diff --git a/ppdet/core/workspace.py b/ppdet/core/workspace.py index b151b15aae706e6033e0618f8b03dc1690948d23..666ca53ad69024439439ddf5e958c61fef44ae02 100644 --- a/ppdet/core/workspace.py +++ b/ppdet/core/workspace.py @@ -248,7 +248,7 @@ def create(cls_or_name, **kwargs): if isinstance(target, SchemaDict): kwargs[k] = create(target_key) elif hasattr(target, '__dict__'): # serialized object - kwargs[k] = new_dict + kwargs[k] = target else: raise ValueError("Unsupported injection type:", target_key) # prevent modification of global config values of reference types diff --git a/ppdet/modeling/architecture/meta_arch.py b/ppdet/modeling/architecture/meta_arch.py index b758e816380876d013989b37e0f394e42974e57e..1a4f4f2591465a3d3920ef886f9bb06a76cd5322 100644 --- a/ppdet/modeling/architecture/meta_arch.py +++ b/ppdet/modeling/architecture/meta_arch.py @@ -3,8 +3,8 @@ from __future__ import division from __future__ import print_function import numpy as np -from paddle.fluid.dygraph import Layer -from paddle.fluid.dygraph.base import to_variable +import paddle +import paddle.nn as nn from ppdet.core.workspace import register from ppdet.utils.data_structure import BufferDict @@ -12,7 +12,7 @@ __all__ = ['BaseArch'] @register -class BaseArch(Layer): +class BaseArch(nn.Layer): def __init__(self): super(BaseArch, self).__init__() @@ -39,10 +39,10 @@ class BaseArch(Layer): input_v = np.array(input)[np.newaxis, ...] inputs[name].append(input_v) for name in input_def: - inputs[name] = to_variable(np.concatenate(inputs[name])) + inputs[name] = paddle.to_tensor(np.concatenate(inputs[name])) return inputs - def model_arch(self, mode): + def model_arch(self): raise NotImplementedError("Should implement model_arch method!") def loss(self, ): diff --git a/ppdet/modeling/backbone/darknet.py b/ppdet/modeling/backbone/darknet.py index cce2647237890c95dc1d8e9329b55b7cf653f45e..47d8a077b503c92a867e2eb120d22efcacb98039 100755 --- a/ppdet/modeling/backbone/darknet.py +++ b/ppdet/modeling/backbone/darknet.py @@ -1,14 +1,14 @@ -import paddle.fluid as fluid -from paddle.fluid.dygraph import Layer -from paddle.fluid.param_attr import ParamAttr +import paddle +import paddle.nn as nn +import paddle.nn.functional as F +from paddle import ParamAttr from paddle.fluid.regularizer import L2Decay -from paddle.fluid.dygraph.nn import Conv2D, BatchNorm from ppdet.core.workspace import register, serializable __all__ = ['DarkNet', 'ConvBNLayer'] -class ConvBNLayer(Layer): +class ConvBNLayer(nn.Layer): def __init__(self, ch_in, ch_out, @@ -20,25 +20,22 @@ class ConvBNLayer(Layer): name=None): super(ConvBNLayer, self).__init__() - self.conv = Conv2D( - num_channels=ch_in, - num_filters=ch_out, - filter_size=filter_size, + self.conv = nn.Conv2d( + in_channels=ch_in, + out_channels=ch_out, + kernel_size=filter_size, stride=stride, padding=padding, groups=groups, - param_attr=ParamAttr(name=name + '.conv.weights'), - bias_attr=False, - act=None) + weight_attr=ParamAttr(name=name + '.conv.weights'), + bias_attr=False) bn_name = name + '.bn' - self.batch_norm = BatchNorm( - num_channels=ch_out, - param_attr=ParamAttr( + self.batch_norm = nn.BatchNorm2d( + ch_out, + weight_attr=ParamAttr( name=bn_name + '.scale', regularizer=L2Decay(0.)), bias_attr=ParamAttr( - name=bn_name + '.offset', regularizer=L2Decay(0.)), - moving_mean_name=bn_name + '.mean', - moving_variance_name=bn_name + '.var') + name=bn_name + '.offset', regularizer=L2Decay(0.))) self.act = act @@ -46,11 +43,11 @@ class ConvBNLayer(Layer): out = self.conv(inputs) out = self.batch_norm(out) if self.act == 'leaky': - out = fluid.layers.leaky_relu(x=out, alpha=0.1) + out = F.leaky_relu(out, 0.1) return out -class DownSample(Layer): +class DownSample(nn.Layer): def __init__(self, ch_in, ch_out, @@ -75,7 +72,7 @@ class DownSample(Layer): return out -class BasicBlock(Layer): +class BasicBlock(nn.Layer): def __init__(self, ch_in, ch_out, name=None): super(BasicBlock, self).__init__() @@ -97,11 +94,11 @@ class BasicBlock(Layer): def forward(self, inputs): conv1 = self.conv1(inputs) conv2 = self.conv2(conv1) - out = fluid.layers.elementwise_add(x=inputs, y=conv2, act=None) + out = paddle.add(x=inputs, y=conv2) return out -class Blocks(Layer): +class Blocks(nn.Layer): def __init__(self, ch_in, ch_out, count, name=None): super(Blocks, self).__init__() @@ -127,7 +124,7 @@ DarkNet_cfg = {53: ([1, 2, 8, 8, 4])} @register @serializable -class DarkNet(Layer): +class DarkNet(nn.Layer): def __init__(self, depth=53, freeze_at=-1, diff --git a/ppdet/modeling/bbox.py b/ppdet/modeling/bbox.py index fefc3b51efc9da7e9cb4c2bf6907be95e9106140..f60cc65e10478cb5308071d424b5b3ca37643b46 100644 --- a/ppdet/modeling/bbox.py +++ b/ppdet/modeling/bbox.py @@ -1,5 +1,8 @@ import numpy as np import paddle.fluid as fluid +import paddle +import paddle.nn as nn +import paddle.nn.functional as F from ppdet.core.workspace import register @@ -90,9 +93,9 @@ class BBoxPostProcessYOLO(object): self.num_classes, i) boxes_list.append(boxes) - scores_list.append(fluid.layers.transpose(scores, perm=[0, 2, 1])) - yolo_boxes = fluid.layers.concat(boxes_list, axis=1) - yolo_scores = fluid.layers.concat(scores_list, axis=2) + scores_list.append(paddle.transpose(scores, perm=[0, 2, 1])) + yolo_boxes = paddle.concat(boxes_list, axis=1) + yolo_scores = paddle.concat(scores_list, axis=2) bbox = self.nms(bboxes=yolo_boxes, scores=yolo_scores) # TODO: parse the lod of nmsed_bbox # default batch size is 1 diff --git a/ppdet/modeling/head/yolo_head.py b/ppdet/modeling/head/yolo_head.py index cae1f4024e889464d9401d5a0b1d5ca57e1f1b56..42beb69e0cdf168df9a2c34f9df5cf23c3d27b21 100644 --- a/ppdet/modeling/head/yolo_head.py +++ b/ppdet/modeling/head/yolo_head.py @@ -1,16 +1,14 @@ import paddle.fluid as fluid import paddle -from paddle.fluid.dygraph import Layer -from paddle.fluid.param_attr import ParamAttr -from paddle.fluid.initializer import Normal +import paddle.nn as nn +import paddle.nn.functional as F +from paddle import ParamAttr from paddle.fluid.regularizer import L2Decay -from paddle.fluid.dygraph.nn import Conv2D, BatchNorm -from paddle.fluid.dygraph import Sequential from ppdet.core.workspace import register from ..backbone.darknet import ConvBNLayer -class YoloDetBlock(Layer): +class YoloDetBlock(nn.Layer): def __init__(self, ch_in, channel, name): super(YoloDetBlock, self).__init__() self.ch_in = ch_in @@ -26,7 +24,7 @@ class YoloDetBlock(Layer): #['tip', channel, channel * 2, 3], ] - self.conv_module = Sequential() + self.conv_module = nn.Sequential() for idx, (conv_name, ch_in, ch_out, filter_size, post_name) in enumerate(conv_def): self.conv_module.add_sublayer( @@ -52,7 +50,7 @@ class YoloDetBlock(Layer): @register -class YOLOFeat(Layer): +class YOLOFeat(nn.Layer): __shared__ = ['num_levels'] def __init__(self, feat_in_list=[1024, 768, 384], num_levels=3): @@ -88,19 +86,19 @@ class YOLOFeat(Layer): yolo_feats = [] for i, block in enumerate(body_feats): if i > 0: - block = fluid.layers.concat(input=[route, block], axis=1) + block = paddle.concat([route, block], axis=1) route, tip = self.yolo_blocks[i](block) yolo_feats.append(tip) if i < self.num_levels - 1: route = self.route_blocks[i](route) - route = fluid.layers.resize_nearest(route, scale=2.) + route = F.resize_nearest(route, scale=2.) return yolo_feats @register -class YOLOv3Head(Layer): +class YOLOv3Head(nn.Layer): __shared__ = ['num_classes', 'num_levels', 'use_fine_grained_loss'] __inject__ = ['yolo_feat'] @@ -130,14 +128,13 @@ class YOLOv3Head(Layer): name = 'yolo_output.{}'.format(i) yolo_out = self.add_sublayer( name, - Conv2D( - num_channels=1024 // (2**i), - num_filters=num_filters, - filter_size=1, + nn.Conv2d( + in_channels=1024 // (2**i), + out_channels=num_filters, + kernel_size=1, stride=1, padding=0, - act=None, - param_attr=ParamAttr(name=name + '.conv.weights'), + weight_attr=ParamAttr(name=name + '.conv.weights'), bias_attr=ParamAttr( name=name + '.conv.bias', regularizer=L2Decay(0.)))) self.yolo_out_list.append(yolo_out) diff --git a/ppdet/optimizer.py b/ppdet/optimizer.py index b2c73c88d1cdaa0d6c30032d9926a0e38142e921..87c605f6813c74dac7a242f4df7d92dd5db690e7 100644 --- a/ppdet/optimizer.py +++ b/ppdet/optimizer.py @@ -19,12 +19,12 @@ from __future__ import print_function import math import logging -from paddle import fluid +import paddle +import paddle.nn as nn -import paddle.fluid.optimizer as optimizer +import paddle.optimizer as optimizer import paddle.fluid.regularizer as regularizer -from paddle.fluid.layers.learning_rate_scheduler import _decay_step_counter -from paddle.fluid.layers.ops import cos +from paddle import cos from ppdet.core.workspace import register, serializable @@ -61,7 +61,7 @@ class PiecewiseDecay(object): for i in self.gamma: value.append(base_lr * i) - return fluid.dygraph.PiecewiseDecay(boundary, value, begin=0, step=1) + return optimizer.lr_scheduler.PiecewiseLR(boundary, value) @serializable @@ -142,9 +142,10 @@ class OptimizerBuilder(): def __call__(self, learning_rate, params=None): if self.clip_grad_by_norm is not None: - fluid.clip.set_gradient_clip( - clip=fluid.clip.GradientClipByGlobalNorm( - clip_norm=self.clip_grad_by_norm)) + grad_clip = nn.GradientClipByGlobalNorm( + clip_norm=self.clip_grad_by_norm) + else: + grad_clip = None if self.regularizer: reg_type = self.regularizer['type'] + 'Decay' @@ -158,6 +159,7 @@ class OptimizerBuilder(): del optim_args['type'] op = getattr(optimizer, optim_type) return op(learning_rate=learning_rate, - parameter_list=params, - regularization=regularization, + parameters=params, + weight_decay=regularization, + grad_clip=grad_clip, **optim_args) diff --git a/ppdet/utils/check.py b/ppdet/utils/check.py index 43303f6d68e60626d55fc0f57c5d7511442da783..324734ce0f4977a8a216fad860a0fb3ff7f5d409 100644 --- a/ppdet/utils/check.py +++ b/ppdet/utils/check.py @@ -18,8 +18,8 @@ from __future__ import print_function import sys -import paddle.fluid as fluid - +import paddle +from paddle import fluid import logging import six import paddle.version as fluid_version @@ -65,9 +65,13 @@ def check_version(version='1.7.0'): version_split = version.split('.') length = min(len(version_installed), len(version_split)) + flag = False for i in six.moves.range(length): - if version_installed[i] < version_split[i]: - raise Exception(err) + if version_installed[i] > version_split[i]: + flag = True + break + if not flag: + raise Exception(err) def check_config(cfg): diff --git a/tools/eval.py b/tools/eval.py index b39573d01873d921c798c98f9ab70b99de4f2483..f5f10c679917d0bd84bbf94f7c4c910c318040c3 100755 --- a/tools/eval.py +++ b/tools/eval.py @@ -13,7 +13,8 @@ import warnings warnings.filterwarnings('ignore') import random import numpy as np -import paddle.fluid as fluid +import paddle +from paddle.distributed import ParallelEnv from ppdet.core.workspace import load_config, merge_config, create from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser @@ -50,10 +51,10 @@ def run(FLAGS, cfg): main_arch = cfg.architecture model = create(cfg.architecture) - # Init Model + # Init Model model = load_dygraph_ckpt(model, ckpt=cfg.weights) - # Data Reader + # Data Reader if FLAGS.use_gpu: devices_num = 1 else: @@ -65,12 +66,12 @@ def run(FLAGS, cfg): start_time = time.time() sample_num = 0 for iter_id, data in enumerate(eval_reader()): - # forward + # forward model.eval() outs = model(data, cfg['EvalReader']['inputs_def']['fields'], 'infer') outs_res.append(outs) - # log + # log sample_num += len(data) if iter_id % 100 == 0: logger.info("Eval iter: {}".format(iter_id)) @@ -78,7 +79,7 @@ def run(FLAGS, cfg): cost_time = time.time() - start_time logger.info('Total sample number: {}, averge FPS: {}'.format( sample_num, sample_num / cost_time)) - # Metric + # Metric coco_eval_results( outs_res, include_mask=True if getattr(cfg, 'MaskHead', None) else False, @@ -94,11 +95,10 @@ def main(): check_gpu(cfg.use_gpu) check_version() - place = fluid.CUDAPlace(fluid.dygraph.parallel.Env() - .dev_id) if cfg.use_gpu else fluid.CPUPlace() - - with fluid.dygraph.guard(place): - run(FLAGS, cfg) + place = paddle.CUDAPlace(ParallelEnv() + .dev_id) if cfg.use_gpu else paddle.CPUPlace() + paddle.disable_static(place) + run(FLAGS, cfg) if __name__ == '__main__': diff --git a/tools/train.py b/tools/train.py index 76a860909dd2e1c6a593e441e34d4103082cf910..13fa7290d742a540820f03cc8837a2852adbfbcf 100755 --- a/tools/train.py +++ b/tools/train.py @@ -15,14 +15,15 @@ import random import datetime import numpy as np from collections import deque -import paddle.fluid as fluid +import paddle +from paddle import fluid from ppdet.core.workspace import load_config, merge_config, create from ppdet.data.reader import create_reader from ppdet.utils.stats import TrainingStats from ppdet.utils.check import check_gpu, check_version, check_config from ppdet.utils.cli import ArgsParser from ppdet.utils.checkpoint import load_dygraph_ckpt, save_dygraph_ckpt -from paddle.fluid.dygraph.parallel import ParallelEnv +from paddle.distributed import ParallelEnv import logging FORMAT = '%(asctime)s-%(levelname)s: %(message)s' logging.basicConfig(level=logging.INFO, format=FORMAT) @@ -117,9 +118,10 @@ def run(FLAGS, cfg): # Parallel Model if ParallelEnv().nranks > 1: - strategy = fluid.dygraph.parallel.prepare_context() - model = fluid.dygraph.parallel.DataParallel(model, strategy) + strategy = paddle.distributed.init_parallel_env() + model = paddle.DataParallel(model, strategy) + logger.info("success!") # Data Reader start_iter = 0 if cfg.use_gpu: @@ -157,8 +159,10 @@ def run(FLAGS, cfg): else: loss.backward() optimizer.minimize(loss) - model.clear_gradients() - curr_lr = optimizer.current_step_lr() + optimizer.step() + curr_lr = optimizer.get_lr() + lr.step() + optimizer.clear_grad() if ParallelEnv().nranks < 2 or ParallelEnv().local_rank == 0: # Log state @@ -190,11 +194,11 @@ def main(): check_gpu(cfg.use_gpu) check_version() - place = fluid.CUDAPlace(ParallelEnv().dev_id) \ - if cfg.use_gpu else fluid.CPUPlace() + place = paddle.CUDAPlace(ParallelEnv().dev_id) \ + if cfg.use_gpu else paddle.CPUPlace() + paddle.disable_static(place) - with fluid.dygraph.guard(place): - run(FLAGS, cfg) + run(FLAGS, cfg) if __name__ == "__main__":