Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
7cd4d0ac
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
7cd4d0ac
编写于
6月 19, 2018
作者:
C
chengduoZH
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add Doc fluid.Parameter, program and block
上级
527b22f2
变更
1
隐藏空白更改
内联
并排
Showing
1 changed file
with
313 addition
and
152 deletion
+313
-152
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+313
-152
未找到文件。
python/paddle/fluid/framework.py
浏览文件 @
7cd4d0ac
...
@@ -43,7 +43,8 @@ ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
...
@@ -43,7 +43,8 @@ ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
def
grad_var_name
(
var_name
):
def
grad_var_name
(
var_name
):
"""
"""
return gradient name for a certain var name
Returns:
str: gradient name for a certain var name
"""
"""
return
var_name
+
GRAD_VAR_SUFFIX
return
var_name
+
GRAD_VAR_SUFFIX
...
@@ -51,10 +52,12 @@ def grad_var_name(var_name):
...
@@ -51,10 +52,12 @@ def grad_var_name(var_name):
def
convert_np_dtype_to_dtype_
(
np_dtype
):
def
convert_np_dtype_to_dtype_
(
np_dtype
):
"""
"""
Convert the data type in numpy to the data type in Paddle
Convert the data type in numpy to the data type in Paddle
Args:
Args:
np_dtype(np.dtype): the data type in numpy
np_dtype(np.dtype): the data type in numpy
.
Returns(core.VarDesc.VarType): the data type in Paddle
Returns:
core.VarDesc.VarType: the data type in Paddle.
"""
"""
dtype
=
np
.
dtype
(
np_dtype
)
dtype
=
np
.
dtype
(
np_dtype
)
...
@@ -129,46 +132,44 @@ class Variable(object):
...
@@ -129,46 +132,44 @@ class Variable(object):
and usages. Please reference the framework.proto for details.
and usages. Please reference the framework.proto for details.
Most of a Variable's member variables can be setted to be None. It mean
Most of a Variable's member variables can be setted to be None. It mean
it is not avaiable or will be specified later.
it is not avai
l
able or will be specified later.
Notes: The constructor of Variable should not be invoked directly. Please
Args:
use `Block.create_var` to create a variable.
.. code-block:: python
cur_program = Program()
cur_block = cur_program.current_block()
new_variable = cur_block.create_var(
name="X", shape=[-1, 23, 48], dtype='float32')
Member variables:
block(Block): The block that the variable belongs to.
block(Block): The block that the variable belongs to.
type(core.VarDesc.VarType): Variable type. Please reference the
type(core.VarDesc.VarType): Variable type. Please reference the
framework.proto for details.
framework.proto for details.
name(str|None): The name of the variable. If setted None, it will be
name(str|None): The name of the variable. If setted None, it will be
generated automatically.
generated automatically. Default: None
Default: None
shape(tuple|list|None): The shape of the variable. -1 means the batch size.
shape(tuple|list|None): The shape of the variable. -1 means the batch size.
Some kinds of variable do not contain shape, just set it to None.
Some kinds of variable do not contain shape, just set it to None.
Default: None
Default: None
dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
Default: None
Default: None
lod_level(int|None): The level of lod tensor. 0 means it is not a time
lod_level
(int|None): The level of lod tensor. 0 means it is not a time
series data.
series data.
Default: None
Default: None
capacity(int|None): The capacity of Channel variable. Ignored
capacity (int|None): The capacity of Channel variable. Ignored for other
for other types.
types. Default: None
Default: None
persistable (bool|None): True if the variable is persistable. A persistable
persistable(bool|None): True if the variable is persistable. A persistable
variable will not be deleted after an iteration ending. Defaults: None.
variable will not be deleted after an iteration ending.
error_clip (BaseErrorClipAttr|None): The error clip attributes of the
Defaults: None.
corresponding gradient variable. Default: None
error_clip(BaseErrorClipAttr|None): The error clip attributes of the
stop_gradient (bool): True if the variable will stop to calculate its
corresponding gradient variable.
gradients when backward. Default: False.
Default: None
is_data (bool): True if the variable is an input data. Default: False
stop_gradient(bool): True if the variable will stop to calculate its
gradients when backward.
Notes:
Default: False.
The constructor of Variable should not be invoked directly. Please
is_data(bool): True is the variable is an input data.
use `Block.create_var` to create a variable.
Default: False
Examples:
.. code-block:: python
cur_program = Program()
cur_block = cur_program.current_block()
new_variable = cur_block.create_var(name="X",
shape=[-1, 23, 48],
dtype='float32')
"""
"""
def
__init__
(
self
,
def
__init__
(
self
,
...
@@ -271,13 +272,14 @@ class Variable(object):
...
@@ -271,13 +272,14 @@ class Variable(object):
Get debug string.
Get debug string.
Args:
Args:
throw_on_error(bool): True if raise an exception when self is
not
throw_on_error(bool): True if raise an exception when self is
in
tialized.
not ini
tialized.
with_details(bool): more details about variables and parameters
with_details(bool): more details about variables and parameters
(e.g. trainable, optimize_attr, ...) will be printed when with_details is True
(e.g. trainable, optimize_attr, ...) will be printed when
with_details is True. Default False;
Returns(str): The debug string.
Returns:
str: The debug string.
"""
"""
assert
isinstance
(
throw_on_error
,
bool
)
and
isinstance
(
with_details
,
assert
isinstance
(
throw_on_error
,
bool
)
and
isinstance
(
with_details
,
bool
)
bool
)
...
@@ -294,6 +296,15 @@ class Variable(object):
...
@@ -294,6 +296,15 @@ class Variable(object):
__repr__
=
__str__
__repr__
=
__str__
def
set_desc
(
self
,
input
):
def
set_desc
(
self
,
input
):
"""
Set the variable description.
Args:
input(core.VarDesc): The new VarDesc.
Returns:
None
"""
self
.
desc
=
input
self
.
desc
=
input
@
property
@
property
...
@@ -330,6 +341,15 @@ class Variable(object):
...
@@ -330,6 +341,15 @@ class Variable(object):
return
self
.
desc
.
type
()
return
self
.
desc
.
type
()
def
set_error_clip
(
self
,
error_clip
):
def
set_error_clip
(
self
,
error_clip
):
"""
Set the error_clip.
Args:
error_clip(BaseErrorClipAttr) : The new error_clip.
Returns:
None
"""
self
.
error_clip
=
error_clip
self
.
error_clip
=
error_clip
...
@@ -337,8 +357,8 @@ def get_all_op_protos():
...
@@ -337,8 +357,8 @@ def get_all_op_protos():
"""
"""
Get all registered op proto from PaddlePaddle C++ end.
Get all registered op proto from PaddlePaddle C++ end.
Returns
(list): list of OpProto
Returns
:
list: list of OpProto.
"""
"""
protostrs
=
core
.
get_all_op_protos
()
protostrs
=
core
.
get_all_op_protos
()
ret_values
=
[]
ret_values
=
[]
...
@@ -391,9 +411,45 @@ class OpProtoHolder(object):
...
@@ -391,9 +411,45 @@ class OpProtoHolder(object):
class
Operator
(
object
):
class
Operator
(
object
):
"""
"""
Python Operator class. The operator represents the build in instructions in a
In Fluid, all the operation are represented by Operator, and Operator
Block. Users can use the build in instructions to describe their neural
is regarded as a build in an instruction of a Block. Users can use the
network.
build in instructions to describe their neural network.
Args:
block(Block): The block has the current operator.
desc(core.OpDesc): The protobuf description of Operator.
type(str): The type of operator.
inputs(dict): The input of this Operator. it is a dictionary, for every
element, key is the input parameter name, and value is a list of
variables. Default None.
outputs(dict): The output of this Operator. it is a dictionary, for
every element, key is the input parameter name, and value is a list
of variables. Default None.
attrs(dict): The attributes of this Operator. it is a dictionary, for
every element, key is attribute name, and value is the attribute value.
The attribute type should be as same as the type registered in C++ side.
Default None.
Returns:
Operator: The initialized Operator.
Raises:
ValueError: If the passed input, output and attrs doesn't match the
initializing Operator's that registered in C++ side.
Notes:
The constructor of operator should not be invoked directly. Use
Block.append_op or Block.prepend_op instead.
Examples:
.. code-block:: python
cur_program = Program()
cur_block = cur_program.current_block()
# var1 += var2 + var3
cur_block.append_op(type="sum",
inputs={"X": [var1, var2, var3]},
outputs={"Out": [var1]})
"""
"""
OP_WITHOUT_KERNEL_SET
=
{
OP_WITHOUT_KERNEL_SET
=
{
'feed'
,
'fetch'
,
'save'
,
'load'
,
'recurrent'
,
'go'
,
'feed'
,
'fetch'
,
'save'
,
'load'
,
'recurrent'
,
'go'
,
...
@@ -403,38 +459,9 @@ class Operator(object):
...
@@ -403,38 +459,9 @@ class Operator(object):
'channel_recv'
,
'select'
,
'gen_nccl_id'
'channel_recv'
,
'select'
,
'gen_nccl_id'
}
}
def
__init__
(
self
,
def
__init__
(
self
,
block
,
desc
,
type
,
inputs
=
None
,
outputs
=
None
,
block
,
desc
,
type
=
None
,
inputs
=
None
,
outputs
=
None
,
attrs
=
None
):
attrs
=
None
):
"""
Constructor.
Notes: The constructor of operator should not be invoked directly. Use
Block.append_op or Block.prepend_op instead.
>>> cur_program = Program()
>>> cur_block = cur_program.current_block()
>>> # var1 += var2 + var3
>>> cur_block.append_op(type="sum",
>>> inputs={"X": [var1, var2, var3]},
>>> outputs={"Out": [var1]})
Args:
block(Block): The block has the current operator.
desc(core.OpDesc): The protobuf description.
type(str): The type of operator.
inputs(dict): The input dictionary. Key is the input parameter name.
Value is a list of variables.
outputs(dict): The output dictionary which has the same format with
inputs.
attrs(dict): The attributes dictionary. Key is attribute name. Value
is the attribute value. The attribute type should be as same as
the type registered in C++
"""
self
.
block
=
block
self
.
block
=
block
self
.
desc
=
desc
self
.
desc
=
desc
self
.
attrs
=
attrs
self
.
attrs
=
attrs
...
@@ -457,9 +484,7 @@ class Operator(object):
...
@@ -457,9 +484,7 @@ class Operator(object):
if
len
(
self
.
desc
.
type
())
!=
0
:
if
len
(
self
.
desc
.
type
())
!=
0
:
return
return
if
type
is
None
:
raise
ValueError
(
"`type` to initilized an Operator can not be None."
)
self
.
desc
.
set_type
(
type
)
self
.
desc
.
set_type
(
type
)
proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
type
)
proto
=
OpProtoHolder
.
instance
().
get_op_proto
(
type
)
...
@@ -547,12 +572,14 @@ class Operator(object):
...
@@ -547,12 +572,14 @@ class Operator(object):
def
to_string
(
self
,
throw_on_error
):
def
to_string
(
self
,
throw_on_error
):
"""
"""
To debug string.
Get debug string.
Args:
Args:
throw_on_error(bool):
raise exception when self is not initialized
throw_on_error(bool):
Whether to raise exception if self is not
when throw_on_error is True
initialized.
Returns(str): The debug string.
Returns:
str: The debug string.
"""
"""
protostr
=
self
.
desc
.
serialize_to_string
()
protostr
=
self
.
desc
.
serialize_to_string
()
...
@@ -570,29 +597,45 @@ class Operator(object):
...
@@ -570,29 +597,45 @@ class Operator(object):
def
input
(
self
,
name
):
def
input
(
self
,
name
):
"""
"""
Get input arguments by the input parameter name
Get the input arguments according to the input parameter name.
Args:
name(str): The input parameter name
Returns(list): return the list of argument names associated with the
Args:
specific
parameter name.
name(str): The input
parameter name.
Returns:
list: return the list of argument names that associated with
\
the specific parameter name.
"""
"""
return
self
.
desc
.
input
(
name
)
return
self
.
desc
.
input
(
name
)
def
rename_input
(
self
,
old_name
,
new_name
):
def
rename_input
(
self
,
old_name
,
new_name
):
"""
Rename the `old_name` to `new_name`.
Args:
old_name(str): The old name of the Operator's input.
new_name(str): The new name of the Operator's input.
Returns:
None
"""
self
.
desc
.
rename_input
(
old_name
,
new_name
)
self
.
desc
.
rename_input
(
old_name
,
new_name
)
def
rename_output
(
self
,
old_name
,
new_name
):
def
rename_output
(
self
,
old_name
,
new_name
):
"""
Rename the `old_name` to `new_name`.
Args:
old_name(str): The old name of the Operator's output.
new_name(str): The new name of the Operator's output.
Returns:
None
"""
self
.
desc
.
rename_output
(
old_name
,
new_name
)
self
.
desc
.
rename_output
(
old_name
,
new_name
)
@
property
@
property
def
input_names
(
self
):
def
input_names
(
self
):
"""
Get all input parameter names
Returns(list): return a list of input parameter names
"""
return
self
.
desc
.
input_names
()
return
self
.
desc
.
input_names
()
@
property
@
property
...
@@ -605,33 +648,23 @@ class Operator(object):
...
@@ -605,33 +648,23 @@ class Operator(object):
def
output
(
self
,
name
):
def
output
(
self
,
name
):
"""
"""
Get output arguments by the output parameter name
Get output arguments by the output parameter name.
Args:
name(str): The output parameter name
Returns(list): return the list of argument names associated with the
Args:
specific
parameter name.
name(str): The output
parameter name.
Returns:
list: return the list of argument names associated with
\
the specific parameter name.
"""
"""
return
self
.
desc
.
output
(
name
)
return
self
.
desc
.
output
(
name
)
@
property
@
property
def
output_names
(
self
):
def
output_names
(
self
):
"""
Get all output parameter names
Returns(list): return a list of output parameter names
"""
return
self
.
desc
.
output_names
()
return
self
.
desc
.
output_names
()
@
property
@
property
def
idx
(
self
):
def
idx
(
self
):
"""
Return the array index of current operator.
Returns(int): The array index in block.ops array
Raises:
ValueError: when the operator is not found.
"""
for
i
,
op
in
enumerate
(
self
.
block
.
ops
):
for
i
,
op
in
enumerate
(
self
.
block
.
ops
):
if
op
==
self
:
if
op
==
self
:
return
i
return
i
...
@@ -640,66 +673,78 @@ class Operator(object):
...
@@ -640,66 +673,78 @@ class Operator(object):
def
has_attr
(
self
,
name
):
def
has_attr
(
self
,
name
):
"""
"""
operator has the attribute with name or not.
Whether this Operator has the attribute with name or not.
Args:
Args:
name(str): the attribute name
name(str): the attribute name
.
Returns(bool): True if has this attribute.
Returns:
bool: True if has this attribute.
"""
"""
return
self
.
desc
.
has_attr
(
name
)
return
self
.
desc
.
has_attr
(
name
)
def
attr_type
(
self
,
name
):
def
attr_type
(
self
,
name
):
"""
"""
Get the type of attribute by attribute name
Get the type of attribute by attribute's name.
Args:
name(str): the attribute name
Returns(core.AttrType): the attribute type
Args:
name(str): the attribute name.
Returns:
core.AttrType: the attribute type.
"""
"""
return
self
.
desc
.
attr_type
(
name
)
return
self
.
desc
.
attr_type
(
name
)
def
set_attr
(
self
,
name
,
val
):
def
set_attr
(
self
,
name
,
val
):
"""
Set the value of attribute by attribute's name.
Args:
name(str): the attribute name.
val(bool|int|str|float|list): the value of the attribute.
Raises:
ValueError: If the type of value doesn't match with desc.attr_type(name).
"""
self
.
attrs
[
name
]
=
val
self
.
attrs
[
name
]
=
val
self
.
desc
.
set_attr
(
name
,
val
)
self
.
desc
.
set_attr
(
name
,
val
)
@
property
@
property
def
attr_names
(
self
):
def
attr_names
(
self
):
"""
Get all attribute names
Returns(list): The list of attribute name
"""
return
self
.
desc
.
attr_names
()
return
self
.
desc
.
attr_names
()
def
attr
(
self
,
name
):
def
attr
(
self
,
name
):
"""
"""
Get attribute by name
Get the attribute by name.
Args:
Args:
name(str): the attribute name
name(str): the attribute name
.
Returns(bool|int|str|float|list): The attribute value. The return value
Returns:
bool|int|str|float|list: The attribute value. The return value
can be any valid attribute type.
can be any valid attribute type.
"""
"""
return
self
.
desc
.
attr
(
name
)
return
self
.
desc
.
attr
(
name
)
def
block_attr
(
self
,
name
):
def
block_attr
(
self
,
name
):
"""
"""
Get the block attribute by name
Get the block attribute by name.
Args:
name(str): the attribute name
Returns(int): the block index
Args:
name(str): the attribute name.
Returns:
int: the block index.
"""
"""
return
self
.
desc
.
block_attr
(
name
)
return
self
.
desc
.
block_attr
(
name
)
def
all_attrs
(
self
):
def
all_attrs
(
self
):
"""
"""
Get the attribute dict
Get the attribute dict.
Returns(dict): The Operator's attribute dict
Returns:
dict: The Operator's attribute dict.
"""
"""
attr_names
=
self
.
attr_names
attr_names
=
self
.
attr_names
attr_map
=
{}
attr_map
=
{}
...
@@ -712,6 +757,35 @@ class Operator(object):
...
@@ -712,6 +757,35 @@ class Operator(object):
class
Block
(
object
):
class
Block
(
object
):
"""
In Fluid, a Program is consistence of multi-Block, and Block stores
VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
One block could have some child blocks, and child block's name scopes
should inherit the parent's so that OpDesc in child block can reference
a VarDesc that is stored in the parent block.
Please reference the framework.proto for details.
Args:
program(Program): The Program that the Block belongs to.
idx(int): The block's id in the Program.
Notes:
The constructor of Block should not be invoked directly. Please
use `Program.create_block()` to create a block.
Examples:
.. code-block:: python
cur_program = Program()
cur_block = cur_program.current_block()
var = cur_block.create_var(name="X",
shape=[-1, 23, 48],
dtype='float32')
cur_block.append_op(type="abs",
inputs={"X": [var]},
outputs={"Out": [var]})
"""
def
__init__
(
self
,
program
,
idx
):
def
__init__
(
self
,
program
,
idx
):
self
.
desc
=
program
.
desc
.
block
(
idx
)
self
.
desc
=
program
.
desc
.
block
(
idx
)
self
.
vars
=
collections
.
OrderedDict
()
# var_name --> var
self
.
vars
=
collections
.
OrderedDict
()
# var_name --> var
...
@@ -724,15 +798,17 @@ class Block(object):
...
@@ -724,15 +798,17 @@ class Block(object):
def
to_string
(
self
,
throw_on_error
,
with_details
=
False
):
def
to_string
(
self
,
throw_on_error
,
with_details
=
False
):
"""
"""
To debug string.
Get debug string.
Args:
Args:
throw_on_error(bool): raise exception when self is not initialized
throw_on_error(bool): raise exception when self is not initialized
when throw_on_error is True
when throw_on_error is True
.
with_details(bool): more details about variables and parameters
with_details(bool): more details about variables and parameters
(e.g. trainable, optimize_attr, ...) will be printed when with_details is True
(e.g. trainable, optimize_attr, ...) will be printed when
with_details is True. Default False.
Returns(str): The debug string.
Returns:
str: The debug string.
"""
"""
assert
isinstance
(
throw_on_error
,
bool
)
and
isinstance
(
with_details
,
assert
isinstance
(
throw_on_error
,
bool
)
and
isinstance
(
with_details
,
bool
)
bool
)
...
@@ -764,6 +840,15 @@ class Block(object):
...
@@ -764,6 +840,15 @@ class Block(object):
return
self
.
desc
.
get_forward_block_idx
()
return
self
.
desc
.
get_forward_block_idx
()
def
set_forward_block_idx
(
self
,
idx
):
def
set_forward_block_idx
(
self
,
idx
):
"""
Set the forward block Idx.
Args:
idx(int): the block index.
Returns:
None
"""
self
.
desc
.
set_forward_block_idx
(
idx
)
self
.
desc
.
set_forward_block_idx
(
idx
)
@
property
@
property
...
@@ -771,6 +856,19 @@ class Block(object):
...
@@ -771,6 +856,19 @@ class Block(object):
return
self
.
desc
.
id
return
self
.
desc
.
id
def
var
(
self
,
name
):
def
var
(
self
,
name
):
"""
Get a Variable by name from this block.
Args:
name(str): the Variable's name.
Raises:
ValueError: The If input's type is not str, or this block
doesn't have a Variable with the giving name.
Returns:
Variable: the Variable with the giving name.
"""
if
not
isinstance
(
name
,
basestring
):
if
not
isinstance
(
name
,
basestring
):
raise
TypeError
(
raise
TypeError
(
"var require string as parameter, but get %s instead."
%
"var require string as parameter, but get %s instead."
%
...
@@ -781,6 +879,19 @@ class Block(object):
...
@@ -781,6 +879,19 @@ class Block(object):
return
v
return
v
def
var_recursive
(
self
,
name
):
def
var_recursive
(
self
,
name
):
"""
Get a Variable by name from this block recursively.
Args:
name(str): the Variable's name.
Raises:
ValueError: this block and this parent block doesn't
have a Variable with the giving name.
Returns:
Variable: the Variable with the giving name.
"""
frontier
=
list
()
frontier
=
list
()
visited
=
set
()
visited
=
set
()
...
@@ -827,6 +938,18 @@ class Block(object):
...
@@ -827,6 +938,18 @@ class Block(object):
def
rename_var
(
self
,
name
,
new_name
):
def
rename_var
(
self
,
name
,
new_name
):
"""
"""
Rename variable in vars and ops' inputs and outputs
Rename variable in vars and ops' inputs and outputs
Args:
name(str): the name that need to be renamed.
new_name(str): the name that need to rename to.
Raises:
ValueError: If this block doesn't have this the giving name,
or the type of the var with the giving name is not Parameter
or Variable.
Returns:
Variable: the Variable with the giving name.
"""
"""
if
not
self
.
has_var
(
name
):
if
not
self
.
has_var
(
name
):
raise
ValueError
(
"var %s is not in current block"
%
name
)
raise
ValueError
(
"var %s is not in current block"
%
name
)
...
@@ -890,12 +1013,27 @@ class Block(object):
...
@@ -890,12 +1013,27 @@ class Block(object):
return
param
return
param
def
append_op
(
self
,
*
args
,
**
kwargs
):
def
append_op
(
self
,
*
args
,
**
kwargs
):
"""
Appends a new Operator according to the giving arguments.
Returns:
Operator: the append Operator.
"""
op_desc
=
self
.
desc
.
append_op
()
op_desc
=
self
.
desc
.
append_op
()
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
self
.
ops
.
append
(
op
)
self
.
ops
.
append
(
op
)
return
op
return
op
def
insert_op
(
self
,
index
,
*
args
,
**
kwargs
):
def
insert_op
(
self
,
index
,
*
args
,
**
kwargs
):
"""
Insert a Operator according to the giving arguments.
Args:
index(int): the place that the operator to insert.
Returns:
Operator: the insert Operator.
"""
self
.
sync_with_cpp
()
self
.
sync_with_cpp
()
op_desc
=
self
.
desc
.
insert_op
(
index
)
op_desc
=
self
.
desc
.
insert_op
(
index
)
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
op
=
Operator
(
block
=
self
,
desc
=
op_desc
,
*
args
,
**
kwargs
)
...
@@ -903,11 +1041,30 @@ class Block(object):
...
@@ -903,11 +1041,30 @@ class Block(object):
return
op
return
op
def
remove_op
(
self
,
index
):
def
remove_op
(
self
,
index
):
"""
Remove the specific position operator.
Args:
index(int): the position that the operator to insert.
Returns:
None
"""
self
.
sync_with_cpp
()
self
.
sync_with_cpp
()
self
.
desc
.
remove_op
(
index
,
index
+
1
)
self
.
desc
.
remove_op
(
index
,
index
+
1
)
del
self
.
ops
[
index
]
del
self
.
ops
[
index
]
def
slice_ops
(
self
,
start
,
end
):
def
slice_ops
(
self
,
start
,
end
):
"""
Return the Operator between start and end.
Args:
start(int): the start position.
end(int): the end position.
Returns:
list: the Operators between start and end.
"""
return
self
.
ops
[
start
:
end
]
return
self
.
ops
[
start
:
end
]
def
prepend_op
(
self
,
*
args
,
**
kwargs
):
def
prepend_op
(
self
,
*
args
,
**
kwargs
):
...
@@ -918,9 +1075,8 @@ class Block(object):
...
@@ -918,9 +1075,8 @@ class Block(object):
def
sync_with_cpp
(
self
):
def
sync_with_cpp
(
self
):
"""
"""
Sync from the desc on the c++ end.
Sync from the desc on the c++ end. This method is used to synchronize
the c++ desc instance generated by backward.
This method is used to synchronize the c++ desc instance generated by backward.
"""
"""
# sync variables from cpp
# sync variables from cpp
for
var
in
self
.
desc
.
all_vars
():
for
var
in
self
.
desc
.
all_vars
():
...
@@ -985,9 +1141,14 @@ class Block(object):
...
@@ -985,9 +1141,14 @@ class Block(object):
def
copy_param_info_from
(
self
,
other
):
def
copy_param_info_from
(
self
,
other
):
"""
"""
Copy the information of parameters from the other block
Copy the information of parameters from the other block.
Args:
Args:
other(Block): the other block
other(Block): the other block.
Raises:
ValueError: If type of input is not Block, or the `other` and this
block is not in the same topology.
Returns:
Returns:
None
None
...
@@ -1019,11 +1180,12 @@ class Block(object):
...
@@ -1019,11 +1180,12 @@ class Block(object):
def
clone_variable
(
self
,
var
):
def
clone_variable
(
self
,
var
):
"""
"""
Clone a variable into current block.
Clone a variable into current block.
Args:
Args:
var: the variable to be cloned.
var: the variable to be cloned.
Returns:
Returns:
T
he new variable cloned from 'var' in current block.
Variable: t
he new variable cloned from 'var' in current block.
"""
"""
assert
isinstance
(
var
,
Variable
)
assert
isinstance
(
var
,
Variable
)
ret_var
=
None
ret_var
=
None
...
@@ -1330,22 +1492,21 @@ class Parameter(Variable):
...
@@ -1330,22 +1492,21 @@ class Parameter(Variable):
The training of a neural network is essentially the updating of
The training of a neural network is essentially the updating of
its parameters.
its parameters.
Relative to a general V
riable, a Parameter has several its own
Relative to a general V
ariable, a Parameter has several its own
member variables:
member variables:
trainable(bool): True if the parameter need to be updated after
Args:
iterations.
trainable(bool): True if the parameter need to be updated after
optimize_attr(map): Parameter attributes related with optimizing.
iterations.
Currently, it only contains 'learning_rate'.
optimize_attr(map): Parameter attributes related with optimizing.
Default: {'learning_rate': 1.0}
Currently, it only contains 'learning_rate'.
regularizer(WeightDecayRegularizer): The Regularizer which will
Default: {'learning_rate': 1.0}
be applied on the parameter.
regularizer(WeightDecayRegularizer): The Regularizer which will
Default: None
be applied on the parameter. Default: None
gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
which will be applied on the parameter.
which will be applied on the parameter. Default: None
Default: None
do_model_average(bool): True if the model average strategy will
do_model_average(bool): True if the model average strategy will
be applied on this parameter.
be applied on this parameter.
"""
"""
def
__init__
(
self
,
block
,
shape
,
dtype
,
**
kwargs
):
def
__init__
(
self
,
block
,
shape
,
dtype
,
**
kwargs
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录