Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7e008591
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7e008591
编写于
6月 30, 2022
作者:
Z
zhiboniu
提交者:
zhiboniu
7月 01, 2022
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
update ema filter;
refix keypoint transform to orgimage
上级
07f5f782
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
31 addition
and
9 deletion
+31
-9
deploy/lite/include/keypoint_postprocess.h
deploy/lite/include/keypoint_postprocess.h
+2
-1
deploy/lite/src/keypoint_postprocess.cc
deploy/lite/src/keypoint_postprocess.cc
+20
-5
deploy/python/det_keypoint_unite_infer.py
deploy/python/det_keypoint_unite_infer.py
+9
-3
未找到文件。
deploy/lite/include/keypoint_postprocess.h
浏览文件 @
7e008591
...
...
@@ -33,7 +33,8 @@ void transform_preds(std::vector<float>& coords,
std
::
vector
<
float
>&
scale
,
std
::
vector
<
int
>&
output_size
,
std
::
vector
<
int
>&
dim
,
std
::
vector
<
float
>&
target_coords
);
std
::
vector
<
float
>&
target_coords
,
bool
affine
);
void
box_to_center_scale
(
std
::
vector
<
int
>&
box
,
int
width
,
int
height
,
...
...
deploy/lite/src/keypoint_postprocess.cc
浏览文件 @
7e008591
...
...
@@ -74,11 +74,26 @@ void transform_preds(std::vector<float>& coords,
std
::
vector
<
float
>&
scale
,
std
::
vector
<
int
>&
output_size
,
std
::
vector
<
int64_t
>&
dim
,
std
::
vector
<
float
>&
target_coords
)
{
std
::
vector
<
float
>&
target_coords
,
bool
affine
=
false
)
{
if
(
affine
)
{
cv
::
Mat
trans
(
2
,
3
,
CV_64FC1
);
get_affine_transform
(
center
,
scale
,
0
,
output_size
,
trans
,
1
);
for
(
int
p
=
0
;
p
<
dim
[
1
];
++
p
)
{
affine_tranform
(
coords
[
p
*
2
],
coords
[
p
*
2
+
1
],
trans
,
target_coords
,
p
);
affine_tranform
(
coords
[
p
*
2
],
coords
[
p
*
2
+
1
],
trans
,
target_coords
,
p
);
}
}
else
{
float
heat_w
=
static_cast
<
float
>
(
output_size
[
0
]);
float
heat_h
=
static_cast
<
float
>
(
output_size
[
1
]);
float
x_scale
=
scale
[
0
]
/
heat_w
;
float
y_scale
=
scale
[
1
]
/
heat_h
;
float
offset_x
=
center
[
0
]
-
scale
[
0
]
/
2.
;
float
offset_y
=
center
[
1
]
-
scale
[
1
]
/
2.
;
for
(
int
i
=
0
;
i
<
dim
[
1
];
i
++
)
{
target_coords
[
i
*
3
+
1
]
=
x_scale
*
coords
[
i
*
2
]
+
offset_x
;
target_coords
[
i
*
3
+
2
]
=
y_scale
*
coords
[
i
*
2
+
1
]
+
offset_y
;
}
}
}
...
...
deploy/python/det_keypoint_unite_infer.py
浏览文件 @
7e008591
...
...
@@ -165,7 +165,7 @@ def topdown_unite_predict_video(detector,
frame2
,
results
,
topdown_keypoint_detector
,
keypoint_batch_size
,
FLAGS
.
run_benchmark
)
if
FLAGS
.
smooth
and
len
(
keypoint_res
[
'keypoint'
][
0
])
==
1
:
if
FLAGS
.
smooth
and
len
(
keypoint_res
[
'keypoint'
][
0
])
==
1
:
current_keypoints
=
np
.
array
(
keypoint_res
[
'keypoint'
][
0
][
0
])
smooth_keypoints
=
keypoint_smoothing
.
smooth_process
(
current_keypoints
)
...
...
@@ -215,7 +215,7 @@ class KeypointSmoothing(object):
fc_d
=
0.1
,
fc_min
=
0.1
,
beta
=
0.1
,
thres_mult
=
0.
2
):
thres_mult
=
0.
3
):
super
(
KeypointSmoothing
,
self
).
__init__
()
self
.
image_width
=
width
self
.
image_height
=
height
...
...
@@ -234,7 +234,7 @@ class KeypointSmoothing(object):
if
self
.
filter_type
==
'OneEuro'
:
self
.
smooth_func
=
self
.
one_euro_filter
elif
self
.
filter_type
==
'EMA'
:
self
.
smooth_func
=
self
.
e
xponential_smoothing
self
.
smooth_func
=
self
.
e
ma_filter
else
:
raise
ValueError
(
'filter type must be one_euro or ema'
)
...
...
@@ -261,6 +261,7 @@ class KeypointSmoothing(object):
else
:
result
=
self
.
smooth_func
(
current_keypoint
,
self
.
x_prev_hat
[
index
],
index
)
return
result
def
one_euro_filter
(
self
,
x_cur
,
x_pre
,
index
):
...
...
@@ -276,6 +277,11 @@ class KeypointSmoothing(object):
self
.
x_prev_hat
[
index
]
=
x_cur_hat
return
x_cur_hat
def
ema_filter
(
self
,
x_cur
,
x_pre
,
index
):
x_cur_hat
=
self
.
exponential_smoothing
(
x_cur
,
x_pre
)
self
.
x_prev_hat
[
index
]
=
x_cur_hat
return
x_cur_hat
def
smoothing_factor
(
self
,
te
,
fc
):
r
=
2
*
math
.
pi
*
fc
*
te
return
r
/
(
r
+
1
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录