Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
806832e0
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
806832e0
编写于
3月 05, 2019
作者:
Z
Zhen Wang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update the input format of channel wise dequantize op.
上级
89dee160
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
46 addition
and
61 deletion
+46
-61
paddle/fluid/operators/fake_dequantize_op.cc
paddle/fluid/operators/fake_dequantize_op.cc
+18
-24
paddle/fluid/operators/fake_dequantize_op.h
paddle/fluid/operators/fake_dequantize_op.h
+16
-22
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
...n/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
+12
-15
未找到文件。
paddle/fluid/operators/fake_dequantize_op.cc
浏览文件 @
806832e0
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#include "paddle/fluid/operators/fake_dequantize_op.h"
#include "paddle/fluid/operators/fake_dequantize_op.h"
#include <string>
#include <string>
#include <vector>
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
namespace
operators
{
...
@@ -84,8 +85,8 @@ class FakeChannelWiseDequantizeMaxAbsOp : public framework::OperatorWithKernel {
...
@@ -84,8 +85,8 @@ class FakeChannelWiseDequantizeMaxAbsOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
ctx
->
HasInput
(
"X"
),
"Input(X) of FakeChannelWiseDequantizeMaxAbsOp should not be null."
);
"Input(X) of FakeChannelWiseDequantizeMaxAbsOp should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Weight
Scales"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
s
(
"
Scales"
),
"Input(
Weight
Scales) of FakeChannelWiseDequantizeMaxAbsOp "
"Input(Scales) of FakeChannelWiseDequantizeMaxAbsOp "
"should not be null."
);
"should not be null."
);
PADDLE_ENFORCE
(
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Out"
),
ctx
->
HasOutput
(
"Out"
),
...
@@ -103,39 +104,32 @@ class FakeChannelWiseDequantizeMaxAbsOpMaker
...
@@ -103,39 +104,32 @@ class FakeChannelWiseDequantizeMaxAbsOpMaker
AddInput
(
"X"
,
AddInput
(
"X"
,
"(Tensor) The input with float-32/64 type is the "
"(Tensor) The input with float-32/64 type is the "
"low precision tensor."
);
"low precision tensor."
);
AddInput
(
"ActivationScale"
,
AddInput
(
"Scales"
,
"(float) The activation scale in quantization stage."
)
"(Tensors) The scales in quantization stage. "
.
AsDispensable
();
"Now, `Scales` is a vector with at most two tensors. "
AddInput
(
"WeightScales"
,
"If Scales has two elements, the second tensor should only have "
"(float array) The weight scales in quantization stage."
);
"one value."
)
.
AsDuplicable
();
AddOutput
(
"Out"
,
AddOutput
(
"Out"
,
"(Tensor) The output is the dequantized high "
"(Tensor) The output is the dequantized high "
"precision tensor."
);
"precision tensor."
);
AddAttr
<
int
>
(
"activation_bits"
,
"Quantization bit number for activation."
)
AddAttr
<
std
::
vector
<
int
>>
(
.
SetDefault
(
8
)
"quant_bits"
,
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
"Quantization bit numbers in quantization stage. "
PADDLE_ENFORCE
(
bit_length
>=
1
&&
bit_length
<=
16
,
"The size of `quant_bits` should be equal to the size of `Scales`."
)
"'activation_bits' should be between 1 and 16."
);
.
SetDefault
({
8
});
});
AddAttr
<
int
>
(
"weight_bits"
,
"Quantization bit number for weights."
)
.
SetDefault
(
8
)
.
AddCustomChecker
([](
const
int
&
bit_length
)
{
PADDLE_ENFORCE
(
bit_length
>=
1
&&
bit_length
<=
16
,
"'weight_bits' should be between 1 and 16."
);
});
AddComment
(
R"DOC(
AddComment
(
R"DOC(
FakeChannelWiseDequantizeMaxAbsOp operator.
FakeChannelWiseDequantizeMaxAbsOp operator.
This calculation is an opposite operation of FakeChannelWiseQuantizeMaxAbsOp:
This calculation is an opposite operation of FakeChannelWiseQuantizeMaxAbsOp:
$$Out_c = \frac{
ActivationScale*WeightScale_c*X_c}{(2^{weight\_bits-1}-1)*(2^{activation\_bits
-1}-1)}$$
$$Out_c = \frac{
X_c\prod_{i=1}^{n}Scales_{ic}}{\prod_{i=1}^{n}(2^{quant\_bits_i
-1}-1)}$$
In the above formula, the range value of
c is as follow:
In the above formula, the range value of
$c$ can be represented as $0 \leq c \lt \ the\ channel\ number\ of\ X$.
$$0 \leq c \lt \ the\ channel\ number\ of\ X$$
Besides, the size of $quant\_bits$ should be equal to the size of $Scales$, and it is called $n$ in the formula.
Notes: Tha per-channel quantization is only applied to weights(channel size scale).
Notes: In general, the per-channel quantization is only applied to weights and the activations use per-layer quantization.
And the activations use per-layer quantization(only one scale).
)DOC"
);
)DOC"
);
}
}
};
};
...
...
paddle/fluid/operators/fake_dequantize_op.h
浏览文件 @
806832e0
...
@@ -14,6 +14,7 @@ limitations under the License. */
...
@@ -14,6 +14,7 @@ limitations under the License. */
#pragma once
#pragma once
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/op_registry.h"
...
@@ -50,47 +51,40 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
...
@@ -50,47 +51,40 @@ class FakeChannelWiseDequantizeMaxAbsKernel : public framework::OpKernel<T> {
public:
public:
virtual
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
virtual
void
Compute
(
const
framework
::
ExecutionContext
&
ctx
)
const
{
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
in
=
ctx
.
Input
<
framework
::
Tensor
>
(
"X"
);
auto
*
weight_scales
=
ctx
.
Input
<
framework
::
Tensor
>
(
"Weight
Scales"
);
auto
scales
=
ctx
.
MultiInput
<
framework
::
Tensor
>
(
"
Scales"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
auto
*
out
=
ctx
.
Output
<
framework
::
Tensor
>
(
"Out"
);
PADDLE_ENFORCE_EQ
(
weight_scales
->
numel
(),
in
->
dims
()[
0
],
PADDLE_ENFORCE_EQ
(
scales
[
0
]
->
numel
(),
in
->
dims
()[
0
],
"The weight uses the per-channel quantization type, so "
"The number of first scale values must be the same with "
"the number of weight scale values must be the same with "
"first dimension value of Input(X)."
);
"first dimension value of Input(X)."
);
int
ativation_bits
=
ctx
.
Attr
<
int
>
(
"activation_bits"
);
auto
quant_bits
=
ctx
.
Attr
<
std
::
vector
<
int
>>
(
"quant_bits"
);
int
weight_bits
=
ctx
.
Attr
<
int
>
(
"weight_bits"
);
int
max_range
=
std
::
pow
(
2
,
quant_bits
[
0
]
-
1
)
-
1
;
int
range
=
std
::
pow
(
2
,
weight_bits
-
1
)
-
1
;
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
auto
&
dev_ctx
=
ctx
.
template
device_context
<
DeviceContext
>();
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
out
->
mutable_data
<
T
>
(
dev_ctx
.
GetPlace
());
auto
dequant
=
DequantizeFunctor
<
DeviceContext
,
T
>
();
auto
dequant
=
DequantizeFunctor
<
DeviceContext
,
T
>
();
if
(
ctx
.
HasInput
(
"ActivationScale"
))
{
if
(
scales
.
size
()
==
2
)
{
auto
*
activation_scale
=
ctx
.
Input
<
framework
::
Tensor
>
(
"ActivationScale"
);
PADDLE_ENFORCE_EQ
(
PADDLE_ENFORCE_EQ
(
activation_scale
->
numel
(),
1
,
scales
[
1
]
->
numel
(),
1
,
"The activation uses per-layer quantization type, so "
"The second scale tensor should only have one value at now."
);
"it must have only one value."
);
framework
::
Tensor
cpu_weigth_scales
;
framework
::
TensorCopy
(
*
weight_scales
,
platform
::
CPUPlace
(),
&
cpu_weigth_scales
);
dev_ctx
.
Wait
();
const
T
*
weight_scales_data
=
cpu_weigth_scales
.
data
<
T
>
();
range
*=
(
std
::
pow
(
2
,
ativation_bits
-
1
)
-
1
);
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
auto
max_range
=
range
/
weight_scales_data
[
i
];
framework
::
Tensor
one_channel_scale
=
scales
[
0
]
->
Slice
(
i
,
i
+
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
activation_scale
,
max_range
*=
(
std
::
pow
(
2
,
quant_bits
[
1
]
-
1
)
-
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
static_cast
<
T
>
(
max_range
),
&
one_channel_out
);
}
}
dequant
(
dev_ctx
,
out
,
scales
[
1
],
static_cast
<
T
>
(
1
),
out
);
}
else
{
}
else
{
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
for
(
int64_t
i
=
0
;
i
<
in
->
dims
()[
0
];
i
++
)
{
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_in
=
in
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_out
=
out
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
weight_scales
->
Slice
(
i
,
i
+
1
);
framework
::
Tensor
one_channel_scale
=
scales
[
0
]
->
Slice
(
i
,
i
+
1
);
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
dequant
(
dev_ctx
,
&
one_channel_in
,
&
one_channel_scale
,
static_cast
<
T
>
(
range
),
&
one_channel_out
);
static_cast
<
T
>
(
max_
range
),
&
one_channel_out
);
}
}
}
}
}
}
...
...
python/paddle/fluid/tests/unittests/test_fake_dequantize_op.py
浏览文件 @
806832e0
...
@@ -49,53 +49,50 @@ def channel_wise_dequantize_max_abs(x, scales, max_range):
...
@@ -49,53 +49,50 @@ def channel_wise_dequantize_max_abs(x, scales, max_range):
return
y
return
y
class
TestFakeChannelWiseDequantizeMaxAbsOp
(
OpTest
):
class
TestFakeChannelWiseDequantizeMaxAbsOp
TwoScales
(
OpTest
):
def
set_args
(
self
):
def
set_args
(
self
):
self
.
weight_bits
=
8
self
.
quant_bits
=
[
8
,
2
]
self
.
activation_bits
=
2
self
.
data_type
=
"float32"
self
.
data_type
=
"float32"
def
setUp
(
self
):
def
setUp
(
self
):
self
.
set_args
()
self
.
set_args
()
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
max_range
=
math
.
pow
(
2
,
self
.
weight_bits
-
1
)
-
1
max_range
=
math
.
pow
(
2
,
self
.
quant_bits
[
0
]
-
1
)
-
1
max_range
*=
(
math
.
pow
(
2
,
self
.
quant_bits
[
1
]
-
1
)
-
1
)
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
max_range
)
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
max_range
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
max_range
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
max_range
)
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
yq
,
'X'
:
yq
,
'ActivationScale'
:
np
.
array
(
1.0
).
astype
(
self
.
data_type
),
'Scales'
:
[(
"scales0"
,
np
.
array
(
scales
).
astype
(
self
.
data_type
)),
'WeightScales'
:
np
.
array
(
scales
).
astype
(
self
.
data_type
)
(
"scales1"
,
np
.
array
([
1.0
]).
astype
(
self
.
data_type
))]
}
self
.
attrs
=
{
'weight_bits'
:
self
.
weight_bits
,
'activation_bits'
:
self
.
activation_bits
}
}
self
.
attrs
=
{
'quant_bits'
:
self
.
quant_bits
}
self
.
outputs
=
{
'Out'
:
ydq
}
self
.
outputs
=
{
'Out'
:
ydq
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
self
.
check_output
()
self
.
check_output
()
class
TestFakeChannelWiseDequantizeMaxAbsOp
NoActivation
Scale
(
OpTest
):
class
TestFakeChannelWiseDequantizeMaxAbsOp
One
Scale
(
OpTest
):
def
set_args
(
self
):
def
set_args
(
self
):
self
.
weight_bits
=
8
self
.
quant_bits
=
[
8
]
self
.
data_type
=
"float32"
self
.
data_type
=
"float32"
def
setUp
(
self
):
def
setUp
(
self
):
self
.
set_args
()
self
.
set_args
()
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
self
.
op_type
=
"fake_channel_wise_dequantize_max_abs"
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
x
=
np
.
random
.
randn
(
4
,
3
,
64
,
64
).
astype
(
self
.
data_type
)
max_range
=
math
.
pow
(
2
,
self
.
weight_bits
-
1
)
-
1
max_range
=
math
.
pow
(
2
,
self
.
quant_bits
[
0
]
-
1
)
-
1
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
max_range
)
yq
,
scales
=
channel_wise_quantize_max_abs
(
x
,
max_range
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
max_range
)
ydq
=
channel_wise_dequantize_max_abs
(
yq
,
scales
,
max_range
)
self
.
inputs
=
{
self
.
inputs
=
{
'X'
:
yq
,
'X'
:
yq
,
'
WeightScales'
:
np
.
array
(
scales
).
astype
(
self
.
data_type
)
'
Scales'
:
[(
"scales0"
,
np
.
array
(
scales
).
astype
(
self
.
data_type
))]
}
}
self
.
attrs
=
{
'
weight_bits'
:
self
.
weigh
t_bits
}
self
.
attrs
=
{
'
quant_bits'
:
self
.
quan
t_bits
}
self
.
outputs
=
{
'Out'
:
ydq
}
self
.
outputs
=
{
'Out'
:
ydq
}
def
test_check_output
(
self
):
def
test_check_output
(
self
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录