff
=
vdupq_n_f32
(
0.5
f
);
float32x4_t
vnoff
=
vdupq_n_f32
(
-
0.5
f
);
if
(
cnt
>
0
)
{
int
loop
=
cnt
;
const
int
*
din_ptr
=
din_c
;
signed
char
*
dout_ptr
=
dout_c
;
#ifdef __aarch64__
asm
volatile
(
"0:
\n
"
"ld1 {v0.4s, v1.4s}, [%[in]], #32
\n
"
"ld1 {v2.4s, v3.4s}, [%[in]], #32
\n
"
"scvtf v4.4s, v0.4s
\n
"
"scvtf v5.4s, v1.4s
\n
"
"scvtf v6.4s, v2.4s
\n
"
"scvtf v7.4s, v3.4s
\n
"
"fmul v0.4s, v4.4s, %[scale].4s
\n
"
"fmul v1.4s, v5.4s, %[scale].4s
\n
"
"fmul v2.4s, v6.4s, %[scale].4s
\n
"
"fmul v3.4s, v7.4s, %[scale].4s
\n
"
"fcvtas v4.4s, v0.4s
\n
"
"fcvtas v5.4s, v1.4s
\n
"
"fcvtas v6.4s, v2.4s
\n
"
"fcvtas v7.4s, v3.4s
\n
"
"sqxtn v0.4h, v4.4s
\n
"
"sqxtn2 v0.8h, v5.4s
\n
"
"sqxtn v1.4h, v6.4s
\n
"
"sqxtn2 v1.8h, v7.4s
\n
"
"sqxtn v2.8b, v0.8h
\n
"
"sqxtn2 v2.16b, v1.8h
\n
"
"st1 {v2.16b}, [%[out]], #16
\n
"
"subs %[loop], %[loop], #1
\n
"
"bne 0b
\n
"
:
[
loop
]
"+r"
(
loop
),
[
in
]
"+r"
(
din_ptr
),
[
out
]
"+r"
(
dout_ptr
)
:
[
scale
]
"w"
(
vscale
)
:
"v0"
,
"v1"
,
"v2"
,
"v3"
,
"v4"
,
"v5"
,
"v6"
,
"v7"
);
#else
asm
volatile
(
"vld1.32 {d0-d3}, [%[din]]! @ load in0~in7
\n
"
"vld1.32 {d4-d7}, [%[din]]! @ load in8~in16
\n
"
"0: @ main loop
\n
"
"vcvt.f32.s32 q4, q0 @ cvt to float
\n
"
"vcvt.f32.s32 q5, q1 @ cvt to float
\n
"
"vcvt.f32.s32 q6, q2 @ cvt to float
\n
"
"vcvt.f32.s32 q7, q3 @ cvt to float
\n
"
"vand.i32 q0, %q[vpoff], %q[vpoff] @ set offset, 0.5
\n
"
"vand.i32 q1, q0, q0 @ set offset, 0.5
\n
"
"vand.i32 q2, q0, q0 @ set offset, 0.5
\n
"
"vand.i32 q3, q0, q0 @ set offset, 0.5
\n
"
"vcgt.f32 q8, q4, %q[vzero] @ get mask > 0, in0
\n
"
"vcgt.f32 q9, q5, %q[vzero] @ get mask > 0, in1
\n
"
"vcgt.f32 q10, q6, %q[vzero] @ get mask > 0, in2
\n
"
"vcgt.f32 q11, q7, %q[vzero] @ get mask > 0, in3
\n
"
"vbif.f32 q0, %q[vnoff], q8 @ get right offset
\n
"
"vbif.f32 q1, %q[vnoff], q9 @ get right offset
\n
"
"vbif.f32 q2, %q[vnoff], q10 @ get right offset
\n
"
"vbif.f32 q3, %q[vnoff], q11 @ get right offset
\n
"
"vmla.f32 q0, q4, %q[vscale] @ mul scale
\n
"
"vmla.f32 q1, q5, %q[vscale] @ mul scale
\n
"
"vmla.f32 q2, q6, %q[vscale] @ mul scale
\n
"
"vmla.f32 q3, q7, %q[vscale] @ mul scale
\n
"
"vcvt.s32.f32 q4, q0 @ cvt to int32
\n
"
"vcvt.s32.f32 q5, q1 @ cvt to int32
\n
"
"vcvt.s32.f32 q6, q2 @ cvt to int32
\n
"
"vcvt.s32.f32 q7, q3 @ cvt to int32
\n
"
"vqmovn.s32 d16, q4 @ cnt to int16
\n
"
"vqmovn.s32 d17, q5 @ cnt to int16
\n
"
"vqmovn.s32 d18, q6 @ cnt to int16
\n
"
"vqmovn.s32 d19, q7 @ cnt to int16
\n
"
"vld1.32 {d0-d3}, [%[din]]! @ load in0~in7
\n
"
"vqmovn.s16 d8, q8 @ cnt to int8
\n
"
"vqmovn.s16 d9, q9 @ cnt to int8
\n
"
"vld1.32 {d4-d7}, [%[din]]! @ load in8~in16
\n
"
"vst1.32 {d8-d9}, [%[dout]]! @ write to output
\n
"
"subs %[loop], #1 @ loop count -1
\n
"
"bne 0b @ to main loop
\n
"
:
[
loop
]
"+r"
(
loop
),
[
din
]
"+r"
(
din_ptr
),
[
dout
]
"+r"
(
dout_ptr
)
:
[
vscale
]
"w"
(
vscale
),
[
vzero
]
"w"
(
vzero
),
[
vnoff
]
"w"
(
vnoff
),
[
vpoff
]
"w"
(
vpoff
)
:
"q0"
,
"q1"
,
"q2"
,
"q3"
,
"q4"
,
"q5"
,
"q6"
,
"q7"
,
"q8"
,
"q9"
,
"q10"
,
"q11"
);
#endif // __aarch64__
}
const
int
*
din_r
=
din_c
+
16
*
cnt
;
int8_t
*
dout_r
=
dout_c
+
16
*
cnt
;
for
(
int
i
=
0
;
i
<
remain
;
++
i
)
{
dout_r
[
i
]
=
saturate_cast
<
int8_t
>
(
roundf
(
in_scale
*
din_r
[
i
]));
}
}
}
void
int32_to_int32
(
const
int
*
din
,
int
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
size_all
=
outer_size
*
axis_size
*
inner_size
;
memmove
(
dout
,
din
,
size_all
*
sizeof
(
int
));
}
template
<
>
void
int32_to_dtype
(
const
int
*
din
,
float
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
return
int32_to_fp32
(
din
,
dout
,
scale
,
axis_size
,
outer_size
,
inner_size
);
}
template
<
>
void
int32_to_dtype
(
const
int
*
din
,
signed
char
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
return
int32_to_int8
(
din
,
dout
,
scale
,
axis_size
,
outer_size
,
inner_size
);
}
template
<
>
void
int32_to_dtype
(
const
int
*
din
,
int
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
return
int32_to_int32
(
din
,
dout
,
scale
,
axis_size
,
outer_size
,
inner_size
);
}
}
// namespace math
}
// namespace arm
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/core/mir/CMakeLists.txt
浏览文件 @
8202e25d
...
...
@@ -52,8 +52,11 @@ cc_library(mir_passes
# X86_DEPS mul_compute_x86
# )
lite_cc_library
(
pattern_matcher_lite SRCS pattern_matcher.cc DEPS mir_node mir_ssa_graph op_lite
)
set
(
pattern_deps mir_node mir_ssa_graph op_lite
)
if
(
WITH_TESTING
)
list
(
APPEND pattern_deps gtest
)
endif
()
lite_cc_library
(
pattern_matcher_lite SRCS pattern_matcher.cc DEPS
${
pattern_deps
}
)
lite_cc_test
(
test_pattern_matcher_lite SRCS pattern_matcher_test.cc DEPS pattern_matcher_lite
)
lite_cc_library
(
pattern_matcher_high_api SRCS pattern_matcher_high_api.cc DEPS pattern_matcher_lite
)
...
...
paddle/fluid/lite/kernels/arm/CMakeLists.txt
浏览文件 @
8202e25d
...
...
@@ -16,6 +16,7 @@ cc_library(pool_compute_arm SRCS pool_compute.cc DEPS ${lite_kernel_deps} math_a
cc_library
(
split_compute_arm SRCS split_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
concat_compute_arm SRCS concat_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
dropout_compute_arm SRCS dropout_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
calib_compute_arm SRCS calib_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
cc_library
(
transpose_compute_arm SRCS transpose_compute.cc DEPS
${
lite_kernel_deps
}
math_arm
)
lite_cc_test
(
test_fc_compute_arm SRCS fc_compute_test.cc DEPS fc_compute_arm math_arm
)
...
...
@@ -30,6 +31,7 @@ lite_cc_test(test_mul_compute_arm SRCS mul_compute_test.cc DEPS mul_compute_arm)
lite_cc_test
(
test_split_compute_arm SRCS split_compute_test.cc DEPS split_compute_arm
)
lite_cc_test
(
test_concat_compute_arm SRCS concat_compute_test.cc DEPS concat_compute_arm
)
lite_cc_test
(
test_dropout_compute_arm SRCS dropout_compute_test.cc DEPS dropout_compute_arm
)
lite_cc_test
(
test_calib_compute_arm SRCS calib_compute_test.cc DEPS calib_compute_arm
)
lite_cc_test
(
test_transpose_compute_arm SRCS transpose_compute_test.cc DEPS transpose_compute_arm
)
set
(
arm_kernels
...
...
paddle/fluid/lite/kernels/arm/calib_compute.cc
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/calib_compute.h"
#include <vector>
#include "paddle/fluid/lite/arm/math/type_trans.h"
#include "paddle/fluid/lite/core/op_registry.h"
#include "paddle/fluid/lite/core/type_system.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
void
CalibCompute
::
Run
()
{
auto
&
param
=
this
->
Param
<
operators
::
CalibParam
>
();
std
::
vector
<
float
>
scale
=
{
param
.
in_scale
};
if
(
param
.
in_dtype
==
PRECISION
(
kFloat
)
&&
param
.
out_dtype
==
PRECISION
(
kInt8
))
{
const
auto
*
din
=
param
.
input
->
data
<
float
>
();
auto
*
dout
=
param
.
output
->
mutable_data
<
signed
char
>
();
lite
::
arm
::
math
::
fp32_to_int8
(
din
,
dout
,
scale
.
data
(),
1
,
1
,
param
.
input
->
numel
());
return
;
}
if
(
param
.
in_dtype
==
PRECISION
(
kInt8
)
&&
param
.
out_dtype
==
PRECISION
(
kFloat
))
{
const
auto
*
din
=
param
.
input
->
data
<
signed
char
>
();
auto
*
dout
=
param
.
output
->
mutable_data
<
float
>
();
lite
::
arm
::
math
::
int8_to_fp32
(
din
,
dout
,
scale
.
data
(),
1
,
1
,
param
.
input
->
numel
());
return
;
}
LOG
(
FATAL
)
<<
"Unsupport Dtype."
;
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_KERNEL
(
calib
,
kARM
,
kInt8
,
kNCHW
,
paddle
::
lite
::
kernels
::
arm
::
CalibCompute
,
def
)
.
BindInput
(
"Input"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
paddle/fluid/lite/kernels/arm/calib_compute.h
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/operators/calib_op.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
class
CalibCompute
:
public
KernelLite
<
TARGET
(
kARM
),
PRECISION
(
kInt8
)
>
{
public:
using
param_t
=
operators
::
CalibParam
;
void
Run
()
override
;
~
CalibCompute
()
override
{};
private:
};
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/kernels/arm/calib_compute_test.cc
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/kernels/arm/calib_compute.h"
#include <gtest/gtest.h>
#include <algorithm>
#include <iostream>
#include <memory>
#include <random>
#include <utility>
#include <vector>
#include "paddle/fluid/lite/arm/math/funcs.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
kernels
{
namespace
arm
{
static
int
get_rand
(
int
start
,
int
end
)
{
int
i
=
rand
();
// NOLINT
i
=
(
i
%
(
end
-
start
))
+
start
;
return
i
;
}
static
void
int8_to_fp32_basic
(
const
int8_t
*
din
,
float
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
loop_size
=
axis_size
*
outer_size
;
for
(
int
i
=
0
;
i
<
loop_size
;
++
i
)
{
float
scale_in
=
scale
[
i
%
axis_size
];
for
(
int
j
=
0
;
j
<
inner_size
;
++
j
)
{
dout
[
j
]
=
din
[
j
]
*
scale_in
;
}
dout
+=
inner_size
;
din
+=
inner_size
;
}
}
static
void
fp32_to_int8_basic
(
const
float
*
din
,
int8_t
*
dout
,
const
float
*
scale
,
int
axis_size
,
int64_t
outer_size
,
int64_t
inner_size
)
{
int
loop_size
=
axis_size
*
outer_size
;
for
(
int
i
=
0
;
i
<
loop_size
;
++
i
)
{
float
inv_scale
=
1.
f
/
scale
[
i
%
axis_size
];
for
(
int
j
=
0
;
j
<
inner_size
;
++
j
)
{
dout
[
j
]
=
static_cast
<
int8_t
>
(
roundf
(
din
[
j
]
*
inv_scale
));
}
dout
+=
inner_size
;
din
+=
inner_size
;
}
}
void
calib_ref
(
const
operators
::
CalibParam
&
param
)
{
std
::
vector
<
float
>
scale
=
{
param
.
in_scale
};
if
(
param
.
in_dtype
==
PRECISION
(
kFloat
)
&&
param
.
out_dtype
==
PRECISION
(
kInt8
))
{
const
auto
*
din
=
param
.
input
->
data
<
float
>
();
auto
*
dout
=
param
.
output
->
mutable_data
<
signed
char
>
();
fp32_to_int8_basic
(
din
,
dout
,
scale
.
data
(),
1
,
1
,
param
.
input
->
numel
());
return
;
}
if
(
param
.
in_dtype
==
PRECISION
(
kInt8
)
&&
param
.
out_dtype
==
PRECISION
(
kFloat
))
{
const
auto
*
din
=
param
.
input
->
data
<
signed
char
>
();
auto
*
dout
=
param
.
output
->
mutable_data
<
float
>
();
int8_to_fp32_basic
(
din
,
dout
,
scale
.
data
(),
1
,
1
,
param
.
input
->
numel
());
return
;
}
LOG
(
FATAL
)
<<
"Unsupport Dtype."
;
}
TEST
(
calib_arm
,
retrive_op
)
{
auto
calib
=
KernelRegistry
::
Global
()
.
Create
<
TARGET
(
kARM
),
PRECISION
(
kInt8
),
DATALAYOUT
(
kNCHW
)
>
(
"calib"
);
ASSERT_FALSE
(
calib
.
empty
());
ASSERT_TRUE
(
calib
.
front
());
}
TEST
(
calib_arm
,
init
)
{
CalibCompute
calib
;
ASSERT_EQ
(
calib
.
precision
(),
PRECISION
(
kInt8
));
ASSERT_EQ
(
calib
.
target
(),
TARGET
(
kARM
));
}
TEST
(
calib_arm
,
int8_to_fp32
)
{
DeviceInfo
::
Init
();
for
(
auto
n
:
{
1
,
2
})
{
for
(
auto
c
:
{
6
,
32
/*, 128*/
})
{
for
(
auto
h
:
{
9
,
18
/*, 56 , 112, 224, 512*/
})
{
for
(
auto
w
:
{
9
,
18
/*, 56, 112, 224, 512*/
})
{
Tensor
x
;
Tensor
output
;
Tensor
output_ref
;
// set the dims of input, output, ref output tensors
x
.
Resize
({
n
,
c
,
h
,
w
});
output
.
Resize
({
n
,
c
,
h
,
w
});
output_ref
.
Resize
({
n
,
c
,
h
,
w
});
// initialize the data of input tensors
auto
*
x_data
=
x
.
mutable_data
<
char
>
();
auto
*
output_data
=
output
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
x
.
dims
().
production
();
i
++
)
{
float
sign
=
i
%
3
==
0
?
-
1.0
f
:
1.0
f
;
x_data
[
i
]
=
sign
*
static_cast
<
float
>
(
i
%
128
)
*
0.013
f
;
}
// prepare kernel params and run
CalibCompute
calib
;
std
::
unique_ptr
<
KernelContext
>
ctx
(
new
KernelContext
);
ctx
->
As
<
ARMContext
>
();
calib
.
SetContext
(
std
::
move
(
ctx
));
operators
::
CalibParam
param
;
param
.
in_scale
=
get_rand
(
0
,
100
)
*
0.1
f
;
param
.
in_dtype
=
PRECISION
(
kInt8
);
param
.
out_dtype
=
PRECISION
(
kFloat
);
param
.
input
=
&
x
;
param
.
output
=
&
output
;
calib
.
SetParam
(
param
);
calib
.
Launch
();
// invoking ref implementation and compare results
param
.
output
=
&
output_ref
;
calib_ref
(
param
);
auto
*
output_ref_data
=
output_ref
.
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
output
.
dims
().
production
();
i
++
)
{
EXPECT_NEAR
(
output_data
[
i
],
output_ref_data
[
i
],
1e-5
);
}
}
}
}
}
}
}
// namespace arm
}
// namespace kernels
}
// namespace lite
}
// namespace paddle
USE_LITE_KERNEL
(
calib
,
kARM
,
kInt8
,
kNCHW
,
def
);
paddle/fluid/lite/kernels/arm/dropout_compute.cc
浏览文件 @
8202e25d
...
...
@@ -44,4 +44,5 @@ REGISTER_LITE_KERNEL(dropout, kARM, kFloat, kNCHW,
.
BindInput
(
"dropout_prob"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindInput
(
"dropout_implementation"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Out"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
BindOutput
(
"Mask"
,
{
LiteType
::
GetTensorTy
(
TARGET
(
kARM
))})
.
Finalize
();
paddle/fluid/lite/kernels/use_kernels.h
浏览文件 @
8202e25d
...
...
@@ -47,6 +47,8 @@ USE_LITE_KERNEL(depthwise_conv2d, kARM, kFloat, kNCHW, def);
USE_LITE_KERNEL
(
pool2d
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
elementwise_add
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
softmax
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
concat
,
kARM
,
kFloat
,
kNCHW
,
def
);
USE_LITE_KERNEL
(
dropout
,
kARM
,
kFloat
,
kNCHW
,
def
);
#endif
#ifdef LITE_WITH_CUDA
...
...
paddle/fluid/lite/kernels/x86/relu_compute.h
浏览文件 @
8202e25d
...
...
@@ -31,13 +31,13 @@ namespace x86 {
template
<
typename
T
>
class
ReluCompute
:
public
KernelLite
<
TARGET
(
kX86
),
PRECISION
(
kFloat
)
>
{
public:
using
param_t
=
operators
::
Relu
Param
;
using
param_t
=
operators
::
Activation
Param
;
void
Run
()
override
{
auto
&
param
=
*
param_
.
get_mutable
<
param_t
>
();
auto
n
=
param
.
input
->
dims
().
production
();
const
float
*
input
=
param
.
input
->
data
<
float
>
();
float
*
output
=
param
.
outp
ut
->
mutable_data
<
float
>
();
auto
n
=
param
.
X
->
dims
().
production
();
const
float
*
input
=
param
.
X
->
data
<
float
>
();
float
*
output
=
param
.
O
ut
->
mutable_data
<
float
>
();
for
(
int
i
=
0
;
i
<
n
;
i
++
)
{
output
[
i
]
=
std
::
max
(
0.
f
,
input
[
i
]);
}
...
...
paddle/fluid/lite/kernels/x86/relu_compute_test.cc
浏览文件 @
8202e25d
...
...
@@ -53,10 +53,10 @@ TEST(relu_x86, run_test) {
}
// ReluCompute relu;
ReluCompute
<
float
>
relu
;
operators
::
Relu
Param
param
;
operators
::
Activation
Param
param
;
param
.
input
=
&
x
;
param
.
outp
ut
=
&
out
;
param
.
X
=
&
x
;
param
.
O
ut
=
&
out
;
relu
.
SetParam
(
param
);
relu
.
Run
();
...
...
paddle/fluid/lite/operators/CMakeLists.txt
浏览文件 @
8202e25d
...
...
@@ -21,6 +21,7 @@ cc_library(fill_constant_op_lite SRCS fill_constant_op.cc DEPS ${op_DEPS})
cc_library
(
op_params_lite SRCS op_params.cc DEPS
${
tensor_lite
}
any_lite framework_proto_lite
)
cc_library
(
dropout_op_lite SRCS dropout_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
concat_op_lite SRCS concat_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
calib_op_lite SRCS calib_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
split_op_lite SRCS split_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
transpose_op_lite SRCS transpose_op.cc DEPS
${
op_DEPS
}
)
cc_library
(
fake_quant SRCS fake_quantize_moving_avg_max_abs.cc DEPS
${
op_DEPS
}
)
...
...
@@ -46,6 +47,7 @@ set(ops_lite
activation_ops_lite
dropout_op_lite
concat_op_lite
calib_op_lite
split_op_lite
transpose_op_lite
fake_quant
...
...
@@ -64,6 +66,7 @@ lite_cc_test(test_softmax_op_lite SRCS softmax_op_test.cc DEPS softmax_op_lite m
lite_cc_test
(
test_reshape_op_lite SRCS reshape_op_test.cc DEPS reshape_op_lite memory_lite
)
lite_cc_test
(
test_batch_norm_op_lite SRCS batch_norm_op_test.cc DEPS batch_norm_op_lite memory_lite
)
lite_cc_test
(
test_concat_op_lite SRCS concat_op_test.cc DEPS concat_op_lite memory_lite
)
lite_cc_test
(
test_calib_op_lite SRCS calib_op_test.cc DEPS calib_op_lite memory_lite ARM_DEPS calib_compute_arm
)
lite_cc_test
(
test_fusion_elementwise_activation_ops_lite
SRCS fusion_elementwise_activation_ops_test.cc
DEPS fusion_elementwise_activation_ops_lite memory_lite
)
...
...
paddle/fluid/lite/operators/calib_op.cc
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/calib_op.h"
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
bool
CalibOpLite
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
input
);
CHECK_OR_FALSE
(
param_
.
output
);
return
true
;
}
bool
CalibOpLite
::
InferShape
()
const
{
param_
.
output
->
Resize
(
param_
.
input
->
dims
());
return
true
;
}
bool
CalibOpLite
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
auto
x_var
=
scope
->
FindVar
(
opdesc
.
Input
(
"Input"
).
front
());
auto
output_var
=
scope
->
FindVar
(
opdesc
.
Output
(
"Out"
).
front
());
CHECK
(
x_var
);
CHECK
(
output_var
);
param_
.
input
=
const_cast
<
lite
::
Tensor
*>
(
&
(
x_var
->
Get
<
lite
::
Tensor
>
()));
param_
.
output
=
output_var
->
GetMutable
<
lite
::
Tensor
>
();
std
::
vector
<
std
::
string
>
input_arg_names
=
opdesc
.
InputArgumentNames
();
param_
.
in_dtype
=
static_cast
<
lite
::
PrecisionType
>
(
opdesc
.
GetAttr
<
int
>
(
"in_dtype"
));
param_
.
out_dtype
=
static_cast
<
lite
::
PrecisionType
>
(
opdesc
.
GetAttr
<
int
>
(
"out_dtype"
));
if
(
opdesc
.
HasAttr
(
"in_scale"
))
{
param_
.
in_scale
=
opdesc
.
GetAttr
<
float
>
(
"in_scale"
);
}
CHECK
(
param_
.
input
)
<<
"Input(X) of CalibOp should not be null."
;
CHECK
(
param_
.
output
)
<<
"Output(Out) of CalibOp should not be null."
;
return
true
;
}
}
// namespace operators
}
// namespace lite
}
// namespace paddle
REGISTER_LITE_OP
(
calib
,
paddle
::
lite
::
operators
::
CalibOpLite
);
paddle/fluid/lite/operators/calib_op.h
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "paddle/fluid/lite/core/compatible_tensor.h"
#include "paddle/fluid/lite/core/kernel.h"
#include "paddle/fluid/lite/core/op_lite.h"
#include "paddle/fluid/lite/core/scope.h"
#include "paddle/fluid/lite/operators/op_params.h"
#include "paddle/fluid/lite/utils/all.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
/*
* The data types used by the two adjacent layers in the model should
* be the same. When the two operators accept different data types,
* we may need to implicitly add a data type conversion operator.
* Currently, this operator only supports mutual conversion of int8
* and float32 types.
*/
class
CalibOpLite
:
public
OpLite
{
public:
CalibOpLite
()
{}
explicit
CalibOpLite
(
const
std
::
string
&
type
)
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
);
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"calib"
;
}
private:
mutable
CalibParam
param_
;
};
}
// namespace operators
}
// namespace lite
}
// namespace paddle
paddle/fluid/lite/operators/calib_op_test.cc
0 → 100644
浏览文件 @
8202e25d
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/lite/operators/calib_op.h"
#include <gtest/gtest.h>
#include "paddle/fluid/lite/core/op_registry.h"
namespace
paddle
{
namespace
lite
{
namespace
operators
{
#ifdef LITE_WITH_ARM
TEST
(
calib_op_lite
,
TestARM
)
{
// prepare variables
Scope
scope
;
auto
*
x
=
scope
.
Var
(
"Input"
)
->
GetMutable
<
Tensor
>
();
auto
*
output
=
scope
.
Var
(
"output"
)
->
GetMutable
<
Tensor
>
();
x
->
Resize
(
DDim
(
std
::
vector
<
int64_t
>
({
1
,
10
,
20
})));
output
->
Resize
(
DDim
(
std
::
vector
<
int64_t
>
{
1
,
10
,
20
}));
// set data
for
(
int
i
=
0
;
i
<
10
*
20
;
i
++
)
{
x
->
mutable_data
<
float
>
()[
i
]
=
i
;
}
for
(
int
i
=
0
;
i
<
10
*
20
;
i
++
)
{
output
->
mutable_data
<
float
>
()[
i
]
=
0.
;
}
// prepare op desc
cpp
::
OpDesc
desc
;
desc
.
SetType
(
"calib"
);
desc
.
SetInput
(
"Input"
,
{
"Input"
});
desc
.
SetOutput
(
"Out"
,
{
"output"
});
desc
.
SetAttr
(
"in_dtype"
,
static_cast
<
int
>
(
PRECISION
(
kInt8
)));
desc
.
SetAttr
(
"out_dtype"
,
static_cast
<
int
>
(
PRECISION
(
kFloat
)));
desc
.
SetAttr
(
"in_scale"
,
10.0
f
);
CalibOpLite
calib
(
"calib"
);
calib
.
SetValidPlaces
({
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
)}});
calib
.
Attach
(
desc
,
&
scope
);
auto
kernels
=
calib
.
CreateKernels
({
Place
{
TARGET
(
kARM
),
PRECISION
(
kInt8
)}});
ASSERT_FALSE
(
kernels
.
empty
());
}
#endif
}
// namespace operators
}
// namespace lite
}
// namespace paddle
#ifdef LITE_WITH_ARM
USE_LITE_KERNEL
(
calib
,
kARM
,
kInt8
,
kNCHW
,
def
);
#endif
paddle/fluid/lite/operators/dropout_op.cc
浏览文件 @
8202e25d
...
...
@@ -52,13 +52,16 @@ class DropoutOpLite : public OpLite {
param_
.
mask
=
GetMutableVar
<
lite
::
Tensor
>
(
scope
,
Mask
);
param_
.
dropout_prob
=
op_desc
.
GetAttr
<
float
>
(
"dropout_prob"
);
if
(
op_desc
.
HasAttr
(
"is_test"
))
{
param_
.
is_test
=
op_desc
.
GetAttr
<
bool
>
(
"is_test"
);
}
param_
.
is_test
=
true
;
// TODO(sangoly): `is_test` has different attr type in x86 and arm, set
// `true` now.
// if (op_desc.HasAttr("is_test")) {
// param_.is_test = op_desc.GetAttr<bool>("is_test");
// }
param_
.
fix_seed
=
op_desc
.
GetAttr
<
bool
>
(
"fix_seed"
);
param_
.
seed
=
op_desc
.
GetAttr
<
int
>
(
"seed"
);
param_
.
dropout_implementation
=
op_desc
.
GetAttr
<
int
>
(
"dropout_implementation"
);
op_desc
.
GetAttr
<
std
::
string
>
(
"dropout_implementation"
);
return
true
;
}
...
...
paddle/fluid/lite/operators/elementwise_ops.h
浏览文件 @
8202e25d
...
...
@@ -32,6 +32,7 @@ class ElementwiseOp : public OpLite {
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"elementwise_op"
;
}
private:
...
...
paddle/fluid/lite/operators/fusion_elementwise_activation_ops.cc
浏览文件 @
8202e25d
...
...
@@ -20,9 +20,29 @@ namespace paddle {
namespace
lite
{
namespace
operators
{
bool
FusionElementwiseActivationOp
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
X
);
CHECK_OR_FALSE
(
param_
.
Y
);
CHECK_OR_FALSE
(
param_
.
Out
);
return
true
;
}
bool
FusionElementwiseActivationOp
::
InferShape
()
const
{
CHECK_OR_FALSE
(
param_
.
X
->
dims
().
size
()
>=
param_
.
Y
->
dims
().
size
());
param_
.
Out
->
Resize
(
param_
.
X
->
dims
());
return
true
;
}
bool
FusionElementwiseActivationOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
ElementwiseOp
::
AttachImpl
(
opdesc
,
scope
);
auto
X_name
=
opdesc
.
Input
(
"X"
).
front
();
auto
Y_name
=
opdesc
.
Input
(
"Y"
).
front
();
auto
Out_name
=
opdesc
.
Output
(
"Out"
).
front
();
param_
.
X
=
GetVar
<
lite
::
Tensor
>
(
scope
,
X_name
);
param_
.
Y
=
GetVar
<
lite
::
Tensor
>
(
scope
,
Y_name
);
param_
.
Out
=
GetMutableVar
<
lite
::
Tensor
>
(
scope
,
Out_name
);
param_
.
axis
=
opdesc
.
GetAttr
<
int
>
(
"axis"
);
param_
.
act_type
=
opdesc
.
GetAttr
<
std
::
string
>
(
"act_type"
);
// TODO(sangoly): support more activation types.
CHECK
(
param_
.
act_type
==
"relu"
)
<<
"Only relu activation be supported now"
;
...
...
@@ -31,9 +51,31 @@ bool FusionElementwiseActivationOp::AttachImpl(const cpp::OpDesc& opdesc,
}
#ifdef LITE_WITH_X86
bool
FusionElementwiseActivationGradExplicitOp
::
CheckShape
()
const
{
CHECK_OR_FALSE
(
param_
.
Y
);
CHECK_OR_FALSE
(
param_
.
X_grad
);
CHECK_OR_FALSE
(
param_
.
Y_grad
);
CHECK_OR_FALSE
(
param_
.
Out_grad
);
return
true
;
}
bool
FusionElementwiseActivationGradExplicitOp
::
InferShape
()
const
{
param_
.
X_grad
->
Resize
(
param_
.
Out_grad
->
dims
());
param_
.
Y_grad
->
Resize
(
param_
.
Y
->
dims
());
return
true
;
}
bool
FusionElementwiseActivationGradExplicitOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
ElementwiseGradExplicitOp
::
AttachImpl
(
opdesc
,
scope
);
CHECK_EQ
(
opdesc
.
InputArgumentNames
().
size
(),
1UL
);
auto
Out_name
=
opdesc
.
Input
(
framework
::
GradVarName
(
"Out"
)).
front
();
auto
X_name
=
opdesc
.
Output
(
framework
::
GradVarName
(
"X"
)).
front
();
auto
Y_name
=
opdesc
.
Output
(
framework
::
GradVarName
(
"Y"
)).
front
();
param_
.
Out_grad
=
GetVar
<
lite
::
Tensor
>
(
scope
,
Out_name
);
param_
.
X_grad
=
GetMutableVar
<
lite
::
Tensor
>
(
scope
,
X_name
);
param_
.
Y_grad
=
GetMutableVar
<
Tensor
>
(
scope
,
Y_name
);
param_
.
axis
=
opdesc
.
GetAttr
<
int
>
(
"axis"
);
param_
.
act_type
=
opdesc
.
GetAttr
<
std
::
string
>
(
"act_type"
);
// TODO(sangoly): support more activation types.
CHECK
(
param_
.
act_type
==
"relu"
)
<<
"Only relu activation be supported now"
;
...
...
paddle/fluid/lite/operators/fusion_elementwise_activation_ops.h
浏览文件 @
8202e25d
...
...
@@ -22,13 +22,19 @@ namespace paddle {
namespace
lite
{
namespace
operators
{
class
FusionElementwiseActivationOp
:
public
ElementwiseOp
{
class
FusionElementwiseActivationOp
:
public
OpLite
{
public:
explicit
FusionElementwiseActivationOp
(
const
std
::
string
&
type
)
:
ElementwiseOp
(
type
)
{}
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"fusion_elementwise_activation_op"
;
}
...
...
@@ -38,14 +44,19 @@ class FusionElementwiseActivationOp : public ElementwiseOp {
};
#ifdef LITE_WITH_X86
class
FusionElementwiseActivationGradExplicitOp
:
public
ElementwiseGradExplicitOp
{
class
FusionElementwiseActivationGradExplicitOp
:
public
OpLite
{
public:
explicit
FusionElementwiseActivationGradExplicitOp
(
const
std
::
string
&
type
)
:
ElementwiseGradExplicitOp
(
type
)
{}
:
OpLite
(
type
)
{}
bool
CheckShape
()
const
override
;
bool
InferShape
()
const
override
;
bool
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
override
;
void
AttachKernel
(
KernelBase
*
kernel
)
override
{
kernel
->
SetParam
(
param_
);
}
std
::
string
DebugString
()
const
override
{
return
"fusion_elementwise_activation_grad_explicit_op"
;
}
...
...
paddle/fluid/lite/operators/op_params.h
浏览文件 @
8202e25d
...
...
@@ -48,6 +48,14 @@ struct IoCopyParam {
lite
::
Tensor
*
y
{};
};
struct
CalibParam
{
const
lite
::
Tensor
*
input
{};
lite
::
Tensor
*
output
{};
float
in_scale
;
PrecisionType
in_dtype
;
PrecisionType
out_dtype
;
};
/// -------------------------- NN operators ------------------------------------
struct
FcParam
{
...
...
@@ -60,11 +68,6 @@ struct FcParam {
bool
weight_transposed
{
false
};
};
struct
ReluParam
{
lite
::
Tensor
*
input
{};
lite
::
Tensor
*
output
{};
};
// For Mul Op
struct
MulParam
{
const
lite
::
Tensor
*
x
{};
...
...
paddle/fluid/lite/operators/relu_op.cc
浏览文件 @
8202e25d
...
...
@@ -21,22 +21,22 @@ namespace operators {
bool
ReluOp
::
CheckShape
()
const
{
return
true
;
}
bool
ReluOp
::
InferShape
()
const
{
CHECK_OR_FALSE
(
param_
.
input
);
CHECK_OR_FALSE
(
param_
.
outp
ut
);
CHECK_OR_FALSE
(
param_
.
X
);
CHECK_OR_FALSE
(
param_
.
O
ut
);
// TODO(Superjomn) Enable data sharing.
param_
.
output
->
Resize
(
param_
.
input
->
dims
());
param_
.
Out
->
Resize
(
param_
.
X
->
dims
());
// share lod
// param_.output->set_lod(param_.
input
->lod());
// param_.output->set_lod(param_.
X
->lod());
return
true
;
}
bool
ReluOp
::
AttachImpl
(
const
cpp
::
OpDesc
&
opdesc
,
lite
::
Scope
*
scope
)
{
param_
.
input
=
const_cast
<
lite
::
Tensor
*>
(
param_
.
X
=
const_cast
<
lite
::
Tensor
*>
(
&
scope
->
FindVar
(
opdesc
.
Input
(
"X"
).
front
())
->
Get
<
lite
::
Tensor
>
());
param_
.
outp
ut
=
param_
.
O
ut
=
scope
->
FindVar
(
opdesc
.
Output
(
"Out"
).
front
())
->
GetMutable
<
lite
::
Tensor
>
();
CHECK
(
param_
.
input
);
CHECK
(
param_
.
outp
ut
);
CHECK
(
param_
.
X
);
CHECK
(
param_
.
O
ut
);
return
true
;
}
...
...
paddle/fluid/lite/operators/relu_op.h
浏览文件 @
8202e25d
...
...
@@ -38,7 +38,7 @@ class ReluOp : public OpLite {
std
::
string
DebugString
()
const
override
{
return
"relu"
;
}
private:
mutable
Relu
Param
param_
;
mutable
Activation
Param
param_
;
};
}
// namespace operators
...
...
paddle/fluid/lite/operators/use_ops.h
浏览文件 @
8202e25d
...
...
@@ -34,3 +34,4 @@ USE_LITE_OP(conv2d)
USE_LITE_OP
(
depthwise_conv2d
)
USE_LITE_OP
(
pool2d
)
USE_LITE_OP
(
batch_norm
)
USE_LITE_OP
(
fusion_elementwise_sub_activation
)
paddle/fluid/lite/tools/build.sh
浏览文件 @
8202e25d
...
...
@@ -99,7 +99,7 @@ function test_arm_android {
echo
"test name:
${
test_name
}
"
adb_work_dir
=
"/data/local/tmp"
skip_list
=(
"test_model_parser_lite"
"test_
cxx_api
_lite"
)
skip_list
=(
"test_model_parser_lite"
"test_
mobilenetv1_lite"
"test_mobilenetv2_lite"
"test_resnet50_lite"
"test_inceptionv4
_lite"
)
for
skip_name
in
${
skip_list
[@]
}
;
do
[[
$skip_name
=
~
(
^|[[:space:]]
)
$test_name
(
$|
[[
:space:]]
)
]]
&&
echo
"skip
$test_name
"
&&
return
done
...
...
@@ -136,7 +136,7 @@ function test_arm_model {
adb
-s
emulator-
${
port
}
push
${
testpath
}
${
adb_work_dir
}
adb
-s
emulator-
${
port
}
shell
chmod
+x
"
${
adb_work_dir
}
/
${
test_name
}
"
local
adb_model_path
=
"
${
adb_work_dir
}
/
`
basename
${
model_dir
}
`
"
adb
-s
emulator-
${
port
}
shell
"
${
adb_work_dir
}
/
${
test_name
}
--
eval_
model_dir=
$adb_model_path
"
adb
-s
emulator-
${
port
}
shell
"
${
adb_work_dir
}
/
${
test_name
}
--model_dir=
$adb_model_path
"
}
...
...
@@ -305,8 +305,8 @@ function build_test_arm_subtask_armlinux {
echo
"Done"
}
# sub-task
3
function
build_test_arm_subtask
3_mobilenet_v2
{
# sub-task
-model
function
build_test_arm_subtask
_model
{
local
port_armv8
=
5554
local
port_armv7
=
5556
# We just test following single one environment to limit the CI time.
...
...
@@ -314,17 +314,20 @@ function build_test_arm_subtask3_mobilenet_v2 {
local
abi
=
armv8
local
lang
=
gcc
local
test_name
=
$1
local
model_name
=
$2
cur_dir
=
$(
pwd
)
build_dir
=
$cur_dir
/build.lite.
${
os
}
.
${
abi
}
.
${
lang
}
mkdir
-p
$build_dir
cd
$build_dir
cmake_arm
$os
$abi
$lang
make
test_cxx_api_lit
e
-j
$NUM_CORES_FOR_COMPILE
make
$test_nam
e
-j
$NUM_CORES_FOR_COMPILE
prepare_emulator
$port_armv8
$port_armv7
# just test the model on armv8
test_arm_model
"test_cxx_api_lite"
$port_armv8
"./third_party/install/mobilenet_v2_relu
"
test_arm_model
$test_name
$port_armv8
"./third_party/install/
$model_name
"
adb devices |
grep
emulator |
cut
-f1
|
while
read
line
;
do
adb
-s
$line
emu
kill
;
done
echo
"Done"
...
...
@@ -441,8 +444,20 @@ function main {
build_test_arm_subtask_armlinux
shift
;;
build_test_arm_model1
)
build_test_arm_subtask3_mobilenet_v2
build_test_arm_model_mobilenetv1
)
build_test_arm_subtask_model test_mobilenetv1_lite mobilenet_v1
shift
;;
build_test_arm_model_mobilenetv2
)
build_test_arm_subtask_model test_mobilenetv2_lite mobilenet_v2
shift
;;
build_test_arm_model_resnet50
)
build_test_arm_subtask_model test_resnet50_lite resnet50
shift
;;
build_test_arm_model_inceptionv4
)
build_test_arm_subtask_model test_inceptionv4_lite inception_v4
shift
;;
check_style
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录