未验证 提交 78bf37a8 编写于 作者: T Tao Luo 提交者: GitHub

unify log_smooth_windows and log_iter (#1530)

* unify log_smooth_windows and log_iter

test=develop

* remove duplicate log_iter

* remain mobile yml, since they are soft-link

test=develop
上级 a71c0df7
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_acfpn_1x/model_final
......
architecture: CornerNetSqueeze
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
......
architecture: CornerNetSqueeze
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
......
architecture: CornerNetSqueeze
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
......
architecture: CornerNetSqueeze
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
......
......@@ -2,7 +2,6 @@ architecture: FCOS
max_iters: 90000
use_gpu: true
snapshot_iter: 5000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: FCOS
max_iters: 90000
use_gpu: true
snapshot_iter: 5000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: FCOS
max_iters: 90000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: FCOS
max_iters: 180000
use_gpu: true
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
architecture: TTFNet
use_gpu: true
max_iters: 15000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 1000
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 270000
snapshot_iter: 30000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/faster_rcnn_r101_vd_fpn_aa_3x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 270000
snapshot_iter: 30000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_fpn_aa_3x/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeMaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNNClsAware
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/cascade_rcnn_cls_aware_r101_vd_fpn_1x_softnms/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNNClsAware
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/cascade_rcnn_cls_aware_r101_vd_fpn_ms_test/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/cascade_rcnn_r50_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/cascade_rcnn_r50_fpn_1x/model_final
......
......@@ -3,7 +3,6 @@ max_iters: 300000
snapshot_iter: 10
use_gpu: true
log_iter: 20
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_caffe_pretrained.tar
weights: output/cascade_mask_rcnn_dcn_se154_vd_fpn_gn_s1x/model_final
......
......@@ -3,7 +3,6 @@ max_iters: 300000
snapshot_iter: 10000
use_gpu: true
log_iter: 20
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_caffe_pretrained.tar
weights: output/cascade_mask_rcnn_dcn_se154_vd_fpn_gn_s1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNN
max_iters: 460000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/CBResNet200_vd_pretrained.tar
weights: output/cascade_rcnn_cbr200_vd_fpn_dcnv2_nonlocal_softnms/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNNClsAware
max_iters: 460000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar
weights: output/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms/model_final
......
......@@ -2,7 +2,6 @@ architecture: CascadeRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: CascadeRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: CascadeRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: FasterRCNN
max_iters: 90000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: MaskRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 360000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: MaskRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
......
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 20000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 85000
log_smooth_window: 1
log_iter: 1
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 85000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 85000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 85000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
......@@ -3,7 +3,7 @@ max_iters: 281250
use_gpu: true
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/EfficientNetB0_pretrained.tar
weights: output/efficientdet_d0/model_final
log_smooth_window: 20
log_iter: 20
snapshot_iter: 10000
metric: COCO
save_dir: output
......
......@@ -3,7 +3,6 @@ max_iters: 320000
pretrain_weights:
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
......
......@@ -3,7 +3,6 @@ max_iters: 160000
pretrain_weights:
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
......
......@@ -3,7 +3,6 @@ max_iters: 320000
pretrain_weights:
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
......
......@@ -3,7 +3,6 @@ max_iters: 320000
pretrain_weights:
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
......
......@@ -3,7 +3,6 @@ pretrain_weights:
use_gpu: true
max_iters: 320000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
......
......@@ -3,7 +3,6 @@ pretrain_weights:
use_gpu: true
max_iters: 320000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: output
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/CBResNet101_vd_pretrained.tar
weights: output/faster_rcnn_cbr101_vd_dual_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/CBResNet50_vd_pretrained.tar
weights: output/faster_rcnn_cbr50_vd_dual_fpn_1x/model_final
......
architecture: FasterRCNN
use_gpu: true
max_iters: 180000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
weights: output/faster_rcnn_r101_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 360000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: http://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
weights: output/faster_rcnn_r101_fpn_2x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/faster_rcnn_r101_vd_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 360000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/faster_rcnn_r101_vd_fpn_2x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet34_vd_pretrained.tar
metric: COCO
......
architecture: FasterRCNN
use_gpu: true
max_iters: 180000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
architecture: FasterRCNN
use_gpu: true
max_iters: 360000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 180000
use_gpu: true
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
......
architecture: FasterRCNN
use_gpu: true
max_iters: 180000
log_smooth_window: 20
log_iter: 20
save_dir: output/faster-r50-vd-c4-1x
snapshot_iter: 10000
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_fpn_2x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 260000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar
weights: output/faster_rcnn_se154_vd_fpn_s1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/faster_rcnn_x101_vd_64x4d_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 360000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/faster_rcnn_x101_vd_64x4d_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: CascadeMaskRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/cascade_mask_rcnn_r50_fpn_gn_2x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
max_iters: 360000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/mask_rcnn_r50_fpn_gn_2x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 360000
snapshot_iter: 40000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_fpn_gridmask_4x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar
weights: output/faster_rcnn_hrnetv2p_w18_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/HRNet_W18_C_pretrained.tar
weights: output/faster_rcnn_hrnetv2p_w18_2x/model_final
......
......@@ -2,7 +2,7 @@ architecture: HybridTaskCascade
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 50
log_iter: 50
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_fpn_diou_loss_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_fpn_diou_loss_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_fpn_giou_loss_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/libra_rcnn_r101_vd_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/libra_rcnn_r50_vd_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_pretrained.tar
weights: output/mask_rcnn_r101_vd_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 360000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
max_iters: 360000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/mask_rcnn_r50_fpn_2x/model_final
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
use_gpu: true
max_iters: 360000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
metric: COCO
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
max_iters: 260000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/SENet154_vd_pretrained.tar
weights: output/mask_rcnn_se154_vd_fpn_s1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
max_iters: 180000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/mask_rcnn_x101_vd_64x4d_fpn_1x/model_final
......
......@@ -2,7 +2,7 @@ architecture: MaskRCNN
max_iters: 360000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/mask_rcnn_x101_vd_64x4d_fpn_2x/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNN
max_iters: 500000
snapshot_iter: 50000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
weights: output/cascade_rcnn_mobilenetv3_fpn_320/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNN
max_iters: 500000
snapshot_iter: 50000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
weights: output/cascade_rcnn_mobilenetv3_fpn_640/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNNClsAware
max_iters: 800000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar
weights: output/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms/model_final
......
......@@ -3,7 +3,6 @@ max_iters: 500000
snapshot_iter: 10000
use_gpu: true
log_iter: 20
log_smooth_window: 20
save_dir: output
pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/cascade_mask_rcnn_dcnv2_se154_vd_fpn_gn_coco_pretrained.tar
weights: output/cascade_rcnn_dcnv2_se154_vd_fpn_gn_cas/model_final
......
......@@ -2,7 +2,7 @@ architecture: CascadeRCNNClsAware
max_iters: 1500000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet200_vd_pretrained.tar
weights: output/cascade_rcnn_cls_aware_r200_vd_fpn_dcnv2_nonlocal_softnms/model_final
......
architecture: YOLOv3
use_gpu: true
max_iters: 250000
log_smooth_window: 100
log_iter: 100
save_dir: output
snapshot_iter: 10000
......
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 100
log_iter: 100
save_dir: output
snapshot_iter: 10000
......
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 100
log_iter: 100
save_dir: output
snapshot_iter: 10000
......
architecture: YOLOv3
use_gpu: true
max_iters: 250000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
......
......@@ -3,7 +3,6 @@
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 100
log_iter: 100
save_dir: output
snapshot_iter: 10000
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 360000
snapshot_iter: 40000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_pretrained.tar
weights: output/faster_rcnn_r50_vd_fpn_random_erasing_4x/model_final
......
......@@ -2,7 +2,6 @@ architecture: CascadeRCNN
max_iters: 270000
snapshot_iter: 30000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: CascadeRCNN
max_iters: 270000
snapshot_iter: 30000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: FasterRCNN
max_iters: 270000
snapshot_iter: 30000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: CascadeRCNN
max_iters: 1500000
snapshot_iter: 100000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/CBResNet101_vd_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: CascadeRCNN
max_iters: 1500000
snapshot_iter: 100000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_vd_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: CascadeRCNN
max_iters: 750000
snapshot_iter: 50000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_vd_ssld_v2_pretrained.tar
......
......@@ -2,7 +2,7 @@ architecture: FasterRCNN
max_iters: 90000
snapshot_iter: 10000
use_gpu: true
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar
weights: output/faster_rcnn_res2net50_vb_26w_4s_fpn_1x/model_final
......
......@@ -3,7 +3,7 @@ trarchitecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_26w_4s_pretrained.tar
metric: COCO
......
......@@ -3,7 +3,7 @@ trarchitecture: MaskRCNN
use_gpu: true
max_iters: 180000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar
metric: COCO
......
......@@ -3,7 +3,7 @@ trarchitecture: MaskRCNN
use_gpu: true
max_iters: 90000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
save_dir: output
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/Res2Net50_vd_26w_4s_pretrained.tar
metric: COCO
......
......@@ -3,7 +3,7 @@ max_iters: 90000
use_gpu: true
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet101_pretrained.tar
weights: output/retinanet_r101_fpn_1x/model_final
log_smooth_window: 20
log_iter: 20
snapshot_iter: 10000
metric: COCO
save_dir: output
......
......@@ -3,7 +3,7 @@ max_iters: 90000
use_gpu: true
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNet50_cos_pretrained.tar
weights: output/retinanet_r50_fpn_1x/model_final
log_smooth_window: 20
log_iter: 20
snapshot_iter: 10000
metric: COCO
save_dir: output
......
......@@ -3,7 +3,6 @@ max_iters: 180000
use_gpu: true
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/ResNeXt101_vd_64x4d_pretrained.tar
weights: output/retinanet_x101_vd_64x4d_fpn_1x/model_final
log_smooth_window: 20
log_iter: 20
snapshot_iter: 30000
metric: COCO
......
......@@ -3,7 +3,7 @@ pretrain_weights: https://paddlemodels.bj.bcebos.com/object_detection/ssd_mobile
use_gpu: true
max_iters: 28000
snapshot_iter: 2000
log_smooth_window: 1
log_iter: 1
metric: VOC
map_type: 11point
save_dir: output
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_caffe_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 120001
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: VOC
map_type: 11point
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/VGG16_caffe_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 120000
snapshot_iter: 10000
log_smooth_window: 20
log_iter: 20
metric: VOC
map_type: 11point
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/GhostNet_x1_3_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV1_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_large_x1_0_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar
......
......@@ -2,7 +2,6 @@ architecture: SSD
use_gpu: true
max_iters: 400000
snapshot_iter: 20000
log_smooth_window: 20
log_iter: 20
metric: COCO
pretrain_weights: https://paddle-imagenet-models-name.bj.bcebos.com/MobileNetV3_small_x1_0_ssld_pretrained.tar
......
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 70000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 2000
metric: VOC
......
architecture: YOLOv3
use_gpu: true
max_iters: 70000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 2000
metric: VOC
......
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 20000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 200
metric: VOC
......
......@@ -6,8 +6,8 @@ architecture: YOLOv3
use_gpu: true
# ### max_iters为最大迭代次数,而一个iter会运行batch_size * device_num张图片。batch_size在下面 TrainReader.batch_size设置。
max_iters: 1200
# log平滑参数,平滑窗口大小,会从取历史窗口中取log_smooth_window大小的loss求平均值
log_smooth_window: 20
# log平滑参数,平滑窗口大小,会从取历史窗口中取log_iter大小的loss求平均值
log_iter: 20
# 模型保存文件夹
save_dir: output
# 每隔多少迭代保存模型
......
architecture: YOLOv3
use_gpu: true
max_iters: 70000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 2000
metric: VOC
......
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 500000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 70000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 2000
metric: VOC
......
architecture: YOLOv4
use_gpu: true
max_iters: 500200
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv4
use_gpu: true
max_iters: 500200
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 10000
metric: COCO
......
architecture: YOLOv4
use_gpu: true
max_iters: 140000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 1000
metric: VOC
......
architecture: YOLOv3
use_gpu: true
max_iters: 200000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 5000
metric: COCO
......
architecture: YOLOv3
use_gpu: true
max_iters: 120000
log_smooth_window: 20
log_iter: 20
save_dir: output
snapshot_iter: 2000
metric: COCO
......
......@@ -290,8 +290,7 @@ OptimizerBuilder:
```yaml
use_gpu: true # 是否使用GPU运行程序
max_iters: 500200 # 最大迭代轮数
log_smooth_window: 20 # 日志打印队列长度
log_iter: 20 # 训练时日志每迭代x轮打印一次
log_iter: 20 # 日志打印队列长度, 训练时日志每迭代x轮打印一次
save_dir: output # 模型保存路径
snapshot_iter: 2000 # 训练时第x轮保存/评估
metric: COCO # 数据集名称
......
......@@ -16,9 +16,7 @@ use_gpu: true
max_iters: 180000
# 模型保存间隔,如果训练时eval设置为True,会在保存后进行验证
snapshot_iter: 10000
# 输出指定区间的平均结果,默认20,即输出20次的平均结果
log_smooth_window: 20
# 默认打印log的间隔,默认20
# 输出指定区间的平均结果,默认20,即输出20次的平均结果。也是默认打印log的间隔。
log_iter: 20
# 训练权重的保存路径
save_dir: output
......
......@@ -8,8 +8,8 @@ architecture: YOLOv3
use_gpu: true
# ### max_iters为最大迭代次数,而一个iter会运行batch_size * device_num张图片。batch_size在下面 TrainReader.batch_size设置。
max_iters: 1200
# log平滑参数,平滑窗口大小,会从取历史窗口中取log_smooth_window大小的loss求平均值
log_smooth_window: 20
# log平滑参数,平滑窗口大小,会从取历史窗口中取log_iter大小的loss求平均值,也是默认打印日志的间隔。
log_iter: 20
# 模型保存文件夹
save_dir: output
# 每隔多少迭代保存模型
......
architecture: BlazeFace
max_iters: 5000
use_gpu: true
log_smooth_window: 20
log_iter: 20
metric: WIDERFACE
save_dir: nas_checkpoint
......
......@@ -328,13 +328,13 @@ def main():
# When iterable mode, set set_sample_list_generator(train_reader, place)
train_loader.set_sample_list_generator(train_reader)
train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
train_stats = TrainingStats(cfg.log_iter, train_keys)
train_loader.start()
end_time = time.time()
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(cfg.save_dir, cfg_name)
time_stat = deque(maxlen=cfg.log_smooth_window)
time_stat = deque(maxlen=cfg.log_iter)
ap = 0
for it in range(start_iter, cfg.max_iters):
start_time = end_time
......
......@@ -235,14 +235,14 @@ def main():
# if map_type not set, use default 11point, only use in VOC eval
map_type = cfg.map_type if 'map_type' in cfg else '11point'
train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
train_stats = TrainingStats(cfg.log_iter, train_keys)
train_loader.start()
start_time = time.time()
end_time = time.time()
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(cfg.save_dir, cfg_name)
time_stat = deque(maxlen=cfg.log_smooth_window)
time_stat = deque(maxlen=cfg.log_iter)
best_box_ap_list = [0.0, 0] #[map, iter]
# use VisualDL to log data
......
......@@ -223,14 +223,14 @@ def main():
# if map_type not set, use default 11point, only use in VOC eval
map_type = cfg.map_type if 'map_type' in cfg else '11point'
train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
train_stats = TrainingStats(cfg.log_iter, train_keys)
train_loader.start()
start_time = time.time()
end_time = time.time()
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(cfg.save_dir, cfg_name)
time_stat = deque(maxlen=cfg.log_smooth_window)
time_stat = deque(maxlen=cfg.log_iter)
best_box_ap_list = [0.0, 0] #[map, iter]
for it in range(start_iter, cfg.max_iters):
......
......@@ -55,7 +55,6 @@ MISC_CONFIG = {
"weights": "<value>",
"metric": "<value>",
"map_type": "11point",
"log_smooth_window": 20,
"snapshot_iter": 10000,
"log_iter": 20,
"use_gpu": True,
......
......@@ -219,14 +219,14 @@ def main():
# if map_type not set, use default 11point, only use in VOC eval
map_type = cfg.map_type if 'map_type' in cfg else '11point'
train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
train_stats = TrainingStats(cfg.log_iter, train_keys)
train_loader.start()
start_time = time.time()
end_time = time.time()
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(cfg.save_dir, cfg_name)
time_stat = deque(maxlen=cfg.log_smooth_window)
time_stat = deque(maxlen=cfg.log_iter)
best_box_ap_list = [0.0, 0] #[map, iter]
# use VisualDL to log data
......
......@@ -213,14 +213,14 @@ def main():
# if map_type not set, use default 11point, only use in VOC eval
map_type = cfg.map_type if 'map_type' in cfg else '11point'
train_stats = TrainingStats(cfg.log_smooth_window, train_keys)
train_stats = TrainingStats(cfg.log_iter, train_keys)
train_loader.start()
start_time = time.time()
end_time = time.time()
cfg_name = os.path.basename(FLAGS.config).split('.')[0]
save_dir = os.path.join(cfg.save_dir, cfg_name)
time_stat = deque(maxlen=cfg.log_smooth_window)
time_stat = deque(maxlen=cfg.log_iter)
best_box_ap_list = [0.0, 0] #[map, iter]
# use VisualDL to log data
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册