From 7e3195b2dcf36999020f4e7e25805bc565d91caf Mon Sep 17 00:00:00 2001 From: Feng Ni Date: Tue, 27 Sep 2022 17:49:43 +0800 Subject: [PATCH] [doc] add paddleyolo docs (#7036) * fix paddleyolo doc, test=document_fix * fix paddleyolo doc, test=document_fix --- README_cn.md | 10 +- README_en.md | 2 +- docs/MODEL_ZOO_cn.md | 6 +- docs/MODEL_ZOO_en.md | 6 +- docs/feature_models/YOLOSERIES_MODEL.md | 136 ++++----- docs/feature_models/YOLOSERIES_MODEL_en.md | 314 +++++++++++++++++++++ 6 files changed, 399 insertions(+), 75 deletions(-) create mode 100644 docs/feature_models/YOLOSERIES_MODEL_en.md diff --git a/README_cn.md b/README_cn.md index 4c5031e5a..47edf3f49 100644 --- a/README_cn.md +++ b/README_cn.md @@ -56,7 +56,7 @@ PaddleDetection受邀参与首个以YOLO为主题的YOLO Vision世界大会, - 发布行人分析工具[PP-Human v2](./deploy/pipeline),新增打架、打电话、抽烟、闯入四大行为识别,底层算法性能升级,覆盖行人检测、跟踪、属性三类核心算法能力,提供保姆级全流程开发及模型优化策略,支持在线视频流输入 - 首次发布[PP-Vehicle](./deploy/pipeline),提供车牌识别、车辆属性分析(颜色、车型)、车流量统计以及违章检测四大功能,兼容图片、在线视频流、视频输入,提供完善的二次开发文档教程 - 💡 前沿算法: - - 全面覆盖的[YOLO家族](docs/feature_models/YOLOSERIES_MODEL.md)经典与最新模型代码库[PaddleDetection_YOLOSeries](https://github.com/nemonameless/PaddleDetection_YOLOSeries): 包括YOLOv3,百度飞桨自研的实时高精度目标检测模型PP-YOLOE,以及前沿检测算法YOLOv4、YOLOv5、YOLOX,YOLOv6及YOLOv7 + - 全面覆盖的[YOLO家族](docs/feature_models/YOLOSERIES_MODEL.md)经典与最新模型代码库[PaddleYOLO](https://github.com/PaddlePaddle/PaddleYOLO): 包括YOLOv3,百度飞桨自研的实时高精度目标检测模型PP-YOLOE,以及前沿检测算法YOLOv4、YOLOv5、YOLOX,YOLOv6及YOLOv7 - 新增基于[ViT](configs/vitdet)骨干网络高精度检测模型,COCO数据集精度达到55.7% mAP;新增[OC-SORT](configs/mot/ocsort)多目标跟踪模型;新增[ConvNeXt](configs/convnext)骨干网络 - 📋 产业范例:新增[智能健身](https://aistudio.baidu.com/aistudio/projectdetail/4385813)、[打架识别](https://aistudio.baidu.com/aistudio/projectdetail/4086987?channelType=0&channel=0)、[来客分析](https://aistudio.baidu.com/aistudio/projectdetail/4230123?channelType=0&channel=0)、车辆结构化范例 @@ -292,7 +292,7 @@ PaddleDetection受邀参与首个以YOLO为主题的YOLO Vision世界大会, - `Cascade-Faster-RCNN`为`Cascade-Faster-RCNN-ResNet50vd-DCN`,PaddleDetection将其优化到COCO数据mAP为47.8%时推理速度为20FPS - `PP-YOLOE`是对`PP-YOLO v2`模型的进一步优化,L版本在COCO数据集mAP为51.6%,Tesla V100预测速度78.1FPS - `PP-YOLOE+`是对`PPOLOE`模型的进一步优化,L版本在COCO数据集mAP为53.3%,Tesla V100预测速度78.1FPS -- [`YOLOX`](configs/yolox)和[`YOLOv5`](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5)均为基于PaddleDetection复现算法,`YOLOv5`代码在[`PaddleDetection_YOLOSeries`](https://github.com/nemonameless/PaddleDetection_YOLOSeries)中,参照[YOLOSERIES_MODEL](docs/feature_models/YOLOSERIES_MODEL.md) +- [`YOLOX`](configs/yolox)和[`YOLOv5`](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5)均为基于PaddleDetection复现算法,`YOLOv5`代码在[`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO)中,参照[YOLOSERIES_MODEL](docs/feature_models/YOLOSERIES_MODEL.md) - 图中模型均可在[模型库](#模型库)中获取 @@ -341,11 +341,11 @@ PaddleDetection受邀参与首个以YOLO为主题的YOLO Vision世界大会, | 模型名称 | COCO精度(mAP) | V100 TensorRT FP16速度(FPS) | 配置文件 | 模型下载 | |:------------------------------------------------------------------ |:-----------:|:-------------------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------:| | [YOLOX-l](configs/yolox) | 50.1 | 107.5 | [链接](configs/yolox/yolox_l_300e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams) | -| [YOLOv5-l](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5) | 48.6 | 136.0 | [链接](https://github.com/nemonameless/PaddleDetection_YOLOSeries/blob/develop/configs/yolov5/yolov5_l_300e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) | -| [YOLOv7-l](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7) | 51.0 | 135.0 | [链接](https://github.com/nemonameless/PaddleDetection_YOLOSeries/blob/develop/configs/yolov7/yolov7_l_300e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams) | +| [YOLOv5-l](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5) | 48.6 | 136.0 | [链接](https://github.com/nemonameless/PaddlePaddle/PaddleYOLO/blob/develop/configs/yolov5/yolov5_l_300e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) | +| [YOLOv7-l](https://github.com/nemonameless/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7) | 51.0 | 135.0 | [链接](https://github.com/nemonameless/PaddlePaddle/PaddleYOLO/blob/develop/configs/yolov7/yolov7_l_300e_coco.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams) | **注意:** -- `YOLOv5`和`YOLOv7`代码在[`PaddleDetection_YOLOSeries`](https://github.com/nemonameless/PaddleDetection_YOLOSeries)中,为基于`PaddleDetection`复现的算法,可参照[YOLOSERIES_MODEL](docs/feature_models/YOLOSERIES_MODEL.md)。 +- `YOLOv5`和`YOLOv7`代码在[`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO)中,为基于`PaddleDetection`复现的算法,可参照[YOLOSERIES_MODEL](docs/feature_models/YOLOSERIES_MODEL.md)。 #### 其他通用检测模型 [文档链接](docs/MODEL_ZOO_cn.md) diff --git a/README_en.md b/README_en.md index 06d811fde..59175728e 100644 --- a/README_en.md +++ b/README_en.md @@ -56,7 +56,7 @@ Join the experts of Ultralytics as well as leaders in the space on September 27t - 💡 Cutting-edge algorithms: - - Covers [YOLO family](https://github.com/nemonameless/PaddleDetection_YOLOSeries) classic and latest models: YOLOv3, PP-YOLOE (a real-time high-precision object detection model developed by Baidu PaddlePaddle), and cutting-edge detection algorithms such as YOLOv4, YOLOv5, YOLOX, YOLOv6, and YOLOv7 + - Covers [YOLO family](https://github.com/PaddlePaddle/PaddleYOLO) classic and latest models: YOLOv3, PP-YOLOE (a real-time high-precision object detection model developed by Baidu PaddlePaddle), and cutting-edge detection algorithms such as YOLOv4, YOLOv5, YOLOX, YOLOv6, and YOLOv7 - Newly add high precision detection model based on [ViT](configs/vitdet) backbone network, with a 55.7% mAP accuracy on COCO dataset; newly add multi-object tracking model [OC-SORT](configs/mot/ocsort); newly add [ConvNeXt](configs/convnext) backbone network. - 📋 Industrial applications: Newly add [Smart Fitness](https://aistudio.baidu.com/aistudio/projectdetail/4385813), [Fighting recognition](https://aistudio.baidu.com/aistudio/projectdetail/4086987?channelType=0&channel=0),[ and Visitor Analysis](https://aistudio.baidu.com/aistudio/projectdetail/4230123?channelType=0&channel=0). diff --git a/docs/MODEL_ZOO_cn.md b/docs/MODEL_ZOO_cn.md index a98d24e4c..e51321e5a 100644 --- a/docs/MODEL_ZOO_cn.md +++ b/docs/MODEL_ZOO_cn.md @@ -97,15 +97,15 @@ Paddle提供基于ImageNet的骨架网络预训练模型。所有预训练模型 ### YOLOv5 -请参考[YOLOv5](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5) +请参考[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5) ### YOLOv6 -请参考[YOLOv6](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6) +请参考[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6) ### YOLOv7 -请参考[YOLOv7](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7) +请参考[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7) ## 旋转框检测 diff --git a/docs/MODEL_ZOO_en.md b/docs/MODEL_ZOO_en.md index e201287a7..f9c012191 100644 --- a/docs/MODEL_ZOO_en.md +++ b/docs/MODEL_ZOO_en.md @@ -96,15 +96,15 @@ Please refer to[YOLOX](https://github.com/PaddlePaddle/PaddleDetection/tree/deve ### YOLOv5 -Please refer to[YOLOv5](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5) +Please refer to[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov5) ### YOLOv6 -Please refer to[YOLOv6](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6) +Please refer to[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov6) ### YOLOv7 -Please refer to[YOLOv7](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7) +Please refer to[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/develop/configs/yolov7) ## Rotating frame detection diff --git a/docs/feature_models/YOLOSERIES_MODEL.md b/docs/feature_models/YOLOSERIES_MODEL.md index 27c00be87..022d4c9f5 100644 --- a/docs/feature_models/YOLOSERIES_MODEL.md +++ b/docs/feature_models/YOLOSERIES_MODEL.md @@ -1,6 +1,6 @@ 简体中文 | [English](YOLOSERIES_MODEL_en.md) -# [**YOLOSeries**](https://github.com/nemonameless/PaddleDetection_YOLOSeries) +# [**PaddleYOLO**](https://github.com/PaddlePaddle/PaddleYOLO) ## 内容 - [简介](#简介) @@ -16,21 +16,17 @@ ## 简介 -[**YOLOSeries**](https://github.com/nemonameless/PaddleDetection_YOLOSeries)是基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)的YOLO系列模型库,**由PaddleDetection团队成员建设和维护**,支持`YOLOv3`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`等模型,其upstream为PaddleDetection的[develop](https://github.com/PaddlePaddle/PaddleDetection/tree/develop)分支,并与PaddleDetection主代码库分支保持同步更新,包括github和gitee的代码,欢迎一起使用和建设! +**PaddleYOLO**是基于[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)的YOLO系列模型库,**只包含YOLO系列模型的相关代码**,支持`YOLOv3`,`PP-YOLO`,`PP-YOLOv2`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`等模型,欢迎一起使用和建设! -## Updates! -* 【2022/09/21】精简代码库只保留主要的YOLO模型相关的代码(release/2.5 branch); -* 【2022/09/19】支持[`YOLOv6`](configs/yolov6)新版,包括n/t/s/m/l模型; -* 【2022/08/23】发布`PaddleDetection_YOLOSeries`代码库: 支持`YOLOv3`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`MT-YOLOv6`,`YOLOv7`等YOLO模型,支持ConvNeXt骨干网络高精度版`PP-YOLOE`,`YOLOX`和`YOLOv5`等模型,支持PaddleSlim无损加速量化训练`PP-YOLOE`,`YOLOv5`,`MT-YOLOv6`和`YOLOv7`等模型,详情可阅读[此文章](https://mp.weixin.qq.com/s/Hki01Zs2lQgvLSLWS0btrA); +## 更新日志 +* 【2022/09/26】发布[`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO)模型套件; +* 【2022/09/19】支持[`YOLOv6`](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)新版,包括n/t/s/m/l模型; +* 【2022/08/23】发布`YOLOSeries`代码库: 支持`YOLOv3`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7`等YOLO模型,支持`ConvNeXt`骨干网络高精度版`PP-YOLOE`,`YOLOX`和`YOLOv5`等模型,支持PaddleSlim无损加速量化训练`PP-YOLOE`,`YOLOv5`,`YOLOv6`和`YOLOv7`等模型,详情可阅读[此文章](https://mp.weixin.qq.com/s/Hki01Zs2lQgvLSLWS0btrA); **注意:** - - 此代码库**推荐使用paddlepaddle-2.3.0以上的版本**,请参考[官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)下载对应适合版本,**其中develop分支代码请安装paddle develop版本,其余分支建议安装paddle 2.3.2版本**。 - - github链接为:https://github.com/nemonameless/PaddleDetection_YOLOSeries - - gitee链接为:https://gitee.com/nemonameless/PaddleDetection_YOLOSeries - - 提issue可以在此代码库的[issues](https://github.com/nemonameless/PaddleDetection_YOLOSeries/issues)页面中,也可以在[PaddleDetection issues](https://github.com/PaddlePaddle/PaddleDetection/issues)中,也欢迎提[PR](https://github.com/nemonameless/PaddleDetection_YOLOSeries/pulls)共同建设和维护。 - - [PP-YOLOE](configs/ppyoloe),[PP-YOLOE+](configs/ppyoloe),[PP-YOLO](configs/ppyolo),[PP-YOLOv2](configs/ppyolo),[YOLOv3](configs/yolov3)和[YOLOX](configs/yolox)等模型推荐在[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)中使用,**会最先发布PP-YOLO系列特色检测模型的最新进展**。 - - [YOLOv5](configs/yolov5),[YOLOv7](configs/yolov7)和[YOLOv6](configs/yolov6)模型推荐在此代码库中使用,**由于GPL开源协议而不合入[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)主代码库**。 + - **PaddleYOLO**代码库协议为**GPL 3.0**,[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7)和[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6)这3类模型代码不合入[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection),其余YOLO模型推荐在[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)中使用,**会最先发布PP-YOLO系列特色检测模型的最新进展**;; + - **PaddleYOLO**代码库**推荐使用paddlepaddle-2.3.2以上的版本**,请参考[官网](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html)下载对应适合版本,**Windows平台请安装paddle develop版本**; ## 技术交流 @@ -50,7 +46,10 @@ ## 模型库 -### [PP-YOLOE, PP-YOLOE+](configs/ppyoloe) +### [PP-YOLOE, PP-YOLOE+](../../configs/ppyoloe) + +
+ 基础模型 | 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 | | :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: | @@ -65,8 +64,10 @@ | **PP-YOLOE+_l** | 640 | 8 | 80e | 8.7 | **52.9** | **70.1** | 52.20 | 110.07 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml) | | **PP-YOLOE+_x** | 640 | 8 | 80e | 14.9 | **54.7** | **72.0** | 98.42 | 206.59 |[model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_x_80e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_plus_crn_x_80e_coco.yml) | +
-#### 部署模型 +
+ 部署模型 | 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) | | :-------- | :--------: | :---------------------: | :----------------: | @@ -80,9 +81,13 @@ | **PP-YOLOE+_l** | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_wo_nms.onnx) | | **PP-YOLOE+_x** | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_wo_nms.onnx) | +
### [YOLOX](../../configs/yolox) +
+ 基础模型 + | 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 | | :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: | | YOLOX-nano | 416 | 8 | 300e | 2.3 | 26.1 | 42.0 | 0.91 | 1.08 | [model](https://paddledet.bj.bcebos.com/models/yolox_nano_300e_coco.pdparams) | [config](../../configs/yolox/yolox_nano_300e_coco.yml) | @@ -95,7 +100,10 @@ | YOLOX-crn-s | 640 | 8 | 300e | 3.0 | 40.4 | 59.6 | 7.7 | 24.69 | [model](https://paddledet.bj.bcebos.com/models/yolox_crn_s_300e_coco.pdparams) | [config](../../configs/yolox/yolox_crn_s_300e_coco.yml) | | YOLOX-s ConvNeXt| 640 | 8 | 36e | - | 44.6 | 65.3 | 36.2 | 27.52 | [model](https://paddledet.bj.bcebos.com/models/yolox_convnext_s_36e_coco.pdparams) | [config](../../configs/convnext/yolox_convnext_s_36e_coco.yml) | -#### 部署模型 +
+ +
+ 部署模型 | 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) | | :-------- | :--------: | :---------------------: | :----------------: | @@ -106,18 +114,26 @@ | YOLOx-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_wo_nms.onnx) | | YOLOx-x | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_wo_nms.onnx) | -### [YOLOv5](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5) +
+ +### [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5) + +
+ 基础模型 | 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 | | :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: | -| YOLOv5-n | 640 | 16 | 300e | 2.6 | 28.0 | 45.7 | 1.87 | 4.52 | [model](https://paddledet.bj.bcebos.com/models/yolov5_n_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_n_300e_coco.yml) | -| YOLOv5-s | 640 | 8 | 300e | 3.2 | 37.0 | 55.9 | 7.24 | 16.54 | [model](https://paddledet.bj.bcebos.com/models/yolov5_s_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_s_300e_coco.yml) | -| YOLOv5-m | 640 | 5 | 300e | 5.2 | 45.3 | 63.8 | 21.19 | 49.08 | [model](https://paddledet.bj.bcebos.com/models/yolov5_m_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_m_300e_coco.yml) | -| YOLOv5-l | 640 | 3 | 300e | 7.9 | 48.6 | 66.9 | 46.56 | 109.32 | [model](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_l_300e_coco.yml) | -| YOLOv5-x | 640 | 2 | 300e | 13.7 | **50.6** | **68.7** | 86.75 | 205.92 | [model](https://paddledet.bj.bcebos.com/models/yolov5_x_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_x_300e_coco.yml) | -| YOLOv5-s ConvNeXt| 640 | 8 | 36e | - | 42.4 | 65.3 | 34.54 | 17.96 | [model](https://paddledet.bj.bcebos.com/models/yolov5_convnext_s_36e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5/yolov5_convnext_s_36e_coco.yml) | +| YOLOv5-n | 640 | 16 | 300e | 2.6 | 28.0 | 45.7 | 1.87 | 4.52 | [model](https://paddledet.bj.bcebos.com/models/yolov5_n_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_n_300e_coco.yml) | +| YOLOv5-s | 640 | 8 | 300e | 3.2 | 37.0 | 55.9 | 7.24 | 16.54 | [model](https://paddledet.bj.bcebos.com/models/yolov5_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_s_300e_coco.yml) | +| YOLOv5-m | 640 | 5 | 300e | 5.2 | 45.3 | 63.8 | 21.19 | 49.08 | [model](https://paddledet.bj.bcebos.com/models/yolov5_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_m_300e_coco.yml) | +| YOLOv5-l | 640 | 3 | 300e | 7.9 | 48.6 | 66.9 | 46.56 | 109.32 | [model](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_l_300e_coco.yml) | +| YOLOv5-x | 640 | 2 | 300e | 13.7 | **50.6** | **68.7** | 86.75 | 205.92 | [model](https://paddledet.bj.bcebos.com/models/yolov5_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_x_300e_coco.yml) | +| YOLOv5-s ConvNeXt| 640 | 8 | 36e | - | 42.4 | 65.3 | 34.54 | 17.96 | [model](https://paddledet.bj.bcebos.com/models/yolov5_convnext_s_36e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_convnext_s_36e_coco.yml) | -#### 部署模型 +
+ +
+ 部署模型 | 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) | | :-------- | :--------: | :---------------------: | :----------------: | @@ -127,21 +143,27 @@ | YOLOv5-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_wo_nms.onnx) | | YOLOv5-x | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_wo_nms.onnx) | +
+ +### [YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6) -### [YOLOv6](configs/yolov6) +
+ 基础模型 | 网络网络 | 输入尺寸 | 图片数/GPU | 学习率策略 | 模型推理耗时(ms) | mAP | AP50 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 | | :------------- | :------- | :-------: | :------: | :---------: | :-----: |:-----: | :-----: |:-----: | :-------------: | :-----: | -| *YOLOv6-n | 416 | 32 | 400e | 1.0 | 31.1 | 45.3 | 4.74 | 5.16 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_416_400e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6/yolov6_n_416_400e_coco.yml) | -| *YOLOv6-n | 640 | 32 | 400e | 1.3 | 36.1 | 51.9 | 4.74 | 12.21 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_400e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6/yolov6_n_400e_coco.yml) | -| *YOLOv6-t | 640 | 32 | 400e | 2.1 | 40.7 | 57.4 | 10.63 | 27.29 |[model](https://paddledet.bj.bcebos.com/models/yolov6_t_400e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6/yolov6_t_400e_coco.yml) | -| *YOLOv6-s | 640 | 32 | 400e | 2.6 | 43.4 | 60.5 | 18.87 | 48.35 |[model](https://paddledet.bj.bcebos.com/models/yolov6_s_400e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6/yolov6_s_400e_coco.yml) | -| *YOLOv6-m | 640 | 32 | 300e | 5.0 | 49.0 | 66.5 | 37.17 | 88.82 |[model](https://paddledet.bj.bcebos.com/models/yolov6_m_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6/yolov6_m_300e_coco.yml) | -| *YOLOv6-l | 640 | 32 | 300e | 7.9 | 51.0 | 68.9 | 63.54 | 155.89 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6/yolov6_l_300e_coco.yml) | -| *YOLOv6-l-silu | 640 | 32 | 300e | 9.6 | 51.7 | 69.6 | 58.59 | 142.66 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_silu_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6/yolov6_l_silu_300e_coco.yml) | +| *YOLOv6-n | 416 | 32 | 400e | 1.0 | 31.1 | 45.3 | 4.74 | 5.16 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_416_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_416_400e_coco.yml) | +| *YOLOv6-n | 640 | 32 | 400e | 1.3 | 36.1 | 51.9 | 4.74 | 12.21 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_400e_coco.yml) | +| *YOLOv6-t | 640 | 32 | 400e | 2.1 | 40.7 | 57.4 | 10.63 | 27.29 |[model](https://paddledet.bj.bcebos.com/models/yolov6_t_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_t_400e_coco.yml) | +| *YOLOv6-s | 640 | 32 | 400e | 2.6 | 43.4 | 60.5 | 18.87 | 48.35 |[model](https://paddledet.bj.bcebos.com/models/yolov6_s_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_s_400e_coco.yml) | +| *YOLOv6-m | 640 | 32 | 300e | 5.0 | 49.0 | 66.5 | 37.17 | 88.82 |[model](https://paddledet.bj.bcebos.com/models/yolov6_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_m_300e_coco.yml) | +| *YOLOv6-l | 640 | 32 | 300e | 7.9 | 51.0 | 68.9 | 63.54 | 155.89 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_300e_coco.yml) | +| *YOLOv6-l-silu | 640 | 32 | 300e | 9.6 | 51.7 | 69.6 | 58.59 | 142.66 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_silu_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_silu_300e_coco.yml) | +
-#### 部署模型 +
+ 部署模型 | 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) | | :-------- | :--------: | :---------------------: | :----------------: | @@ -153,23 +175,29 @@ | yolov6-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.onnx) | | yolov6-l-silu | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.onnx) | +
+ +### [YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7) -### [YOLOv7](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7) +
+ 基础模型 | 网络模型 | 输入尺寸 | 图片数/GPU | 学习率策略 | 推理耗时(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | 下载链接 | 配置文件 | | :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: | -| YOLOv7-L | 640 | 32 | 300e | 7.4 | 51.0 | 70.2 | 37.62 | 106.08 |[model](https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_l_300e_coco.yml) | -| *YOLOv7-X | 640 | 32 | 300e | 12.2 | 53.0 | 70.8 | 71.34 | 190.08 | [model](https://paddledet.bj.bcebos.com/models/yolov7_x_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_x_300e_coco.yml) | -| *YOLOv7P6-W6 | 1280 | 16 | 300e | 25.5 | 54.4 | 71.8 | 70.43 | 360.26 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_w6_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7p6_w6_300e_coco.yml) | -| *YOLOv7P6-E6 | 1280 | 10 | 300e | 31.1 | 55.7 | 73.0 | 97.25 | 515.4 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_e6_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7p6_e6_300e_coco.yml) | -| *YOLOv7P6-D6 | 1280 | 8 | 300e | 37.4 | 56.1 | 73.3 | 133.81 | 702.92 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_d6_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7p6_d6_300e_coco.yml) | -| *YOLOv7P6-E6E | 1280 | 6 | 300e | 48.7 | 56.5 | 73.7 | 151.76 | 843.52 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_e6e_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7p6_e6e_300e_coco.yml) | -| YOLOv7-tiny | 640 | 32 | 300e | - | 37.3 | 54.5 | 6.23 | 6.90 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_tiny_300e_coco.yml) | -| YOLOv7-tiny | 416 | 32 | 300e | - | 33.3 | 49.5 | 6.23 | 2.91 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_416_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_tiny_416_300e_coco.yml) | -| YOLOv7-tiny | 320 | 32 | 300e | - | 29.1 | 43.8 | 6.23 | 1.73 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_320_300e_coco.pdparams) | [config](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7/yolov7_tiny_320_300e_coco.yml) | +| YOLOv7-L | 640 | 32 | 300e | 7.4 | 51.0 | 70.2 | 37.62 | 106.08 |[model](https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_l_300e_coco.yml) | +| *YOLOv7-X | 640 | 32 | 300e | 12.2 | 53.0 | 70.8 | 71.34 | 190.08 | [model](https://paddledet.bj.bcebos.com/models/yolov7_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_x_300e_coco.yml) | +| *YOLOv7P6-W6 | 1280 | 16 | 300e | 25.5 | 54.4 | 71.8 | 70.43 | 360.26 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_w6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_w6_300e_coco.yml) | +| *YOLOv7P6-E6 | 1280 | 10 | 300e | 31.1 | 55.7 | 73.0 | 97.25 | 515.4 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_e6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_e6_300e_coco.yml) | +| *YOLOv7P6-D6 | 1280 | 8 | 300e | 37.4 | 56.1 | 73.3 | 133.81 | 702.92 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_d6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_d6_300e_coco.yml) | +| *YOLOv7P6-E6E | 1280 | 6 | 300e | 48.7 | 56.5 | 73.7 | 151.76 | 843.52 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_e6e_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_e6e_300e_coco.yml) | +| YOLOv7-tiny | 640 | 32 | 300e | - | 37.3 | 54.5 | 6.23 | 6.90 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_300e_coco.yml) | +| YOLOv7-tiny | 416 | 32 | 300e | - | 33.3 | 49.5 | 6.23 | 2.91 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_416_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_416_300e_coco.yml) | +| YOLOv7-tiny | 320 | 32 | 300e | - | 29.1 | 43.8 | 6.23 | 1.73 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_320_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_320_300e_coco.yml) | +
-#### 部署模型 +
+ 部署模型 | 网络模型 | 输入尺寸 | 导出后的权重(w/o NMS) | ONNX(w/o NMS) | | :-------- | :--------: | :---------------------: | :----------------: | @@ -183,19 +211,12 @@ | YOLOv7-tiny | 416 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_wo_nms.onnx) | | YOLOv7-tiny | 320 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_wo_nms.onnx) | +
### **注意:** - 所有模型均使用COCO train2017作为训练集,在COCO val2017上验证精度,模型前带*表示训练更新中。 - - 具体精度和速度细节请查看[PP-YOLOE](../../configs/ppyoloe),[YOLOX](../../configs/yolox),[YOLOv5](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5),[YOLOv6](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs),[YOLOv7](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7)。 + - 具体精度和速度细节请查看[PP-YOLOE](../../configs/ppyoloe),[YOLOX](../../configs/yolox),[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7),**其中YOLOv5,YOLOv6,YOLOv7评估并未采用`multi_label`形式**。 - 模型推理耗时(ms)为TensorRT-FP16下测试的耗时,不包含数据预处理和模型输出后处理(NMS)的耗时。测试采用单卡V100,batch size=1,测试环境为**paddlepaddle-2.3.0**, **CUDA 11.2**, **CUDNN 8.2**, **GCC-8.2**, **TensorRT 8.0.3.4**,具体请参考各自模型主页。 -- **统计参数量Params(M)**,可以将以下代码插入[trainer.py](https://github.com/nemonameless/PaddleDetection_YOLOSeries/blob/develop/ppdet/engine/trainer.py#L150)。 - ```python - params = sum([ - p.numel() for n, p in self.model.named_parameters() - if all([x not in n for x in ['_mean', '_variance']]) - ]) # exclude BatchNorm running status - print('Params: ', params / 1e6) - ``` - **统计FLOPs(G)**,首先安装[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim), `pip install paddleslim`,然后设置[runtime.yml](../../configs/runtime.yml)里`print_flops: True`,并且注意确保是**单尺度**下如640x640,**打印的是MACs,FLOPs=2*MACs**。 - 各模型导出后的权重以及ONNX,分为**带(w)**和**不带(wo)**后处理NMS,都提供了下载链接,请参考各自模型主页下载。`w_nms`表示**带NMS后处理**,可以直接使用预测出最终检测框结果如```python deploy/python/infer.py --model_dir=ppyoloe_crn_l_300e_coco_w_nms/ --image_file=demo/000000014439.jpg --device=GPU```;`wo_nms`表示**不带NMS后处理**,是**测速**时使用,如需预测出检测框结果需要找到**对应head中的后处理相关代码**并修改为如下: ``` @@ -209,9 +230,6 @@ ``` 并重新导出,使用时再**另接自己写的NMS后处理**。 - 基于[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim)对YOLO系列模型进行量化训练,可以实现精度基本无损,速度普遍提升30%以上,具体请参照[模型自动化压缩工具ACT](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/example/auto_compression)。 - - [PP-YOLOE](../../configs/ppyoloe),[PP-YOLOE+](../../configs/ppyoloe),[YOLOv3](../../configs/yolov3)和[YOLOX](../../configs/yolox)推荐在[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)里使用,会最先发布**PP-YOLO系列特色检测模型的最新进展**。 - - [YOLOv5](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov5),[YOLOv7](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov7)和[YOLOv6](https://github.com/nemonameless/PaddleDetection_YOLOSeries/tree/develop/configs/yolov6)由于GPL协议而不合入[PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection)主代码库。 - - **paddlepaddle版本推荐使用2.3.0版本以上**。 ## 使用指南 @@ -264,14 +282,6 @@ paddle2onnx --model_dir output_inference/${job_name} --model_filename model.pdmo model_type=yolov7 job_name=yolov7_l_300e_coco ``` -- **统计参数量Params(M)**,可以将以下代码插入[trainer.py](https://github.com/nemonameless/PaddleDetection_YOLOSeries/blob/develop/ppdet/engine/trainer.py#L150)。 - ```python - params = sum([ - p.numel() for n, p in self.model.named_parameters() - if all([x not in n for x in ['_mean', '_variance']]) - ]) # exclude BatchNorm running status - print('Params: ', params / 1e6) - ``` - **统计FLOPs(G)**,首先安装[PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim), `pip install paddleslim`,然后设置[runtime.yml](../../configs/runtime.yml)里`print_flops: True`,并且注意确保是**单尺度**下如640x640,**打印的是MACs,FLOPs=2*MACs**。 ### 自定义数据集 diff --git a/docs/feature_models/YOLOSERIES_MODEL_en.md b/docs/feature_models/YOLOSERIES_MODEL_en.md new file mode 100644 index 000000000..bba334f47 --- /dev/null +++ b/docs/feature_models/YOLOSERIES_MODEL_en.md @@ -0,0 +1,314 @@ +[简体中文](YOLOSERIES_MODEL.md) | English + +# [**PaddleYOLO**](https://github.com/PaddlePaddle/PaddleYOLO) + +## Introduction +- [Introduction](#Introduction) +- [ModelZoo](#ModelZoo) + - [PP-YOLOE](#PP-YOLOE) + - [YOLOX](#YOLOX) + - [YOLOv5](#YOLOv5) + - [YOLOv6](#YOLOv6) + - [YOLOv7](#YOLOv7) +- [UserGuide](#UserGuide) + - [Pipeline](#Pipeline) + - [CustomDataset](#CustomDataset) + +## Introduction + +**PaddleYOLO** is a YOLO Series toolbox based on [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection), **only relevant codes of YOLO series models are included**. It supports `YOLOv3`,`PP-YOLO`,`PP-YOLOv2`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6`,`YOLOv7` and so on. Welcome to use and build it together! + +## Updates + +* 【2022/09/26】Release [`PaddleYOLO`](https://github.com/PaddlePaddle/PaddleYOLO); +* 【2022/09/19】Support the new version of [`YOLOv6`](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6), including n/t/s/m/l model; +* 【2022/08/23】Release `YOLOSeries` codebase: support `YOLOv3`,`PP-YOLOE`,`PP-YOLOE+`,`YOLOX`,`YOLOv5`,`YOLOv6` and `YOLOv7`; support using `ConvNeXt` backbone to get high-precision version of `PP-YOLOE`,`YOLOX` and `YOLOv5`; support PaddleSlim accelerated quantitative training `PP-YOLOE`,`YOLOv5`,`YOLOv6` and `YOLOv7`. For details, please read this [article](https://mp.weixin.qq.com/s/Hki01Zs2lQgvLSLWS0btrA); + + +**Notes:** + - The Licence of **PaddleYOLO** is **GPL 3.0**, the codes of [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7) and [YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6) will not be merged into [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection). Except for these three YOLO models, other YOLO models are recommended to use in [PaddleDetection](https://github.com/PaddlePaddle/PaddleDetection), **which will be the first to release the latest progress of PP-YOLO series detection model**; + - To use **PaddleYOLO**, **PaddlePaddle-2.3.2 or above is recommended**,please refer to the [official website](https://www.paddlepaddle.org.cn/install/quick?docurl=/documentation/docs/zh/install/pip/linux-pip.html) to download the appropriate version. **For Windows platforms, please install the paddle develop version **; + + +## Exchanges + +- If you have any question or suggestion, please give us your valuable input via [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues) + + Welcome to join PaddleDetection user groups on WeChat (scan the QR code, add and reply "D" to the assistant) + +
+ +
+ + +## ModelZoo + +### [PP-YOLOE, PP-YOLOE+](../../configs/ppyoloe) + +
+ Baseline + +| Model | Input Size | images/GPU | Epoch | TRT-FP16-Latency(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | download | config | +| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: | +| PP-YOLOE-s | 640 | 32 | 400e | 2.9 | 43.4 | 60.0 | 7.93 | 17.36 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_400e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_crn_s_400e_coco.yml) | +| PP-YOLOE-s | 640 | 32 | 300e | 2.9 | 43.0 | 59.6 | 7.93 | 17.36 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_s_300e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_crn_s_300e_coco.yml) | +| PP-YOLOE-m | 640 | 28 | 300e | 6.0 | 49.0 | 65.9 | 23.43 | 49.91 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_m_300e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_crn_m_300e_coco.yml) | +| PP-YOLOE-l | 640 | 20 | 300e | 8.7 | 51.4 | 68.6 | 52.20 | 110.07 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_crn_l_300e_coco.yml) | +| PP-YOLOE-x | 640 | 16 | 300e | 14.9 | 52.3 | 69.5 | 98.42 | 206.59 |[model](https://paddledet.bj.bcebos.com/models/ppyoloe_crn_x_300e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_crn_x_300e_coco.yml) | +| PP-YOLOE-tiny ConvNeXt| 640 | 16 | 36e | - | 44.6 | 63.3 | 33.04 | 13.87 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_convnext_tiny_36e_coco.pdparams) | [config](../../configs/convnext/ppyoloe_convnext_tiny_36e_coco.yml) | +| **PP-YOLOE+_s** | 640 | 8 | 80e | 2.9 | **43.7** | **60.6** | 7.93 | 17.36 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_s_80e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_plus_crn_s_80e_coco.yml) | +| **PP-YOLOE+_m** | 640 | 8 | 80e | 6.0 | **49.8** | **67.1** | 23.43 | 49.91 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_m_80e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_plus_crn_m_80e_coco.yml) | +| **PP-YOLOE+_l** | 640 | 8 | 80e | 8.7 | **52.9** | **70.1** | 52.20 | 110.07 | [model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_l_80e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_plus_crn_l_80e_coco.yml) | +| **PP-YOLOE+_x** | 640 | 8 | 80e | 14.9 | **54.7** | **72.0** | 98.42 | 206.59 |[model](https://paddledet.bj.bcebos.com/models/ppyoloe_plus_crn_x_80e_coco.pdparams) | [config](../../configs/ppyoloe/ppyoloe_plus_crn_x_80e_coco.yml) | + +
+ +
+ Deploy Models + +| Model | Input Size | Exported weights(w/o NMS) | ONNX(w/o NMS) | +| :-------- | :--------: | :---------------------: | :----------------: | +| PP-YOLOE-s(400epoch) | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_400e_coco_wo_nms.onnx) | +| PP-YOLOE-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_s_300e_coco_wo_nms.onnx) | +| PP-YOLOE-m | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_m_300e_coco_wo_nms.onnx) | +| PP-YOLOE-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_l_300e_coco_wo_nms.onnx) | +| PP-YOLOE-x | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_crn_x_300e_coco_wo_nms.onnx) | +| **PP-YOLOE+_s** | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_s_80e_coco_wo_nms.onnx) | +| **PP-YOLOE+_m** | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_m_80e_coco_wo_nms.onnx) | +| **PP-YOLOE+_l** | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_l_80e_coco_wo_nms.onnx) | +| **PP-YOLOE+_x** | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/ppyoloe/ppyoloe_plus_crn_x_80e_coco_wo_nms.onnx) | + +
+ +### [YOLOX](../../configs/yolox) + +
+ Baseline + +| Model | Input Size | images/GPU | Epoch | TRT-FP16-Latency(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | download | config | +| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: | +| YOLOX-nano | 416 | 8 | 300e | 2.3 | 26.1 | 42.0 | 0.91 | 1.08 | [model](https://paddledet.bj.bcebos.com/models/yolox_nano_300e_coco.pdparams) | [config](../../configs/yolox/yolox_nano_300e_coco.yml) | +| YOLOX-tiny | 416 | 8 | 300e | 2.8 | 32.9 | 50.4 | 5.06 | 6.45 | [model](https://paddledet.bj.bcebos.com/models/yolox_tiny_300e_coco.pdparams) | [config](../../configs/yolox/yolox_tiny_300e_coco.yml) | +| YOLOX-s | 640 | 8 | 300e | 3.0 | 40.4 | 59.6 | 9.0 | 26.8 | [model](https://paddledet.bj.bcebos.com/models/yolox_s_300e_coco.pdparams) | [config](../../configs/yolox/yolox_s_300e_coco.yml) | +| YOLOX-m | 640 | 8 | 300e | 5.8 | 46.9 | 65.7 | 25.3 | 73.8 | [model](https://paddledet.bj.bcebos.com/models/yolox_m_300e_coco.pdparams) | [config](../../configs/yolox/yolox_m_300e_coco.yml) | +| YOLOX-l | 640 | 8 | 300e | 9.3 | 50.1 | 68.8 | 54.2 | 155.6 | [model](https://paddledet.bj.bcebos.com/models/yolox_l_300e_coco.pdparams) | [config](../../configs/yolox/yolox_l_300e_coco.yml) | +| YOLOX-x | 640 | 8 | 300e | 16.6 | **51.8** | **70.6** | 99.1 | 281.9 | [model](https://paddledet.bj.bcebos.com/models/yolox_x_300e_coco.pdparams) | [config](../../configs/yolox/yolox_x_300e_coco.yml) | + YOLOX-cdn-tiny | 416 | 8 | 300e | 1.9 | 32.4 | 50.2 | 5.03 | 6.33 | [model](https://paddledet.bj.bcebos.com/models/yolox_cdn_tiny_300e_coco.pdparams) | [config](c../../onfigs/yolox/yolox_cdn_tiny_300e_coco.yml) | +| YOLOX-crn-s | 640 | 8 | 300e | 3.0 | 40.4 | 59.6 | 7.7 | 24.69 | [model](https://paddledet.bj.bcebos.com/models/yolox_crn_s_300e_coco.pdparams) | [config](../../configs/yolox/yolox_crn_s_300e_coco.yml) | +| YOLOX-s ConvNeXt| 640 | 8 | 36e | - | 44.6 | 65.3 | 36.2 | 27.52 | [model](https://paddledet.bj.bcebos.com/models/yolox_convnext_s_36e_coco.pdparams) | [config](../../configs/convnext/yolox_convnext_s_36e_coco.yml) | + +
+ +
+ Deploy Models + +| Model | Input Size | Exported weights(w/o NMS) | ONNX(w/o NMS) | +| :-------- | :--------: | :---------------------: | :----------------: | +| YOLOx-nano | 416 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_nano_300e_coco_wo_nms.onnx) | +| YOLOx-tiny | 416 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_tiny_300e_coco_wo_nms.onnx) | +| YOLOx-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_s_300e_coco_wo_nms.onnx) | +| YOLOx-m | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_m_300e_coco_wo_nms.onnx) | +| YOLOx-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_l_300e_coco_wo_nms.onnx) | +| YOLOx-x | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolox/yolox_x_300e_coco_wo_nms.onnx) | + +
+ + +### [YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5) + +
+ Baseline + +| Model | Input Size | images/GPU | Epoch | TRT-FP16-Latency(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | download | config | +| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: | +| YOLOv5-n | 640 | 16 | 300e | 2.6 | 28.0 | 45.7 | 1.87 | 4.52 | [model](https://paddledet.bj.bcebos.com/models/yolov5_n_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_n_300e_coco.yml) | +| YOLOv5-s | 640 | 8 | 300e | 3.2 | 37.0 | 55.9 | 7.24 | 16.54 | [model](https://paddledet.bj.bcebos.com/models/yolov5_s_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_s_300e_coco.yml) | +| YOLOv5-m | 640 | 5 | 300e | 5.2 | 45.3 | 63.8 | 21.19 | 49.08 | [model](https://paddledet.bj.bcebos.com/models/yolov5_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_m_300e_coco.yml) | +| YOLOv5-l | 640 | 3 | 300e | 7.9 | 48.6 | 66.9 | 46.56 | 109.32 | [model](https://paddledet.bj.bcebos.com/models/yolov5_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_l_300e_coco.yml) | +| YOLOv5-x | 640 | 2 | 300e | 13.7 | **50.6** | **68.7** | 86.75 | 205.92 | [model](https://paddledet.bj.bcebos.com/models/yolov5_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_x_300e_coco.yml) | +| YOLOv5-s ConvNeXt| 640 | 8 | 36e | - | 42.4 | 65.3 | 34.54 | 17.96 | [model](https://paddledet.bj.bcebos.com/models/yolov5_convnext_s_36e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5/yolov5_convnext_s_36e_coco.yml) | + +
+ +
+ Deploy Models + +| Model | Input Size | Exported weights(w/o NMS) | ONNX(w/o NMS) | +| :-------- | :--------: | :---------------------: | :----------------: | +| YOLOv5-n | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_n_300e_coco_wo_nms.onnx) | +| YOLOv5-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_s_300e_coco_wo_nms.onnx) | +| YOLOv5-m | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_m_300e_coco_wo_nms.onnx) | +| YOLOv5-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_l_300e_coco_wo_nms.onnx) | +| YOLOv5-x | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov5/yolov5_x_300e_coco_wo_nms.onnx) | + +
+ +### [YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6) + +
+ Baseline + +| Model | Input Size | images/GPU | Epoch | TRT-FP16-Latency(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | download | config | +| :------------- | :------- | :-------: | :------: | :---------: | :-----: |:-----: | :-----: |:-----: | :-------------: | :-----: | +| *YOLOv6-n | 416 | 32 | 400e | 1.0 | 31.1 | 45.3 | 4.74 | 5.16 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_416_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_416_400e_coco.yml) | +| *YOLOv6-n | 640 | 32 | 400e | 1.3 | 36.1 | 51.9 | 4.74 | 12.21 |[model](https://paddledet.bj.bcebos.com/models/yolov6_n_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_n_400e_coco.yml) | +| *YOLOv6-t | 640 | 32 | 400e | 2.1 | 40.7 | 57.4 | 10.63 | 27.29 |[model](https://paddledet.bj.bcebos.com/models/yolov6_t_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_t_400e_coco.yml) | +| *YOLOv6-s | 640 | 32 | 400e | 2.6 | 43.4 | 60.5 | 18.87 | 48.35 |[model](https://paddledet.bj.bcebos.com/models/yolov6_s_400e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_s_400e_coco.yml) | +| *YOLOv6-m | 640 | 32 | 300e | 5.0 | 49.0 | 66.5 | 37.17 | 88.82 |[model](https://paddledet.bj.bcebos.com/models/yolov6_m_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_m_300e_coco.yml) | +| *YOLOv6-l | 640 | 32 | 300e | 7.9 | 51.0 | 68.9 | 63.54 | 155.89 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_300e_coco.yml) | +| *YOLOv6-l-silu | 640 | 32 | 300e | 9.6 | 51.7 | 69.6 | 58.59 | 142.66 |[model](https://paddledet.bj.bcebos.com/models/yolov6_l_silu_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6/yolov6_l_silu_300e_coco.yml) | + +
+ +
+ Deploy Models + +| Model | Input Size | Exported weights(w/o NMS) | ONNX(w/o NMS) | +| :-------- | :--------: | :---------------------: | :----------------: | +| yolov6-n | 416 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_416_400e_coco_wo_nms.onnx) | +| yolov6-n | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_n_400e_coco_wo_nms.onnx) | +| yolov6-t | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_t_400e_coco_wo_nms.onnx) | +| yolov6-s | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_s_400e_coco_wo_nms.onnx) | +| yolov6-m | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_m_300e_coco_wo_nms.onnx) | +| yolov6-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_300e_coco_wo_nms.onnx) | +| yolov6-l-silu | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov6/yolov6_l_silu_300e_coco_wo_nms.onnx) | + +
+ +### [YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7) + +
+ Baseline + +| Model | Input Size | images/GPU | Epoch | TRT-FP16-Latency(ms) | mAPval
0.5:0.95 | mAPval
0.5 | Params(M) | FLOPs(G) | download | config | +| :------------- | :------- | :-------: | :------: | :------------: | :---------------------: | :----------------: |:---------: | :------: |:---------------: |:-----: | +| YOLOv7-L | 640 | 32 | 300e | 7.4 | 51.0 | 70.2 | 37.62 | 106.08 |[model](https://paddledet.bj.bcebos.com/models/yolov7_l_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_l_300e_coco.yml) | +| *YOLOv7-X | 640 | 32 | 300e | 12.2 | 53.0 | 70.8 | 71.34 | 190.08 | [model](https://paddledet.bj.bcebos.com/models/yolov7_x_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_x_300e_coco.yml) | +| *YOLOv7P6-W6 | 1280 | 16 | 300e | 25.5 | 54.4 | 71.8 | 70.43 | 360.26 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_w6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_w6_300e_coco.yml) | +| *YOLOv7P6-E6 | 1280 | 10 | 300e | 31.1 | 55.7 | 73.0 | 97.25 | 515.4 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_e6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_e6_300e_coco.yml) | +| *YOLOv7P6-D6 | 1280 | 8 | 300e | 37.4 | 56.1 | 73.3 | 133.81 | 702.92 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_d6_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_d6_300e_coco.yml) | +| *YOLOv7P6-E6E | 1280 | 6 | 300e | 48.7 | 56.5 | 73.7 | 151.76 | 843.52 | [model](https://paddledet.bj.bcebos.com/models/yolov7p6_e6e_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7p6_e6e_300e_coco.yml) | +| YOLOv7-tiny | 640 | 32 | 300e | - | 37.3 | 54.5 | 6.23 | 6.90 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_300e_coco.yml) | +| YOLOv7-tiny | 416 | 32 | 300e | - | 33.3 | 49.5 | 6.23 | 2.91 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_416_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_416_300e_coco.yml) | +| YOLOv7-tiny | 320 | 32 | 300e | - | 29.1 | 43.8 | 6.23 | 1.73 |[model](https://paddledet.bj.bcebos.com/models/yolov7_tiny_320_300e_coco.pdparams) | [config](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7/yolov7_tiny_320_300e_coco.yml) | + +
+ +
+ Deploy Models + +| Model | Input Size | Exported weights(w/o NMS) | ONNX(w/o NMS) | +| :-------- | :--------: | :---------------------: | :----------------: | +| YOLOv7-l | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_l_300e_coco_wo_nms.onnx) | +| YOLOv7-x | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_x_300e_coco_wo_nms.onnx) | +| YOLOv7P6-W6 | 1280 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_w6_300e_coco_wo_nms.onnx) | +| YOLOv7P6-E6 | 1280 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6_300e_coco_wo_nms.onnx) | +| YOLOv7P6-D6 | 1280 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_d6_300e_coco_wo_nms.onnx) | +| YOLOv7P6-E6E | 1280 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7p6_e6e_300e_coco_wo_nms.onnx) | +| YOLOv7-tiny | 640 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_300e_coco_wo_nms.onnx) | +| YOLOv7-tiny | 416 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_416_300e_coco_wo_nms.onnx) | +| YOLOv7-tiny | 320 | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_w_nms.zip) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_wo_nms.zip) | [( w/ nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_w_nms.onnx) | [( w/o nms)](https://paddledet.bj.bcebos.com/deploy/yoloseries/yolov7/yolov7_tiny_320_300e_coco_wo_nms.onnx) | + +
+ +### **Notes:** + - All the models are trained on COCO train2017 dataset and evaluated on val2017 dataset. The * in front of the model indicates that the training is being updated. + - Please check the specific accuracy and speed details in [PP-YOLOE](../../configs/ppyoloe),[YOLOX](../../configs/yolox),[YOLOv5](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov5),[YOLOv6](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov6),[YOLOv7](https://github.com/PaddlePaddle/PaddleYOLO/tree/release/2.5/configs/yolov7). **Note that YOLOv5, YOLOv6 and YOLOv7 have not adopted `multi_label` to eval**。 +- TRT-FP16-Latency(ms) is the time spent in testing under TensorRT-FP16, excluding data preprocessing and model output post-processing (NMS). The test adopts single card V100, batch size=1, and the test environment is **paddlepaddle-2.3.0**, **CUDA 11.2**, **CUDNN 8.2**, **GCC-8.2**, **TensorRT 8.0.3.4**. Please refer to the respective model homepage for details. +- For **FLOPs(G)**, you should first install [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim), `pip install paddleslim`, then set `print_flops: True` in [runtime.yml](../../configs/runtime.yml). Make sure **single scale** like 640x640, **MACs are printed,FLOPs=2*MACs**。 + - Based on [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim), quantitative training of YOLO series models can achieve basically lossless accuracy and generally improve the speed by more than 30%. For details, please refer to [auto_compression](https://github.com/PaddlePaddle/PaddleSlim/tree/develop/example/auto_compression)。 + + +## UserGuide + +Download MS-COCO dataset, [official website](https://cocodataset.org). The download links are: [annotations](http://images.cocodataset.org/annotations/annotations_trainval2017.zip), [train2017](http://images.cocodataset.org/zips/train2017.zip), [val2017](http://images.cocodataset.org/zips/val2017.zip), [test2017](http://images.cocodataset.org/zips/test2017.zip). +The download link provided by PaddleDetection team is: [coco](https://bj.bcebos.com/v1/paddledet/data/coco.tar)(about 22G) and [test2017](https://bj.bcebos.com/v1/paddledet/data/cocotest2017.zip). Note that test2017 is optional, and the evaluation is based on val2017. + + +### **Pipeline** +``` +model_type=ppyoloe # can modify to 'yolov7' +job_name=ppyoloe_crn_l_300e_coco # can modify to 'yolov7_l_300e_coco' + +config=configs/${model_type}/${job_name}.yml +log_dir=log_dir/${job_name} +# weights=https://bj.bcebos.com/v1/paddledet/models/${job_name}.pdparams +weights=output/${job_name}/model_final.pdparams + +# 1.training(single GPU / multi GPU) +# CUDA_VISIBLE_DEVICES=0 python3.7 tools/train.py -c ${config} --eval --amp +python3.7 -m paddle.distributed.launch --log_dir=${log_dir} --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp + +# 2.eval +CUDA_VISIBLE_DEVICES=0 python3.7 tools/eval.py -c ${config} -o weights=${weights} --classwise + +# 3.infer +CUDA_VISIBLE_DEVICES=0 python3.7 tools/infer.py -c ${config} -o weights=${weights} --infer_img=demo/000000014439_640x640.jpg --draw_threshold=0.5 + +# 4.export +CUDA_VISIBLE_DEVICES=0 python3.7 tools/export_model.py -c ${config} -o weights=${weights} # exclude_nms=True trt=True + +# 5.deploy infer +CUDA_VISIBLE_DEVICES=0 python3.7 deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU + +# 6.deploy speed +CUDA_VISIBLE_DEVICES=0 python3.7 deploy/python/infer.py --model_dir=output_inference/${job_name} --image_file=demo/000000014439_640x640.jpg --device=GPU --run_benchmark=True # --run_mode=trt_fp16 + +# 7.export onnx +paddle2onnx --model_dir output_inference/${job_name} --model_filename model.pdmodel --params_filename model.pdiparams --opset_version 12 --save_file ${job_name}.onnx + +# 8.onnx speed +/usr/local/TensorRT-8.0.3.4/bin/trtexec --onnx=${job_name}.onnx --workspace=4096 --avgRuns=10 --shapes=input:1x3x640x640 --fp16 + +``` + +**Note:** +- Write the above commands in a script file, such as ```run.sh```, and run as:```sh run.sh```,You can also run the command line sentence by sentence. +- If you want to switch models, just modify the first two lines, such as: + ``` + model_type=yolov7 + job_name=yolov7_l_300e_coco + ``` +- For **FLOPs(G)**, you should first install [PaddleSlim](https://github.com/PaddlePaddle/PaddleSlim), `pip install paddleslim`, then set `print_flops: True` in [runtime.yml](../../configs/runtime.yml). Make sure **single scale** like 640x640, **MACs are printed,FLOPs=2*MACs**。 + +### CustomDataset + +#### preparation: + +1.For the annotation of custom dataset, please refer to[DetAnnoTools](../tutorials/data/DetAnnoTools.md); + +2.For training preparation of custom dataset,please refer to[PrepareDataSet](../tutorials/PrepareDataSet.md)。 + + +#### fintune: + +In addition to changing the path of the dataset, it is generally recommended to load **the COCO pre training weight of the corresponding model** to fintune, which will converge faster and achieve higher accuracy, such as: + +```base +# fintune with single GPU: +# CUDA_VISIBLE_DEVICES=0 python3.7 tools/train.py -c ${config} --eval --amp -o pretrain_weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams + +# fintune with multi GPU: +python3.7 -m paddle.distributed.launch --log_dir=./log_dir --gpus 0,1,2,3,4,5,6,7 tools/train.py -c ${config} --eval --amp -o pretrain_weights=https://paddledet.bj.bcebos.com/models/ppyoloe_crn_l_300e_coco.pdparams +``` + +**Note:** +- The fintune training will show that the channels of the last layer of the head classification branch is not matched, which is a normal situation, because the number of custom dataset is generally inconsistent with that of COCO dataset; +- In general, the number of epochs for fintune training can be set less, and the lr setting is also smaller, such as 1/10. The highest accuracy may occur in one of the middle epochs; + +#### Predict and export: + +When using custom dataset to predict and export models, if the path of the TestDataset dataset is set incorrectly, COCO 80 categories will be used by default. + +In addition to the correct path setting of the TestDataset dataset, you can also modify and add the corresponding `label_list`. Txt file (one category is recorded in one line), and `anno_path` in TestDataset can also be set as an absolute path, such as: +``` +TestDataset: + !ImageFolder + anno_path: label_list.txt # if not set dataset_dir, the anno_path will be relative path of PaddleDetection root directory + # dataset_dir: dataset/my_coco # if set dataset_dir, the anno_path will be dataset_dir/anno_path +``` +one line in `label_list.txt` records a corresponding category: +``` +person +vehicle +``` -- GitLab