diff --git a/.travis.yml b/.travis.yml
index effcf90769647960d55b971af0939496dc850e7a..6215060e336c7cff9689951c918dc7ec02b2a2fb 100644
--- a/.travis.yml
+++ b/.travis.yml
@@ -50,7 +50,7 @@ before_install:
     fi
   - if [[ "$TRAVIS_OS_NAME" == "linux" ]]; then sudo paddle/scripts/travis/before_install.linux.sh; fi
   - if [[ "$TRAVIS_OS_NAME" == "osx" ]]; then paddle/scripts/travis/before_install.osx.sh; fi
-  - pip install wheel protobuf sphinx breathe recommonmark virtualenv numpy
+  - pip install wheel protobuf sphinx breathe recommonmark virtualenv numpy sphinx_rtd_theme
 script:
   - paddle/scripts/travis/main.sh
 notifications:
diff --git a/benchmark/.gitignore b/benchmark/.gitignore
new file mode 100644
index 0000000000000000000000000000000000000000..7b66e8a5b5020fd847982db401665d24ba3a069c
--- /dev/null
+++ b/benchmark/.gitignore
@@ -0,0 +1,9 @@
+paddle/image/logs
+paddle/image/*.pyc
+paddle/image/train.list
+paddle/rnn/logs
+paddle/rnn/*.pyc
+paddle/rnn/imdb.pkl
+caffe/image/logs
+tensorflow/image/logs
+tensorflow/rnn/logs
diff --git a/benchmark/README.md b/benchmark/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..367013f0457f9bbb9ae1335ea63dce181316d444
--- /dev/null
+++ b/benchmark/README.md
@@ -0,0 +1,168 @@
+# Benchmark
+
+Machine: 
+
+- CPU: 12-core Intel(R) Xeon(R) CPU E5-2620 v2 @2.10GHz
+- GPU: Tesla K40m
+- cuDNN: v5.1
+- system: Docker 1.12.1, all platforms are tested in docker environment.
+
+Platforms: 
+
+- PaddlePaddle: paddledev/paddle:gpu-devel-v0.9.0a0 
+- Tensorflow: gcr.io/tensorflow/tensorflow:0.11.0rc0-gpu 
+- Caffe: kaixhin/cuda-caffe
+
+Several convolutional neural networks and recurrent neural networks are used to test.
+
+## Image
+
+### Benchmark Model
+
+AlexNet, GoogleNet and a small network used in Caffe.
+
+- [AlexNet](https://github.com/BVLC/caffe/tree/master/models/bvlc_alexnet): but the group size is one.
+
+- [GoogleNet](https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet): but remove loss1 and loss2 when testing benchmark.
+
+- [SmallNet](https://github.com/BVLC/caffe/blob/master/examples/cifar10/cifar10\_quick\_train\_test.prototxt)
+
+
+### Single-GPU
+
+- AlexNet:  input - 3 * 227 * 227,  Time: ms/batch
+
+| BatchSize    | 64  | 128  | 256   | 512  |
+|--------------|-----| -----| ------| -----|
+| PaddlePaddle | 195 | 334  | 602   | 1629 |
+| TensorFlow   | 223 | 364  | 645   | 1235 |
+| Caffe        | 324 | 627  | 1232  | 2513 |
+ 
+**Notation**
+
+All platforms use cuDNN-v5.1. We see that caffe is slower in this experiment, because its workspace limit size of cuDNN-conv interface is 8 * 1024 * 1024, which is smaller in PaddlePaddle and TensorFlow. Note that Caffe will be faster if increasing the workspace limit size.
+ 
+- GoogletNet:  input - 3 * 224 * 224, Time: ms/batch
+
+
+| BatchSize    | 64    |   128  | 256     |
+|--------------|-------| -------| --------|
+| PaddlePaddle | 613   | 1149   | 2348    |
+| TensorFlow   | 644   | 1176   | 2219    |
+| Caffe        | 694   | 1364   | out of memory   |
+
+- SmallNet: input - 3 * 32 * 32, Time ms/batch
+
+| BatchSize    | 64     |   128    | 256     | 512     |
+|--------------|--------| -------- | --------|---------|
+| PaddlePaddle | 10.463 | 18.184   | 33.113  |  63.039 |
+| TensorFlow   | 9     | 15       | 28      | 59       |
+| Caffe        | 9.373  | 16.6606  | 31.4797 | 59.719  |
+
+**Notation**
+
+All the single-GPU experiments in caffe use `caffe time` to calculate elapsed time, which does not include parameter updating time. However, both PaddlePaddle and TensorFlow experiments contain the parameter updating time. As compared with the total time, this part is relatively little on single machine, we can ignore it.
+
+In Tensorflow, they implement algorithm searching method instead of using the algorithm searching interface in cuDNN.
+
+### Multi-GPU: 4 GPUs
+
+- AlexNet,  ms / batch
+
+| total-BatchSize | 128 * 4  | 256 * 4    |
+|------------------|----------| -----------|
+| PaddlePaddle     | 347      | 622        |
+| TensorFlow       | 377      | 675        |
+| Caffe            | 1229     | 2435       |
+
+For example, if `total-BatchSize = 128 * 4`, the speedup ratio is calculated by 
+
+```
+  time_at_1gpu_batch_128 * 4 / time_at_4gpu_total_batch_512 
+= (334 * 4)/347 
+= 3.85
+``` 
+
+<img src="figs/alexnet-4gpu.png" width="420">
+
+
+- GoogleNet, ms / batch
+
+| total-BatchSize  | 128 * 4      |  256 * 4    |
+|-------------------|--------------| ----------- |
+| PaddlePaddle      | 1178         | 2367        |
+| TensorFlow        | 1210         | 2292        |
+| Caffe             | 2007         | out of memory  |
+
+<img src="figs/googlenet-4gpu.png" width="420">
+
+
+## RNN
+We use lstm network for text classfication to test benchmark.
+
+### Dataset
+-  [IMDB](http://www.iro.umontreal.ca/~lisa/deep/data/imdb.pkl)
+- Sequence length is 100. In fact, PaddlePaddle supports training with variable-length sequence, but TensorFlow needs to pad. Thus, we also pad sequence length to 100 in PaddlePaddle in order to compare.
+- Dictionary size=30000 
+- Peephole connection is used in `lstmemory` by default in PaddlePaddle. It is also configured in TensorFlow.
+
+### Single-GPU
+
+#### LSTM in Text Classification
+
+Testing `2 lstm layer + fc` network with different hidden size and batch size.
+  
+- Batch size = 64, ms / batch
+ 
+| hidden_size  | 256   | 512    |  1280   |
+|--------------|-------| -------| --------|
+| PaddlePaddle | 83    | 184    | 641     |
+| TensorFlow   | 175   | 280    | 818     |
+
+- Batch size = 128, ms / batch
+ 
+| hidden_size  | 256    | 512    |  1280   |
+|--------------|------- | -------| --------|
+| PaddlePaddle | 110    | 261    | 1007    |
+| TensorFlow   | 181    | 361    | 1237    |
+
+
+- Batch size = 256, ms / batch
+ 
+| hidden_size  | 256   | 512    |  1280   |
+|--------------|-------| -------| --------|
+| PaddlePaddle | 170   | 414    | 1655    |
+| TensorFlow   | 238   | 536    | 1905    |
+
+<img src="figs/rnn_lstm_cls.png" width="600">
+
+#### Seq2Seq
+
+The benchmark of sequence-to-sequence network will be added later.
+ 
+
+### Multi GPU: 4 GPUs
+
+#### LSTM in Text Classification
+
+- hidden_size = 256, ms / batch
+ 
+| batch_size   | 256    |  512    |
+|--------------| -------| --------|
+| PaddlePaddle | 90     | 118     |
+| TensorFlow   | 226    | 118     |
+
+
+- hidden_size = 512, ms / batch
+ 
+| batch_size   | 256    |  512    |
+|--------------| -------| --------|
+| PaddlePaddle | 189    | 268     |
+| TensorFlow   | 297    | 383     |
+
+
+<img src="figs/rnn_lstm_4gpus.png" width="420">
+
+#### Seq2Seq
+
+The benchmark of sequence-to-sequence network will be added later.
diff --git a/benchmark/caffe/image/alexnet.prototxt b/benchmark/caffe/image/alexnet.prototxt
new file mode 100644
index 0000000000000000000000000000000000000000..aca184ddaf2ca2b5e2bea17d131055e0621b8271
--- /dev/null
+++ b/benchmark/caffe/image/alexnet.prototxt
@@ -0,0 +1,347 @@
+name: "alexnet"
+input: "data"
+input_dim: 64
+input_dim: 3
+input_dim: 227
+input_dim: 227
+input: "label"
+input_dim: 64
+input_dim: 1
+input_dim: 1
+input_dim: 1 
+force_backward: true
+layer {
+  name: "conv1"
+  type: "Convolution"
+  bottom: "data"
+  top: "conv1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 96
+    kernel_size: 11
+    stride: 4
+    weight_filler {
+      type: "gaussian"
+      std: 0.01
+    }
+    bias_filler {
+      type: "constant"
+      value: 0
+    }
+  }
+}
+layer {
+  name: "relu1"
+  type: "ReLU"
+  bottom: "conv1"
+  top: "conv1"
+}
+layer {
+  name: "norm1"
+  type: "LRN"
+  bottom: "conv1"
+  top: "norm1"
+  lrn_param {
+    local_size: 5
+    alpha: 0.0001
+    beta: 0.75
+  }
+}
+layer {
+  name: "pool1"
+  type: "Pooling"
+  bottom: "norm1"
+  top: "pool1"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "conv2"
+  type: "Convolution"
+  bottom: "pool1"
+  top: "conv2"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 256
+    pad: 2
+    kernel_size: 5
+    group: 1
+    weight_filler {
+      type: "gaussian"
+      std: 0.01
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.1
+    }
+  }
+}
+layer {
+  name: "relu2"
+  type: "ReLU"
+  bottom: "conv2"
+  top: "conv2"
+}
+layer {
+  name: "norm2"
+  type: "LRN"
+  bottom: "conv2"
+  top: "norm2"
+  lrn_param {
+    local_size: 5
+    alpha: 0.0001
+    beta: 0.75
+  }
+}
+layer {
+  name: "pool2"
+  type: "Pooling"
+  bottom: "norm2"
+  top: "pool2"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "conv3"
+  type: "Convolution"
+  bottom: "pool2"
+  top: "conv3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 384
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "gaussian"
+      std: 0.01
+    }
+    bias_filler {
+      type: "constant"
+      value: 0
+    }
+  }
+}
+layer {
+  name: "relu3"
+  type: "ReLU"
+  bottom: "conv3"
+  top: "conv3"
+}
+layer {
+  name: "conv4"
+  type: "Convolution"
+  bottom: "conv3"
+  top: "conv4"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 384
+    pad: 1
+    kernel_size: 3
+    group: 1
+    weight_filler {
+      type: "gaussian"
+      std: 0.01
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.1
+    }
+  }
+}
+layer {
+  name: "relu4"
+  type: "ReLU"
+  bottom: "conv4"
+  top: "conv4"
+}
+layer {
+  name: "conv5"
+  type: "Convolution"
+  bottom: "conv4"
+  top: "conv5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 256
+    pad: 1
+    kernel_size: 3
+    group: 1
+    weight_filler {
+      type: "gaussian"
+      std: 0.01
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.1
+    }
+  }
+}
+layer {
+  name: "relu5"
+  type: "ReLU"
+  bottom: "conv5"
+  top: "conv5"
+}
+layer {
+  name: "pool5"
+  type: "Pooling"
+  bottom: "conv5"
+  top: "pool5"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "fc6"
+  type: "InnerProduct"
+  bottom: "pool5"
+  top: "fc6"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  inner_product_param {
+    num_output: 4096
+    weight_filler {
+      type: "gaussian"
+      std: 0.005
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.1
+    }
+  }
+}
+layer {
+  name: "relu6"
+  type: "ReLU"
+  bottom: "fc6"
+  top: "fc6"
+}
+layer {
+  name: "drop6"
+  type: "Dropout"
+  bottom: "fc6"
+  top: "fc6"
+  dropout_param {
+    dropout_ratio: 0.5
+  }
+}
+layer {
+  name: "fc7"
+  type: "InnerProduct"
+  bottom: "fc6"
+  top: "fc7"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  inner_product_param {
+    num_output: 4096
+    weight_filler {
+      type: "gaussian"
+      std: 0.005
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.1
+    }
+  }
+}
+layer {
+  name: "relu7"
+  type: "ReLU"
+  bottom: "fc7"
+  top: "fc7"
+}
+layer {
+  name: "drop7"
+  type: "Dropout"
+  bottom: "fc7"
+  top: "fc7"
+  dropout_param {
+    dropout_ratio: 0.5
+  }
+}
+layer {
+  name: "fc8"
+  type: "InnerProduct"
+  bottom: "fc7"
+  top: "fc8"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  inner_product_param {
+    num_output: 1000
+    weight_filler {
+      type: "gaussian"
+      std: 0.01
+    }
+    bias_filler {
+      type: "constant"
+      value: 0
+    }
+  }
+}
+layer {
+  name: "loss"
+  type: "SoftmaxWithLoss"
+  bottom: "fc8"
+  bottom: "label"
+  top: "loss"
+}
diff --git a/benchmark/caffe/image/googlenet.prototxt b/benchmark/caffe/image/googlenet.prototxt
new file mode 100644
index 0000000000000000000000000000000000000000..c5f3b4fe3efcb6f7397031c086997fa914c67b7f
--- /dev/null
+++ b/benchmark/caffe/image/googlenet.prototxt
@@ -0,0 +1,2334 @@
+name: "googlenet"
+input: "data"
+input_dim: 128
+input_dim: 3
+input_dim: 224
+input_dim: 224
+input: "label"
+input_dim: 128
+input_dim: 1
+input_dim: 1
+input_dim: 1 
+layer {
+  name: "conv1/7x7_s2"
+  type: "Convolution"
+  bottom: "data"
+  top: "conv1/7x7_s2"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    pad: 3
+    kernel_size: 7
+    stride: 2
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "conv1/relu_7x7"
+  type: "ReLU"
+  bottom: "conv1/7x7_s2"
+  top: "conv1/7x7_s2"
+}
+layer {
+  name: "pool1/3x3_s2"
+  type: "Pooling"
+  bottom: "conv1/7x7_s2"
+  top: "pool1/3x3_s2"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 2
+  }
+}
+#layer {
+#  name: "pool1/norm1"
+#  type: "LRN"
+#  bottom: "pool1/3x3_s2"
+#  top: "pool1/norm1"
+#  lrn_param {
+#    local_size: 5
+#    alpha: 0.0001
+#    beta: 0.75
+#  }
+#}
+layer {
+  name: "conv2/3x3_reduce"
+  type: "Convolution"
+#  bottom: "pool1/norm1"
+  bottom: "pool1/3x3_s2"
+  top: "conv2/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "conv2/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "conv2/3x3_reduce"
+  top: "conv2/3x3_reduce"
+}
+layer {
+  name: "conv2/3x3"
+  type: "Convolution"
+  bottom: "conv2/3x3_reduce"
+  top: "conv2/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 192
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "conv2/relu_3x3"
+  type: "ReLU"
+  bottom: "conv2/3x3"
+  top: "conv2/3x3"
+}
+#layer {
+#  name: "conv2/norm2"
+#  type: "LRN"
+#  bottom: "conv2/3x3"
+#  top: "conv2/norm2"
+#  lrn_param {
+#    local_size: 5
+#    alpha: 0.0001
+#    beta: 0.75
+#  }
+#}
+layer {
+  name: "pool2/3x3_s2"
+  type: "Pooling"
+#  bottom: "conv2/norm2"
+  bottom: "conv2/3x3"
+  top: "pool2/3x3_s2"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "inception_3a/1x1"
+  type: "Convolution"
+  bottom: "pool2/3x3_s2"
+  top: "inception_3a/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3a/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_3a/1x1"
+  top: "inception_3a/1x1"
+}
+layer {
+  name: "inception_3a/3x3_reduce"
+  type: "Convolution"
+  bottom: "pool2/3x3_s2"
+  top: "inception_3a/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 96
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3a/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_3a/3x3_reduce"
+  top: "inception_3a/3x3_reduce"
+}
+layer {
+  name: "inception_3a/3x3"
+  type: "Convolution"
+  bottom: "inception_3a/3x3_reduce"
+  top: "inception_3a/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3a/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_3a/3x3"
+  top: "inception_3a/3x3"
+}
+layer {
+  name: "inception_3a/5x5_reduce"
+  type: "Convolution"
+  bottom: "pool2/3x3_s2"
+  top: "inception_3a/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 16
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3a/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_3a/5x5_reduce"
+  top: "inception_3a/5x5_reduce"
+}
+layer {
+  name: "inception_3a/5x5"
+  type: "Convolution"
+  bottom: "inception_3a/5x5_reduce"
+  top: "inception_3a/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 32
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3a/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_3a/5x5"
+  top: "inception_3a/5x5"
+}
+layer {
+  name: "inception_3a/pool"
+  type: "Pooling"
+  bottom: "pool2/3x3_s2"
+  top: "inception_3a/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_3a/pool_proj"
+  type: "Convolution"
+  bottom: "inception_3a/pool"
+  top: "inception_3a/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 32
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3a/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_3a/pool_proj"
+  top: "inception_3a/pool_proj"
+}
+layer {
+  name: "inception_3a/output"
+  type: "Concat"
+  bottom: "inception_3a/1x1"
+  bottom: "inception_3a/3x3"
+  bottom: "inception_3a/5x5"
+  bottom: "inception_3a/pool_proj"
+  top: "inception_3a/output"
+}
+layer {
+  name: "inception_3b/1x1"
+  type: "Convolution"
+  bottom: "inception_3a/output"
+  top: "inception_3b/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3b/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_3b/1x1"
+  top: "inception_3b/1x1"
+}
+layer {
+  name: "inception_3b/3x3_reduce"
+  type: "Convolution"
+  bottom: "inception_3a/output"
+  top: "inception_3b/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3b/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_3b/3x3_reduce"
+  top: "inception_3b/3x3_reduce"
+}
+layer {
+  name: "inception_3b/3x3"
+  type: "Convolution"
+  bottom: "inception_3b/3x3_reduce"
+  top: "inception_3b/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 192
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3b/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_3b/3x3"
+  top: "inception_3b/3x3"
+}
+layer {
+  name: "inception_3b/5x5_reduce"
+  type: "Convolution"
+  bottom: "inception_3a/output"
+  top: "inception_3b/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 32
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3b/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_3b/5x5_reduce"
+  top: "inception_3b/5x5_reduce"
+}
+layer {
+  name: "inception_3b/5x5"
+  type: "Convolution"
+  bottom: "inception_3b/5x5_reduce"
+  top: "inception_3b/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 96
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3b/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_3b/5x5"
+  top: "inception_3b/5x5"
+}
+layer {
+  name: "inception_3b/pool"
+  type: "Pooling"
+  bottom: "inception_3a/output"
+  top: "inception_3b/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_3b/pool_proj"
+  type: "Convolution"
+  bottom: "inception_3b/pool"
+  top: "inception_3b/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_3b/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_3b/pool_proj"
+  top: "inception_3b/pool_proj"
+}
+layer {
+  name: "inception_3b/output"
+  type: "Concat"
+  bottom: "inception_3b/1x1"
+  bottom: "inception_3b/3x3"
+  bottom: "inception_3b/5x5"
+  bottom: "inception_3b/pool_proj"
+  top: "inception_3b/output"
+}
+layer {
+  name: "pool3/3x3_s2"
+  type: "Pooling"
+  bottom: "inception_3b/output"
+  top: "pool3/3x3_s2"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "inception_4a/1x1"
+  type: "Convolution"
+  bottom: "pool3/3x3_s2"
+  top: "inception_4a/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 192
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4a/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_4a/1x1"
+  top: "inception_4a/1x1"
+}
+layer {
+  name: "inception_4a/3x3_reduce"
+  type: "Convolution"
+  bottom: "pool3/3x3_s2"
+  top: "inception_4a/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 96
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4a/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_4a/3x3_reduce"
+  top: "inception_4a/3x3_reduce"
+}
+layer {
+  name: "inception_4a/3x3"
+  type: "Convolution"
+  bottom: "inception_4a/3x3_reduce"
+  top: "inception_4a/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 208
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4a/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_4a/3x3"
+  top: "inception_4a/3x3"
+}
+layer {
+  name: "inception_4a/5x5_reduce"
+  type: "Convolution"
+  bottom: "pool3/3x3_s2"
+  top: "inception_4a/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 16
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4a/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_4a/5x5_reduce"
+  top: "inception_4a/5x5_reduce"
+}
+layer {
+  name: "inception_4a/5x5"
+  type: "Convolution"
+  bottom: "inception_4a/5x5_reduce"
+  top: "inception_4a/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 48
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4a/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_4a/5x5"
+  top: "inception_4a/5x5"
+}
+layer {
+  name: "inception_4a/pool"
+  type: "Pooling"
+  bottom: "pool3/3x3_s2"
+  top: "inception_4a/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_4a/pool_proj"
+  type: "Convolution"
+  bottom: "inception_4a/pool"
+  top: "inception_4a/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4a/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_4a/pool_proj"
+  top: "inception_4a/pool_proj"
+}
+layer {
+  name: "inception_4a/output"
+  type: "Concat"
+  bottom: "inception_4a/1x1"
+  bottom: "inception_4a/3x3"
+  bottom: "inception_4a/5x5"
+  bottom: "inception_4a/pool_proj"
+  top: "inception_4a/output"
+}
+#layer {
+#  name: "loss1/ave_pool"
+#  type: "Pooling"
+#  bottom: "inception_4a/output"
+#  top: "loss1/ave_pool"
+#  pooling_param {
+#    pool: AVE
+#    kernel_size: 5
+#    stride: 3
+#  }
+#}
+#layer {
+#  name: "loss1/conv"
+#  type: "Convolution"
+#  bottom: "loss1/ave_pool"
+#  top: "loss1/conv"
+#  param {
+#    lr_mult: 1
+#    decay_mult: 1
+#  }
+#  param {
+#    lr_mult: 2
+#    decay_mult: 0
+#  }
+#  convolution_param {
+#    num_output: 128
+#    kernel_size: 1
+#    weight_filler {
+#      type: "xavier"
+#    }
+#    bias_filler {
+#      type: "constant"
+#      value: 0.2
+#    }
+#  }
+#}
+#layer {
+#  name: "loss1/relu_conv"
+#  type: "ReLU"
+#  bottom: "loss1/conv"
+#  top: "loss1/conv"
+#}
+#layer {
+#  name: "loss1/fc"
+#  type: "InnerProduct"
+#  bottom: "loss1/conv"
+#  top: "loss1/fc"
+#  param {
+#    lr_mult: 1
+#    decay_mult: 1
+#  }
+#  param {
+#    lr_mult: 2
+#    decay_mult: 0
+#  }
+#  inner_product_param {
+#    num_output: 1024
+#    weight_filler {
+#      type: "xavier"
+#    }
+#    bias_filler {
+#      type: "constant"
+#      value: 0.2
+#    }
+#  }
+#}
+#layer {
+#  name: "loss1/relu_fc"
+#  type: "ReLU"
+#  bottom: "loss1/fc"
+#  top: "loss1/fc"
+#}
+#layer {
+#  name: "loss1/drop_fc"
+#  type: "Dropout"
+#  bottom: "loss1/fc"
+#  top: "loss1/fc"
+#  dropout_param {
+#    dropout_ratio: 0.7
+#  }
+#}
+#layer {
+#  name: "loss1/classifier"
+#  type: "InnerProduct"
+#  bottom: "loss1/fc"
+#  top: "loss1/classifier"
+#  param {
+#    lr_mult: 1
+#    decay_mult: 1
+#  }
+#  param {
+#    lr_mult: 2
+#    decay_mult: 0
+#  }
+#  inner_product_param {
+#    num_output: 1000
+#    weight_filler {
+#      type: "xavier"
+#    }
+#    bias_filler {
+#      type: "constant"
+#      value: 0
+#    }
+#  }
+#}
+#layer {
+#  name: "loss1/loss"
+#  type: "SoftmaxWithLoss"
+#  bottom: "loss1/classifier"
+#  bottom: "label"
+#  top: "loss1/loss1"
+#  loss_weight: 0.3
+#}
+layer {
+  name: "inception_4b/1x1"
+  type: "Convolution"
+  bottom: "inception_4a/output"
+  top: "inception_4b/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 160
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4b/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_4b/1x1"
+  top: "inception_4b/1x1"
+}
+layer {
+  name: "inception_4b/3x3_reduce"
+  type: "Convolution"
+  bottom: "inception_4a/output"
+  top: "inception_4b/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 112
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4b/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_4b/3x3_reduce"
+  top: "inception_4b/3x3_reduce"
+}
+layer {
+  name: "inception_4b/3x3"
+  type: "Convolution"
+  bottom: "inception_4b/3x3_reduce"
+  top: "inception_4b/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 224
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4b/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_4b/3x3"
+  top: "inception_4b/3x3"
+}
+layer {
+  name: "inception_4b/5x5_reduce"
+  type: "Convolution"
+  bottom: "inception_4a/output"
+  top: "inception_4b/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 24
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4b/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_4b/5x5_reduce"
+  top: "inception_4b/5x5_reduce"
+}
+layer {
+  name: "inception_4b/5x5"
+  type: "Convolution"
+  bottom: "inception_4b/5x5_reduce"
+  top: "inception_4b/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4b/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_4b/5x5"
+  top: "inception_4b/5x5"
+}
+layer {
+  name: "inception_4b/pool"
+  type: "Pooling"
+  bottom: "inception_4a/output"
+  top: "inception_4b/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_4b/pool_proj"
+  type: "Convolution"
+  bottom: "inception_4b/pool"
+  top: "inception_4b/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4b/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_4b/pool_proj"
+  top: "inception_4b/pool_proj"
+}
+layer {
+  name: "inception_4b/output"
+  type: "Concat"
+  bottom: "inception_4b/1x1"
+  bottom: "inception_4b/3x3"
+  bottom: "inception_4b/5x5"
+  bottom: "inception_4b/pool_proj"
+  top: "inception_4b/output"
+}
+layer {
+  name: "inception_4c/1x1"
+  type: "Convolution"
+  bottom: "inception_4b/output"
+  top: "inception_4c/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4c/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_4c/1x1"
+  top: "inception_4c/1x1"
+}
+layer {
+  name: "inception_4c/3x3_reduce"
+  type: "Convolution"
+  bottom: "inception_4b/output"
+  top: "inception_4c/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4c/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_4c/3x3_reduce"
+  top: "inception_4c/3x3_reduce"
+}
+layer {
+  name: "inception_4c/3x3"
+  type: "Convolution"
+  bottom: "inception_4c/3x3_reduce"
+  top: "inception_4c/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 256
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4c/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_4c/3x3"
+  top: "inception_4c/3x3"
+}
+layer {
+  name: "inception_4c/5x5_reduce"
+  type: "Convolution"
+  bottom: "inception_4b/output"
+  top: "inception_4c/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 24
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4c/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_4c/5x5_reduce"
+  top: "inception_4c/5x5_reduce"
+}
+layer {
+  name: "inception_4c/5x5"
+  type: "Convolution"
+  bottom: "inception_4c/5x5_reduce"
+  top: "inception_4c/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4c/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_4c/5x5"
+  top: "inception_4c/5x5"
+}
+layer {
+  name: "inception_4c/pool"
+  type: "Pooling"
+  bottom: "inception_4b/output"
+  top: "inception_4c/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_4c/pool_proj"
+  type: "Convolution"
+  bottom: "inception_4c/pool"
+  top: "inception_4c/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4c/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_4c/pool_proj"
+  top: "inception_4c/pool_proj"
+}
+layer {
+  name: "inception_4c/output"
+  type: "Concat"
+  bottom: "inception_4c/1x1"
+  bottom: "inception_4c/3x3"
+  bottom: "inception_4c/5x5"
+  bottom: "inception_4c/pool_proj"
+  top: "inception_4c/output"
+}
+layer {
+  name: "inception_4d/1x1"
+  type: "Convolution"
+  bottom: "inception_4c/output"
+  top: "inception_4d/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 112
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4d/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_4d/1x1"
+  top: "inception_4d/1x1"
+}
+layer {
+  name: "inception_4d/3x3_reduce"
+  type: "Convolution"
+  bottom: "inception_4c/output"
+  top: "inception_4d/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 144
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4d/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_4d/3x3_reduce"
+  top: "inception_4d/3x3_reduce"
+}
+layer {
+  name: "inception_4d/3x3"
+  type: "Convolution"
+  bottom: "inception_4d/3x3_reduce"
+  top: "inception_4d/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 288
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4d/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_4d/3x3"
+  top: "inception_4d/3x3"
+}
+layer {
+  name: "inception_4d/5x5_reduce"
+  type: "Convolution"
+  bottom: "inception_4c/output"
+  top: "inception_4d/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 32
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4d/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_4d/5x5_reduce"
+  top: "inception_4d/5x5_reduce"
+}
+layer {
+  name: "inception_4d/5x5"
+  type: "Convolution"
+  bottom: "inception_4d/5x5_reduce"
+  top: "inception_4d/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4d/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_4d/5x5"
+  top: "inception_4d/5x5"
+}
+layer {
+  name: "inception_4d/pool"
+  type: "Pooling"
+  bottom: "inception_4c/output"
+  top: "inception_4d/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_4d/pool_proj"
+  type: "Convolution"
+  bottom: "inception_4d/pool"
+  top: "inception_4d/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 64
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4d/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_4d/pool_proj"
+  top: "inception_4d/pool_proj"
+}
+layer {
+  name: "inception_4d/output"
+  type: "Concat"
+  bottom: "inception_4d/1x1"
+  bottom: "inception_4d/3x3"
+  bottom: "inception_4d/5x5"
+  bottom: "inception_4d/pool_proj"
+  top: "inception_4d/output"
+}
+#layer {
+#  name: "loss2/ave_pool"
+#  type: "Pooling"
+#  bottom: "inception_4d/output"
+#  top: "loss2/ave_pool"
+#  pooling_param {
+#    pool: AVE
+#    kernel_size: 5
+#    stride: 3
+#  }
+#}
+#layer {
+#  name: "loss2/conv"
+#  type: "Convolution"
+#  bottom: "loss2/ave_pool"
+#  top: "loss2/conv"
+#  param {
+#    lr_mult: 1
+#    decay_mult: 1
+#  }
+#  param {
+#    lr_mult: 2
+#    decay_mult: 0
+#  }
+#  convolution_param {
+#    num_output: 128
+#    kernel_size: 1
+#    weight_filler {
+#      type: "xavier"
+#    }
+#    bias_filler {
+#      type: "constant"
+#      value: 0.2
+#    }
+#  }
+#}
+#layer {
+#  name: "loss2/relu_conv"
+#  type: "ReLU"
+#  bottom: "loss2/conv"
+#  top: "loss2/conv"
+#}
+#layer {
+#  name: "loss2/fc"
+#  type: "InnerProduct"
+#  bottom: "loss2/conv"
+#  top: "loss2/fc"
+#  param {
+#    lr_mult: 1
+#    decay_mult: 1
+#  }
+#  param {
+#    lr_mult: 2
+#    decay_mult: 0
+#  }
+#  inner_product_param {
+#    num_output: 1024
+#    weight_filler {
+#      type: "xavier"
+#    }
+#    bias_filler {
+#      type: "constant"
+#      value: 0.2
+#    }
+#  }
+#}
+#layer {
+#  name: "loss2/relu_fc"
+#  type: "ReLU"
+#  bottom: "loss2/fc"
+#  top: "loss2/fc"
+#}
+#layer {
+#  name: "loss2/drop_fc"
+#  type: "Dropout"
+#  bottom: "loss2/fc"
+#  top: "loss2/fc"
+#  dropout_param {
+#    dropout_ratio: 0.7
+#  }
+#}
+#layer {
+#  name: "loss2/classifier"
+#  type: "InnerProduct"
+#  bottom: "loss2/fc"
+#  top: "loss2/classifier"
+#  param {
+#    lr_mult: 1
+#    decay_mult: 1
+#  }
+#  param {
+#    lr_mult: 2
+#    decay_mult: 0
+#  }
+#  inner_product_param {
+#    num_output: 1000
+#    weight_filler {
+#      type: "xavier"
+#    }
+#    bias_filler {
+#      type: "constant"
+#      value: 0
+#    }
+#  }
+#}
+#layer {
+#  name: "loss2/loss"
+#  type: "SoftmaxWithLoss"
+#  bottom: "loss2/classifier"
+#  bottom: "label"
+#  top: "loss2/loss1"
+#  loss_weight: 0.3
+#}
+layer {
+  name: "inception_4e/1x1"
+  type: "Convolution"
+  bottom: "inception_4d/output"
+  top: "inception_4e/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 256
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4e/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_4e/1x1"
+  top: "inception_4e/1x1"
+}
+layer {
+  name: "inception_4e/3x3_reduce"
+  type: "Convolution"
+  bottom: "inception_4d/output"
+  top: "inception_4e/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 160
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4e/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_4e/3x3_reduce"
+  top: "inception_4e/3x3_reduce"
+}
+layer {
+  name: "inception_4e/3x3"
+  type: "Convolution"
+  bottom: "inception_4e/3x3_reduce"
+  top: "inception_4e/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 320
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4e/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_4e/3x3"
+  top: "inception_4e/3x3"
+}
+layer {
+  name: "inception_4e/5x5_reduce"
+  type: "Convolution"
+  bottom: "inception_4d/output"
+  top: "inception_4e/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 32
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4e/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_4e/5x5_reduce"
+  top: "inception_4e/5x5_reduce"
+}
+layer {
+  name: "inception_4e/5x5"
+  type: "Convolution"
+  bottom: "inception_4e/5x5_reduce"
+  top: "inception_4e/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4e/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_4e/5x5"
+  top: "inception_4e/5x5"
+}
+layer {
+  name: "inception_4e/pool"
+  type: "Pooling"
+  bottom: "inception_4d/output"
+  top: "inception_4e/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_4e/pool_proj"
+  type: "Convolution"
+  bottom: "inception_4e/pool"
+  top: "inception_4e/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_4e/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_4e/pool_proj"
+  top: "inception_4e/pool_proj"
+}
+layer {
+  name: "inception_4e/output"
+  type: "Concat"
+  bottom: "inception_4e/1x1"
+  bottom: "inception_4e/3x3"
+  bottom: "inception_4e/5x5"
+  bottom: "inception_4e/pool_proj"
+  top: "inception_4e/output"
+}
+layer {
+  name: "pool4/3x3_s2"
+  type: "Pooling"
+  bottom: "inception_4e/output"
+  top: "pool4/3x3_s2"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "inception_5a/1x1"
+  type: "Convolution"
+  bottom: "pool4/3x3_s2"
+  top: "inception_5a/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 256
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5a/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_5a/1x1"
+  top: "inception_5a/1x1"
+}
+layer {
+  name: "inception_5a/3x3_reduce"
+  type: "Convolution"
+  bottom: "pool4/3x3_s2"
+  top: "inception_5a/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 160
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5a/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_5a/3x3_reduce"
+  top: "inception_5a/3x3_reduce"
+}
+layer {
+  name: "inception_5a/3x3"
+  type: "Convolution"
+  bottom: "inception_5a/3x3_reduce"
+  top: "inception_5a/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 320
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5a/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_5a/3x3"
+  top: "inception_5a/3x3"
+}
+layer {
+  name: "inception_5a/5x5_reduce"
+  type: "Convolution"
+  bottom: "pool4/3x3_s2"
+  top: "inception_5a/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 32
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5a/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_5a/5x5_reduce"
+  top: "inception_5a/5x5_reduce"
+}
+layer {
+  name: "inception_5a/5x5"
+  type: "Convolution"
+  bottom: "inception_5a/5x5_reduce"
+  top: "inception_5a/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5a/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_5a/5x5"
+  top: "inception_5a/5x5"
+}
+layer {
+  name: "inception_5a/pool"
+  type: "Pooling"
+  bottom: "pool4/3x3_s2"
+  top: "inception_5a/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_5a/pool_proj"
+  type: "Convolution"
+  bottom: "inception_5a/pool"
+  top: "inception_5a/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5a/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_5a/pool_proj"
+  top: "inception_5a/pool_proj"
+}
+layer {
+  name: "inception_5a/output"
+  type: "Concat"
+  bottom: "inception_5a/1x1"
+  bottom: "inception_5a/3x3"
+  bottom: "inception_5a/5x5"
+  bottom: "inception_5a/pool_proj"
+  top: "inception_5a/output"
+}
+layer {
+  name: "inception_5b/1x1"
+  type: "Convolution"
+  bottom: "inception_5a/output"
+  top: "inception_5b/1x1"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 384
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5b/relu_1x1"
+  type: "ReLU"
+  bottom: "inception_5b/1x1"
+  top: "inception_5b/1x1"
+}
+layer {
+  name: "inception_5b/3x3_reduce"
+  type: "Convolution"
+  bottom: "inception_5a/output"
+  top: "inception_5b/3x3_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 192
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5b/relu_3x3_reduce"
+  type: "ReLU"
+  bottom: "inception_5b/3x3_reduce"
+  top: "inception_5b/3x3_reduce"
+}
+layer {
+  name: "inception_5b/3x3"
+  type: "Convolution"
+  bottom: "inception_5b/3x3_reduce"
+  top: "inception_5b/3x3"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 384
+    pad: 1
+    kernel_size: 3
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5b/relu_3x3"
+  type: "ReLU"
+  bottom: "inception_5b/3x3"
+  top: "inception_5b/3x3"
+}
+layer {
+  name: "inception_5b/5x5_reduce"
+  type: "Convolution"
+  bottom: "inception_5a/output"
+  top: "inception_5b/5x5_reduce"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 48
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5b/relu_5x5_reduce"
+  type: "ReLU"
+  bottom: "inception_5b/5x5_reduce"
+  top: "inception_5b/5x5_reduce"
+}
+layer {
+  name: "inception_5b/5x5"
+  type: "Convolution"
+  bottom: "inception_5b/5x5_reduce"
+  top: "inception_5b/5x5"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    pad: 2
+    kernel_size: 5
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5b/relu_5x5"
+  type: "ReLU"
+  bottom: "inception_5b/5x5"
+  top: "inception_5b/5x5"
+}
+layer {
+  name: "inception_5b/pool"
+  type: "Pooling"
+  bottom: "inception_5a/output"
+  top: "inception_5b/pool"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 1
+    pad: 1
+  }
+}
+layer {
+  name: "inception_5b/pool_proj"
+  type: "Convolution"
+  bottom: "inception_5b/pool"
+  top: "inception_5b/pool_proj"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  convolution_param {
+    num_output: 128
+    kernel_size: 1
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0.2
+    }
+  }
+}
+layer {
+  name: "inception_5b/relu_pool_proj"
+  type: "ReLU"
+  bottom: "inception_5b/pool_proj"
+  top: "inception_5b/pool_proj"
+}
+layer {
+  name: "inception_5b/output"
+  type: "Concat"
+  bottom: "inception_5b/1x1"
+  bottom: "inception_5b/3x3"
+  bottom: "inception_5b/5x5"
+  bottom: "inception_5b/pool_proj"
+  top: "inception_5b/output"
+}
+layer {
+  name: "pool5/7x7_s1"
+  type: "Pooling"
+  bottom: "inception_5b/output"
+  top: "pool5/7x7_s1"
+  pooling_param {
+    pool: AVE
+    kernel_size: 7
+    stride: 1
+  }
+}
+layer {
+  name: "pool5/drop_7x7_s1"
+  type: "Dropout"
+  bottom: "pool5/7x7_s1"
+  top: "pool5/7x7_s1"
+  dropout_param {
+    dropout_ratio: 0.4
+  }
+}
+layer {
+  name: "loss3/classifier"
+  type: "InnerProduct"
+  bottom: "pool5/7x7_s1"
+  top: "loss3/classifier"
+  param {
+    lr_mult: 1
+    decay_mult: 1
+  }
+  param {
+    lr_mult: 2
+    decay_mult: 0
+  }
+  inner_product_param {
+    num_output: 1000
+    weight_filler {
+      type: "xavier"
+    }
+    bias_filler {
+      type: "constant"
+      value: 0
+    }
+  }
+}
+layer {
+  name: "loss3/loss3"
+  type: "SoftmaxWithLoss"
+  bottom: "loss3/classifier"
+  bottom: "label"
+  top: "loss3/loss3"
+  loss_weight: 1
+}
diff --git a/benchmark/caffe/image/run.sh b/benchmark/caffe/image/run.sh
new file mode 100755
index 0000000000000000000000000000000000000000..aa9ac20ca5cc1d48a07ce39f7d6c6d70ad4121ab
--- /dev/null
+++ b/benchmark/caffe/image/run.sh
@@ -0,0 +1,30 @@
+set -e
+
+function test() {
+  cfg=$1
+  batch=$2
+  prefix=$3
+  sed -i "/input: \"data\"/{n;s/^input_dim.*/input_dim: $batch/g}" $cfg 
+  sed -i "/input: \"label\"/{n;s/^input_dim.*/input_dim: $batch/g}" $cfg
+  caffe time --model=$cfg --iterations=50 --gpu 0 > logs/$prefix-1gpu-batch${batch}.log 2>&1
+}
+
+if [ ! -d "logs" ]; then
+  mkdir logs
+fi
+
+# alexnet
+test alexnet.prototxt 64 alexnet 
+test alexnet.prototxt 128 alexnet 
+test alexnet.prototxt 256 alexnet 
+test alexnet.prototxt 512 alexnet 
+
+# googlenet
+test googlenet.prototxt 64 googlenet 
+test googlenet.prototxt 128 googlenet 
+
+# small net 
+test smallnet_mnist_cifar.prototxt 64 smallnet 
+test smallnet_mnist_cifar.prototxt 128 smallnet 
+test smallnet_mnist_cifar.prototxt 256 smallnet 
+test smallnet_mnist_cifar.prototxt 512 smallnet 
diff --git a/benchmark/caffe/image/run_multi.sh b/benchmark/caffe/image/run_multi.sh
new file mode 100755
index 0000000000000000000000000000000000000000..9a0a71bc185a421842265ea6d2310429adb86913
--- /dev/null
+++ b/benchmark/caffe/image/run_multi.sh
@@ -0,0 +1,24 @@
+#!/bin/bash
+set -e
+
+function test() {
+  cfg=$1
+  batch=$2
+  prefix=$3
+  batch_per_gpu=`expr ${batch} / 4`
+  sed -i "/input: \"data\"/{n;s/^input_dim.*/input_dim: ${batch_per_gpu}/g}" $cfg 
+  sed -i "/input: \"label\"/{n;s/^input_dim.*/input_dim: ${batch_per_gpu}/g}" $cfg 
+  sed -i "1c\net : \"${cfg}\"" solver.prototxt
+  caffe train --solver=solver.prototxt -gpu 0,1,2,3 > logs/${prefix}-4gpu-batch${batch}.log 2>&1
+}
+
+if [ ! -d "logs" ]; then
+  mkdir logs
+fi
+
+# alexnet
+test alexnet.prototxt 512 alexnet 
+test alexnet.prototxt 1024 alexnet 
+
+# googlnet 
+test googlenet.prototxt 512 googlenet 
diff --git a/benchmark/caffe/image/smallnet_mnist_cifar.prototxt b/benchmark/caffe/image/smallnet_mnist_cifar.prototxt
new file mode 100644
index 0000000000000000000000000000000000000000..3cb0e32bbfb9f785ece6d428356987e5503dd25d
--- /dev/null
+++ b/benchmark/caffe/image/smallnet_mnist_cifar.prototxt
@@ -0,0 +1,198 @@
+name: "mnist/cifar"
+input: "data"
+input_dim: 128 
+input_dim: 3
+input_dim: 32 
+input_dim: 32 
+input: "label"
+input_dim: 128 
+input_dim: 1
+input_dim: 1
+input_dim: 1 
+layer {
+  name: "conv1"
+  type: "Convolution"
+  bottom: "data"
+  top: "conv1"
+  param {
+    lr_mult: 1
+  }
+  param {
+    lr_mult: 2
+  }
+  convolution_param {
+    num_output: 32
+    pad: 2
+    kernel_size: 5
+    stride: 1
+    weight_filler {
+      type: "gaussian"
+      std: 0.0001
+    }
+    bias_filler {
+      type: "constant"
+    }
+  }
+}
+layer {
+  name: "pool1"
+  type: "Pooling"
+  bottom: "conv1"
+  top: "pool1"
+  pooling_param {
+    pool: MAX
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "relu1"
+  type: "ReLU"
+  bottom: "pool1"
+  top: "pool1"
+}
+layer {
+  name: "conv2"
+  type: "Convolution"
+  bottom: "pool1"
+  top: "conv2"
+  param {
+    lr_mult: 1
+  }
+  param {
+    lr_mult: 2
+  }
+  convolution_param {
+    num_output: 32
+    pad: 2
+    kernel_size: 5
+    stride: 1
+    weight_filler {
+      type: "gaussian"
+      std: 0.01
+    }
+    bias_filler {
+      type: "constant"
+    }
+  }
+}
+layer {
+  name: "relu2"
+  type: "ReLU"
+  bottom: "conv2"
+  top: "conv2"
+}
+layer {
+  name: "pool2"
+  type: "Pooling"
+  bottom: "conv2"
+  top: "pool2"
+  pooling_param {
+    pool: AVE
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "conv3"
+  type: "Convolution"
+  bottom: "pool2"
+  top: "conv3"
+  param {
+    lr_mult: 1
+  }
+  param {
+    lr_mult: 2
+  }
+  convolution_param {
+    num_output: 64
+    pad: 2
+    kernel_size: 5
+    stride: 1
+    weight_filler {
+      type: "gaussian"
+      std: 0.01
+    }
+    bias_filler {
+      type: "constant"
+    }
+  }
+}
+layer {
+  name: "relu3"
+  type: "ReLU"
+  bottom: "conv3"
+  top: "conv3"
+}
+layer {
+  name: "pool3"
+  type: "Pooling"
+  bottom: "conv3"
+  top: "pool3"
+  pooling_param {
+    pool: AVE
+    kernel_size: 3
+    stride: 2
+  }
+}
+layer {
+  name: "ip1"
+  type: "InnerProduct"
+  bottom: "pool3"
+  top: "ip1"
+  param {
+    lr_mult: 1
+  }
+  param {
+    lr_mult: 2
+  }
+  inner_product_param {
+    num_output: 64
+    weight_filler {
+      type: "gaussian"
+      std: 0.1
+    }
+    bias_filler {
+      type: "constant"
+    }
+  }
+}
+layer {
+  name: "ip2"
+  type: "InnerProduct"
+  bottom: "ip1"
+  top: "ip2"
+  param {
+    lr_mult: 1
+  }
+  param {
+    lr_mult: 2
+  }
+  inner_product_param {
+    num_output: 10
+    weight_filler {
+      type: "gaussian"
+      std: 0.1
+    }
+    bias_filler {
+      type: "constant"
+    }
+  }
+}
+layer {
+  name: "accuracy"
+  type: "Accuracy"
+  bottom: "ip2"
+  bottom: "label"
+  top: "accuracy"
+  include {
+    phase: TEST
+  }
+}
+layer {
+  name: "loss"
+  type: "SoftmaxWithLoss"
+  bottom: "ip2"
+  bottom: "label"
+  top: "loss"
+}
diff --git a/benchmark/caffe/image/solver.prototxt b/benchmark/caffe/image/solver.prototxt
new file mode 100644
index 0000000000000000000000000000000000000000..61c10284e6027b4cc0b3d4c8fcf949e0a5a22a85
--- /dev/null
+++ b/benchmark/caffe/image/solver.prototxt
@@ -0,0 +1,10 @@
+net: "alexnet.prototxt"
+base_lr: 0.01
+lr_policy: "fixed"
+display: 20
+max_iter: 200
+momentum: 0.9
+weight_decay: 0.0005
+snapshot: 10000
+snapshot_prefix: "models/caffe_alexnet_train"
+solver_mode: GPU
diff --git a/benchmark/figs/alexnet-4gpu.png b/benchmark/figs/alexnet-4gpu.png
new file mode 100644
index 0000000000000000000000000000000000000000..28b95a44508f0ee7ad270c9ccdf8659009406b03
Binary files /dev/null and b/benchmark/figs/alexnet-4gpu.png differ
diff --git a/benchmark/figs/googlenet-4gpu.png b/benchmark/figs/googlenet-4gpu.png
new file mode 100644
index 0000000000000000000000000000000000000000..9b5331f05a3e54cacf949f10b6603bf627a6d106
Binary files /dev/null and b/benchmark/figs/googlenet-4gpu.png differ
diff --git a/benchmark/figs/rnn_lstm_4gpus.png b/benchmark/figs/rnn_lstm_4gpus.png
new file mode 100644
index 0000000000000000000000000000000000000000..973ce2fa5f65e9681c972d4f5bd5776b5c4aa264
Binary files /dev/null and b/benchmark/figs/rnn_lstm_4gpus.png differ
diff --git a/benchmark/figs/rnn_lstm_cls.png b/benchmark/figs/rnn_lstm_cls.png
new file mode 100644
index 0000000000000000000000000000000000000000..26d05cac11aa7ae8cdfbcd8c4401f6547a9404f6
Binary files /dev/null and b/benchmark/figs/rnn_lstm_cls.png differ
diff --git a/benchmark/paddle/image/alexnet.py b/benchmark/paddle/image/alexnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..3358d43a4b08c6a9b89d59e1a8be53ee1f12bbe0
--- /dev/null
+++ b/benchmark/paddle/image/alexnet.py
@@ -0,0 +1,64 @@
+#!/usr/bin/env python
+
+from paddle.trainer_config_helpers import *
+
+height = 227
+width = 227
+num_class = 1000
+batch_size = get_config_arg('batch_size', int, 128)
+
+args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
+define_py_data_sources2(
+    "train.list", None, module="provider", obj="process", args=args)
+
+settings(
+    batch_size=batch_size,
+    learning_rate=0.01 / batch_size,
+    learning_method=MomentumOptimizer(0.9),
+    regularization=L2Regularization(0.0005 * batch_size))
+
+# conv1
+net = data_layer('data', size=height * width * 3)
+net = img_conv_layer(
+    input=net,
+    filter_size=11,
+    num_channels=3,
+    num_filters=96,
+    stride=4,
+    padding=1)
+net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
+net = img_pool_layer(input=net, pool_size=3, stride=2)
+
+# conv2
+net = img_conv_layer(
+    input=net, filter_size=5, num_filters=256, stride=1, padding=2, groups=1)
+net = img_cmrnorm_layer(input=net, size=5, scale=0.0001, power=0.75)
+net = img_pool_layer(input=net, pool_size=3, stride=2)
+
+# conv3
+net = img_conv_layer(
+    input=net, filter_size=3, num_filters=384, stride=1, padding=1)
+# conv4
+net = img_conv_layer(
+    input=net, filter_size=3, num_filters=384, stride=1, padding=1, groups=1)
+
+# conv5
+net = img_conv_layer(
+    input=net, filter_size=3, num_filters=256, stride=1, padding=1, groups=1)
+net = img_pool_layer(input=net, pool_size=3, stride=2)
+
+net = fc_layer(
+    input=net,
+    size=4096,
+    act=ReluActivation(),
+    layer_attr=ExtraAttr(drop_rate=0.5))
+net = fc_layer(
+    input=net,
+    size=4096,
+    act=ReluActivation(),
+    layer_attr=ExtraAttr(drop_rate=0.5))
+net = fc_layer(input=net, size=1000, act=SoftmaxActivation())
+
+lab = data_layer('label', num_class)
+loss = cross_entropy(input=net, label=lab)
+outputs(loss)
diff --git a/benchmark/paddle/image/googlenet.py b/benchmark/paddle/image/googlenet.py
new file mode 100644
index 0000000000000000000000000000000000000000..bc893bab98c4d2e07c62fbd012d51a0939db4766
--- /dev/null
+++ b/benchmark/paddle/image/googlenet.py
@@ -0,0 +1,226 @@
+#!/usr/bin/env python
+from paddle.trainer_config_helpers import *
+
+height = 224
+width = 224
+num_class = 1000
+batch_size = get_config_arg('batch_size', int, 128)
+
+args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
+define_py_data_sources2(
+    "train.list", None, module="provider", obj="process", args=args)
+
+settings(
+    batch_size=batch_size,
+    learning_rate=0.01 / batch_size,
+    learning_method=MomentumOptimizer(0.9),
+    regularization=L2Regularization(0.0005 * batch_size))
+
+def inception2(name, input, channels, \
+    filter1,
+    filter3R, filter3,
+    filter5R, filter5,
+    proj):
+
+    conv1 = name + '_1'
+    conv3r = name + '_3r'
+    conv3 = name + '_3'
+    conv5r = name + '_5r'
+    conv5 = name + '_5'
+    maxpool = name + '_max'
+    convproj = name + '_proj'
+
+    cov1 = img_conv_layer(
+        name=conv1,
+        input=input,
+        filter_size=1,
+        num_channels=channels,
+        num_filters=filter1,
+        stride=1,
+        padding=0)
+
+    cov3r = img_conv_layer(
+        name=conv3r,
+        input=input,
+        filter_size=1,
+        num_channels=channels,
+        num_filters=filter3R,
+        stride=1,
+        padding=0)
+    cov3 = img_conv_layer(
+        name=conv3,
+        input=cov3r,
+        filter_size=3,
+        num_filters=filter3,
+        stride=1,
+        padding=1)
+
+    cov5r = img_conv_layer(
+        name=conv5r,
+        input=input,
+        filter_size=1,
+        num_channels=channels,
+        num_filters=filter5R,
+        stride=1,
+        padding=0)
+    cov5 = img_conv_layer(
+        name=conv5,
+        input=cov5r,
+        filter_size=5,
+        num_filters=filter5,
+        stride=1,
+        padding=2)
+
+    pool1 = img_pool_layer(
+        name=maxpool,
+        input=input,
+        pool_size=3,
+        num_channels=channels,
+        stride=1,
+        padding=1)
+    covprj = img_conv_layer(
+        name=convproj,
+        input=pool1,
+        filter_size=1,
+        num_filters=proj,
+        stride=1,
+        padding=0)
+
+    cat = concat_layer(name=name, input=[cov1, cov3, cov5, covprj])
+    return cat
+
+def inception(name, input, channels, \
+    filter1,
+    filter3R, filter3,
+    filter5R, filter5,
+    proj):
+
+    cov1 = conv_projection(
+        input=input,
+        filter_size=1,
+        num_channels=channels,
+        num_filters=filter1,
+        stride=1,
+        padding=0)
+
+    cov3r = img_conv_layer(
+        name=name + '_3r',
+        input=input,
+        filter_size=1,
+        num_channels=channels,
+        num_filters=filter3R,
+        stride=1,
+        padding=0)
+    cov3 = conv_projection(
+        input=cov3r, filter_size=3, num_filters=filter3, stride=1, padding=1)
+
+    cov5r = img_conv_layer(
+        name=name + '_5r',
+        input=input,
+        filter_size=1,
+        num_channels=channels,
+        num_filters=filter5R,
+        stride=1,
+        padding=0)
+    cov5 = conv_projection(
+        input=cov5r, filter_size=5, num_filters=filter5, stride=1, padding=2)
+
+    pool1 = img_pool_layer(
+        name=name + '_max',
+        input=input,
+        pool_size=3,
+        num_channels=channels,
+        stride=1,
+        padding=1)
+    covprj = conv_projection(
+        input=pool1, filter_size=1, num_filters=proj, stride=1, padding=0)
+
+    cat = concat_layer(
+        name=name,
+        input=[cov1, cov3, cov5, covprj],
+        bias_attr=True,
+        act=ReluActivation())
+    return cat
+
+
+lab = data_layer(name="label", size=1000)
+data = data_layer(name="input", size=3 * height * width)
+
+# stage 1
+conv1 = img_conv_layer(
+    name="conv1",
+    input=data,
+    filter_size=7,
+    num_channels=3,
+    num_filters=64,
+    stride=2,
+    padding=3)
+pool1 = img_pool_layer(
+    name="pool1", input=conv1, pool_size=3, num_channels=64, stride=2)
+
+# stage 2
+conv2_1 = img_conv_layer(
+    name="conv2_1",
+    input=pool1,
+    filter_size=1,
+    num_filters=64,
+    stride=1,
+    padding=0)
+conv2_2 = img_conv_layer(
+    name="conv2_2",
+    input=conv2_1,
+    filter_size=3,
+    num_filters=192,
+    stride=1,
+    padding=1)
+pool2 = img_pool_layer(
+    name="pool2", input=conv2_2, pool_size=3, num_channels=192, stride=2)
+
+# stage 3
+ince3a = inception("ince3a", pool2, 192, 64, 96, 128, 16, 32, 32)
+ince3b = inception("ince3b", ince3a, 256, 128, 128, 192, 32, 96, 64)
+pool3 = img_pool_layer(
+    name="pool3", input=ince3b, num_channels=480, pool_size=3, stride=2)
+
+# stage 4
+ince4a = inception("ince4a", pool3, 480, 192, 96, 208, 16, 48, 64)
+ince4b = inception("ince4b", ince4a, 512, 160, 112, 224, 24, 64, 64)
+ince4c = inception("ince4c", ince4b, 512, 128, 128, 256, 24, 64, 64)
+ince4d = inception("ince4d", ince4c, 512, 112, 144, 288, 32, 64, 64)
+ince4e = inception("ince4e", ince4d, 528, 256, 160, 320, 32, 128, 128)
+pool4 = img_pool_layer(
+    name="pool4", input=ince4e, num_channels=832, pool_size=3, stride=2)
+
+# stage 5
+ince5a = inception("ince5a", pool4, 832, 256, 160, 320, 32, 128, 128)
+ince5b = inception("ince5b", ince5a, 832, 384, 192, 384, 48, 128, 128)
+pool5 = img_pool_layer(
+    name="pool5",
+    input=ince5b,
+    num_channels=1024,
+    pool_size=7,
+    stride=7,
+    pool_type=AvgPooling())
+
+# We remove loss1 and loss2 for all system when testing benchmark
+# output 1
+# pool_o1 = img_pool_layer(name="pool_o1", input=ince4a, num_channels=512, pool_size=5, stride=3, pool_type=AvgPooling())
+# conv_o1 = img_conv_layer(name="conv_o1", input=pool_o1, filter_size=1, num_filters=128, stride=1, padding=0)
+# fc_o1 = fc_layer(name="fc_o1", input=conv_o1, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
+# out1 = fc_layer(name="output1", input=fc_o1,  size=1000, act=SoftmaxActivation())
+# loss1 = cross_entropy(name='loss1', input=out1, label=lab, coeff=0.3) 
+
+# output 2
+#pool_o2 = img_pool_layer(name="pool_o2", input=ince4d, num_channels=528, pool_size=5, stride=3, pool_type=AvgPooling())
+#conv_o2 = img_conv_layer(name="conv_o2", input=pool_o2, filter_size=1, num_filters=128, stride=1, padding=0)
+#fc_o2 = fc_layer(name="fc_o2", input=conv_o2, size=1024, layer_attr=ExtraAttr(drop_rate=0.7), act=ReluActivation())
+#out2 = fc_layer(name="output2", input=fc_o2, size=1000, act=SoftmaxActivation())
+#loss2 = cross_entropy(name='loss2', input=out2, label=lab, coeff=0.3) 
+
+# output 3
+dropout = dropout_layer(name="dropout", input=pool5, dropout_rate=0.4)
+out3 = fc_layer(
+    name="output3", input=dropout, size=1000, act=SoftmaxActivation())
+loss3 = cross_entropy(name='loss3', input=out3, label=lab)
+
+outputs(loss3)
diff --git a/benchmark/paddle/image/provider.py b/benchmark/paddle/image/provider.py
new file mode 100644
index 0000000000000000000000000000000000000000..1ac47212b5a75667e8e9d4465b33f575516e2836
--- /dev/null
+++ b/benchmark/paddle/image/provider.py
@@ -0,0 +1,26 @@
+import io, os
+import random
+import numpy as np
+from paddle.trainer.PyDataProvider2 import *
+
+
+def initHook(settings, height, width, color, num_class, **kwargs):
+    settings.height = height
+    settings.width = width
+    settings.color = color
+    settings.num_class = num_class
+    if settings.color:
+        settings.data_size = settings.height * settings.width * 3
+    else:
+        settings.data_size = settings.height * settings.width
+
+    settings.slots = [dense_vector(settings.data_size), integer_value(1)]
+
+
+@provider(
+    init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM)
+def process(settings, file_list):
+    for i in xrange(1024):
+        img = np.random.rand(1, settings.data_size).reshape(-1, 1).flatten()
+        lab = random.randint(0, settings.num_class)
+        yield img.astype('float32'), int(lab)
diff --git a/benchmark/paddle/image/run.sh b/benchmark/paddle/image/run.sh
new file mode 100755
index 0000000000000000000000000000000000000000..717ed487ba7657db6535efcb1128a355a0f15eaf
--- /dev/null
+++ b/benchmark/paddle/image/run.sh
@@ -0,0 +1,51 @@
+set -e
+
+function train() {
+  cfg=$1
+  thread=$2
+  bz=$3
+  args="batch_size=$3"
+  prefix=$4
+  paddle train --job=time \
+    --config=$cfg \
+    --use_gpu=True \
+    --trainer_count=$thread \
+    --log_period=10 \
+    --test_period=100 \
+    --config_args=$args \
+    > logs/$prefix-${thread}gpu-$bz.log 2>&1 
+}
+
+if [ ! -d "train.list" ]; then
+  echo " " > train.list
+fi
+if [ ! -d "logs" ]; then
+  mkdir logs
+fi
+
+#========single-gpu=========#
+# alexnet
+train alexnet.py 1 64 alexnet
+train alexnet.py 1 128 alexnet
+train alexnet.py 1 256 alexnet
+train alexnet.py 1 512 alexnet
+
+# googlenet
+train googlenet.py 1 64 googlenet
+train googlenet.py 1 128 googlenet
+train googlenet.py 1 256 googlenet
+
+# smallnet
+train smallnet_mnist_cifar.py 1 64 smallnet
+train smallnet_mnist_cifar.py 1 128 smallnet
+train smallnet_mnist_cifar.py 1 256 smallnet
+train smallnet_mnist_cifar.py 1 512 smallnet
+
+
+############################
+#========multi-gpus=========#
+train alexnet.py 4 512 alexnet
+train alexnet.py 4 1024 alexnet
+
+train googlenet.py 4 512 googlenet 
+train googlenet.py 4 1024 googlenet
diff --git a/benchmark/paddle/image/smallnet_mnist_cifar.py b/benchmark/paddle/image/smallnet_mnist_cifar.py
new file mode 100644
index 0000000000000000000000000000000000000000..58879c454f37991405d83bbb593bb5d1e977ff53
--- /dev/null
+++ b/benchmark/paddle/image/smallnet_mnist_cifar.py
@@ -0,0 +1,49 @@
+#!/usr/bin/env python
+
+from paddle.trainer_config_helpers import *
+
+height = 32
+width = 32
+num_class = 10
+
+batch_size = get_config_arg('batch_size', int, 128)
+
+args = {'height': height, 'width': width, 'color': True, 'num_class': num_class}
+define_py_data_sources2(
+    "train.list", None, module="provider", obj="process", args=args)
+
+settings(
+    batch_size=batch_size,
+    learning_rate=0.01 / batch_size,
+    learning_method=MomentumOptimizer(0.9),
+    regularization=L2Regularization(0.0005 * batch_size))
+
+# conv1
+net = data_layer('data', size=height * width * 3)
+net = img_conv_layer(
+    input=net,
+    filter_size=5,
+    num_channels=3,
+    num_filters=32,
+    stride=1,
+    padding=2)
+net = img_pool_layer(input=net, pool_size=3, stride=2, padding=1)
+
+# conv2
+net = img_conv_layer(
+    input=net, filter_size=5, num_filters=32, stride=1, padding=2)
+net = img_pool_layer(
+    input=net, pool_size=3, stride=2, padding=1, pool_type=AvgPooling())
+
+# conv3
+net = img_conv_layer(
+    input=net, filter_size=3, num_filters=64, stride=1, padding=1)
+net = img_pool_layer(
+    input=net, pool_size=3, stride=2, padding=1, pool_type=AvgPooling())
+
+net = fc_layer(input=net, size=64, act=ReluActivation())
+net = fc_layer(input=net, size=10, act=SoftmaxActivation())
+
+lab = data_layer('label', num_class)
+loss = classification_cost(input=net, label=lab)
+outputs(loss)
diff --git a/benchmark/paddle/rnn/imdb.py b/benchmark/paddle/rnn/imdb.py
new file mode 100755
index 0000000000000000000000000000000000000000..fc4ed4025f9ed2e0a32a1709ff8df4af53521196
--- /dev/null
+++ b/benchmark/paddle/rnn/imdb.py
@@ -0,0 +1,46 @@
+from __future__ import print_function
+import six.moves.cPickle as pickle
+import gzip
+import os
+import numpy
+
+
+def get_dataset_file(dataset, default_dataset, origin):
+    data_dir, data_file = os.path.split(dataset)
+    if (not os.path.isfile(dataset)) and data_file == default_dataset:
+        from six.moves import urllib
+        print('Downloading data from %s' % origin)
+        urllib.request.urlretrieve(origin, dataset)
+
+    return dataset
+
+
+def create_data(path="imdb.pkl"):
+
+    if (not os.path.isfile('imdb.train.pkl')):
+        path = get_dataset_file(
+            path, "imdb.pkl",
+            "http://www.iro.umontreal.ca/~lisa/deep/data/imdb.pkl")
+
+        if path.endswith(".gz"):
+            f = gzip.open(path, 'rb')
+        else:
+            f = open(path, 'rb')
+
+        train_set = pickle.load(f)
+        test_set = pickle.load(f)
+        f.close()
+
+        pickle.dump(train_set, open('imdb.train.pkl', 'wb'))
+        pickle.dump(test_set, open('imdb.test.pkl', 'wb'))
+
+    if (not os.path.isfile('train.list')):
+        file('train.list', 'w').write('imdb.train.pkl\n')
+
+
+def main():
+    create_data('imdb.pkl')
+
+
+if __name__ == "__main__":
+    main()
diff --git a/benchmark/paddle/rnn/provider.py b/benchmark/paddle/rnn/provider.py
new file mode 100644
index 0000000000000000000000000000000000000000..928ca75daf84ccebb775364b0be0d8b3d5eebff9
--- /dev/null
+++ b/benchmark/paddle/rnn/provider.py
@@ -0,0 +1,72 @@
+import io, os
+import random
+import numpy as np
+import six.moves.cPickle as pickle
+from paddle.trainer.PyDataProvider2 import *
+
+
+def remove_unk(x, n_words):
+    return [[1 if w >= n_words else w for w in sen] for sen in x]
+
+
+# ==============================================================
+#  tensorflow uses fixed length, but PaddlePaddle can process
+#  variable-length. Padding is used in benchmark in order to
+#  compare with other platform. 
+# ==============================================================
+def pad_sequences(sequences,
+                  maxlen=None,
+                  dtype='int32',
+                  padding='post',
+                  truncating='post',
+                  value=0.):
+    lengths = [len(s) for s in sequences]
+
+    nb_samples = len(sequences)
+    if maxlen is None:
+        maxlen = np.max(lengths)
+
+    x = (np.ones((nb_samples, maxlen)) * value).astype(dtype)
+    for idx, s in enumerate(sequences):
+        if len(s) == 0:
+            continue  # empty list was found
+        if truncating == 'pre':
+            trunc = s[-maxlen:]
+        elif truncating == 'post':
+            trunc = s[:maxlen]
+        else:
+            raise ValueError("Truncating type '%s' not understood" % padding)
+
+        if padding == 'post':
+            x[idx, :len(trunc)] = trunc
+        elif padding == 'pre':
+            x[idx, -len(trunc):] = trunc
+        else:
+            raise ValueError("Padding type '%s' not understood" % padding)
+    return x
+
+
+def initHook(settings, vocab_size, pad_seq, maxlen, **kwargs):
+    settings.vocab_size = vocab_size
+    settings.pad_seq = pad_seq
+    settings.maxlen = maxlen
+    settings.input_types = [
+        integer_value_sequence(vocab_size), integer_value(2)
+    ]
+
+
+@provider(
+    init_hook=initHook, min_pool_size=-1, cache=CacheType.CACHE_PASS_IN_MEM)
+def process(settings, file):
+    f = open(file, 'rb')
+    train_set = pickle.load(f)
+    f.close()
+    x, y = train_set
+
+    # remove unk, namely remove the words out of dictionary
+    x = remove_unk(x, settings.vocab_size)
+    if settings.pad_seq:
+        x = pad_sequences(x, maxlen=settings.maxlen, value=0.)
+
+    for i in range(len(y)):
+        yield map(int, x[i]), int(y[i])
diff --git a/benchmark/paddle/rnn/rnn.py b/benchmark/paddle/rnn/rnn.py
new file mode 100755
index 0000000000000000000000000000000000000000..83eb3e565473f7e7e91cddeaa3cd2aafb7e3df2c
--- /dev/null
+++ b/benchmark/paddle/rnn/rnn.py
@@ -0,0 +1,38 @@
+#!/usr/bin/env python
+
+from paddle.trainer_config_helpers import *
+import imdb
+
+num_class = 2
+vocab_size = 30000
+fixedlen = 100
+batch_size = get_config_arg('batch_size', int, 128)
+lstm_num = get_config_arg('lstm_num', int, 1)
+hidden_size = get_config_arg('hidden_size', int, 128)
+# whether to pad sequence into fixed length
+pad_seq = get_config_arg('pad_seq', bool, True)
+imdb.create_data('imdb.pkl')
+
+args = {'vocab_size': vocab_size, 'pad_seq': pad_seq, 'maxlen': fixedlen}
+define_py_data_sources2(
+    "train.list", None, module="provider", obj="process", args=args)
+
+settings(
+    batch_size=batch_size,
+    learning_rate=2e-3,
+    learning_method=AdamOptimizer(),
+    regularization=L2Regularization(8e-4),
+    gradient_clipping_threshold=25)
+
+net = data_layer('data', size=vocab_size)
+net = embedding_layer(input=net, size=128)
+
+for i in xrange(lstm_num):
+    net = simple_lstm(input=net, size=hidden_size)
+
+net = last_seq(input=net)
+net = fc_layer(input=net, size=2, act=SoftmaxActivation())
+
+lab = data_layer('label', num_class)
+loss = classification_cost(input=net, label=lab)
+outputs(loss)
diff --git a/benchmark/paddle/rnn/run.sh b/benchmark/paddle/rnn/run.sh
new file mode 100755
index 0000000000000000000000000000000000000000..e9dfeb2e525979f47e4ef48f7610dc1007900f2c
--- /dev/null
+++ b/benchmark/paddle/rnn/run.sh
@@ -0,0 +1,50 @@
+set -e
+
+function train() {
+  cfg=$1
+  thread=$2
+  args="lstm_num=${3},seq_pad=${4},hidden_size=${5},batch_size=${6}"
+  paddle train --job=time \
+    --config=$cfg \
+    --use_gpu=1 \
+    --trainer_count=$thread \
+    --log_period=10 \
+    --test_period=100 \
+    --num_passes=1 \
+    --feed_data=1 \
+    --config_args=$args \
+    >logs/rnn-pad${4}-${thread}gpu-lstm${3}-batch${6}-hid${5}.log 2>&1
+}
+
+if [ ! -d "logs" ]; then
+  mkdir logs
+fi
+
+## padding, single gpu
+#-----config--gpu--lstm_num--padding--hidden_size--batch_size
+## lstm_num=2, batch_size=64
+train rnn.py 1 2 1 256 64 
+train rnn.py 1 2 1 512 64 
+train rnn.py 1 2 1 1280 64 
+
+## lstm_num=2, batch_size=128
+train rnn.py 1 2 1 256 128 
+train rnn.py 1 2 1 512 128 
+train rnn.py 1 2 1 1280 128 
+
+## lstm_num=4, batch_size=256
+train rnn.py 1 2 1 256 256 
+train rnn.py 1 2 1 512 256 
+train rnn.py 1 2 1 1280 256 
+
+
+#==================multi gpus=====================#
+# hidden_size=256, lstm_num=2, different batch size
+train rnn.py 4 2 1 256 128 
+train rnn.py 4 2 1 256 256 
+train rnn.py 4 2 1 256 512 
+
+# hidden_size=512, lstm_num=4, different batch size
+train rnn.py 4 2 1 512 128 
+train rnn.py 4 2 1 512 256 
+train rnn.py 4 2 1 512 512 
diff --git a/benchmark/tensorflow/image/alexnet.py b/benchmark/tensorflow/image/alexnet.py
new file mode 100644
index 0000000000000000000000000000000000000000..f6a39ef778e21bee7374718a1b1ddf43392825a8
--- /dev/null
+++ b/benchmark/tensorflow/image/alexnet.py
@@ -0,0 +1,298 @@
+from six.moves import xrange  # pylint: disable=redefined-builtin
+from datetime import datetime
+import math
+import time
+
+import tensorflow.python.platform
+import tensorflow as tf
+
+FLAGS = tf.app.flags.FLAGS
+
+tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
+tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_boolean('forward_only', False,
+                            """Only run the forward pass.""")
+tf.app.flags.DEFINE_boolean('forward_backward_only', False,
+                            """Only run the forward-forward pass.""")
+tf.app.flags.DEFINE_string('data_format', 'NCHW',
+                           """The data format for Convnet operations.
+                           Can be either NHWC or NCHW.
+                           """)
+tf.app.flags.DEFINE_boolean('log_device_placement', False,
+                            """Whether to log device placement.""")
+
+
+def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
+    with tf.name_scope(name) as scope:
+        kernel = tf.get_variable(
+            name + '_w', [kH, kW, nIn, nOut],
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.01, dtype=tf.float32),
+            dtype=tf.float32)
+
+        if wd is not None and wd > 0:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        if FLAGS.data_format == 'NCHW':
+            strides = [1, 1, dH, dW]
+        else:
+            strides = [1, dH, dW, 1]
+        conv = tf.nn.conv2d(
+            inpOp,
+            kernel,
+            strides,
+            padding=padType,
+            data_format=FLAGS.data_format)
+
+        biases = tf.get_variable(
+            name=name + '_b',
+            shape=[nOut],
+            initializer=tf.constant_initializer(
+                value=0.0, dtype=tf.float32),
+            dtype=tf.float32)
+
+        bias = tf.reshape(
+            tf.nn.bias_add(
+                conv, biases, data_format=FLAGS.data_format),
+            conv.get_shape())
+
+        conv1 = tf.nn.relu(bias, name=scope)
+        return conv1
+
+
+def _affine(name, inpOp, nIn, nOut, wd=0.0005, act=True, drop=None):
+    with tf.name_scope(name) as scope:
+        kernel = tf.get_variable(
+            name + '_w', [nIn, nOut],
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.01, dtype=tf.float32),
+            dtype=tf.float32)
+
+        if wd is not None and wd > 0:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        biases = tf.get_variable(
+            name + '_b', [nOut],
+            initializer=tf.constant_initializer(
+                value=0.0, dtype=tf.float32),
+            dtype=tf.float32,
+            trainable=True)
+
+        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
+                  tf.matmul(inpOp, kernel) + biases
+
+        output = tf.nn.dropout(affine1, drop) if drop else affine1
+
+        return output
+
+
+def _mpool(name, inpOp, kH, kW, dH, dW):
+    if FLAGS.data_format == 'NCHW':
+        ksize = [1, 1, kH, kW]
+        strides = [1, 1, dH, dW]
+    else:
+        ksize = [1, kH, kW, 1]
+        strides = [1, dH, dW, 1]
+    return tf.nn.max_pool(
+        inpOp,
+        ksize=ksize,
+        strides=strides,
+        padding='VALID',
+        data_format=FLAGS.data_format,
+        name=name)
+
+
+def _norm(name, l_input, lsize=4):
+    return tf.nn.lrn(l_input,
+                     lsize,
+                     bias=1.0,
+                     alpha=0.001 / 9.0,
+                     beta=0.75,
+                     name=name)
+
+
+def loss(logits, labels):
+    labels = tf.cast(labels, tf.int64)
+    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
+        logits, labels, name='cross_entropy_per_example')
+    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
+    tf.add_to_collection('losses', cross_entropy_mean)
+
+    # The total loss is defined as the cross entropy loss plus all of the weight
+    # decay terms (L2 loss).
+    return tf.add_n(tf.get_collection('losses'), name='total_loss')
+
+
+def get_incoming_shape(incoming):
+    """ Returns the incoming data shape """
+    if isinstance(incoming, tf.Tensor):
+        return incoming.get_shape().as_list()
+    elif type(incoming) in [np.array, list, tuple]:
+        return np.shape(incoming)
+    else:
+        raise Exception("Invalid incoming layer.")
+
+
+def inference(images):
+    conv1 = _conv('conv1', images, 3, 96, 11, 11, 4, 4, 'VALID')
+    pool1 = _mpool('pool1', conv1, 3, 3, 2, 2)
+    norm1 = _norm('norm1', pool1, lsize=5)
+    conv2 = _conv('conv2', norm1, 96, 256, 5, 5, 1, 1, 'SAME')
+    pool2 = _mpool('pool2', conv2, 3, 3, 2, 2)
+    norm2 = _norm('norm2', pool2, lsize=5)
+    conv3 = _conv('conv3', norm2, 256, 384, 3, 3, 1, 1, 'SAME')
+    conv4 = _conv('conv4', conv3, 384, 384, 3, 3, 1, 1, 'SAME')
+    conv5 = _conv('conv5', conv4, 384, 256, 3, 3, 1, 1, 'SAME')
+    pool5 = _mpool('pool5', conv5, 3, 3, 2, 2)
+    resh1 = tf.reshape(pool5, [-1, 256 * 6 * 6])
+    affn1 = _affine('fc6', resh1, 256 * 6 * 6, 4096, 0.5)
+    affn2 = _affine('fc7', affn1, 4096, 4096, 0.5)
+    affn3 = _affine('fc8', affn2, 4096, 1000, wd=None, act=False)  # last fc
+
+    return affn3
+
+
+def time_tensorflow_run(session, target, info_string):
+    num_steps_burn_in = 10
+    total_duration = 0.0
+    total_duration_squared = 0.0
+    if not isinstance(target, list):
+        target = [target]
+    target_op = tf.group(*target)
+    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
+        start_time = time.time()
+        _ = session.run(target_op)
+        duration = time.time() - start_time
+        if i > num_steps_burn_in:
+            if not i % 10:
+                print('%s: step %d, duration = %.3f' %
+                      (datetime.now(), i - num_steps_burn_in, duration))
+            total_duration += duration
+            total_duration_squared += duration * duration
+    mn = total_duration / FLAGS.num_batches
+    vr = total_duration_squared / FLAGS.num_batches - mn * mn
+    sd = math.sqrt(vr)
+    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
+          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))
+
+
+def _add_loss_summaries(total_loss):
+    """
+  Generates moving average for all losses and associated summaries for
+  visualizing the performance of the network.
+
+  Args:
+    total_loss: Total loss from loss().
+  Returns:
+    loss_averages_op: op for generating moving averages of losses.
+  """
+    # Compute the moving average of all individual losses and the total loss.
+    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
+    losses = tf.get_collection('losses')
+    loss_averages_op = loss_averages.apply(losses + [total_loss])
+
+    # Attach a scalar summary to all individual losses and the total loss; do the
+    # same for the averaged version of the losses.
+    for l in losses + [total_loss]:
+        # Name each loss as '(raw)' and name the moving average version of the loss
+        # as the original loss name.
+        tf.scalar_summary(l.op.name + ' (raw)', l)
+        tf.scalar_summary(l.op.name, loss_averages.average(l))
+
+    return loss_averages_op
+
+
+def run_benchmark():
+    with tf.Graph().as_default():
+        with tf.device('/gpu:0'):
+            # Generate some dummy images.
+            image_size = 224
+            # Note that our padding definition is slightly different the cuda-convnet.
+            # In order to force the model to start with the same activations sizes,
+            # we add 3 to the image_size and employ VALID padding above.
+            if FLAGS.data_format == 'NCHW':
+                image_shape = [
+                    FLAGS.batch_size, 3, image_size + 3, image_size + 3
+                ]
+            else:
+                image_shape = [
+                    FLAGS.batch_size, image_size + 3, image_size + 3, 3
+                ]
+            images = tf.get_variable(
+                'image',
+                image_shape,
+                initializer=tf.truncated_normal_initializer(
+                    stddev=0.1, dtype=tf.float32),
+                dtype=tf.float32,
+                trainable=False)
+
+            labels = tf.get_variable(
+                'label', [FLAGS.batch_size],
+                initializer=tf.constant_initializer(1),
+                dtype=tf.int32,
+                trainable=False)
+
+            # Build a Graph that computes the logits predictions from the
+            # inference model.
+            last_layer = inference(images)
+
+            objective = loss(last_layer, labels)
+            # Compute the gradient with respect to all the parameters.
+
+            # Compute gradients.
+            # opt = tf.train.GradientDescentOptimizer(0.001)
+            opt = tf.train.MomentumOptimizer(0.001, 0.9)
+            grads = opt.compute_gradients(objective)
+            global_step = tf.get_variable(
+                'global_step', [],
+                initializer=tf.constant_initializer(
+                    0.0, dtype=tf.float32),
+                trainable=False,
+                dtype=tf.float32)
+            apply_gradient_op = opt.apply_gradients(
+                grads, global_step=global_step)
+
+            # Track the moving averages of all trainable variables.
+            variable_averages = tf.train.ExponentialMovingAverage(0.9,
+                                                                  global_step)
+            variables_averages_op = variable_averages.apply(
+                tf.trainable_variables())
+
+            # Build an initialization operation.
+            init = tf.initialize_all_variables()
+
+            # Start running operations on the Graph.
+            sess = tf.Session(config=tf.ConfigProto(
+                allow_soft_placement=True,
+                log_device_placement=FLAGS.log_device_placement))
+            sess.run(init)
+
+            run_forward = True
+            run_forward_backward = True
+            if FLAGS.forward_only and FLAGS.forward_backward_only:
+                raise ValueError("Cannot specify --forward_only and "
+                                 "--forward_backward_only at the same time.")
+            if FLAGS.forward_only:
+                run_forward_backward = False
+            elif FLAGS.forward_backward_only:
+                run_forward = False
+
+            if run_forward:
+                time_tensorflow_run(sess, last_layer, "Forward")
+
+            if run_forward_backward:
+                with tf.control_dependencies(
+                    [apply_gradient_op, variables_averages_op]):
+                    train_op = tf.no_op(name='train')
+                time_tensorflow_run(sess, [train_op, objective],
+                                    "Forward-backward")
+
+
+def main(_):
+    run_benchmark()
+
+
+if __name__ == '__main__':
+    tf.app.run()
diff --git a/benchmark/tensorflow/image/alexnet_multi_gpu.py b/benchmark/tensorflow/image/alexnet_multi_gpu.py
new file mode 100644
index 0000000000000000000000000000000000000000..7b5ee78f4dd5429abd85d75c092a6e3a2a39f922
--- /dev/null
+++ b/benchmark/tensorflow/image/alexnet_multi_gpu.py
@@ -0,0 +1,365 @@
+from six.moves import xrange  # pylint: disable=redefined-builtin
+from datetime import datetime
+import math
+import re
+import time
+
+import tensorflow.python.platform
+import tensorflow as tf
+
+FLAGS = tf.app.flags.FLAGS
+
+tf.app.flags.DEFINE_integer('batch_size', 64, """Batch size.""")
+tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_string('data_format', 'NCHW',
+                           """The data format for Convnet operations.
+                           Can be either NHWC or NCHW.
+                           """)
+
+tf.app.flags.DEFINE_string('train_dir', '/train_model',
+                           """Directory where to write event logs """
+                           """and checkpoint.""")
+tf.app.flags.DEFINE_integer('num_gpus', 4, """How many GPUs to use.""")
+tf.app.flags.DEFINE_boolean('log_device_placement', False,
+                            """Whether to log device placement.""")
+
+NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
+NUM_EPOCHS_PER_DECAY = 50
+INITIAL_LEARNING_RATE = 0.1
+LEARNING_RATE_DECAY_FACTOR = 0.1
+TOWER_NAME = 'tower'
+
+
+def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.005):
+    with tf.name_scope(name) as scope:
+        kernel = tf.get_variable(
+            name + '_w', [kH, kW, nIn, nOut],
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.01, dtype=tf.float32),
+            dtype=tf.float32)
+
+        if wd is not None:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        if FLAGS.data_format == 'NCHW':
+            strides = [1, 1, dH, dW]
+        else:
+            strides = [1, dH, dW, 1]
+        conv = tf.nn.conv2d(
+            inpOp,
+            kernel,
+            strides,
+            padding=padType,
+            data_format=FLAGS.data_format)
+
+        biases = tf.get_variable(
+            name=name + '_b',
+            shape=[nOut],
+            initializer=tf.constant_initializer(
+                value=0.0, dtype=tf.float32),
+            dtype=tf.float32)
+
+        bias = tf.reshape(
+            tf.nn.bias_add(
+                conv, biases, data_format=FLAGS.data_format),
+            conv.get_shape())
+
+        conv1 = tf.nn.relu(bias, name=scope)
+        return conv1
+
+
+def _affine(name, inpOp, nIn, nOut, wd=0.005, act=True):
+    with tf.name_scope(name) as scope:
+        kernel = tf.get_variable(
+            name + '_w', [nIn, nOut],
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.01, dtype=tf.float32),
+            dtype=tf.float32)
+
+        if wd is not None:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        biases = tf.get_variable(
+            name + '_b', [nOut],
+            initializer=tf.constant_initializer(
+                value=0.0, dtype=tf.float32),
+            dtype=tf.float32,
+            trainable=True)
+
+        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
+                  tf.matmul(inpOp, kernel) + biases
+
+        return affine1
+
+
+def _mpool(name, inpOp, kH, kW, dH, dW):
+    if FLAGS.data_format == 'NCHW':
+        ksize = [1, 1, kH, kW]
+        strides = [1, 1, dH, dW]
+    else:
+        ksize = [1, kH, kW, 1]
+        strides = [1, dH, dW, 1]
+    return tf.nn.max_pool(
+        inpOp,
+        ksize=ksize,
+        strides=strides,
+        padding='VALID',
+        data_format=FLAGS.data_format,
+        name=name)
+
+
+def _norm(name, l_input, lsize=4):
+    return tf.nn.lrn(l_input,
+                     lsize,
+                     bias=1.0,
+                     alpha=0.001 / 9.0,
+                     beta=0.75,
+                     name=name)
+
+
+def loss(logits, labels):
+    labels = tf.cast(labels, tf.int64)
+    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
+        logits, labels, name='cross_entropy_per_example')
+    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
+    tf.add_to_collection('losses', cross_entropy_mean)
+
+    # The total loss is defined as the cross entropy loss plus all of the weight
+    # decay terms (L2 loss).
+    return tf.add_n(tf.get_collection('losses'), name='total_loss')
+
+
+def get_incoming_shape(incoming):
+    """ Returns the incoming data shape """
+    if isinstance(incoming, tf.Tensor):
+        return incoming.get_shape().as_list()
+    elif type(incoming) in [np.array, list, tuple]:
+        return np.shape(incoming)
+    else:
+        raise Exception("Invalid incoming layer.")
+
+
+def inference(images):
+    conv1 = _conv('conv1', images, 3, 96, 11, 11, 4, 4, 'VALID')
+    pool1 = _mpool('pool1', conv1, 3, 3, 2, 2)
+    norm1 = _norm('norm1', pool1, lsize=5)
+    conv2 = _conv('conv2', norm1, 96, 256, 5, 5, 1, 1, 'SAME')
+    pool2 = _mpool('pool2', conv2, 3, 3, 2, 2)
+    norm2 = _norm('norm2', pool2, lsize=5)
+    conv3 = _conv('conv3', norm2, 256, 384, 3, 3, 1, 1, 'SAME')
+    conv4 = _conv('conv4', conv3, 384, 384, 3, 3, 1, 1, 'SAME')
+    conv5 = _conv('conv5', conv4, 384, 256, 3, 3, 1, 1, 'SAME')
+    pool5 = _mpool('pool5', conv5, 3, 3, 2, 2)
+    resh1 = tf.reshape(pool5, [-1, 256 * 6 * 6])
+    affn1 = _affine('fc6', resh1, 256 * 6 * 6, 4096)
+    affn2 = _affine('fc7', affn1, 4096, 4096)
+    affn3 = _affine('fc8', affn2, 4096, 1000, wd=None, act=False)  # last fc
+
+    return affn3
+
+
+def tower_loss(scope):
+    """Calculate the total loss on a single tower running the model.
+    Args:
+        scope: unique prefix string identifying the tower, e.g. 'tower_0'
+    Returns:
+        Tensor of shape [] containing the total loss for a batch of data
+    """
+    image_size = 224
+    if FLAGS.data_format == 'NCHW':
+        image_shape = [FLAGS.batch_size, 3, image_size + 3, image_size + 3]
+    else:
+        image_shape = [FLAGS.batch_size, image_size + 3, image_size + 3, 3]
+    images = tf.get_variable(
+        'image',
+        image_shape,
+        initializer=tf.truncated_normal_initializer(
+            stddev=0.1, dtype=tf.float32),
+        dtype=tf.float32,
+        trainable=False)
+
+    labels = tf.get_variable(
+        'label', [FLAGS.batch_size],
+        initializer=tf.constant_initializer(1),
+        dtype=tf.int32,
+        trainable=False)
+
+    # Build a Graph that computes the logits predictions from the
+    # inference model.
+    last_layer = inference(images)
+
+    # Build the portion of the Graph calculating the losses. Note that we will
+    # assemble the total_loss using a custom function below.
+    _ = loss(last_layer, labels)
+
+    # Assemble all of the losses for the current tower only.
+    losses = tf.get_collection('losses', scope)
+
+    # Calculate the total loss for the current tower.
+    total_loss = tf.add_n(losses, name='total_loss')
+
+    # Compute the moving average of all individual losses and the total loss.
+    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
+    loss_averages_op = loss_averages.apply(losses + [total_loss])
+
+    # Attach a scalar summary to all individual losses and the total loss; do the
+    # same for the averaged version of the losses.
+    for l in losses + [total_loss]:
+        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
+        # session. This helps the clarity of presentation on tensorboard.
+        loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name)
+        # Name each loss as '(raw)' and name the moving average version of the loss
+        # as the original loss name.
+        tf.scalar_summary(loss_name + ' (raw)', l)
+        tf.scalar_summary(loss_name, loss_averages.average(l))
+
+    with tf.control_dependencies([loss_averages_op]):
+        total_loss = tf.identity(total_loss)
+    return total_loss
+
+
+def average_gradients(tower_grads):
+    """Calculate the average gradient for each shared variable across all towers.
+  Note that this function provides a synchronization point across all towers.
+  Args:
+    tower_grads: List of lists of (gradient, variable) tuples. The outer list
+      is over individual gradients. The inner list is over the gradient
+      calculation for each tower.
+  Returns:
+     List of pairs of (gradient, variable) where the gradient has been averaged
+     across all towers.
+  """
+    average_grads = []
+    for grad_and_vars in zip(*tower_grads):
+        # Note that each grad_and_vars looks like the following:
+        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
+        grads = []
+        for g, _ in grad_and_vars:
+            # Add 0 dimension to the gradients to represent the tower.
+            expanded_g = tf.expand_dims(g, 0)
+
+            # Append on a 'tower' dimension which we will average over below.
+            grads.append(expanded_g)
+
+        # Average over the 'tower' dimension.
+        grad = tf.concat(0, grads)
+        grad = tf.reduce_mean(grad, 0)
+
+        # Keep in mind that the Variables are redundant because they are shared
+        # across towers. So .. we will just return the first tower's pointer to
+        # the Variable.
+        v = grad_and_vars[0][1]
+        grad_and_var = (grad, v)
+        average_grads.append(grad_and_var)
+    return average_grads
+
+
+def time_tensorflow_run(session, target):
+    num_steps_burn_in = 50
+    total_duration = 0.0
+    total_duration_squared = 0.0
+    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
+        start_time = time.time()
+        _, loss_value = session.run(target)
+        duration = time.time() - start_time
+        if i > num_steps_burn_in:
+            if not i % 10:
+                num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
+                examples_per_sec = num_examples_per_step / duration
+                sec_per_batch = duration
+
+                format_str = (
+                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
+                    'sec/batch batch_size = %d)')
+                print(format_str %
+                      (datetime.now(), i - num_steps_burn_in, loss_value,
+                       duration, sec_per_batch, num_examples_per_step))
+
+            total_duration += duration
+            total_duration_squared += duration * duration
+
+    mn = total_duration / FLAGS.num_batches
+    vr = total_duration_squared / FLAGS.num_batches - mn * mn
+    sd = math.sqrt(vr)
+    print('%s: FwdBwd across %d steps, %.3f +/- %.3f sec / batch' %
+          (datetime.now(), FLAGS.num_batches, mn, sd))
+
+
+def run_benchmark():
+    with tf.Graph().as_default(), tf.device('/cpu:0'):
+        # Create a variable to count the number of train() calls. This equals the
+        # number of batches processed * FLAGS.num_gpus.
+        global_step = tf.get_variable(
+            'global_step', [],
+            initializer=tf.constant_initializer(0),
+            trainable=False)
+
+        # Calculate the learning rate schedule.
+        num_batches_per_epoch = (NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
+                                 FLAGS.batch_size)
+        decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
+
+        # Decay the learning rate exponentially based on the number of steps.
+        lr = tf.train.exponential_decay(
+            INITIAL_LEARNING_RATE,
+            global_step,
+            decay_steps,
+            LEARNING_RATE_DECAY_FACTOR,
+            staircase=True)
+
+        # Create an optimizer that performs gradient descent.
+        opt = tf.train.MomentumOptimizer(lr, 0.9)
+
+        # Calculate the gradients for each model tower.
+        tower_grads = []
+        for i in xrange(FLAGS.num_gpus):
+            with tf.device('/gpu:%d' % i):
+                with tf.name_scope('%s_%d' % (TOWER_NAME, i)) as scope:
+                    # Calculate the loss for one tower of the model. This function
+                    # constructs the entire model but shares the variables across
+                    # all towers.
+                    loss = tower_loss(scope)
+
+                    # Reuse variables for the next tower.
+                    tf.get_variable_scope().reuse_variables()
+
+                    # Retain the summaries from the final tower.
+                    summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
+
+                    # Calculate the gradients for the batch of data on this tower.
+                    grads = opt.compute_gradients(loss)
+
+                    # Keep track of the gradients across all towers.
+                    tower_grads.append(grads)
+
+        # We must calculate the mean of each gradient. Note that this is the
+        # synchronization point across all towers.
+        grads = average_gradients(tower_grads)
+
+        # Apply the gradients to adjust the shared variables.
+        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
+
+        # Group all updates to into a single train op.
+        train_op = tf.group(apply_gradient_op)
+
+        # Build an initialization operation.
+        init = tf.initialize_all_variables()
+
+        # Start running operations on the Graph. allow_soft_placement must be set to
+        # True to build towers on GPU, as some of the ops do not have GPU
+        # implementations.
+        sess = tf.Session(config=tf.ConfigProto(
+            allow_soft_placement=True,
+            log_device_placement=FLAGS.log_device_placement))
+        sess.run(init)
+        time_tensorflow_run(sess, [train_op, loss])
+
+
+def main(_):
+    run_benchmark()
+
+
+if __name__ == '__main__':
+    tf.app.run()
diff --git a/benchmark/tensorflow/image/googlenet.py b/benchmark/tensorflow/image/googlenet.py
new file mode 100644
index 0000000000000000000000000000000000000000..decf855b54451efba5f6a7868fbcf631789f3572
--- /dev/null
+++ b/benchmark/tensorflow/image/googlenet.py
@@ -0,0 +1,311 @@
+from six.moves import xrange
+from datetime import datetime
+import math
+import time
+
+import tensorflow.python.platform
+import tensorflow as tf
+
+FLAGS = tf.app.flags.FLAGS
+
+tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
+tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_boolean('forward_only', False,
+                            """Only run the forward pass.""")
+tf.app.flags.DEFINE_boolean('forward_backward_only', False,
+                            """Only run the forward-forward pass.""")
+tf.app.flags.DEFINE_string('data_format', 'NCHW',
+                           """The data format for Convnet operations.
+                           Can be either NHWC or NCHW.
+                           """)
+tf.app.flags.DEFINE_boolean('log_device_placement', False,
+                            """Whether to log device placement.""")
+
+parameters = []
+
+conv_counter = 1
+pool_counter = 1
+affine_counter = 1
+
+
+def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.0005):
+    global conv_counter
+    global parameters
+    name = 'conv' + str(conv_counter)
+    conv_counter += 1
+    with tf.name_scope(name) as scope:
+        kernel = tf.Variable(
+            tf.truncated_normal(
+                [kH, kW, nIn, nOut], dtype=tf.float32, stddev=1e-1),
+            name='weights')
+
+        if wd is not None and wd > 0:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        if FLAGS.data_format == 'NCHW':
+            strides = [1, 1, dH, dW]
+        else:
+            strides = [1, dH, dW, 1]
+        conv = tf.nn.conv2d(
+            inpOp,
+            kernel,
+            strides,
+            padding=padType,
+            data_format=FLAGS.data_format)
+        biases = tf.Variable(
+            tf.constant(
+                0.0, shape=[nOut], dtype=tf.float32),
+            trainable=True,
+            name='biases')
+        bias = tf.reshape(
+            tf.nn.bias_add(
+                conv, biases, data_format=FLAGS.data_format),
+            conv.get_shape())
+        conv1 = tf.nn.relu(bias, name=scope)
+        parameters += [kernel, biases]
+        return conv1
+
+
+def _affine(inpOp, nIn, nOut, act=True, wd=0.0005):
+    global affine_counter
+    global parameters
+    name = 'affine' + str(affine_counter)
+    affine_counter += 1
+    with tf.name_scope(name) as scope:
+        kernel = tf.Variable(
+            tf.truncated_normal(
+                [nIn, nOut], dtype=tf.float32, stddev=1e-1),
+            name='weights')
+
+        if wd is not None and wd > 0:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        biases = tf.Variable(
+            tf.constant(
+                0.0, shape=[nOut], dtype=tf.float32),
+            trainable=True,
+            name='biases')
+        affine1 = tf.nn.relu_layer(
+            inpOp, kernel, biases,
+            name=name) if act else tf.matmul(inpOp, kernel) + biases
+        parameters += [kernel, biases]
+        return affine1
+
+
+def _mpool(inpOp, kH, kW, dH, dW, padding):
+    global pool_counter
+    global parameters
+    name = 'pool' + str(pool_counter)
+    pool_counter += 1
+    if FLAGS.data_format == 'NCHW':
+        ksize = [1, 1, kH, kW]
+        strides = [1, 1, dH, dW]
+    else:
+        ksize = [1, kH, kW, 1]
+        strides = [1, dH, dW, 1]
+    return tf.nn.max_pool(
+        inpOp,
+        ksize=ksize,
+        strides=strides,
+        padding=padding,
+        data_format=FLAGS.data_format,
+        name=name)
+
+
+def _apool(inpOp, kH, kW, dH, dW, padding):
+    global pool_counter
+    global parameters
+    name = 'pool' + str(pool_counter)
+    pool_counter += 1
+    if FLAGS.data_format == 'NCHW':
+        ksize = [1, 1, kH, kW]
+        strides = [1, 1, dH, dW]
+    else:
+        ksize = [1, kH, kW, 1]
+        strides = [1, dH, dW, 1]
+    return tf.nn.avg_pool(
+        inpOp,
+        ksize=ksize,
+        strides=strides,
+        padding=padding,
+        data_format=FLAGS.data_format,
+        name=name)
+
+
+def _inception(inp, inSize, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2):
+    conv1 = _conv(inp, inSize, o1s, 1, 1, 1, 1, 'VALID')
+
+    conv3_ = _conv(inp, inSize, o2s1, 1, 1, 1, 1, 'VALID')
+    conv3 = _conv(conv3_, o2s1, o2s2, 3, 3, 1, 1, 'SAME')
+
+    conv5_ = _conv(inp, inSize, o3s1, 1, 1, 1, 1, 'VALID')
+    conv5 = _conv(conv5_, o3s1, o3s2, 5, 5, 1, 1, 'SAME')
+
+    pool_ = _mpool(inp, o4s1, o4s1, 1, 1, 'SAME')
+    pool = _conv(pool_, inSize, o4s2, 1, 1, 1, 1, 'VALID')
+
+    if FLAGS.data_format == 'NCHW':
+        channel_dim = 1
+    else:
+        channel_dim = 3
+    incept = tf.concat(channel_dim, [conv1, conv3, conv5, pool])
+    return incept
+
+
+def loss(logits, labels):
+    batch_size = tf.size(labels)
+    labels = tf.expand_dims(labels, 1)
+    indices = tf.expand_dims(tf.range(0, batch_size, 1), 1)
+    concated = tf.concat(1, [indices, labels])
+    onehot_labels = tf.sparse_to_dense(concated,
+                                       tf.pack([batch_size, 1000]), 1.0, 0.0)
+    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
+        logits, onehot_labels, name='xentropy')
+    loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
+    return loss
+
+
+def inference(images):
+    # stage 1
+    conv1 = _conv(images, 3, 64, 7, 7, 2, 2, 'SAME')
+    pool1 = _mpool(conv1, 3, 3, 2, 2, 'SAME')
+    # stage 2
+    conv2 = _conv(pool1, 64, 64, 1, 1, 1, 1, 'VALID')
+    conv3 = _conv(conv2, 64, 192, 3, 3, 1, 1, 'SAME')
+    pool3 = _mpool(conv3, 3, 3, 2, 2, 'SAME')
+
+    # stage 3
+    incept3a = _inception(pool3, 192, 64, 96, 128, 16, 32, 3, 32)
+    incept3b = _inception(incept3a, 256, 128, 128, 192, 32, 96, 3, 64)
+    pool4 = _mpool(incept3b, 3, 3, 2, 2, 'SAME')
+
+    # stage 4
+    incept4a = _inception(pool4, 480, 192, 96, 208, 16, 48, 3, 64)
+    incept4b = _inception(incept4a, 512, 160, 112, 224, 24, 64, 3, 64)
+    incept4c = _inception(incept4b, 512, 128, 128, 256, 24, 64, 3, 64)
+    incept4d = _inception(incept4c, 512, 112, 144, 288, 32, 64, 3, 64)
+    incept4e = _inception(incept4d, 528, 256, 160, 320, 32, 128, 3, 128)
+    pool5 = _mpool(incept4e, 3, 3, 2, 2, 'SAME')
+
+    # stage 5
+    incept5a = _inception(pool5, 832, 256, 160, 320, 32, 128, 3, 128)
+    incept5b = _inception(incept5a, 832, 384, 192, 384, 48, 128, 3, 128)
+    pool6 = _apool(incept5b, 7, 7, 1, 1, 'VALID')
+
+    # output 1
+    resh1 = tf.reshape(pool6, [-1, 1024])
+    drop = tf.nn.dropout(resh1, 0.4)
+    affn1 = _affine(resh1, 1024, 1000, act=False)
+
+    return affn1
+
+
+def time_tensorflow_run(session, target, info_string):
+    num_steps_burn_in = 10
+    total_duration = 0.0
+    total_duration_squared = 0.0
+    if not isinstance(target, list):
+        target = [target]
+    target_op = tf.group(*target)
+    for i in range(FLAGS.num_batches + num_steps_burn_in):
+        start_time = time.time()
+        _ = session.run(target_op)
+        duration = time.time() - start_time
+        if i > num_steps_burn_in:
+            if not i % 10:
+                print('%s: step %d, duration = %.3f' %
+                      (datetime.now(), i - num_steps_burn_in, duration))
+            total_duration += duration
+            total_duration_squared += duration * duration
+    mn = total_duration / FLAGS.num_batches
+    vr = total_duration_squared / FLAGS.num_batches - mn * mn
+    sd = math.sqrt(vr)
+    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
+          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))
+
+
+def run_benchmark():
+    global parameters
+    with tf.Graph().as_default():
+        # Generate some dummy images.
+        image_size = 224
+        if FLAGS.data_format == 'NCHW':
+            image_shape = [FLAGS.batch_size, 3, image_size, image_size]
+        else:
+            image_shape = [FLAGS.batch_size, image_size, image_size, 3]
+
+        images = tf.get_variable(
+            'image',
+            image_shape,
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.1, dtype=tf.float32),
+            dtype=tf.float32,
+            trainable=False)
+
+        labels = tf.get_variable(
+            'label', [FLAGS.batch_size],
+            initializer=tf.constant_initializer(1),
+            dtype=tf.int32,
+            trainable=False)
+
+        # Build a Graph that computes the logits predictions from the
+        # inference model.
+        last_layer = inference(images)
+
+        objective = loss(last_layer, labels)
+
+        # Compute gradients.
+        # opt = tf.train.GradientDescentOptimizer(0.001)
+        opt = tf.train.MomentumOptimizer(0.001, 0.9)
+        grads = opt.compute_gradients(objective)
+        global_step = tf.get_variable(
+            'global_step', [],
+            initializer=tf.constant_initializer(
+                0.0, dtype=tf.float32),
+            trainable=False,
+            dtype=tf.float32)
+        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
+
+        # Track the moving averages of all trainable variables.
+        variable_averages = tf.train.ExponentialMovingAverage(0.9, global_step)
+        variables_averages_op = variable_averages.apply(tf.trainable_variables(
+        ))
+
+        # Build an initialization operation.
+        init = tf.initialize_all_variables()
+
+        # Start running operations on the Graph.
+        sess = tf.Session(config=tf.ConfigProto(
+            allow_soft_placement=True,
+            log_device_placement=FLAGS.log_device_placement))
+        sess.run(init)
+
+        run_forward = True
+        run_forward_backward = True
+        if FLAGS.forward_only and FLAGS.forward_backward_only:
+            raise ValueError("Cannot specify --forward_only and "
+                             "--forward_backward_only at the same time.")
+        if FLAGS.forward_only:
+            run_forward_backward = False
+        elif FLAGS.forward_backward_only:
+            run_forward = False
+
+        if run_forward:
+            # Run the forward benchmark.
+            time_tensorflow_run(sess, last_layer, "Forward")
+
+        if run_forward_backward:
+            with tf.control_dependencies(
+                [apply_gradient_op, variables_averages_op]):
+                train_op = tf.no_op(name='train')
+            time_tensorflow_run(sess, [train_op, objective], "Forward-backward")
+
+
+def main(_):
+    run_benchmark()
+
+
+if __name__ == '__main__':
+    tf.app.run()
diff --git a/benchmark/tensorflow/image/googlenet_multi_gpu.py b/benchmark/tensorflow/image/googlenet_multi_gpu.py
new file mode 100644
index 0000000000000000000000000000000000000000..31466faa37c47c66e4fe4628e28c867875e89f2e
--- /dev/null
+++ b/benchmark/tensorflow/image/googlenet_multi_gpu.py
@@ -0,0 +1,411 @@
+from six.moves import xrange  # pylint: disable=redefined-builtin
+from datetime import datetime
+import math
+import re
+import time
+
+import tensorflow.python.platform
+import tensorflow as tf
+
+FLAGS = tf.app.flags.FLAGS
+
+tf.app.flags.DEFINE_integer('batch_size', 64, """Batch size.""")
+tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_string('data_format', 'NCHW',
+                           """The data format for Convnet operations.
+                           Can be either NHWC or NCHW.
+                           """)
+
+tf.app.flags.DEFINE_string('train_dir', '/train_model',
+                           """Directory where to write event logs """
+                           """and checkpoint.""")
+tf.app.flags.DEFINE_integer('num_gpus', 4, """How many GPUs to use.""")
+tf.app.flags.DEFINE_boolean('log_device_placement', False,
+                            """Whether to log device placement.""")
+
+NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
+NUM_EPOCHS_PER_DECAY = 50
+INITIAL_LEARNING_RATE = 0.1
+LEARNING_RATE_DECAY_FACTOR = 0.1
+TOWER_NAME = 'tower'
+
+
+def _conv(name, inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.005):
+    with tf.name_scope(name) as scope:
+        kernel = tf.get_variable(
+            name + '_w', [kH, kW, nIn, nOut],
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.01, dtype=tf.float32),
+            dtype=tf.float32)
+
+        if wd is not None:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        if FLAGS.data_format == 'NCHW':
+            strides = [1, 1, dH, dW]
+        else:
+            strides = [1, dH, dW, 1]
+        conv = tf.nn.conv2d(
+            inpOp,
+            kernel,
+            strides,
+            padding=padType,
+            data_format=FLAGS.data_format)
+
+        biases = tf.get_variable(
+            name=name + '_b',
+            shape=[nOut],
+            initializer=tf.constant_initializer(
+                value=0.0, dtype=tf.float32),
+            dtype=tf.float32)
+
+        bias = tf.reshape(
+            tf.nn.bias_add(
+                conv, biases, data_format=FLAGS.data_format),
+            conv.get_shape())
+
+        conv1 = tf.nn.relu(bias, name=scope)
+        return conv1
+
+
+def _affine(name, inpOp, nIn, nOut, wd=0.005, act=True):
+    with tf.name_scope(name) as scope:
+        kernel = tf.get_variable(
+            name + '_w', [nIn, nOut],
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.01, dtype=tf.float32),
+            dtype=tf.float32)
+
+        if wd is not None:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        biases = tf.get_variable(
+            name + '_b', [nOut],
+            initializer=tf.constant_initializer(
+                value=0.0, dtype=tf.float32),
+            dtype=tf.float32,
+            trainable=True)
+
+        affine1 = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
+                  tf.matmul(inpOp, kernel) + biases
+
+        return affine1
+
+
+def _mpool(name, inpOp, kH, kW, dH, dW, padding):
+    if FLAGS.data_format == 'NCHW':
+        ksize = [1, 1, kH, kW]
+        strides = [1, 1, dH, dW]
+    else:
+        ksize = [1, kH, kW, 1]
+        strides = [1, dH, dW, 1]
+    return tf.nn.max_pool(
+        inpOp,
+        ksize=ksize,
+        strides=strides,
+        padding=padding,
+        data_format=FLAGS.data_format,
+        name=name)
+
+
+def _apool(name, inpOp, kH, kW, dH, dW, padding):
+    if FLAGS.data_format == 'NCHW':
+        ksize = [1, 1, kH, kW]
+        strides = [1, 1, dH, dW]
+    else:
+        ksize = [1, kH, kW, 1]
+        strides = [1, dH, dW, 1]
+    return tf.nn.avg_pool(
+        inpOp,
+        ksize=ksize,
+        strides=strides,
+        padding=padding,
+        data_format=FLAGS.data_format,
+        name=name)
+
+
+def loss(logits, labels):
+    labels = tf.cast(labels, tf.int64)
+    cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
+        logits, labels, name='cross_entropy_per_example')
+    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
+    tf.add_to_collection('losses', cross_entropy_mean)
+
+    # The total loss is defined as the cross entropy loss plus all of the weight
+    # decay terms (L2 loss).
+    return tf.add_n(tf.get_collection('losses'), name='total_loss')
+
+
+def get_incoming_shape(incoming):
+    """ Returns the incoming data shape """
+    if isinstance(incoming, tf.Tensor):
+        return incoming.get_shape().as_list()
+    elif type(incoming) in [np.array, list, tuple]:
+        return np.shape(incoming)
+    else:
+        raise Exception("Invalid incoming layer.")
+
+
+def _inception(name, inp, inSize, o1s, o2s1, o2s2, o3s1, o3s2, o4s1, o4s2):
+    conv1 = _conv(name + '_1', inp, inSize, o1s, 1, 1, 1, 1, 'VALID')
+
+    conv3_ = _conv(name + '_3r', inp, inSize, o2s1, 1, 1, 1, 1, 'VALID')
+    conv3 = _conv(name + '_3', conv3_, o2s1, o2s2, 3, 3, 1, 1, 'SAME')
+
+    conv5_ = _conv(name + '_5r', inp, inSize, o3s1, 1, 1, 1, 1, 'VALID')
+    conv5 = _conv(name + '5', conv5_, o3s1, o3s2, 5, 5, 1, 1, 'SAME')
+
+    pool_ = _mpool(name + 'pool', inp, o4s1, o4s1, 1, 1, 'SAME')
+    pool = _conv(name + 'proj', pool_, inSize, o4s2, 1, 1, 1, 1, 'VALID')
+
+    if FLAGS.data_format == 'NCHW':
+        channel_dim = 1
+    else:
+        channel_dim = 3
+    incept = tf.concat(channel_dim, [conv1, conv3, conv5, pool])
+    return incept
+
+
+def inference(images):
+    # stage 1
+    conv1 = _conv('conv1', images, 3, 64, 7, 7, 2, 2, 'SAME')
+    pool1 = _mpool('pool1', conv1, 3, 3, 2, 2, 'SAME')
+
+    # stage 2
+    conv2 = _conv('conv2', pool1, 64, 64, 1, 1, 1, 1, 'VALID')
+    conv3 = _conv('conv3', conv2, 64, 192, 3, 3, 1, 1, 'SAME')
+    pool3 = _mpool('pool3', conv3, 3, 3, 2, 2, 'SAME')
+
+    # stage 3
+    incept3a = _inception('ince3a', pool3, 192, 64, 96, 128, 16, 32, 3, 32)
+    incept3b = _inception('ince3b', incept3a, 256, 128, 128, 192, 32, 96, 3, 64)
+    pool4 = _mpool('pool4', incept3b, 3, 3, 2, 2, 'SAME')
+
+    # stage 4
+    incept4a = _inception('ince4a', pool4, 480, 192, 96, 208, 16, 48, 3, 64)
+    incept4b = _inception('ince4b', incept4a, 512, 160, 112, 224, 24, 64, 3, 64)
+    incept4c = _inception('ince4c', incept4b, 512, 128, 128, 256, 24, 64, 3, 64)
+    incept4d = _inception('ince4d', incept4c, 512, 112, 144, 288, 32, 64, 3, 64)
+    incept4e = _inception('ince4e', incept4d, 528, 256, 160, 320, 32, 128, 3,
+                          128)
+    pool5 = _mpool('pool5', incept4e, 3, 3, 2, 2, 'SAME')
+
+    # stage 5
+    incept5a = _inception('ince5a', pool5, 832, 256, 160, 320, 32, 128, 3, 128)
+    incept5b = _inception('ince5b', incept5a, 832, 384, 192, 384, 48, 128, 3,
+                          128)
+    pool6 = _apool('pool6', incept5b, 7, 7, 1, 1, 'VALID')
+
+    # output 1
+    resh1 = tf.reshape(pool6, [-1, 1024])
+    drop = tf.nn.dropout(resh1, 0.4)
+    affn1 = _affine('fc_out', resh1, 1024, 1000, act=False)
+
+    return affn1
+
+
+def tower_loss(scope):
+    """Calculate the total loss on a single tower running the model.
+    Args:
+        scope: unique prefix string identifying the tower, e.g. 'tower_0'
+    Returns:
+        Tensor of shape [] containing the total loss for a batch of data
+    """
+    image_size = 224
+    if FLAGS.data_format == 'NCHW':
+        image_shape = [FLAGS.batch_size, 3, image_size, image_size]
+    else:
+        image_shape = [FLAGS.batch_size, image_size, image_size, 3]
+    images = tf.get_variable(
+        'image',
+        image_shape,
+        initializer=tf.truncated_normal_initializer(
+            stddev=0.1, dtype=tf.float32),
+        dtype=tf.float32,
+        trainable=False)
+
+    labels = tf.get_variable(
+        'label', [FLAGS.batch_size],
+        initializer=tf.constant_initializer(1),
+        dtype=tf.int32,
+        trainable=False)
+
+    # Build a Graph that computes the logits predictions from the
+    # inference model.
+    last_layer = inference(images)
+
+    # Build the portion of the Graph calculating the losses. Note that we will
+    # assemble the total_loss using a custom function below.
+    _ = loss(last_layer, labels)
+
+    # Assemble all of the losses for the current tower only.
+    losses = tf.get_collection('losses', scope)
+
+    # Calculate the total loss for the current tower.
+    total_loss = tf.add_n(losses, name='total_loss')
+
+    # Compute the moving average of all individual losses and the total loss.
+    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
+    loss_averages_op = loss_averages.apply(losses + [total_loss])
+
+    # Attach a scalar summary to all individual losses and the total loss; do the
+    # same for the averaged version of the losses.
+    for l in losses + [total_loss]:
+        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
+        # session. This helps the clarity of presentation on tensorboard.
+        loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name)
+        # Name each loss as '(raw)' and name the moving average version of the loss
+        # as the original loss name.
+        tf.scalar_summary(loss_name + ' (raw)', l)
+        tf.scalar_summary(loss_name, loss_averages.average(l))
+
+    with tf.control_dependencies([loss_averages_op]):
+        total_loss = tf.identity(total_loss)
+    return total_loss
+
+
+def average_gradients(tower_grads):
+    """Calculate the average gradient for each shared variable across all towers.
+  Note that this function provides a synchronization point across all towers.
+  Args:
+    tower_grads: List of lists of (gradient, variable) tuples. The outer list
+      is over individual gradients. The inner list is over the gradient
+      calculation for each tower.
+  Returns:
+     List of pairs of (gradient, variable) where the gradient has been averaged
+     across all towers.
+  """
+    average_grads = []
+    for grad_and_vars in zip(*tower_grads):
+        # Note that each grad_and_vars looks like the following:
+        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
+        grads = []
+        for g, _ in grad_and_vars:
+            # Add 0 dimension to the gradients to represent the tower.
+            expanded_g = tf.expand_dims(g, 0)
+
+            # Append on a 'tower' dimension which we will average over below.
+            grads.append(expanded_g)
+
+        # Average over the 'tower' dimension.
+        grad = tf.concat(0, grads)
+        grad = tf.reduce_mean(grad, 0)
+
+        # Keep in mind that the Variables are redundant because they are shared
+        # across towers. So .. we will just return the first tower's pointer to
+        # the Variable.
+        v = grad_and_vars[0][1]
+        grad_and_var = (grad, v)
+        average_grads.append(grad_and_var)
+    return average_grads
+
+
+def time_tensorflow_run(session, target):
+    num_steps_burn_in = 50
+    total_duration = 0.0
+    total_duration_squared = 0.0
+    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
+        start_time = time.time()
+        _, loss_value = session.run(target)
+        duration = time.time() - start_time
+        if i > num_steps_burn_in:
+            if not i % 10:
+                num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
+                examples_per_sec = num_examples_per_step / duration
+                sec_per_batch = duration
+
+                format_str = (
+                    '%s: step %d, loss = %.2f (%.1f examples/sec; %.3f '
+                    'sec/batch batch_size = %d)')
+                print(format_str %
+                      (datetime.now(), i - num_steps_burn_in, loss_value,
+                       duration, sec_per_batch, num_examples_per_step))
+
+            total_duration += duration
+            total_duration_squared += duration * duration
+
+    mn = total_duration / FLAGS.num_batches
+    vr = total_duration_squared / FLAGS.num_batches - mn * mn
+    sd = math.sqrt(vr)
+    print('%s: FwdBwd across %d steps, %.3f +/- %.3f sec / batch' %
+          (datetime.now(), FLAGS.num_batches, mn, sd))
+
+
+def run_benchmark():
+    with tf.Graph().as_default(), tf.device('/cpu:0'):
+        # Create a variable to count the number of train() calls. This equals the
+        # number of batches processed * FLAGS.num_gpus.
+        global_step = tf.get_variable(
+            'global_step', [],
+            initializer=tf.constant_initializer(0),
+            trainable=False)
+
+        # Calculate the learning rate schedule.
+        num_batches_per_epoch = (NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
+                                 FLAGS.batch_size)
+        decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
+
+        # Decay the learning rate exponentially based on the number of steps.
+        lr = tf.train.exponential_decay(
+            INITIAL_LEARNING_RATE,
+            global_step,
+            decay_steps,
+            LEARNING_RATE_DECAY_FACTOR,
+            staircase=True)
+
+        # Create an optimizer that performs gradient descent.
+        opt = tf.train.MomentumOptimizer(lr, 0.9)
+
+        # Calculate the gradients for each model tower.
+        tower_grads = []
+        for i in xrange(FLAGS.num_gpus):
+            with tf.device('/gpu:%d' % i):
+                with tf.name_scope('%s_%d' % (TOWER_NAME, i)) as scope:
+                    # Calculate the loss for one tower of the model. This function
+                    # constructs the entire model but shares the variables across
+                    # all towers.
+                    loss = tower_loss(scope)
+
+                    # Reuse variables for the next tower.
+                    tf.get_variable_scope().reuse_variables()
+
+                    # Retain the summaries from the final tower.
+                    summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
+
+                    # Calculate the gradients for the batch of data on this tower.
+                    grads = opt.compute_gradients(loss)
+
+                    # Keep track of the gradients across all towers.
+                    tower_grads.append(grads)
+
+        # We must calculate the mean of each gradient. Note that this is the
+        # synchronization point across all towers.
+        grads = average_gradients(tower_grads)
+
+        # Apply the gradients to adjust the shared variables.
+        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
+
+        # Group all updates to into a single train op.
+        train_op = tf.group(apply_gradient_op)
+
+        # Build an initialization operation.
+        init = tf.initialize_all_variables()
+
+        # Start running operations on the Graph. allow_soft_placement must be set to
+        # True to build towers on GPU, as some of the ops do not have GPU
+        # implementations.
+        sess = tf.Session(config=tf.ConfigProto(
+            allow_soft_placement=True,
+            log_device_placement=FLAGS.log_device_placement))
+        sess.run(init)
+        time_tensorflow_run(sess, [train_op, loss])
+
+
+def main(_):
+    run_benchmark()
+
+
+if __name__ == '__main__':
+    tf.app.run()
diff --git a/benchmark/tensorflow/image/run.sh b/benchmark/tensorflow/image/run.sh
new file mode 100755
index 0000000000000000000000000000000000000000..eade36beb9df5f8d3978939216e058203e024c1a
--- /dev/null
+++ b/benchmark/tensorflow/image/run.sh
@@ -0,0 +1,28 @@
+set -e
+
+function test() {
+  cfg=$1
+  batch_size=$2
+  prefix=$3
+  python $cfg --batch_size=$batch_size > logs/${prefix}-1gpu-${batch_size}.log 2>&1
+}
+
+if [ ! -d "logs" ]; then
+  mkdir logs
+fi
+
+# alexnet
+test alexnet.py 64 alexnet
+test alexnet.py 128 alexnet
+test alexnet.py 256 alexnet
+test alexnet.py 512 alexnet
+
+# googlenet
+test googlenet.py 64 googlenet
+test googlenet.py 128 googlenet
+
+# smallnet 
+test smallnet_mnist_cifar.py 64 smallnet
+test smallnet_mnist_cifar.py 128 smallnet
+test smallnet_mnist_cifar.py 256 smallnet
+test smallnet_mnist_cifar.py 512 smallnet
diff --git a/benchmark/tensorflow/image/run_multi.sh b/benchmark/tensorflow/image/run_multi.sh
new file mode 100755
index 0000000000000000000000000000000000000000..69faa4331744f2276e7706185ae10bc507f95764
--- /dev/null
+++ b/benchmark/tensorflow/image/run_multi.sh
@@ -0,0 +1,22 @@
+set -e
+
+function test() {
+  cfg=$1
+  num_gpu=$2
+  batch_size=$3
+  batch_per_gpu=`expr ${batch_size} / ${num_gpu}`
+  prefix=$4
+  python $cfg --num_gpus=$num_gpu --batch_size=${batch_per_gpu} > logs/${prefix}-4gpu-${batch_size}.log 2>&1
+}
+
+if [ ! -d "logs" ]; then
+  mkdir logs
+fi
+
+# alexnet
+test alexnet_multi_gpu.py 4 512 alexnet
+test alexnet_multi_gpu.py 4 1024 alexnet
+
+# googlenet 
+test googlenet_multi_gpu.py 4 512 alexnet
+test googlenet_multi_gpu.py 4 1024 alexnet
diff --git a/benchmark/tensorflow/image/smallnet_mnist_cifar.py b/benchmark/tensorflow/image/smallnet_mnist_cifar.py
new file mode 100644
index 0000000000000000000000000000000000000000..1a625134a6c58586b29190ede9c66253f484d2cf
--- /dev/null
+++ b/benchmark/tensorflow/image/smallnet_mnist_cifar.py
@@ -0,0 +1,304 @@
+from six.moves import xrange  # pylint: disable=redefined-builtin
+from datetime import datetime
+import math
+import time
+
+import tensorflow.python.platform
+import tensorflow as tf
+
+FLAGS = tf.app.flags.FLAGS
+
+tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
+tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_boolean('forward_only', False,
+                            """Only run the forward pass.""")
+tf.app.flags.DEFINE_boolean('forward_backward_only', False,
+                            """Only run the forward-forward pass.""")
+tf.app.flags.DEFINE_string('data_format', 'NCHW',
+                           """The data format for Convnet operations.
+                           Can be either NHWC or NCHW.
+                           """)
+tf.app.flags.DEFINE_boolean('log_device_placement', False,
+                            """Whether to log device placement.""")
+
+parameters = []
+
+conv_counter = 1
+pool_counter = 1
+affine_counter = 1
+
+
+def _conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, wd=0.005, act=True):
+    global conv_counter
+    global parameters
+    name = 'conv' + str(conv_counter)
+    conv_counter += 1
+    with tf.name_scope(name) as scope:
+        kernel = tf.Variable(
+            tf.truncated_normal(
+                [kH, kW, nIn, nOut], dtype=tf.float32, stddev=1e-1),
+            name='weights')
+
+        if wd is not None:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        if FLAGS.data_format == 'NCHW':
+            strides = [1, 1, dH, dW]
+        else:
+            strides = [1, dH, dW, 1]
+        conv = tf.nn.conv2d(
+            inpOp,
+            kernel,
+            strides,
+            padding=padType,
+            data_format=FLAGS.data_format)
+        biases = tf.Variable(
+            tf.constant(
+                0.0, shape=[nOut], dtype=tf.float32),
+            trainable=True,
+            name='biases')
+        bias = tf.reshape(
+            tf.nn.bias_add(
+                conv, biases, data_format=FLAGS.data_format),
+            conv.get_shape())
+
+        conv1 = tf.nn.relu(bias, name=scope) if act else bias
+
+        parameters += [kernel, biases]
+
+        return conv1
+
+
+def _affine(inpOp, nIn, nOut, wd=None, act=True):
+    global affine_counter
+    global parameters
+    name = 'affine' + str(affine_counter)
+    affine_counter += 1
+    with tf.name_scope(name) as scope:
+        kernel = tf.Variable(
+            tf.truncated_normal(
+                [nIn, nOut], dtype=tf.float32, stddev=1e-1),
+            name='weights')
+
+        if wd is not None:
+            weight_decay = tf.mul(tf.nn.l2_loss(kernel), wd, name='weight_loss')
+            tf.add_to_collection('losses', weight_decay)
+
+        biases = tf.Variable(
+            tf.constant(
+                0.0, shape=[nOut], dtype=tf.float32),
+            trainable=True,
+            name='biases')
+
+        affine1 = tf.nn.relu_layer(
+            inpOp, kernel, biases,
+            name=name) if act else tf.matmul(inpOp, kernel) + biases
+
+        parameters += [kernel, biases]
+
+        return affine1
+
+
+def _mpool(inpOp, kH, kW, dH, dW, padding):
+    global pool_counter
+    global parameters
+    name = 'pool' + str(pool_counter)
+    pool_counter += 1
+    if FLAGS.data_format == 'NCHW':
+        ksize = [1, 1, kH, kW]
+        strides = [1, 1, dH, dW]
+    else:
+        ksize = [1, kH, kW, 1]
+        strides = [1, dH, dW, 1]
+    return tf.nn.max_pool(
+        inpOp,
+        ksize=ksize,
+        strides=strides,
+        padding=padding,
+        data_format=FLAGS.data_format,
+        name=name)
+
+
+def _apool(inpOp, kH, kW, dH, dW, padding):
+    global pool_counter
+    global parameters
+    name = 'pool' + str(pool_counter)
+    pool_counter += 1
+    if FLAGS.data_format == 'NCHW':
+        ksize = [1, 1, kH, kW]
+        strides = [1, 1, dH, dW]
+    else:
+        ksize = [1, kH, kW, 1]
+        strides = [1, dH, dW, 1]
+    return tf.nn.avg_pool(
+        inpOp,
+        ksize=ksize,
+        strides=strides,
+        padding=padding,
+        data_format=FLAGS.data_format,
+        name=name)
+
+
+def _norm(name, l_input, lsize=4):
+    return tf.nn.lrn(l_input,
+                     lsize,
+                     bias=1.0,
+                     alpha=0.001 / 9.0,
+                     beta=0.75,
+                     name=name)
+
+
+def loss(logits, labels):
+    batch_size = tf.size(labels)
+    labels = tf.expand_dims(labels, 1)
+    indices = tf.expand_dims(tf.range(0, batch_size, 1), 1)
+    concated = tf.concat(1, [indices, labels])
+    onehot_labels = tf.sparse_to_dense(concated,
+                                       tf.pack([batch_size, 10]), 1.0, 0.0)
+    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
+        logits, onehot_labels, name='xentropy')
+    loss = tf.reduce_mean(cross_entropy, name='xentropy_mean')
+    return loss
+
+
+def get_incoming_shape(incoming):
+    """ Returns the incoming data shape """
+    if isinstance(incoming, tf.Tensor):
+        return incoming.get_shape().as_list()
+    elif type(incoming) in [np.array, list, tuple]:
+        return np.shape(incoming)
+    else:
+        raise Exception("Invalid incoming layer.")
+
+
+def inference(images):
+    conv1 = _conv(images, 3, 32, 5, 5, 1, 1, 'SAME')
+    pool1 = _mpool(conv1, 3, 3, 2, 2, 'SAME')
+    conv2 = _conv(pool1, 32, 32, 5, 5, 1, 1, 'SAME')
+    pool2 = _apool(conv2, 3, 3, 2, 2, 'SAME')
+    conv3 = _conv(pool2, 32, 64, 5, 5, 1, 1, 'SAME')
+    pool3 = _apool(conv3, 3, 3, 2, 2, 'SAME')
+    resh1 = tf.reshape(pool3, [-1, 64 * 4 * 4])
+    affn1 = _affine(resh1, 64 * 4 * 4, 64)
+    affn2 = _affine(affn1, 64, 10, act=False)
+
+    print('conv1:', get_incoming_shape(conv1))
+    print('pool1:', get_incoming_shape(pool1))
+    print('conv2:', get_incoming_shape(conv2))
+    print('pool2:', get_incoming_shape(pool2))
+    print('conv3:', get_incoming_shape(conv3))
+    print('pool3:', get_incoming_shape(pool3))
+
+    return affn2
+
+
+def time_tensorflow_run(session, target, info_string):
+    num_steps_burn_in = 10
+    total_duration = 0.0
+    total_duration_squared = 0.0
+    if not isinstance(target, list):
+        target = [target]
+    target_op = tf.group(*target)
+    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
+        start_time = time.time()
+        _ = session.run(target_op)
+        duration = time.time() - start_time
+        if i > num_steps_burn_in:
+            if not i % 10:
+                print('%s: step %d, duration = %.3f' %
+                      (datetime.now(), i - num_steps_burn_in, duration))
+            total_duration += duration
+            total_duration_squared += duration * duration
+    mn = total_duration / FLAGS.num_batches
+    vr = total_duration_squared / FLAGS.num_batches - mn * mn
+    sd = math.sqrt(vr)
+    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
+          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))
+
+
+def run_benchmark():
+    global parameters
+    with tf.Graph().as_default():
+        # Generate some dummy images.
+        image_size = 32
+        # Note that our padding definition is slightly different the cuda-convnet.
+        # In order to force the model to start with the same activations sizes,
+        # we add 3 to the image_size and employ VALID padding above.
+        if FLAGS.data_format == 'NCHW':
+            image_shape = [FLAGS.batch_size, 3, image_size, image_size]
+        else:
+            image_shape = [FLAGS.batch_size, image_size, image_size, 3]
+
+        images = tf.get_variable(
+            'image',
+            image_shape,
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.1, dtype=tf.float32),
+            dtype=tf.float32,
+            trainable=False)
+
+        labels = tf.get_variable(
+            'label', [FLAGS.batch_size],
+            initializer=tf.constant_initializer(1),
+            dtype=tf.int32,
+            trainable=False)
+
+        # Build a Graph that computes the logits predictions from the
+        # inference model.
+        last_layer = inference(images)
+
+        objective = loss(last_layer, labels)
+
+        # Compute gradients.
+        opt = tf.train.MomentumOptimizer(0.001, 0.9)
+        grads = opt.compute_gradients(objective)
+        global_step = tf.get_variable(
+            'global_step', [],
+            initializer=tf.constant_initializer(
+                0.0, dtype=tf.float32),
+            trainable=False,
+            dtype=tf.float32)
+        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
+
+        # Track the moving averages of all trainable variables.
+        variable_averages = tf.train.ExponentialMovingAverage(0.9, global_step)
+        variables_averages_op = variable_averages.apply(tf.trainable_variables(
+        ))
+
+        # Build an initialization operation.
+        init = tf.initialize_all_variables()
+
+        # Start running operations on the Graph.
+        sess = tf.Session(config=tf.ConfigProto(
+            allow_soft_placement=True,
+            log_device_placement=FLAGS.log_device_placement))
+        sess.run(init)
+
+        run_forward = True
+        run_forward_backward = True
+        if FLAGS.forward_only and FLAGS.forward_backward_only:
+            raise ValueError("Cannot specify --forward_only and "
+                             "--forward_backward_only at the same time.")
+        if FLAGS.forward_only:
+            run_forward_backward = False
+        elif FLAGS.forward_backward_only:
+            run_forward = False
+
+        if run_forward:
+            # Run the forward benchmark.
+            time_tensorflow_run(sess, last_layer, "Forward")
+
+        if run_forward_backward:
+            with tf.control_dependencies(
+                [apply_gradient_op, variables_averages_op]):
+                train_op = tf.no_op(name='train')
+            time_tensorflow_run(sess, [train_op, objective], "Forward-backward")
+
+
+def main(_):
+    run_benchmark()
+
+
+if __name__ == '__main__':
+    tf.app.run()
diff --git a/benchmark/tensorflow/rnn/README.md b/benchmark/tensorflow/rnn/README.md
new file mode 100644
index 0000000000000000000000000000000000000000..da8e7b8b07969051cbec3ac6a713eaf7fc738a55
--- /dev/null
+++ b/benchmark/tensorflow/rnn/README.md
@@ -0,0 +1,5 @@
+You also should install tflearn:
+
+```bash
+pip install -r requirements.txt
+```
diff --git a/benchmark/tensorflow/rnn/reader.py b/benchmark/tensorflow/rnn/reader.py
new file mode 100755
index 0000000000000000000000000000000000000000..f538329a15ea9ad9293c97c94340989e2c421eb2
--- /dev/null
+++ b/benchmark/tensorflow/rnn/reader.py
@@ -0,0 +1,92 @@
+import os.path
+import io
+import numpy as np
+import tensorflow as tf
+
+# tflearn
+import tflearn
+from tflearn.data_utils import to_categorical, pad_sequences
+from tflearn.datasets import imdb
+
+FLAGS = tf.app.flags.FLAGS
+
+
+class DataSet(object):
+    def __init__(self, data, labels):
+        assert data.shape[0] == labels.shape[0], (
+            'data.shape: %s labels.shape: %s' % (data.shape, labels.shape))
+        self._num_examples = data.shape[0]
+
+        self._data = data
+        self._labels = labels
+        self._epochs_completed = 0
+        self._index_in_epoch = 0
+
+    @property
+    def data(self):
+        return self._data
+
+    @property
+    def labels(self):
+        return self._labels
+
+    @property
+    def num_examples(self):
+        return self._num_examples
+
+    @property
+    def epochs_completed(self):
+        return self._epochs_completed
+
+    def next_batch(self, batch_size):
+        assert batch_size <= self._num_examples
+
+        start = self._index_in_epoch
+        self._index_in_epoch += batch_size
+        if self._index_in_epoch > self._num_examples:
+            # Finished epoch
+            self._epochs_completed += 1
+            # Shuffle the data
+            perm = np.arange(self._num_examples)
+            np.random.shuffle(perm)
+            self._data = self._data[perm]
+            self._labels = self._labels[perm]
+            # Start next epoch
+            start = 0
+            self._index_in_epoch = batch_size
+
+        end = self._index_in_epoch
+
+        return self._data[start:end], self._labels[start:end]
+
+
+def create_datasets(file_path, vocab_size=30000, val_fraction=0.0):
+
+    # IMDB Dataset loading
+    train, test, _ = imdb.load_data(
+        path=file_path,
+        n_words=vocab_size,
+        valid_portion=val_fraction,
+        sort_by_len=False)
+    trainX, trainY = train
+    testX, testY = test
+
+    # Data preprocessing
+    # Sequence padding
+    trainX = pad_sequences(trainX, maxlen=FLAGS.max_len, value=0.)
+    testX = pad_sequences(testX, maxlen=FLAGS.max_len, value=0.)
+    # Converting labels to binary vectors
+    trainY = to_categorical(trainY, nb_classes=2)
+    testY = to_categorical(testY, nb_classes=2)
+
+    train_dataset = DataSet(trainX, trainY)
+
+    return train_dataset
+
+
+def main():
+    create_datasets('imdb.pkl')
+
+
+if __name__ == "__main__":
+    main()
diff --git a/benchmark/tensorflow/rnn/requirements.txt b/benchmark/tensorflow/rnn/requirements.txt
new file mode 100644
index 0000000000000000000000000000000000000000..4242e7d24fbbeb18e8fb9a760d76fa6d5363b03f
--- /dev/null
+++ b/benchmark/tensorflow/rnn/requirements.txt
@@ -0,0 +1 @@
+tflearn
diff --git a/benchmark/tensorflow/rnn/rnn.py b/benchmark/tensorflow/rnn/rnn.py
new file mode 100755
index 0000000000000000000000000000000000000000..f288083e13656563b511980553245142efec4e65
--- /dev/null
+++ b/benchmark/tensorflow/rnn/rnn.py
@@ -0,0 +1,223 @@
+#!/usr/bin/env python
+from six.moves import xrange  # pylint: disable=redefined-builtin
+import math
+import time
+import numpy as np
+from datetime import datetime
+
+import reader
+import tensorflow as tf
+from tensorflow.python.ops import rnn
+
+FLAGS = tf.app.flags.FLAGS
+
+tf.app.flags.DEFINE_integer('batch_size', 128, """Batch size.""")
+tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_integer('num_layers', 1, """Number of batches to run.""")
+tf.app.flags.DEFINE_integer('max_len', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_boolean('forward_only', False,
+                            """Only run the forward pass.""")
+tf.app.flags.DEFINE_boolean('forward_backward_only', False,
+                            """Only run the forward-forward pass.""")
+tf.app.flags.DEFINE_integer('hidden_size', 128, """Number of batches to run.""")
+tf.app.flags.DEFINE_integer('emb_size', 128, """Number of batches to run.""")
+tf.app.flags.DEFINE_boolean('log_device_placement', False,
+                            """Whether to log device placement.""")
+
+VOCAB_SIZE = 30000
+NUM_CLASS = 2
+
+
+def get_feed_dict(x_data, y_data=None):
+    feed_dict = {}
+
+    if y_data is not None:
+        feed_dict[y_input] = y_data
+
+    for i in xrange(x_data.shape[0]):
+        feed_dict[x_input[i]] = x_data[i, :, :]
+
+    return feed_dict
+
+
+def get_incoming_shape(incoming):
+    """ Returns the incoming data shape """
+    if isinstance(incoming, tf.Tensor):
+        return incoming.get_shape().as_list()
+    elif type(incoming) in [np.array, list, tuple]:
+        return np.shape(incoming)
+    else:
+        raise Exception("Invalid incoming layer.")
+
+
+# Note input * W is done in LSTMCell, 
+# which is different from PaddlePaddle
+def single_lstm(name,
+                incoming,
+                n_units,
+                use_peepholes=True,
+                return_seq=False,
+                return_state=False):
+    with tf.name_scope(name) as scope:
+        cell = tf.nn.rnn_cell.LSTMCell(n_units, use_peepholes=use_peepholes)
+        output, _cell_state = rnn.rnn(cell, incoming, dtype=tf.float32)
+        out = output if return_seq else output[-1]
+        return (out, _cell_state) if return_state else out
+
+
+def lstm(name,
+         incoming,
+         n_units,
+         use_peepholes=True,
+         return_seq=False,
+         return_state=False,
+         num_layers=1):
+    with tf.name_scope(name) as scope:
+        lstm_cell = tf.nn.rnn_cell.LSTMCell(
+            n_units, use_peepholes=use_peepholes)
+        cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)
+        initial_state = cell.zero_state(FLAGS.batch_size, dtype=tf.float32)
+        if not isinstance(incoming, list):
+            # if the input is embeding, the Tensor shape : [None, time_step, emb_size]
+            incoming = [
+                tf.squeeze(input_, [1])
+                for input_ in tf.split(1, FLAGS.max_len, incoming)
+            ]
+        outputs, state = tf.nn.rnn(cell,
+                                   incoming,
+                                   initial_state=initial_state,
+                                   dtype=tf.float32)
+        out = outputs if return_seq else outputs[-1]
+        return (out, _cell_state) if return_state else out
+
+
+def embedding(name, incoming, vocab_size, emb_size):
+    with tf.name_scope(name) as scope:
+        #with tf.device("/cpu:0"):
+        embedding = tf.get_variable(
+            name + '_emb', [vocab_size, emb_size], dtype=tf.float32)
+        out = tf.nn.embedding_lookup(embedding, incoming)
+        return out
+
+
+def fc(name, inpOp, nIn, nOut, act=True):
+    with tf.name_scope(name) as scope:
+        kernel = tf.get_variable(
+            name + '_w', [nIn, nOut],
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.01, dtype=tf.float32),
+            dtype=tf.float32)
+
+        biases = tf.get_variable(
+            name + '_b', [nOut],
+            initializer=tf.constant_initializer(
+                value=0.0, dtype=tf.float32),
+            dtype=tf.float32,
+            trainable=True)
+
+        net = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
+                  tf.matmul(inpOp, kernel) + biases
+
+        return net
+
+
+def inference(seq):
+    net = embedding('emb', seq, VOCAB_SIZE, FLAGS.emb_size)
+    print "emb:", get_incoming_shape(net)
+    net = lstm('lstm', net, FLAGS.hidden_size, num_layers=FLAGS.num_layers)
+    print "lstm:", get_incoming_shape(net)
+    net = fc('fc1', net, FLAGS.hidden_size, 2)
+    return net
+
+
+def loss(logits, labels):
+    # one label index for one sample
+    labels = tf.cast(labels, tf.float32)
+    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
+        logits, labels, name='cross_entropy_per_example')
+    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
+    tf.add_to_collection('losses', cross_entropy_mean)
+    return tf.add_n(tf.get_collection('losses'), name='total_loss')
+
+
+def time_tensorflow_run(session, target, x_input, y_input, info_string):
+    num_steps_burn_in = 50
+    total_duration = 0.0
+    total_duration_squared = 0.0
+    if not isinstance(target, list):
+        target = [target]
+    target_op = tf.group(*target)
+    train_dataset = reader.create_datasets("imdb.pkl", VOCAB_SIZE)
+    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
+        start_time = time.time()
+        data, label = train_dataset.next_batch(FLAGS.batch_size)
+        _ = session.run(target_op, feed_dict={x_input: data, y_input: label})
+        duration = time.time() - start_time
+        if i > num_steps_burn_in:
+            if not i % 10:
+                print('%s: step %d, duration = %.3f' %
+                      (datetime.now(), i - num_steps_burn_in, duration))
+            total_duration += duration
+            total_duration_squared += duration * duration
+    mn = total_duration / FLAGS.num_batches
+    vr = total_duration_squared / FLAGS.num_batches - mn * mn
+    sd = math.sqrt(vr)
+    print('%s: %s across %d steps, %.3f +/- %.3f sec / batch' %
+          (datetime.now(), info_string, FLAGS.num_batches, mn, sd))
+
+
+def run_benchmark():
+    with tf.Graph().as_default():
+        global_step = 0
+        with tf.device('/cpu:0'):
+            global_step = tf.Variable(0, trainable=False)
+        with tf.device('/gpu:0'):
+            #x_input = tf.placeholder(tf.int32, [None, FLAGS.max_len], name="x_input")
+            #y_input = tf.placeholder(tf.int32, [None, NUM_CLASS], name="y_input")
+            x_input = tf.placeholder(
+                tf.int32, [FLAGS.batch_size, FLAGS.max_len], name="x_input")
+            y_input = tf.placeholder(
+                tf.int32, [FLAGS.batch_size, NUM_CLASS], name="y_input")
+            # Generate some dummy sequnce.
+
+            last_layer = inference(x_input)
+
+            objective = loss(last_layer, y_input)
+            opt = tf.train.AdamOptimizer(0.001)
+            grads = opt.compute_gradients(objective)
+            apply_gradient_op = opt.apply_gradients(
+                grads, global_step=global_step)
+
+            init = tf.initialize_all_variables()
+            sess = tf.Session(config=tf.ConfigProto(
+                allow_soft_placement=True,
+                log_device_placement=FLAGS.log_device_placement))
+            sess.run(init)
+
+            run_forward = True
+            run_forward_backward = True
+            if FLAGS.forward_only and FLAGS.forward_backward_only:
+                raise ValueError("Cannot specify --forward_only and "
+                                 "--forward_backward_only at the same time.")
+            if FLAGS.forward_only:
+                run_forward_backward = False
+            elif FLAGS.forward_backward_only:
+                run_forward = False
+
+            if run_forward:
+                time_tensorflow_run(sess, last_layer, x_input, y_input,
+                                    "Forward")
+
+            if run_forward_backward:
+                with tf.control_dependencies([apply_gradient_op]):
+                    train_op = tf.no_op(name='train')
+                time_tensorflow_run(sess, [train_op, objective], x_input,
+                                    y_input, "Forward-backward")
+
+
+def main(_):
+    run_benchmark()
+
+
+if __name__ == '__main__':
+    tf.app.run()
diff --git a/benchmark/tensorflow/rnn/rnn_multi_gpu.py b/benchmark/tensorflow/rnn/rnn_multi_gpu.py
new file mode 100755
index 0000000000000000000000000000000000000000..eabee4fa8fe6325212ace1c11be4862cd2720b08
--- /dev/null
+++ b/benchmark/tensorflow/rnn/rnn_multi_gpu.py
@@ -0,0 +1,322 @@
+#!/usr/bin/env python
+from six.moves import xrange  # pylint: disable=redefined-builtin
+import re
+import math
+import time
+import numpy as np
+from datetime import datetime
+
+import reader
+import tensorflow as tf
+from tensorflow.python.ops import rnn
+
+FLAGS = tf.app.flags.FLAGS
+
+tf.app.flags.DEFINE_integer('batch_size', 64, """Batch size.""")
+tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_integer('num_layers', 1, """Number of batches to run.""")
+tf.app.flags.DEFINE_integer('max_len', 100, """Number of batches to run.""")
+tf.app.flags.DEFINE_integer('hidden_size', 128, """Number of batches to run.""")
+tf.app.flags.DEFINE_integer('emb_size', 64, """Number of batches to run.""")
+tf.app.flags.DEFINE_boolean('log_device_placement', False,
+                            """Whether to log device placement.""")
+tf.app.flags.DEFINE_integer('num_gpus', 4, """How many GPUs to use.""")
+
+VOCAB_SIZE = 30000
+NUM_CLASS = 2
+
+NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 50000
+NUM_EPOCHS_PER_DECAY = 50
+INITIAL_LEARNING_RATE = 0.1
+LEARNING_RATE_DECAY_FACTOR = 0.1
+TOWER_NAME = 'tower'
+
+train_dataset = reader.create_datasets("imdb.pkl", VOCAB_SIZE)
+
+
+def get_incoming_shape(incoming):
+    """ Returns the incoming data shape """
+    if isinstance(incoming, tf.Tensor):
+        return incoming.get_shape().as_list()
+    elif type(incoming) in [np.array, list, tuple]:
+        return np.shape(incoming)
+    else:
+        raise Exception("Invalid incoming layer.")
+
+
+# Note input * W is done in LSTMCell, 
+# which is different from PaddlePaddle
+def single_lstm(name,
+                incoming,
+                n_units,
+                use_peepholes=True,
+                return_seq=False,
+                return_state=False):
+    with tf.name_scope(name) as scope:
+        cell = tf.nn.rnn_cell.LSTMCell(n_units, use_peepholes=use_peepholes)
+        output, _cell_state = rnn.rnn(cell, incoming, dtype=tf.float32)
+        out = output if return_seq else output[-1]
+        return (out, _cell_state) if return_state else out
+
+
+def lstm(name,
+         incoming,
+         n_units,
+         use_peepholes=True,
+         return_seq=False,
+         return_state=False,
+         num_layers=1):
+    with tf.name_scope(name) as scope:
+        lstm_cell = tf.nn.rnn_cell.LSTMCell(
+            n_units, use_peepholes=use_peepholes)
+        cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell] * num_layers)
+        initial_state = cell.zero_state(FLAGS.batch_size, dtype=tf.float32)
+        if not isinstance(incoming, list):
+            # if the input is embeding, the Tensor shape : [None, time_step, emb_size]
+            incoming = [
+                tf.squeeze(input_, [1])
+                for input_ in tf.split(1, FLAGS.max_len, incoming)
+            ]
+        outputs, state = tf.nn.rnn(cell,
+                                   incoming,
+                                   initial_state=initial_state,
+                                   dtype=tf.float32)
+        out = outputs if return_seq else outputs[-1]
+        return (out, _cell_state) if return_state else out
+
+
+def embedding(name, incoming, vocab_size, emb_size):
+    with tf.name_scope(name) as scope:
+        #with tf.device("/cpu:0"):
+        embedding = tf.get_variable(
+            name + '_emb', [vocab_size, emb_size], dtype=tf.float32)
+        out = tf.nn.embedding_lookup(embedding, incoming)
+        return out
+
+
+def fc(name, inpOp, nIn, nOut, act=True):
+    with tf.name_scope(name) as scope:
+        kernel = tf.get_variable(
+            name + '_w', [nIn, nOut],
+            initializer=tf.truncated_normal_initializer(
+                stddev=0.01, dtype=tf.float32),
+            dtype=tf.float32)
+
+        biases = tf.get_variable(
+            name + '_b', [nOut],
+            initializer=tf.constant_initializer(
+                value=0.0, dtype=tf.float32),
+            dtype=tf.float32,
+            trainable=True)
+
+        net = tf.nn.relu_layer(inpOp, kernel, biases, name=name) if act else \
+                  tf.matmul(inpOp, kernel) + biases
+
+        return net
+
+
+def inference(seq):
+    net = embedding('emb', seq, VOCAB_SIZE, FLAGS.emb_size)
+    print "emb:", get_incoming_shape(net)
+    net = lstm('lstm', net, FLAGS.hidden_size, num_layers=FLAGS.num_layers)
+    print "lstm:", get_incoming_shape(net)
+    net = fc('fc1', net, FLAGS.hidden_size, 2)
+    return net
+
+
+def loss(logits, labels):
+    # one label index for one sample
+    #labels = tf.cast(labels, tf.int64)
+    # cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(
+    #                logits, labels, name='cross_entropy_per_example')
+    labels = tf.cast(labels, tf.float32)
+    cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
+        logits, labels, name='cross_entropy_per_example')
+    cross_entropy_mean = tf.reduce_mean(cross_entropy, name='cross_entropy')
+    tf.add_to_collection('losses', cross_entropy_mean)
+    return tf.add_n(tf.get_collection('losses'), name='total_loss')
+
+
+def tower_loss(scope):
+    """Calculate the total loss on a single tower running the model.
+    Args:
+        scope: unique prefix string identifying the tower, e.g. 'tower_0'
+    Returns:
+        Tensor of shape [] containing the total loss for a batch of data
+    """
+    data, label = train_dataset.next_batch(FLAGS.batch_size)
+
+    # Build a Graph that computes the logits predictions from the
+    # inference model.
+    last_layer = inference(data)
+
+    # Build the portion of the Graph calculating the losses. Note that we will
+    # assemble the total_loss using a custom function below.
+    #_ = loss(last_layer, label)
+    _ = loss(last_layer, label)
+
+    # Assemble all of the losses for the current tower only.
+    losses = tf.get_collection('losses', scope)
+
+    # Calculate the total loss for the current tower.
+    total_loss = tf.add_n(losses, name='total_loss')
+
+    # Compute the moving average of all individual losses and the total loss.
+    loss_averages = tf.train.ExponentialMovingAverage(0.9, name='avg')
+    loss_averages_op = loss_averages.apply(losses + [total_loss])
+
+    # Attach a scalar summary to all individual losses and the total loss; do the
+    # same for the averaged version of the losses.
+    for l in losses + [total_loss]:
+        # Remove 'tower_[0-9]/' from the name in case this is a multi-GPU training
+        # session. This helps the clarity of presentation on tensorboard.
+        loss_name = re.sub('%s_[0-9]*/' % TOWER_NAME, '', l.op.name)
+        # Name each loss as '(raw)' and name the moving average version of the loss
+        # as the original loss name.
+        tf.scalar_summary(loss_name + ' (raw)', l)
+        #tf.scalar_summary(loss_name, loss_averages.average(l))
+
+    with tf.control_dependencies([loss_averages_op]):
+        total_loss = tf.identity(total_loss)
+    return total_loss
+
+
+def average_gradients(tower_grads):
+    """Calculate the average gradient for each shared variable across all towers.
+  Note that this function provides a synchronization point across all towers.
+  Args:
+    tower_grads: List of lists of (gradient, variable) tuples. The outer list
+      is over individual gradients. The inner list is over the gradient
+      calculation for each tower.
+  Returns:
+     List of pairs of (gradient, variable) where the gradient has been averaged
+     across all towers.
+  """
+    average_grads = []
+    for grad_and_vars in zip(*tower_grads):
+        # Note that each grad_and_vars looks like the following:
+        #   ((grad0_gpu0, var0_gpu0), ... , (grad0_gpuN, var0_gpuN))
+        grads = []
+        for g, _ in grad_and_vars:
+            # Add 0 dimension to the gradients to represent the tower.
+            expanded_g = tf.expand_dims(g, 0)
+
+            # Append on a 'tower' dimension which we will average over below.
+            grads.append(expanded_g)
+
+        # Average over the 'tower' dimension.
+        grad = tf.concat(0, grads)
+        grad = tf.reduce_mean(grad, 0)
+
+        # Keep in mind that the Variables are redundant because they are shared
+        # across towers. So .. we will just return the first tower's pointer to
+        # the Variable.
+        v = grad_and_vars[0][1]
+        grad_and_var = (grad, v)
+        average_grads.append(grad_and_var)
+    return average_grads
+
+
+def time_tensorflow_run(session, target):
+    num_steps_burn_in = 80
+    total_duration = 0.0
+    total_duration_squared = 0.0
+    for i in xrange(FLAGS.num_batches + num_steps_burn_in):
+        start_time = time.time()
+        _ = session.run(target, feed_dict={x_input: data, y_input: label})
+        _, loss_value = session.run(target)
+        duration = time.time() - start_time
+        if i > num_steps_burn_in:
+            if not i % 10:
+                num_examples_per_step = FLAGS.batch_size * FLAGS.num_gpus
+                examples_per_sec = num_examples_per_step / duration
+                # sec_per_batch = duration / FLAGS.num_gpus
+                sec_per_batch = duration
+
+                format_str = (
+                    '%s: step %d, loss= %.2f (%.1f examples/sec; %.3f '
+                    'sec/batch batch_size= %d)')
+                print(format_str %
+                      (datetime.now(), i - num_steps_burn_in, loss_value,
+                       duration, sec_per_batch, num_examples_per_step))
+
+            total_duration += duration
+            total_duration_squared += duration * duration
+
+    mn = total_duration / FLAGS.num_batches
+    vr = total_duration_squared / FLAGS.num_batches - mn * mn
+    sd = math.sqrt(vr)
+    print('%s: FwdBwd across %d steps, %.3f +/- %.3f sec / batch' %
+          (datetime.now(), FLAGS.num_batches, mn, sd))
+
+
+def run_benchmark():
+    with tf.Graph().as_default(), tf.device('/cpu:0'):
+        # Create a variable to count the number of train() calls. This equals the
+        # number of batches processed * FLAGS.num_gpus.
+        global_step = tf.get_variable(
+            'global_step', [],
+            initializer=tf.constant_initializer(0),
+            trainable=False)
+
+        # Calculate the learning rate schedule.
+        num_batches_per_epoch = (NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN /
+                                 FLAGS.batch_size)
+        decay_steps = int(num_batches_per_epoch * NUM_EPOCHS_PER_DECAY)
+
+        # Create an optimizer that performs gradient descent.
+        opt = tf.train.AdamOptimizer(0.001)
+
+        #train_dataset = reader.create_datasets("imdb.pkl", VOCAB_SIZE)
+
+        # Calculate the gradients for each model tower.
+        tower_grads = []
+        for i in xrange(FLAGS.num_gpus):
+            with tf.device('/gpu:%d' % i):
+                with tf.name_scope('%s_%d' % (TOWER_NAME, i)) as scope:
+                    # Calculate the loss for one tower of the model. This function
+                    # constructs the entire model but shares the variables across
+                    # all towers.
+                    loss = tower_loss(scope)
+
+                    # Reuse variables for the next tower.
+                    tf.get_variable_scope().reuse_variables()
+
+                    # Retain the summaries from the final tower.
+                    # summaries = tf.get_collection(tf.GraphKeys.SUMMARIES, scope)
+
+                    # Calculate the gradients for the batch of data on this tower.
+                    grads = opt.compute_gradients(loss)
+
+                    # Keep track of the gradients across all towers.
+                    tower_grads.append(grads)
+
+        # We must calculate the mean of each gradient. Note that this is the
+        # synchronization point across all towers.
+        grads = average_gradients(tower_grads)
+
+        # Apply the gradients to adjust the shared variables.
+        apply_gradient_op = opt.apply_gradients(grads, global_step=global_step)
+
+        # Group all updates to into a single train op.
+        train_op = tf.group(apply_gradient_op)
+
+        # Build an initialization operation.
+        init = tf.initialize_all_variables()
+
+        # Start running operations on the Graph. allow_soft_placement must be set to
+        # True to build towers on GPU, as some of the ops do not have GPU
+        # implementations.
+        sess = tf.Session(config=tf.ConfigProto(
+            allow_soft_placement=True,
+            log_device_placement=FLAGS.log_device_placement))
+        sess.run(init)
+        time_tensorflow_run(sess, [train_op, loss])
+
+
+def main(_):
+    run_benchmark()
+
+
+if __name__ == '__main__':
+    tf.app.run()
diff --git a/benchmark/tensorflow/rnn/run.sh b/benchmark/tensorflow/rnn/run.sh
new file mode 100755
index 0000000000000000000000000000000000000000..bb4c69cb95f965eff35f1c5a60376bf1e84f841b
--- /dev/null
+++ b/benchmark/tensorflow/rnn/run.sh
@@ -0,0 +1,29 @@
+set -e
+
+function test() {
+  lstm_num=$1
+  batch_size=$2
+  hid_size=$3
+  prefix=$4
+  python rnn.py --num_layers=${lstm_num} --batch_size=$batch_size \
+      --hidden_size=${hid_size} \
+      --forward_backward_only=1 \
+       > logs/1gpu-${lstm_num}lstm-batch${batch_size}-hid${hid_size}.log 2>&1
+}
+
+if [ ! -d "logs" ]; then
+  mkdir logs
+fi
+
+#--lstm_num--batch_size--hidden_size--#
+test 2 64 256 
+test 2 64 512 
+test 2 64 1280 
+
+test 2 128 256 
+test 2 128 512 
+test 2 128 1280 
+
+test 2 256 256 
+test 2 256 512 
+test 2 256 1280 
diff --git a/benchmark/tensorflow/rnn/run_multi.sh b/benchmark/tensorflow/rnn/run_multi.sh
new file mode 100755
index 0000000000000000000000000000000000000000..f7f52e01e38d304bb3bf8185c53bd0da26014d3a
--- /dev/null
+++ b/benchmark/tensorflow/rnn/run_multi.sh
@@ -0,0 +1,28 @@
+set -e
+
+function test() {
+  num_gpu=$1
+  lstm_num=$2
+  hid_size=$3
+  batch_per_gpu=`expr ${batch_size} / ${num_gpu}`
+  batch_size=$4
+  python rnn_multi_gpu.py --num_layers=${lstm_num} --batch_size=$batch_per_gpu \
+      --num_gpus=${num_gpu} \
+      --hidden_size=${hid_size} \
+      --forward_backward_only=1 \
+      > logs/${num_gpu}gpu-${lstm_num}lstm-hid${hid_size}-batch${batch_size}.log 2>&1
+}
+
+if [ ! -d "logs" ]; then
+  mkdir logs
+fi
+
+#--num_gpus--lstm_num--hiddne_size--batch_size--#
+test 4 2 256 128 
+test 4 2 256 256 
+test 4 2 256 512 
+
+test 4 2 512 128 
+test 4 2 512 256 
+test 4 2 512 512 
+
diff --git a/demo/image_classification/predict.sh b/demo/image_classification/predict.sh
old mode 100644
new mode 100755
diff --git a/demo/semantic_role_labeling/predict.sh b/demo/semantic_role_labeling/predict.sh
old mode 100644
new mode 100755
diff --git a/demo/semantic_role_labeling/test.sh b/demo/semantic_role_labeling/test.sh
old mode 100644
new mode 100755
diff --git a/demo/semantic_role_labeling/train.sh b/demo/semantic_role_labeling/train.sh
old mode 100644
new mode 100755
diff --git a/demo/seqToseq/dataprovider.py b/demo/seqToseq/dataprovider.py
index c5da1b7685f47fda337921c7c60ac1497b9e48bb..5174092df26089bc5661a7d98da62dc7a124c54d 100755
--- a/demo/seqToseq/dataprovider.py
+++ b/demo/seqToseq/dataprovider.py
@@ -19,27 +19,44 @@ START = "<s>"
 END = "<e>"
 
 
-def hook(settings, src_dict, trg_dict, file_list, **kwargs):
+def hook(settings, src_dict_path, trg_dict_path, is_generating, file_list,
+         **kwargs):
     # job_mode = 1: training mode
     # job_mode = 0: generating mode
-    settings.job_mode = trg_dict is not None
-    settings.src_dict = src_dict
+    settings.job_mode = not is_generating
+    settings.src_dict = dict()
+    with open(src_dict_path, "r") as fin:
+        settings.src_dict = {
+            line.strip(): line_count
+            for line_count, line in enumerate(fin)
+        }
+    settings.trg_dict = dict()
+    with open(trg_dict_path, "r") as fin:
+        settings.trg_dict = {
+            line.strip(): line_count
+            for line_count, line in enumerate(fin)
+        }
+
     settings.logger.info("src dict len : %d" % (len(settings.src_dict)))
     settings.sample_count = 0
 
     if settings.job_mode:
-        settings.trg_dict = trg_dict
-        settings.slots = [
+        settings.slots = {
+            'source_language_word':
             integer_value_sequence(len(settings.src_dict)),
+            'target_language_word':
             integer_value_sequence(len(settings.trg_dict)),
+            'target_language_next_word':
             integer_value_sequence(len(settings.trg_dict))
-        ]
+        }
         settings.logger.info("trg dict len : %d" % (len(settings.trg_dict)))
     else:
-        settings.slots = [
+        settings.slots = {
+            'source_language_word':
             integer_value_sequence(len(settings.src_dict)),
+            'sent_id':
             integer_value_sequence(len(open(file_list[0], "r").readlines()))
-        ]
+        }
 
 
 def _get_ids(s, dictionary):
@@ -69,6 +86,10 @@ def process(settings, file_name):
                     continue
                 trg_ids_next = trg_ids + [settings.trg_dict[END]]
                 trg_ids = [settings.trg_dict[START]] + trg_ids
-                yield src_ids, trg_ids, trg_ids_next
+                yield {
+                    'source_language_word': src_ids,
+                    'target_language_word': trg_ids,
+                    'target_language_next_word': trg_ids_next
+                }
             else:
-                yield src_ids, [line_count]
+                yield {'source_language_word': src_ids, 'sent_id': [line_count]}
diff --git a/demo/seqToseq/seqToseq_net.py b/demo/seqToseq/seqToseq_net.py
index ad5e3339c1461de06732eb62aca9e8323eea707b..fc9db05ba706ee6eff6eb0ce0885a645ebd76340 100644
--- a/demo/seqToseq/seqToseq_net.py
+++ b/demo/seqToseq/seqToseq_net.py
@@ -37,17 +37,10 @@ def seq_to_seq_data(data_dir,
     """
     src_lang_dict = os.path.join(data_dir, 'src.dict')
     trg_lang_dict = os.path.join(data_dir, 'trg.dict')
-    src_dict = dict()
-    for line_count, line in enumerate(open(src_lang_dict, "r")):
-        src_dict[line.strip()] = line_count
-    trg_dict = dict()
-    for line_count, line in enumerate(open(trg_lang_dict, "r")):
-        trg_dict[line.strip()] = line_count
 
     if is_generating:
         train_list = None
         test_list = os.path.join(data_dir, gen_list)
-        trg_dict = None
     else:
         train_list = os.path.join(data_dir, train_list)
         test_list = os.path.join(data_dir, test_list)
@@ -57,8 +50,11 @@ def seq_to_seq_data(data_dir,
         test_list,
         module="dataprovider",
         obj="process",
-        args={"src_dict": src_dict,
-              "trg_dict": trg_dict})
+        args={
+            "src_dict_path": src_lang_dict,
+            "trg_dict_path": trg_lang_dict,
+            "is_generating": is_generating
+        })
 
     return {
         "src_dict_path": src_lang_dict,
diff --git a/doc/conf.py.in b/doc/conf.py.in
index 3d3bb9e8d5e40cd4781947f5907fce2597b028e5..5fb307e3a9b572f14789dec3707611f336a5d44f 100644
--- a/doc/conf.py.in
+++ b/doc/conf.py.in
@@ -23,7 +23,7 @@ AutoStructify = transform.AutoStructify
 # documentation root, use os.path.abspath to make it absolute, like shown here.
 sys.path.insert(0, '@PROJ_ROOT@/python')
 
-templates_path = ["@PROJ_ROOT@/doc/templates"]
+templates_path = ["@PROJ_ROOT@/doc_theme/templates"]
 
 # -- General configuration ------------------------------------------------
 
@@ -113,13 +113,12 @@ todo_include_todos = False
 
 # The theme to use for HTML and HTML Help pages.  See the documentation for
 # a list of builtin themes.
-#html_theme = 'sphinx_rtd_theme'
-html_theme = 'classic'
+html_theme = 'sphinx_rtd_theme'
 
 # Add any paths that contain custom static files (such as style sheets) here,
 # relative to this directory. They are copied after the builtin static files,
 # so a file named "default.css" will overwrite the builtin "default.css".
-html_static_path = ['_static']
+html_static_path = ['@PROJ_ROOT@/doc_theme/static']
 
 # Output file base name for HTML help builder.
 htmlhelp_basename = project + 'doc'
diff --git a/doc/getstarted/build_and_install/docker_install.rst b/doc/getstarted/build_and_install/docker_install.rst
index 5f272aabd7c2213b89f6a6b42be34c9c492d89bd..5abb3b9a3f201c6258d712f848d865bb3be4d514 100644
--- a/doc/getstarted/build_and_install/docker_install.rst
+++ b/doc/getstarted/build_and_install/docker_install.rst
@@ -1,45 +1,55 @@
-Using and Building Docker Images
-================================
+PaddlePaddle in Docker Containers
+=================================
 
-We release PaddlePaddle in the form of `Docker <https://www.docker.com/>`_ images on `dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_.   Running as Docker containers is currently the only officially-supported way to running PaddlePaddle.
+Docker container is currently the only officially-supported way to
+running PaddlePaddle.  This is reasonable as Docker now runs on all
+major operating systems including Linux, Mac OS X, and Windows.
+Please be aware that you will need to change `Dockers settings
+<https://github.com/PaddlePaddle/Paddle/issues/627>`_ to make full use
+of your hardware resource on Mac OS X and Windows.
 
-Run Docker images
------------------
 
-For each version of PaddlePaddle, we release 4 variants of Docker images:
+CPU-only and GPU Images
+-----------------------
 
-+-----------------+-------------+-------+
-|                 |   CPU AVX   |  GPU  |
-+=================+=============+=======+
-|       cpu       |   yes       |  no   |
-+-----------------+-------------+-------+
-|    cpu-noavx    |   no        |  no   |
-+-----------------+-------------+-------+
-|       gpu       |   yes       |  yes  |
-+-----------------+-------------+-------+
-|    gpu-noavx    |   no        |  yes  |
-+-----------------+-------------+-------+
+For each version of PaddlePaddle, we release 2 Docker images, a
+CPU-only one and a CUDA GPU one.  We do so by configuring
+`dockerhub.com <https://hub.docker.com/r/paddledev/paddle/>`_
+automatically runs the following commands:
 
-We run the following command on Linux to check if the CPU supports :code:`AVX`.
+.. code-block:: base
 
-.. code-block:: bash
+   docker build -t paddle:cpu -f paddle/scripts/docker/Dockerfile .
+   docker build -t paddle:gpu -f paddle/scripts/docker/Dockerfile.gpu .
 
-   if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
 
-On Mac OS X, we need to run
+To run the CPU-only image as an interactive container:
 
 .. code-block:: bash
 
-   sysctl -a | grep machdep.cpu.leaf7_features
+    docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
+
+or, we can run it as a daemon container
+
+.. code-block:: bash
 
+    docker run -d -p 2202:22 paddledev/paddle:cpu-latest
 
-Once we determine the proper variant, we can cope with the Docker image tag name by appending the version number.  For example, the following command runs the AVX-enabled image of the most recent version:
+and SSH to this container using password :code:`root`:
 
 .. code-block:: bash
 
-    docker run -it --rm paddledev/paddle:cpu-latest /bin/bash
+    ssh -p 2202 root@localhost
+
+An advantage of using SSH is that we can connect to PaddlePaddle from
+more than one terminals.  For example, one terminal running vi and
+another one running Python interpreter.  Another advantage is that we
+can run the PaddlePaddle container on a remote server and SSH to it
+from a laptop.
 
-To run a GPU-enabled image, you need to install CUDA and let Docker knows about it:
+
+Above methods work with the GPU image too -- just please don't forget
+to install CUDA driver and let Docker knows about it:
 
 .. code-block:: bash
 
@@ -47,35 +57,49 @@ To run a GPU-enabled image, you need to install CUDA and let Docker knows about
     export DEVICES=$(\ls /dev/nvidia* | xargs -I{} echo '--device {}:{}')
     docker run ${CUDA_SO} ${DEVICES} -it paddledev/paddle:gpu-latest
 
-The default entry point of all our Docker images starts the OpenSSH server.  To run PaddlePaddle and to expose OpenSSH port to 2202 on the host computer:
+
+Non-AVX Images
+--------------
+
+Please be aware that the CPU-only and the GPU images both use the AVX
+instruction set, but old computers produced before 2008 do not support
+AVX.  The following command checks if your Linux computer supports
+AVX:
 
 .. code-block:: bash
 
-    docker run -d -p 2202:22 paddledev/paddle:cpu-latest
+   if cat /proc/cpuinfo | grep -i avx; then echo Yes; else echo No; fi
 
-Then we can login to the container using username :code:`root` and password :code:`root`:
+
+If it doesn't, we will need to build non-AVX images manually from
+source code:
 
 .. code-block:: bash
 
-    ssh -p 2202 root@localhost
+   cd ~
+   git clone github.com/PaddlePaddle/Paddle
+   cd Paddle
+   docker build --build-arg WITH_AVX=OFF -t paddle:cpu-noavx -f paddle/scripts/docker/Dockerfile .
+   docker build --build-arg WITH_AVX=OFF -t paddle:gpu-noavx -f paddle/scripts/docker/Dockerfile.gpu .
 
 
-Build Docker images
--------------------
+Documentation
+-------------
 
-Developers might want to build Docker images from their local commit or from a tagged version.  Suppose that your local repo is at :code:`~/work/Paddle`, the following steps builds a cpu variant from your current work:
+Paddle Docker images include an HTML version of C++ source code
+generated using `woboq code browser
+<https://github.com/woboq/woboq_codebrowser>`_.  This makes it easy
+for users to browse and understand the C++ source code.
 
-.. code-block:: bash
+As long as we give the Paddle Docker container a name, we can run an
+additional nginx Docker container to serve the volume from the Paddle
+container:
 
-  cd ~/Paddle
-  ./paddle/scripts/docker/generates.sh # Use m4 to generate Dockerfiles for each variant.
-  docker build -t paddle:latest -f ./paddle/scripts/docker/Dockerfile.cpu
+.. code-block:: bash
 
-As a release engineer, you might want to build Docker images for a certain version and publish them to dockerhub.com.  You can do this by switching to the right Git tag, or create a new tag, before running `docker build`.  For example, the following commands build Docker images for v0.9.0:
+   docker run -d --name paddle-cpu-doc paddle:cpu
+   docker run -d --volumes-from paddle-cpu-doc -p 8088:80 nginx
 
-.. code-block:: bash
 
-   cd ~/Paddle
-   git checkout tags/v0.9.0
-   ./paddle/scripts/docker/generates.sh # Use m4 to generate Dockerfiles for each variant.
-   docker build -t paddle:cpu-v0.9.0 -f ./paddle/scripts/docker/Dockerfile.cpu
+Then we can direct our Web browser to the HTML version of source code
+at http://localhost:8088/paddle/
diff --git a/doc/howto/cmd_parameter/arguments.md b/doc/howto/cmd_parameter/arguments.md
index d6cc2c6ed7cc1b9209d56b4348497427efe40ac3..013edbc9047817d7f6b82c4d5188412bd2ce41d6 100644
--- a/doc/howto/cmd_parameter/arguments.md
+++ b/doc/howto/cmd_parameter/arguments.md
@@ -143,7 +143,7 @@ It looks like there are a lot of arguments. However, most of them are for develo
 </tr>
 
 <tr>
-<td class="left" rowspan = "2">testing during training</td><td class="left">test_all_data_in_one_period</td>
+<td class="left" rowspan = "2">testing during training</td><td class="left">test_period</td>
 <td class="left">√</td><td class="left">√</td><td class="left"></td><td class="left"></td>
 </tr>
 
diff --git a/doc/howto/cmd_parameter/detail_introduction.md b/doc/howto/cmd_parameter/detail_introduction.md
index 07608e5edf740bd3e1242913f1d2d7589ad313aa..510396b629e398cef2ccda2f1cec474160693219 100644
--- a/doc/howto/cmd_parameter/detail_introduction.md
+++ b/doc/howto/cmd_parameter/detail_introduction.md
@@ -31,7 +31,7 @@
   - type: string (default: null).
 
 * `--version`
-  - Whether to print version infomatrion.
+  - Whether to print version information.
   - type: bool (default: 0).
 
 * `--show_layer_stat`
@@ -110,8 +110,8 @@
   - type: int32 (default: -1).
 
 * `--test_period`
-  - Run testing every test_period train batches. If not set, run testing each pass.
-  - type: int32 (default: 1000).
+   - if equal 0, do test on all test data at the end of each pass. While if equal non-zero, do test on all test data every test_period batches.
+  - type: int32 (default: 0).
 
 * `--test_wait`
   - Whether to wait for parameter per pass if not exist. If set test_data_path in submitting environment of cluster, it will launch one process to perfom testing, so we need to set test_wait=1. Note that in the cluster submitting environment, this argument has been set True by default.
@@ -121,10 +121,6 @@
   - File that saves the model list when testing. It was set automatically when using cluster submitting environment after setting model_path.
   - type: string (default: "", null).
 
-* `--test_all_data_in_one_period`
-  - This argument is usually used in testing period during traning. If true, all data will be tested in one test period. Otherwise (batch_size * log_peroid) data will be tested.
-  - type: bool (default: 0).
-
 * `--predict_output_dir`
   - Directory that saves the layer output. It is configured in Outputs() in network config. Default, this argument is null, meaning save nothing. Specify this directory if you want to save feature map of some layers in testing mode. Note that, layer outputs are values after activation function.
   - type: string (default: "", null).
diff --git a/doc/howto/cmd_parameter/use_case.md b/doc/howto/cmd_parameter/use_case.md
index a6bfba29af4f73055338c3a671bcafaa1456c7cf..4d7bb33f36fe258ee24796eedc9296065923e58f 100644
--- a/doc/howto/cmd_parameter/use_case.md
+++ b/doc/howto/cmd_parameter/use_case.md
@@ -10,9 +10,8 @@ paddle train \
   --config=network_config \
   --save_dir=output \
   --trainer_count=COUNT \                #(default:1)
-  --test_period=M \                      #(default:1000)
-  --test_all_data_in_one_period=true \   #(default:false) 
-  --num_passes=N \                       #(defalut:100)
+  --test_period=M \                      #(default:0) 
+  --num_passes=N \                       #(defalut:100)
   --log_period=K \                       #(default:100)
   --dot_period=1000 \                    #(default:1)
   #[--show_parameter_stats_period=100] \ #(default:0)
diff --git a/doc_cn/conf.py.in b/doc_cn/conf.py.in
index 93242ace406000c84414bcabe1ecb683b9ff3cea..421e0c298d4430082b5ba7ef317408fc5c32cda7 100644
--- a/doc_cn/conf.py.in
+++ b/doc_cn/conf.py.in
@@ -22,7 +22,7 @@ AutoStructify = transform.AutoStructify
 # add these directories to sys.path here. If the directory is relative to the
 # documentation root, use os.path.abspath to make it absolute, like shown here.
 sys.path.insert(0, '@PROJ_ROOT@/python')
-templates_path = ["@PROJ_ROOT@/doc/templates"]
+templates_path = ["@PROJ_ROOT@/doc_theme/templates"]
 
 # -- General configuration ------------------------------------------------
 
@@ -112,12 +112,12 @@ todo_include_todos = False
 
 # The theme to use for HTML and HTML Help pages.  See the documentation for
 # a list of builtin themes.
-#html_theme = 'sphinx_rtd_theme'  # sphinx_rtd_theme will cause table bad style
-html_theme = 'classic'
+html_theme = 'sphinx_rtd_theme'
+
 # Add any paths that contain custom static files (such as style sheets) here,
 # relative to this directory. They are copied after the builtin static files,
 # so a file named "default.css" will overwrite the builtin "default.css".
-html_static_path = ['_static']
+html_static_path = ['@PROJ_ROOT@/doc_theme/static']
 
 # Output file base name for HTML help builder.
 htmlhelp_basename = project + 'doc'
diff --git a/doc_cn/faq/index.rst b/doc_cn/faq/index.rst
index 551430eb41765673700b7c6568e4b483641f2cac..f611255aaccd54f079c04dd509454bfd08af1307 100644
--- a/doc_cn/faq/index.rst
+++ b/doc_cn/faq/index.rst
@@ -202,3 +202,53 @@ PaddlePaddle的参数使用名字 :code:`name` 作为参数的ID,相同名字
 解决办法是:
 
 * 卸载PaddlePaddle包 :code:`pip uninstall paddle`, 清理掉老旧的PaddlePaddle安装包,使得单元测试有一个干净的环境。如果PaddlePaddle包已经在python的site-packages里面,单元测试会引用site-packages里面的python包,而不是源码目录里 :code:`/python` 目录下的python包。同时,即便设置 :code:`PYTHONPATH` 到 :code:`/python` 也没用,因为python的搜索路径是优先已经安装的python包。
+
+9. CMake源码编译, 找到的PythonLibs和PythonInterp版本不一致
+----------------------------------------------------------
+
+这是目前CMake寻找Python的逻辑存在缺陷,如果系统安装了多个Python版本,CMake找到的Python库和Python解释器版本可能有不一致现象,导致编译PaddlePaddle失败。正确的解决方法是,
+用户强制指定特定的Python版本,具体操作如下:
+
+    ..  code-block:: bash
+        
+        cmake .. -DPYTHON_EXECUTABLE=<exc_path> -DPYTHON_LIBRARY=<lib_path>  -DPYTHON_INCLUDE_DIR=<inc_path>
+
+用户需要指定本机上Python的路径:``<exc_path>``, ``<lib_path>``, ``<inc_path>``
+
+10. A protocol message was rejected because it was too big
+----------------------------------------------------------
+
+如果在训练NLP相关模型时,出现以下错误:
+
+..  code-block:: bash
+
+    [libprotobuf ERROR google/protobuf/io/coded_stream.cc:171] A protocol message was rejected because it was too big (more than 67108864 bytes).  To increase the limit (or to disable these warnings), see CodedInputStream::SetTotalBytesLimit() in google/protobuf/io/coded_stream.h.
+    F1205 14:59:50.295174 14703 TrainerConfigHelper.cpp:59] Check failed: m->conf.ParseFromString(configProtoStr) 
+
+可能的原因是:传给dataprovider的某一个args过大,一般是由于直接传递大字典导致的。错误的define_py_data_sources2类似:
+
+..  code-block:: python
+
+     src_dict = dict()
+     for line_count, line in enumerate(open(src_dict_path, "r")):
+        src_dict[line.strip()] = line_count
+
+     define_py_data_sources2(
+        train_list,
+        test_list,
+        module="dataprovider",
+        obj="process",
+        args={"src_dict": src_dict})
+
+解决方案是:将字典的地址作为args传给dataprovider,然后在dataprovider里面根据该地址加载字典。即define_py_data_sources2应改为:
+
+..  code-block:: python
+
+     define_py_data_sources2(
+        train_list,
+        test_list,
+        module="dataprovider",
+        obj="process",
+        args={"src_dict_path": src_dict_path})
+
+完整源码可参考 `seqToseq <https://github.com/PaddlePaddle/Paddle/tree/develop/demo/seqToseq>`_ 示例。
\ No newline at end of file
diff --git a/doc_cn/howto/build_docker_image.rst b/doc_cn/howto/build_docker_image.rst
index 16887672f7afe4963e42c632959bd2200c18607f..c23d26babe84f5b3a61644a59e28ec16933a811f 100644
--- a/doc_cn/howto/build_docker_image.rst
+++ b/doc_cn/howto/build_docker_image.rst
@@ -18,13 +18,13 @@ PaddlePaddle的Docker Image构建源码放置在 ``${源码根目录}/paddle/scr
 ..  code-block:: bash
 
     cd ${源码根目录}/paddle/scripts/docker/
-    docker build --build-arg LOWEST_DL_SPEED=50K\
+    docker build --build-arg LOWEST_DL_SPEED=50K \
                  --build-arg WITH_GPU=ON \
                  --tag  paddle_gpu:latest .
 
 其中,``--build-arg`` 传入的配置参数包括:
 
-- LOWEST\_DL\_SPEED\: 在多线程下载过程中,设置下线线程的最低速度。
+- LOWEST\_DL\_SPEED\: 在多线程下载过程中,设置下载线程的最低速度。
 
   - 默认单位是Bytes,但可以传入10K、10M、或10G等这样的单位。
   - 如果小于这个速度,那么这个线程将会关闭。当所有的线程都关闭了,那么下载进程将会重启。
diff --git a/doc_theme/static/css/override.css b/doc_theme/static/css/override.css
new file mode 100644
index 0000000000000000000000000000000000000000..460460805fb59a85096bf43748d25eb21817709d
--- /dev/null
+++ b/doc_theme/static/css/override.css
@@ -0,0 +1,925 @@
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+body {
+    padding-top: 80px;
+    background-image: none !important;
+    font-family: Roboto;
+}
+a, a:focus, a:hover, a:visited {
+    color: #597cf1;
+}
+.site-header {
+    position: fixed;
+    top: 0;
+    width: 100%;
+    left: 0;
+    z-index: 99;
+    background: #333;
+    height: 80px;
+    display: -webkit-flex;
+    display: -ms-flex;
+    display: -o-flex;
+    display: flex;
+    flex-flow: row nowrap;
+    justify-content: space-between;
+    box-shadow: #ccc 0 3px 3px;
+}
+.site-header > div {
+    height: 80px;
+    display: inline-block;
+    background-color: #2f323a;
+    padding: 0 30px;
+}
+.site-header .site-logo {
+    line-height: 80px;
+    width: 290px;
+    flex: 0 1 290px;
+}
+.site-header .site-logo > a {
+    display: inline-block;
+    width: 230px;
+}
+.site-header .site-nav-links {
+    flex: 0 1 100%;
+}
+.site-header .site-nav-links .site-menu {
+    height: 30px;
+    line-height: 30px; 
+    font-size: 12px;
+    background: -webkit-linear-gradient(#282b33, #2f323a);
+    background: -o-linear-gradient(#282b33, #2f323a);
+    background: -moz-linear-gradient(#282b33, #2f323a);
+    background: linear-gradient(to left, #282b33, #2f323a);
+    margin-right: -30px;
+    padding-right: 30px;
+}
+.site-header .site-nav-links .site-menu .site-page-links {
+    display: inline-block;
+    float: right;
+    margin-right: 20px;
+}
+.site-header .site-nav-links .site-menu .site-page-links> li {
+    display: inline-block;
+    float: left;
+}
+.site-header .site-nav-links .site-menu .site-page-links > li > a {
+    color: #a7adbd;
+    display: inline-block;
+    height: 30px;
+    padding: 0 20px;
+    font-size: 12px;
+}
+.site-header .site-nav-links .site-menu .site-page-links > li:hover > a,
+.site-header .site-nav-links .site-menu .site-page-links > li.active > a {
+    background-color: #2f323a;
+    color: #bcc1d0;
+}
+.site-header .site-nav-links .site-menu .site-page-links > li.active > a {
+    font-weight: bold;
+}
+.site-header .site-nav-links .site-menu .fork-on-github {
+    color: #597cf1;
+    line-height: 30px;
+    display: inline-block;
+    padding: 0 0 0 20px;
+    float: right;
+    position: relative;
+}
+.site-header .site-nav-links .site-menu .fork-on-github .fa {
+    margin-right: 5px;
+    font-size: 16px;
+    vertical-align: middle;
+}
+.site-header .site-nav-links .site-menu .language-switcher {
+    height: 30px;
+    display: inline-block;
+    float: right;
+    line-height: 30px;
+    padding: 0 20px;
+    position: relative;
+}
+.site-header .site-nav-links .site-menu .language-switcher > a {
+    color: #a7adbd;
+}
+.site-header .site-nav-links .site-menu .language-switcher.open > a {
+    background-color: #24272f;
+    color: #bcc1d0;
+}
+.site-header .site-nav-links .site-menu .language-switcher .fa {
+    margin-left: 5px;
+}
+.site-header .site-nav-links .site-menu .language-switcher .fa-angle-down {
+    display: inline;
+}
+.site-header .site-nav-links .site-menu .language-switcher.open .fa-angle-down {
+    display: none;
+}
+.site-header .site-nav-links .site-menu .language-switcher .fa-angle-up {
+    display: none;
+}
+.site-header .site-nav-links .site-menu .language-switcher.open .fa-angle-up {
+    display: inline;
+}
+.site-header .site-nav-links .site-menu .fork-on-github:before,
+.site-header .site-nav-links .site-menu .language-switcher:before {
+    width: 1px;
+    height: 12px;
+    top: 9px;
+    background-color: #3a3d47;
+    left: 0;
+    display: inline-block;
+    position: absolute;
+    content: "";
+}
+.site-header .site-nav-links .site-menu .language-switcher .dropdown-menu {
+    display: none;
+    position: absolute;
+    box-shadow: #ccc 0 0 5px;
+    background-color: #fff;
+    width: 100%;
+    left: 0;
+    top: 30px;
+}
+.site-header .site-nav-links .site-menu .language-switcher .dropdown-menu > li {
+    line-height: 30px;
+    padding: 0 20px;
+}
+.site-header .site-nav-links .site-menu .language-switcher .dropdown-menu > li:hover {
+    background-color: #f7f8fe;
+}
+.site-header .site-nav-links .site-menu .language-switcher .dropdown-menu > li + li {
+    border-top: 1px solid #dedfe5;
+}
+.site-header .site-nav-links .site-menu .language-switcher .dropdown-menu > li > a {
+    color: #2f323a;
+}
+.site-header .site-nav-links .site-menu .language-switcher.open .dropdown-menu {
+    display: inline-block;
+}
+.site-header .site-nav-links .doc-module {
+    display: block;
+    height: 50px;
+    line-height: 50px;
+}
+.site-header .site-nav-links .doc-module > ul > li {
+    display: inline-block;
+    float: left;
+}
+.site-header .site-nav-links .doc-module > ul > li > a {
+    color: #c9cbd0;
+    font-size: 14px;
+    display: inline-block;
+    height: 50px;
+    line-height: 50px;
+    border-bottom: 2px solid transparent;
+    padding: 0 20px;
+}
+.site-header .site-nav-links .doc-module > ul > li:hover > a {
+    color: #fff;
+}
+.site-header .site-nav-links .doc-module > ul > li.current > a {
+    border-bottom-color: #fff;
+    color: #fff;
+}
+.site-header .site-nav-links .doc-module [role="search"]{
+    float: right;
+}
+.site-header .site-nav-links .doc-module [role="search"] input {
+    background-color: #3a3d47;
+    border-radius: 15px;
+    color: #a7adbd;
+    border: 1px solid transparent;
+    padding: 6px 15px;
+    width: 180px;
+    box-shadow: none;
+    transition: all .2s;
+    -webkit-transition: all .2s;
+    -moz-transition: all .2s;
+    -o-transition: all .2s;
+    background-repeat: no-repeat;
+    background-position: 145px center;
+    background-image: url("");
+}
+.site-header .site-nav-links .doc-module [role="search"] input:focus {
+   width: 300px;
+}
+.site-header .site-nav-links .doc-module [role="search"] input:focus {
+    background-position: 265px center;
+}
+.site-header .site-nav-links .doc-module [role="search"] input:hover,
+.site-header .site-nav-links .doc-module [role="search"] input:focus {
+   color: #fff;
+   border-color: #597cf1;
+   background-image: url("");
+}
+.doc-menu-vertical {
+    display: inline-block;
+    float: left;
+    width: 240px;
+    height: 100%;
+    background-color: #ecedee;
+    position: absolute;
+    left: 0;
+    top: 0;
+    overflow: hidden;
+    padding: 0;
+    border-right: 1px solid #dddfe3;
+}
+.doc-menu-vertical > ul {
+    display: none;
+}
+.doc-menu-vertical > ul.current{
+    display: block;
+}
+.doc-menu-vertical > ul.current > li.toctree-l1 {
+    display: none;
+}
+.doc-menu-vertical > ul.current > li.toctree-l1.current {
+    display: block;
+}
+.doc-menu-vertical > ul.current > li.toctree-l1.current > a {
+    display: none;
+}
+.doc-menu-vertical .toctree-l2  a {
+    width: 100%;
+    overflow: hidden;
+    text-overflow: ellipsis;
+    white-space: nowrap;
+    padding-right: 30px;
+}
+.doc-menu-vertical .toctree-l2 > a {
+    font-size: 14px;
+    color: #2f323a;
+    padding-left: 30px;
+    line-height: 50px;
+    display: block;
+    font-weight: bold;
+    border-bottom: 1px solid #dddfe3;
+}
+.doc-menu-vertical .toctree-l2.has-child > a:after {
+    font-family: "FontAwesome";
+    display: inline-block;
+    font-style: normal;
+    font-weight: normal;
+    text-decoration: inherit;
+    content: "";
+    float: right;
+    line-height: 50px;
+    color: #a7adbd;
+    position: absolute;
+    right: 15px;
+}
+.doc-menu-vertical .toctree-l2.has-child.current > a:after {
+    content: "";
+}
+.doc-menu-vertical .toctree-l2 > a + ul{
+    background-color: #e4e6e9;
+    height: 0;
+    overflow: hidden;
+}
+.doc-menu-vertical .toctree-l2.current > a + ul {
+    border-bottom: 1px solid #dddfe3;
+    height: auto;
+}
+.doc-menu-vertical .toctree-l2 li.active > a {
+    background-color: #597cf1;
+    color: #fff;
+}
+.doc-menu-vertical .toctree-l3 > a {
+    font-size: 12px;
+    color: #2f323a;
+    padding-left: 30px;
+    line-height: 40px;
+    display: block;
+}
+.doc-menu-vertical .toctree-l4 > a {
+    font-size: 12px;
+    color: #64697b;
+    padding-left: 50px;
+    line-height: 30px;
+    display: block;
+}
+.doc-menu-vertical .toctree-l5 > a {
+    font-size: 14px;
+    color: #ccc;
+    padding-left: 40px;
+    display: block;
+}
+.local-toc {
+    position: absolute;
+    height: 100%;
+    background-color: #f6f7f8;
+    top: 0;
+    left: 240px;
+    padding: 0;
+    z-index: 9;
+}
+.local-toc:after {
+    content: "";
+    position: absolute;
+    height: 100%;
+    width: 1px;
+    display: inline-block;
+    right: 0;
+    background-color: #dddfe3;
+    top: 0;
+    z-index: -1;
+}
+.local-toc:hover a {
+    width: auto;
+}
+.local-toc > ul > li a {
+    position: relative;
+    font-size: 12px;
+    overflow: hidden;
+    display: none;
+}
+.local-toc > ul > li > ul > li a {
+    display: block;
+    border-top: 1px solid transparent;
+    border-bottom: 1px solid transparent;
+    padding-right: 20px;
+    width: 50px;
+}
+.local-toc > ul > li > ul > li > ul > li > ul a {
+    display: none;
+}
+.local-toc > ul > li > ul li > a:after {
+    content: "";
+    display: inline-block;
+    width: 1px;
+    height: 100%;
+    background-color: transparent;
+    position: absolute;
+    right: 0;
+    top: 0;
+}
+.local-toc > ul > li > ul li a:hover{
+    background-color: #e6eaf7 !important;
+}
+.local-toc > ul > li > ul li a:hover:after {
+    background-color: #e6eaf7 !important;
+}
+.local-toc > ul > li > ul li.active > a {
+    color: #ff9711;
+    background-color: #fff;
+    border-top: 1px solid #dddfe3;
+    border-bottom: 1px solid #dddfe3;
+}
+.local-toc > ul > li > ul li.active > a:before {
+    background-color: #ff9711;
+    width: 10px;
+    height: 10px;
+    margin: 15px 20px;
+    border-radius: 5px;
+}
+.local-toc > ul > li > ul li.active > a:after {
+    background-color: #fff;
+}
+.local-toc > ul > li > ul > li {
+    position: relative;
+    line-height: 40px;
+    white-space: nowrap;
+}
+.local-toc > ul > li > ul > li > a {
+    color: #64697b;
+}
+.local-toc > ul > li > ul > li > a + ul {
+    display: none;
+}
+.local-toc > ul > li > ul > li > a:before {
+    display: inline-block;
+    content: "";
+    width: 6px;
+    height: 6px;
+    background-color: #ccc;
+    border-radius: 3px;
+    margin: 17px 22px;
+    float: left;
+}
+.local-toc > ul > li > ul > li > ul > li > a {
+    color: #a7adbd;
+}
+.local-toc > ul > li > ul > li > ul > li > a:before {
+    display: inline-block;
+    content: "";
+    width: 6px;
+    height: 6px;
+    background-color: #ccc;
+    border-radius: 3px;
+    margin: 17px 22px;
+    float: left;
+}
+.main-content-wrap {
+    position: absolute;
+    width: 100%;
+    top: 80px;
+    bottom: 0;
+    overflow: auto;
+    background-color: #f6f7f8;
+}
+.doc-content-wrap {
+    margin-left: 290px;
+    height: 100%;
+    position: relative;
+    padding-top: 60px;
+    background-color: #fff;
+}
+.doc-content-wrap > div[role='navigation'] {
+    position: absolute;
+    top: 0;
+    width: 100%;
+    left: 0;
+    padding: 0 30px;
+    height: 60px;
+}
+.wy-breadcrumbs {
+    line-height: 50px;
+    height: 60px;
+    background-image: url("");
+    background-repeat: repeat no-repeat;
+    background-position: center 50px;
+}
+.wy-breadcrumbs > li {
+    color: #ccc;
+}
+.wy-breadcrumbs > li a {
+    color: #ff9711;
+    padding: 0;
+}
+.wy-breadcrumbs > li:first-child a {
+    color: #597cf1;
+}
+.wy-nav-content{
+    max-width: none;
+    overflow: auto;
+    position: relative;
+    padding: 30px;
+    background-color: #fff;
+}
+.wy-nav-content h1 {
+    font-size: 24px;
+    color: #2f323a;
+    margin-bottom: 30px;
+}
+.wy-nav-content h2 {
+    font-size: 20px;
+    color: #2f323a;
+    margin-bottom: 30px;
+}
+.wy-nav-content h3 {
+    font-size: 18px;
+    color: #2f323a;
+    margin-bottom: 30px;
+}
+.wy-nav-content h4 {
+    font-size: 16px;
+    color: #2f323a;
+    margin-bottom: 30px;
+}
+.wy-nav-content p + h1,
+.wy-nav-content p + h2,
+.wy-nav-content p + h3,
+.wy-nav-content p + h4 {
+    margin-top: 20px;
+}
+.wy-nav-content p{
+    color: #2f323a;
+    margin-bottom: 20px;
+    font-size: 14px;
+}
+#search-results h2 {
+    font-size: 24px;
+    margin: 20px 0 10px 0;
+}
+#search-results p {
+    color: #a7adbd;
+}
+#search-results ul.search > li {
+    border-bottom: none;
+}
+#search-results ul.search > li > a {
+    color: #597cf1;
+}
+.rst-content .highlighted{
+    background-color: transparent;
+    color: #ff9711;
+    padding: 0;
+}
\ No newline at end of file
diff --git a/doc_theme/static/images/PP_w.png b/doc_theme/static/images/PP_w.png
new file mode 100644
index 0000000000000000000000000000000000000000..bc58b0b458135773fcde5ee941ea095e3d4d07a0
Binary files /dev/null and b/doc_theme/static/images/PP_w.png differ
diff --git a/doc_theme/static/js/paddle_doc_init.js b/doc_theme/static/js/paddle_doc_init.js
new file mode 100644
index 0000000000000000000000000000000000000000..5c815a8d3a3dab9bdbce544ff3bb49be40ad8934
--- /dev/null
+++ b/doc_theme/static/js/paddle_doc_init.js
@@ -0,0 +1,31 @@
+$(document).ready(function(){
+    $('.local-toc').on('click' ,'a.reference.internal', function (){
+        $('.local-toc li.active').removeClass('active');
+        $(this).parent('li').addClass('active');
+    });
+
+    if ($('.local-toc a:visible').length) {
+        $('.local-toc > ul').addClass('nav nav-stacked');
+        $('#doc-content').scrollspy({
+            target: '.local-toc'
+        });
+		$('.local-toc').perfectScrollbar();
+    } else {
+		$('.doc-content-wrap').css('margin-left', '-=50px');
+        $('.local-toc').remove();
+    }
+
+    if (!$('.doc-menu-vertical > ul > li.current > ul').length) {
+        $('.doc-content-wrap').css('margin-left', '-=240px');
+        $('.doc-menu-vertical').remove();
+        $('.local-toc').css('left', '0');
+    }
+
+	$('.doc-menu-vertical .toctree-l2').each(function (i, e){
+        $(e).toggleClass('has-child', !!$(e).find('ul').length);
+    });
+
+    $('.doc-menu-vertical').find('li.current').last().addClass('active');
+
+    $('.doc-menu-vertical').perfectScrollbar();
+});
\ No newline at end of file
diff --git a/doc_theme/templates/breadcrumbs.html b/doc_theme/templates/breadcrumbs.html
new file mode 100644
index 0000000000000000000000000000000000000000..22f773a8e975dd901c5604b51cd9f2d67b3c9a1f
--- /dev/null
+++ b/doc_theme/templates/breadcrumbs.html
@@ -0,0 +1,24 @@
+{# Support for Sphinx 1.3+ page_source_suffix, but don't break old builds. #}
+
+{% if page_source_suffix %} 
+{% set suffix = page_source_suffix %}
+{% else %}
+{% set suffix = source_suffix %}
+{% endif %}
+
+{% if meta is defined and 'github_url' in meta %}
+{% set display_github = True %}
+{% endif %}
+
+{% if meta is defined and 'bitbucket_url' in meta %}
+{% set display_bitbucket = True %}
+{% endif %}
+
+<div role="navigation" aria-label="breadcrumbs navigation">
+  <ul class="wy-breadcrumbs">
+      {% for doc in parents %}
+        <li><a href="{{ doc.link|e }}">{{ doc.title }}</a> > </li>
+      {% endfor %}
+    <li>{{ title }}</li>
+  </ul>
+</div>
diff --git a/doc_theme/templates/layout.html b/doc_theme/templates/layout.html
new file mode 100644
index 0000000000000000000000000000000000000000..034740369ed10a748856e2205d3315f51a7de62f
--- /dev/null
+++ b/doc_theme/templates/layout.html
@@ -0,0 +1,191 @@
+{# TEMPLATE VAR SETTINGS #}
+{%- set url_root = pathto('', 1) %}
+{%- if url_root == '#' %}{% set url_root = '' %}{% endif %}
+{%- if not embedded and docstitle %}
+  {%- set titlesuffix = " &mdash; "|safe + docstitle|e %}
+{%- else %}
+  {%- set titlesuffix = "" %}
+{%- endif %}
+
+<!DOCTYPE html>
+<!--[if IE 8]><html class="no-js lt-ie9" lang="en" > <![endif]-->
+<!--[if gt IE 8]><!--> <html class="no-js" lang="en" > <!--<![endif]-->
+<head>
+  <meta charset="utf-8">
+  {{ metatags }}
+  <meta name="viewport" content="width=device-width, initial-scale=1.0">
+  {% block htmltitle %}
+  <title>{{ title|striptags|e }}{{ titlesuffix }}</title>
+  {% endblock %}
+
+  {# FAVICON #}
+  {% if favicon %}
+    <link rel="shortcut icon" href="{{ pathto('_static/' + favicon, 1) }}"/>
+  {% endif %}
+
+  {# CSS #}
+
+  {# OPENSEARCH #}
+  {% if not embedded %}
+    {% if use_opensearch %}
+      <link rel="search" type="application/opensearchdescription+xml" title="{% trans docstitle=docstitle|e %}Search within {{ docstitle }}{% endtrans %}" href="{{ pathto('_static/opensearch.xml', 1) }}"/>
+    {% endif %}
+
+  {% endif %}
+
+  {# RTD hosts this file, so just load on non RTD builds #}
+  {% if not READTHEDOCS %}
+    <link rel="stylesheet" href="{{ pathto('_static/' + style, 1) }}" type="text/css" />
+  {% endif %}
+
+  {% for cssfile in css_files %}
+    <link rel="stylesheet" href="{{ pathto(cssfile, 1) }}" type="text/css" />
+  {% endfor %}
+  {% for cssfile in extra_css_files %}
+    <link rel="stylesheet" href="{{ pathto(cssfile, 1) }}" type="text/css" />
+  {% endfor %}
+
+  {%- block linktags %}
+    {%- if hasdoc('about') %}
+        <link rel="author" title="{{ _('About these documents') }}"
+              href="{{ pathto('about') }}"/>
+    {%- endif %}
+    {%- if hasdoc('genindex') %}
+        <link rel="index" title="{{ _('Index') }}"
+              href="{{ pathto('genindex') }}"/>
+    {%- endif %}
+    {%- if hasdoc('search') %}
+        <link rel="search" title="{{ _('Search') }}" href="{{ pathto('search') }}"/>
+    {%- endif %}
+    {%- if hasdoc('copyright') %}
+        <link rel="copyright" title="{{ _('Copyright') }}" href="{{ pathto('copyright') }}"/>
+    {%- endif %}
+    <link rel="top" title="{{ docstitle|e }}" href="{{ pathto('index') }}"/>
+    {%- if parents %}
+        <link rel="up" title="{{ parents[-1].title|striptags|e }}" href="{{ parents[-1].link|e }}"/>
+    {%- endif %}
+    {%- if next %}
+        <link rel="next" title="{{ next.title|striptags|e }}" href="{{ next.link|e }}"/>
+    {%- endif %}
+    {%- if prev %}
+        <link rel="prev" title="{{ prev.title|striptags|e }}" href="{{ prev.link|e }}"/>
+    {%- endif %}
+  {%- endblock %}
+  {%- block extrahead %} 
+
+  <link rel="stylesheet" href="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/css/perfect-scrollbar.min.css" type="text/css" />
+  <link rel="stylesheet" href="{{pathto('_static/css/override.css', 1)}}" type="text/css" />
+  <script>
+  var _hmt = _hmt || [];
+  (function() {
+    var hm = document.createElement("script");
+    hm.src = "//hm.baidu.com/hm.js?b9a314ab40d04d805655aab1deee08ba";
+    var s = document.getElementsByTagName("script")[0]; 
+    s.parentNode.insertBefore(hm, s);
+  })();
+  </script>
+
+  {% endblock %}
+
+  {# Keep modernizr in head - http://modernizr.com/docs/#installing #}
+  <script src="{{ pathto('_static/js/modernizr.min.js', 1) }}"></script>
+
+</head>
+
+<body class="wy-body-for-nav" role="document">
+
+  {% block extrabody %}
+  <header class="site-header">
+    <div class="site-logo">
+      <a href="/"><img src="{{pathto('_static/images/PP_w.png', 1)}}"></a>
+    </div>
+    <div class="site-nav-links">
+      <div class="site-menu">
+        <a class="fork-on-github" href="https://github.com/PaddlePaddle/Paddle" target="_blank"><i class="fa fa-github"></i>Folk me on Github</a>
+        <div class="language-switcher dropdown">
+          <a type="button" data-toggle="dropdown">
+            <span>English</span>
+            <i class="fa fa-angle-up"></i>
+            <i class="fa fa-angle-down"></i>
+          </a>
+          <ul class="dropdown-menu">
+            <li><a href="/doc_cn">中文</a></li>
+            <li><a href="/doc">English</a></li>
+          </ul>
+        </div>
+        <ul class="site-page-links">
+          <li><a>Home</a></li>
+          <li><a>Get Started</a></li>
+          <li class="active"><a>Documentation</a></li>
+          <li><a>About Us</a></li>
+        </ul>
+      </div>
+      <div class="doc-module">
+        {%set modules = toctree(maxdepth=0, collapse=False, titles_only=True)%}
+        {{modules}}
+        {% include "searchbox.html" %}        
+      </div>
+    </div>
+  </header>
+  {% endblock %}
+  <div class="main-content-wrap">
+
+    {# SIDE NAV, TOGGLES ON MOBILE #}
+    <nav class="doc-menu-vertical" role="navigation">
+        {% block menu %}
+          {% set toctree = toctree(maxdepth=-1, collapse=False,titles_only=True, includehidden=True) %}
+          {{ toctree }}
+        {% endblock %}
+    </nav>
+    {% if toc %}
+    <nav class="local-toc">{{ toc }}</nav>
+    {% endif %}
+    <section class="doc-content-wrap">
+
+      {% include "breadcrumbs.html" %}
+      {# PAGE CONTENT #}
+      <div class="wy-nav-content" id="doc-content">
+        <div class="rst-content">
+          <div role="main" class="document" itemscope="itemscope" itemtype="http://schema.org/Article">
+           <div itemprop="articleBody">
+            {% block body %}{% endblock %}
+           </div>
+          </div>
+          {% include "footer.html" %}
+        </div>
+      </div>
+
+    </section>
+
+  </div>
+  {% include "versions.html" %}
+
+  {% if not embedded %}
+
+    <script type="text/javascript">
+        var DOCUMENTATION_OPTIONS = {
+            URL_ROOT:'{{ url_root }}',
+            VERSION:'{{ release|e }}',
+            COLLAPSE_INDEX:false,
+            FILE_SUFFIX:'{{ '' if no_search_suffix else file_suffix }}',
+            HAS_SOURCE:  {{ has_source|lower }}
+        };
+    </script>
+    {%- for scriptfile in script_files %}
+      <script type="text/javascript" src="{{ pathto(scriptfile, 1) }}"></script>
+    {%- endfor %}
+       
+  {% endif %}
+
+  {# RTD hosts this file, so just load on non RTD builds #}
+  {% if not READTHEDOCS %}
+    <script type="text/javascript" src="{{ pathto('_static/js/theme.js', 1) }}"></script>
+  {% endif %}
+  
+  <script src="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.7/js/bootstrap.min.js" integrity="sha384-Tc5IQib027qvyjSMfHjOMaLkfuWVxZxUPnCJA7l2mCWNIpG9mGCD8wGNIcPD7Txa" crossorigin="anonymous"></script>
+  <script src="https://cdn.jsdelivr.net/perfect-scrollbar/0.6.14/js/perfect-scrollbar.jquery.min.js"></script>
+  <script src="{{ pathto('_static/js/paddle_doc_init.js', 1) }}"></script>
+  {%- block footer %} {% endblock %}
+
+</body>
+</html>
diff --git a/doc_theme/templates/search.html b/doc_theme/templates/search.html
new file mode 100644
index 0000000000000000000000000000000000000000..171ab915988db06bdf6bf88f8a7930d48f9e7bee
--- /dev/null
+++ b/doc_theme/templates/search.html
@@ -0,0 +1,52 @@
+{#
+    basic/search.html
+    ~~~~~~~~~~~~~~~~~
+
+    Template for the search page.
+
+    :copyright: Copyright 2007-2013 by the Sphinx team, see AUTHORS.
+    :license: BSD, see LICENSE for details.
+#}
+{%- extends "layout.html" %}
+{% set title = _('Search') %}
+{% set script_files = script_files + ['_static/searchtools.js'] %}
+{% block footer %}
+  <script type="text/javascript">
+    jQuery(function() { Search.loadIndex("{{ pathto('searchindex.js', 1) }}"); });
+    jQuery('.doc-content-wrap > div[role="navigation"]').remove();
+    jQuery('.doc-content-wrap').css('padding-top', 0);
+  </script>
+  {# this is used when loading the search index using $.ajax fails,
+     such as on Chrome for documents on localhost #}
+  <script type="text/javascript" id="searchindexloader"></script>
+  {{ super() }}
+{% endblock %}
+{% block body %}
+  <noscript>
+  <div id="fallback" class="admonition warning">
+    <p class="last">
+      {% trans %}Please activate JavaScript to enable the search
+      functionality.{% endtrans %}
+    </p>
+  </div>
+  </noscript>
+
+  {% if search_performed %}
+    <h2>{{ _('Search Results') }}</h2>
+    {% if not search_results %}
+      <p>{{ _('Your search did not match any documents. Please make sure that all words are spelled correctly and that you\'ve selected enough categories.') }}</p>
+    {% endif %}
+  {% endif %}
+  <div id="search-results">
+  {% if search_results %}
+    <ul>
+    {% for href, caption, context in search_results %}
+      <li>
+        <a href="{{ pathto(item.href) }}">{{ caption }}</a>
+        <p class="context">{{ context|e }}</p>
+      </li>
+    {% endfor %}
+    </ul>
+  {% endif %}
+  </div>
+{% endblock %}
diff --git a/paddle/gserver/layers/BatchNormBaseLayer.cpp b/paddle/gserver/layers/BatchNormBaseLayer.cpp
index 6381f20a63c6b4ca24245cd6f30e4defda279de6..fd534b2ac406d4c9a112c1098be84484f980f651 100644
--- a/paddle/gserver/layers/BatchNormBaseLayer.cpp
+++ b/paddle/gserver/layers/BatchNormBaseLayer.cpp
@@ -60,14 +60,12 @@ bool BatchNormBaseLayer::init(const LayerMap& layerMap,
 
 void BatchNormBaseLayer::calFeatureMapSize() {
   const ImageConfig& conf = config_.inputs(0).image_conf();
-  if (inputLayers_[0]->getOutput().getFrameHeight() == 0 &&
-      inputLayers_[0]->getOutput().getFrameWidth() == 0) {
-    imgSize_ = conf.img_size();
-    imageH_ = imgSize_;
-    imageW_ = imgSize_;
+  imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
+  imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
+  if (imageH_ == 0 && imageW_ == 0) {
+    imageH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
+    imageW_ = conf.img_size();
   } else {
-    imageH_ = inputLayers_[0]->getOutput().getFrameHeight();
-    imageW_ = inputLayers_[0]->getOutput().getFrameWidth();
     getOutput().setFrameHeight(imageH_);
     getOutput().setFrameWidth(imageW_);
   }
diff --git a/paddle/gserver/layers/BatchNormBaseLayer.h b/paddle/gserver/layers/BatchNormBaseLayer.h
index d65882d39df2bb93920dad37ebc78342e31aef85..f956646a6dca7a5b053e5d034866b659d90539d0 100644
--- a/paddle/gserver/layers/BatchNormBaseLayer.h
+++ b/paddle/gserver/layers/BatchNormBaseLayer.h
@@ -77,9 +77,8 @@ protected:
   MatrixPtr savedMean_;
   MatrixPtr savedInvVar_;
 
-  /// Height or width of input image feature, now height is equal to width.
-  /// imgSize is 1 if the input is fully-connected layer.
-  int imgSize_;
+  /// Height or width of input image feature.
+  /// Both of them are 1 if the input is fully-connected layer.
   int imageH_;
   int imageW_;
   /// Height * Width.
diff --git a/paddle/gserver/layers/BilinearInterpLayer.cpp b/paddle/gserver/layers/BilinearInterpLayer.cpp
index c30e26dc031378ce792534c5eec6c24fc0d20ef9..11028290dcd1015c1bc51d4c34655f527f55346d 100644
--- a/paddle/gserver/layers/BilinearInterpLayer.cpp
+++ b/paddle/gserver/layers/BilinearInterpLayer.cpp
@@ -26,15 +26,15 @@ size_t BilinearInterpLayer::getSize() {
 
   const BilinearInterpConfig& conf = config_.inputs(0).bilinear_interp_conf();
   if (inImgH_ == 0) {
-    inImgH_ = conf.img_size_y();
+    inImgH_ = conf.image_conf().img_size_y();
   }
   if (inImgW_ == 0) {
-    inImgW_ = conf.img_size_x();
+    inImgW_ = conf.image_conf().img_size();
   }
 
   outImgH_ = conf.out_size_y();
   outImgW_ = conf.out_size_x();
-  numChannels_ = conf.num_channels();
+  numChannels_ = conf.image_conf().channels();
 
   CHECK(outImgH_ > 0 && outImgW_ > 0);
   CHECK(inImgH_ > 0 && inImgW_ > 0);
diff --git a/paddle/gserver/layers/ConvBaseLayer.cpp b/paddle/gserver/layers/ConvBaseLayer.cpp
index 7637e245a38959220f0d1d52e1f705d86a7c7303..b5a2f8b8e10e6f81d06e9722c09c5d43b1620ad1 100644
--- a/paddle/gserver/layers/ConvBaseLayer.cpp
+++ b/paddle/gserver/layers/ConvBaseLayer.cpp
@@ -38,11 +38,12 @@ bool ConvBaseLayer::init(const LayerMap& layerMap,
     filterSizeY_.push_back(conf.filter_size_y());
     filterPixels_.push_back(filterSize_.back() * filterSizeY_.back());
     channels_.push_back(conf.channels());
-    imgSizeH_.push_back(conf.img_size());
+    imgSizeH_.push_back(conf.has_img_size_y() ? conf.img_size_y()
+                                              : conf.img_size());
     imgSizeW_.push_back(conf.img_size());
     groups_.push_back(conf.groups());
     filterChannels_.push_back(conf.filter_channels());
-    outputH_.push_back(conf.output_x());
+    outputH_.push_back(conf.has_output_y() ? conf.output_y() : conf.output_x());
     outputW_.push_back(conf.output_x());
   }
 
@@ -91,16 +92,19 @@ size_t ConvBaseLayer::calOutputSize() {
     for (size_t i = 0; i < inputLayers_.size(); i++) {
       inH.push_back(inputLayers_[i]->getOutput().getFrameHeight());
       inW.push_back(inputLayers_[i]->getOutput().getFrameWidth());
+      const ConvConfig& conf = config_.inputs(i).conv_conf();
       if (isDeconv_) {
-        if (inH[i] == 0) inH[i] = config_.inputs(i).conv_conf().output_x();
-        if (inW[i] == 0) inW[i] = config_.inputs(i).conv_conf().output_x();
+        if (inH[i] == 0)
+          inH[i] = conf.has_output_y() ? conf.output_y() : conf.output_x();
+        if (inW[i] == 0) inW[i] = conf.output_x();
         outH.push_back(imageSize(
             inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_));
         outW.push_back(imageSize(
             inW[i], filterSize_[i], padding_[i], stride_[i], caffeMode_));
       } else {
-        if (inH[i] == 0) inH[i] = config_.inputs(i).conv_conf().img_size();
-        if (inW[i] == 0) inW[i] = config_.inputs(i).conv_conf().img_size();
+        if (inH[i] == 0)
+          inH[i] = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
+        if (inW[i] == 0) inW[i] = conf.img_size();
         outH.push_back(outputSize(
             inH[i], filterSizeY_[i], paddingY_[i], strideY_[i], caffeMode_));
         outW.push_back(outputSize(
diff --git a/paddle/gserver/layers/ConvOperator.cpp b/paddle/gserver/layers/ConvOperator.cpp
index 9b8e18b1ba2a4502bcdcecade94ec3e29730595c..dc06c89dab2524d9b640bfd88f3b3f3ce0117711 100644
--- a/paddle/gserver/layers/ConvOperator.cpp
+++ b/paddle/gserver/layers/ConvOperator.cpp
@@ -93,9 +93,9 @@ private:
   bool caffeMode_;
   int inputOffset_, outputOffset_, weightOffset_;
   int numFilters_;
-  int padding_, stride_, filterSize_, channels_, imgSize_;
+  int padding_, stride_, filterSize_, channels_, imgSize_, imgSizeY_;
   int paddingY_, strideY_, filterSizeY_;
-  int imgPixels_, filterPixels_, filterChannels_, outputX_, outputs_;
+  int imgPixels_, filterPixels_, filterChannels_, outputX_, outputY_, outputs_;
 
   /// Following member variables are same with CudnnConvLayer.
   /// There is no explanation here.
@@ -144,7 +144,7 @@ void ConvOperator::allocConvWorkSpace(size_t maxWorkSpace) {
 void ConvOperator::reshape(int batchSize) {
   imageH_ = ins_[0]->getFrameHeight();
   imageW_ = ins_[0]->getFrameWidth();
-  if (imageH_ == 0) imageH_ = imgSize_;
+  if (imageH_ == 0) imageH_ = imgSizeY_;
   if (imageW_ == 0) imageW_ = imgSize_;
   outputH_ = outputSize(imageH_, filterSizeY_, paddingY_, strideY_, caffeMode_);
   outputW_ = outputSize(imageW_, filterSize_, padding_, stride_, caffeMode_);
@@ -182,7 +182,10 @@ void ConvOperator::computeConvSizes() {
   hl_create_tensor_descriptor(&inputDesc_);
   int outputX =
       outputSize(imgSize_, filterSize_, padding_, stride_, caffeMode_);
+  int outputY =
+      outputSize(imgSizeY_, filterSizeY_, paddingY_, strideY_, caffeMode_);
   CHECK_EQ(outputX, outputX_);
+  CHECK_EQ(outputY, outputY_);
   hl_create_tensor_descriptor(&outputDesc_);
   hl_create_convolution_descriptor(&convDesc_,
                                    inputDesc_,
@@ -236,10 +239,12 @@ void ConvOperator::getConvParams() {
   filterPixels_ = filterSize_ * filterSizeY_;
   channels_ = conf.channels();
   imgSize_ = conf.img_size();
-  imgPixels_ = imgSize_ * imgSize_;
+  imgSizeY_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
+  imgPixels_ = imgSize_ * imgSizeY_;
   CHECK_EQ(conf.groups(), 1U);
   filterChannels_ = conf.filter_channels();
   outputX_ = conf.output_x();
+  outputY_ = conf.has_output_y() ? conf.output_y() : conf.output_x();
   outputs_ = outputX_ * outputX_;
 }
 
diff --git a/paddle/gserver/layers/ConvProjection.cpp b/paddle/gserver/layers/ConvProjection.cpp
index 946d249dc5d9a53cc970a54e6189786b3ae358c1..5a68fb08da3d742fe6067a8be00b831230e6b0af 100644
--- a/paddle/gserver/layers/ConvProjection.cpp
+++ b/paddle/gserver/layers/ConvProjection.cpp
@@ -46,7 +46,7 @@ void ConvProjection::getConvParams() {
   filterH_ = conf.filter_size_y();
   filterW_ = conf.filter_size();
 
-  configImgH_ = conf.img_size();
+  configImgH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
   configImgW_ = conf.img_size();
 
   channels_ = conf.channels();
@@ -58,9 +58,11 @@ void ConvProjection::getConvParams() {
 }
 
 void ConvProjection::initCudnn() {
-  hl_create_filter_descriptor(
-      &filterDesc_, channels_ / groups_, numFilters_ / groups_,
-      filterH_, filterW_);
+  hl_create_filter_descriptor(&filterDesc_,
+                              channels_ / groups_,
+                              numFilters_ / groups_,
+                              filterH_,
+                              filterW_);
   hl_create_tensor_descriptor(&inputDesc_);
   hl_create_tensor_descriptor(&outputDesc_);
   hl_create_convolution_descriptor(&convDesc_,
diff --git a/paddle/gserver/layers/DataLayer.cpp b/paddle/gserver/layers/DataLayer.cpp
index 9a4b2e9d3e256119f3ff24cfcb80d68c81f67c65..67c49230367d8597860e3c32df434a16944f5daa 100644
--- a/paddle/gserver/layers/DataLayer.cpp
+++ b/paddle/gserver/layers/DataLayer.cpp
@@ -49,8 +49,13 @@ void DataLayer::copyDataToOutput(Argument& output) {
       output.ids->copyFrom(*data_.ids);
     }
   }
-  output.setFrameHeight(data_.getFrameHeight());
-  output.setFrameWidth(data_.getFrameWidth());
+  if (config_.height() && config_.width()) {
+    output.setFrameHeight(config_.height());
+    output.setFrameWidth(config_.width());
+  } else {
+    output.setFrameHeight(data_.getFrameHeight());
+    output.setFrameHeight(data_.getFrameHeight());
+  }
   output.cpuSequenceDims = data_.cpuSequenceDims;
   output.sequenceStartPositions = data_.sequenceStartPositions;
   output.subSequenceStartPositions = data_.subSequenceStartPositions;
diff --git a/paddle/gserver/layers/ExpandConvBaseLayer.cpp b/paddle/gserver/layers/ExpandConvBaseLayer.cpp
index a9b5b916a1f0d22ff46dc6795053f44e3e3af09e..3724609720c97b66d7d1779a0c892628c5d13a44 100644
--- a/paddle/gserver/layers/ExpandConvBaseLayer.cpp
+++ b/paddle/gserver/layers/ExpandConvBaseLayer.cpp
@@ -29,17 +29,19 @@ bool ExpandConvBaseLayer::init(const LayerMap &layerMap,
    * meaning as in conv, we need to swap channels_ and numFilters here for
    * convTrans, and in other functions too.
    * */
-  int channel;
-  int numFilters;
+
   /* Initialize the projection */
   for (auto &inputConfig : config_.inputs()) {
     const ConvConfig &conf = inputConfig.conv_conf();
-    numFilters = isDeconv_ ? conf.channels() : numFilters_;
+    int numFilters = isDeconv_ ? conf.channels() : numFilters_;
     subM_.push_back(numFilters / conf.groups());
-    subN_.push_back(conf.output_x() * conf.output_x());
-    channel = isDeconv_ ? numFilters_ : conf.channels();
-    subK_.push_back(channel * conf.filter_size() * conf.filter_size() /
-                    conf.groups());
+    subN_.push_back(conf.output_x() *
+                    (conf.has_output_y() ? conf.output_y() : conf.output_x()));
+    int channel = isDeconv_ ? numFilters_ : conf.channels();
+    subK_.push_back(
+        channel * conf.filter_size() *
+        (conf.has_filter_size_y() ? conf.filter_size_y() : conf.filter_size()) /
+        conf.groups());
     /* Consistent caffe mode for multiple input */
     caffeMode_ = conf.caffe_mode();
   }
@@ -116,11 +118,11 @@ void ExpandConvBaseLayer::expandOneFrame(MatrixPtr image,
                            imgSizeH_[inIdx],
                            imgSizeW_[inIdx],
                            channel,
+                           filterSizeY_[inIdx],
                            filterSize_[inIdx],
-                           filterSize_[inIdx],
+                           strideY_[inIdx],
                            stride_[inIdx],
-                           stride_[inIdx],
-                           padding_[inIdx],
+                           paddingY_[inIdx],
                            padding_[inIdx],
                            outputH_[inIdx],
                            outputW_[inIdx]);
@@ -208,11 +210,11 @@ void ExpandConvBaseLayer::bpropActs(MatrixPtr out,
                      imgSizeH_[inpIdx],
                      imgSizeW_[inpIdx],
                      channel,
+                     filterSizeY_[inpIdx],
                      filterSize_[inpIdx],
-                     filterSize_[inpIdx],
-                     stride_[inpIdx],
+                     strideY_[inpIdx],
                      stride_[inpIdx],
-                     padding_[inpIdx],
+                     paddingY_[inpIdx],
                      padding_[inpIdx],
                      outputH_[inpIdx],
                      outputW_[inpIdx],
diff --git a/paddle/gserver/layers/MaxOutLayer.cpp b/paddle/gserver/layers/MaxOutLayer.cpp
index a3de069bf7a6c9217e4adfeb2e65409955cc569c..b7f1b98041355624edbc1b480868079887264467 100644
--- a/paddle/gserver/layers/MaxOutLayer.cpp
+++ b/paddle/gserver/layers/MaxOutLayer.cpp
@@ -25,10 +25,10 @@ size_t MaxOutLayer::getSize() {
   imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
   imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
   if (imgSizeH_ == 0) {
-    imgSizeH_ = maxoutConf.img_size_y();
+    imgSizeH_ = maxoutConf.image_conf().img_size_y();
   }
   if (imgSizeW_ == 0) {
-    imgSizeW_ = maxoutConf.img_size_x();
+    imgSizeW_ = maxoutConf.image_conf().img_size();
   }
 
   featLen_ = imgSizeH_ * imgSizeW_;
@@ -50,7 +50,7 @@ bool MaxOutLayer::init(const LayerMap& layerMap,
 
   const MaxOutConfig& conf = config_.inputs(0).maxout_conf();
   groups_ = conf.groups();
-  channels_ = conf.channels();
+  channels_ = conf.image_conf().channels();
   CHECK_EQ(channels_ % groups_, 0UL);
   outputChannels_ = channels_ / groups_;
 
diff --git a/paddle/gserver/layers/NormLayer.cpp b/paddle/gserver/layers/NormLayer.cpp
index 7f6ffe229842113869b4f2d61d59cdc0f4e1ddf8..445a1a0c52ed65a6321a265b158388f2d59e4722 100644
--- a/paddle/gserver/layers/NormLayer.cpp
+++ b/paddle/gserver/layers/NormLayer.cpp
@@ -48,6 +48,9 @@ bool ResponseNormLayer::init(const LayerMap& layerMap,
   outputX_ = conf.output_x();
   imgSize_ = conf.img_size();
   denoms_ = NULL;
+
+  outputY_ = conf.has_output_y() ? conf.output_y() : conf.output_x();
+  imgSizeY_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
   return true;
 }
 
diff --git a/paddle/gserver/layers/NormLayer.h b/paddle/gserver/layers/NormLayer.h
index 9e848e5268d6b4b69f24802b66c5fed7cc1bf9e4..fcc57849d6b86df8f175184451a0fd459ce9ec28 100644
--- a/paddle/gserver/layers/NormLayer.h
+++ b/paddle/gserver/layers/NormLayer.h
@@ -49,7 +49,7 @@ public:
  */
 class ResponseNormLayer : public NormLayer {
 protected:
-  size_t channels_, size_, outputX_, imgSize_;
+  size_t channels_, size_, outputX_, imgSize_, outputY_, imgSizeY_;
   float scale_, pow_;
   MatrixPtr denoms_;
 
diff --git a/paddle/gserver/layers/NormProjectionLayer.cpp b/paddle/gserver/layers/NormProjectionLayer.cpp
index 6ac468e6fc7c2962beaf8c28192890634340b296..da36cc2c9913796b65c451a5c4928143168a1104 100644
--- a/paddle/gserver/layers/NormProjectionLayer.cpp
+++ b/paddle/gserver/layers/NormProjectionLayer.cpp
@@ -23,7 +23,7 @@ size_t CMRProjectionNormLayer::getSize() {
   imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
   imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
   if (imgSizeH_ == 0) {
-    imgSizeH_ = imgSize_;
+    imgSizeH_ = imgSizeY_;
   }
   if (imgSizeW_ == 0) {
     imgSizeW_ = imgSize_;
diff --git a/paddle/gserver/layers/SpatialPyramidPoolLayer.cpp b/paddle/gserver/layers/SpatialPyramidPoolLayer.cpp
index 9609919695853552ed54d8d55e8a669002fa3147..dce660a5bca792e99a16e187aaa4aa10187830ac 100644
--- a/paddle/gserver/layers/SpatialPyramidPoolLayer.cpp
+++ b/paddle/gserver/layers/SpatialPyramidPoolLayer.cpp
@@ -56,14 +56,14 @@ ProjectionConfig SpatialPyramidPoolLayer::getConfig(size_t imgSizeW,
 size_t SpatialPyramidPoolLayer::getSize() {
   CHECK_EQ(inputLayers_.size(), 1UL);
   size_t layerSize = 0;
-  const SppConfig& sppConf = config_.inputs(0).spp_conf();
+  const ImageConfig& conf = config_.inputs(0).spp_conf().image_conf();
   imgSizeH_ = inputLayers_[0]->getOutput().getFrameHeight();
   imgSizeW_ = inputLayers_[0]->getOutput().getFrameWidth();
   if (imgSizeH_ == 0) {
-    imgSizeH_ = sppConf.has_img_size_y() ? sppConf.img_size_y() : imgSizeW_;
+    imgSizeH_ = conf.has_img_size_y() ? conf.img_size_y() : conf.img_size();
   }
   if (imgSizeW_ == 0) {
-    imgSizeW_ = sppConf.img_size();
+    imgSizeW_ = conf.img_size();
   }
 
   size_t outputH = 1;
@@ -82,9 +82,10 @@ bool SpatialPyramidPoolLayer::init(const LayerMap& layerMap,
   pyramidHeight_ = sppConf.pyramid_height();
   poolType_ = sppConf.pool_type();
 
-  channels_ = sppConf.channels();
-  imgSizeW_ = sppConf.img_size();
-  imgSizeH_ = sppConf.has_img_size_y() ? sppConf.img_size_y() : imgSizeW_;
+  const ImageConfig& imageConf = sppConf.image_conf();
+  channels_ = imageConf.channels();
+  imgSizeW_ = imageConf.img_size();
+  imgSizeH_ = imageConf.has_img_size_y() ? imageConf.img_size_y() : imgSizeW_;
   poolProjections_.reserve(pyramidHeight_);
   projCol_.reserve(pyramidHeight_);
   projOutput_.resize(pyramidHeight_);
diff --git a/paddle/gserver/tests/img_pool_a.conf b/paddle/gserver/tests/img_pool_a.conf
index 5938e7611201c9a4e3b44ca8aae2f39a80b1ff3b..9bd046b533de8200e6c945d1752ce240508b6338 100644
--- a/paddle/gserver/tests/img_pool_a.conf
+++ b/paddle/gserver/tests/img_pool_a.conf
@@ -28,7 +28,6 @@ maxpool = img_pool_layer(input=conv,
                          stride_y=2,
                          padding=1,
                          padding_y=2,
-                         img_width=16,
                          pool_type=MaxPooling(),
 )
 avgpool = img_pool_layer(input=conv,
@@ -39,7 +38,6 @@ avgpool = img_pool_layer(input=conv,
                          stride_y=2,
                          padding=1,
                          padding_y=2,
-                         img_width=16,
                          pool_type=AvgPooling(),
 )
 
diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp
index 55446ea824e30c08fa1fb2beb7e557be21565aea..099e96aa6c7439adc76248fcbb88cf24e7496ed4 100644
--- a/paddle/gserver/tests/test_LayerGrad.cpp
+++ b/paddle/gserver/tests/test_LayerGrad.cpp
@@ -202,16 +202,15 @@ void testProjectionConv(size_t groups) {
   conf.set_input_size(IMAGE_SIZE * IMAGE_SIZE * CHANNELS);
   conf.set_output_size(output_x * output_y * NUM_FILTERS);
 
-  testProjectionGrad(
-      conf,
-      INPUT_DATA,
-      /* parameterSize */ NUM_FILTERS * CHANNELS * FILTER_SIZE * FILTER_SIZE_Y
-                          / groups,
-      /* batchSize */ 100,
-      true,
-      false,
-      NUM_FILTERS,
-      true);
+  testProjectionGrad(conf,
+                     INPUT_DATA,
+                     /* parameterSize */ NUM_FILTERS * CHANNELS * FILTER_SIZE *
+                         FILTER_SIZE_Y / groups,
+                     /* batchSize */ 100,
+                     true,
+                     false,
+                     NUM_FILTERS,
+                     true);
 }
 
 #ifndef PADDLE_ONLY_CPU
@@ -229,9 +228,10 @@ TEST(Layer, BilinearInterpLayer) {
 
   LayerInputConfig* input = config.layerConfig.add_inputs();
   BilinearInterpConfig* bilinear = input->mutable_bilinear_interp_conf();
-  bilinear->set_img_size_x(32);
-  bilinear->set_img_size_y(32);
-  bilinear->set_num_channels(4);
+  ImageConfig* image = bilinear->mutable_image_conf();
+  image->set_img_size(32);
+  image->set_img_size_y(32);
+  image->set_channels(4);
 
   for (auto useGpu : {false, true}) {
     for (auto outSize : {32, 64}) {
@@ -354,7 +354,7 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
   config.layerConfig.set_partial_sum(1);
   config.layerConfig.set_shared_biases(true);
 
-  config.inputDefs.push_back({INPUT_DATA, "layer_0", 768, 288});
+  config.inputDefs.push_back({INPUT_DATA, "layer_0", 384, 288});
   LayerInputConfig* input = config.layerConfig.add_inputs();
   ConvConfig* conv = input->mutable_conv_conf();
   conv->set_filter_size(2);
@@ -367,12 +367,18 @@ void testConvLayer(const string& type, bool trans, bool useGpu) {
   conv->set_groups(1);
   conv->set_filter_channels(conv->channels() / conv->groups());
   conv->set_img_size(16);
+  conv->set_img_size_y(8);
   conv->set_output_x(outputSize(conv->img_size(),
                                 conv->filter_size(),
                                 conv->padding(),
                                 conv->stride(),
                                 /* caffeMode */ true));
-  config.layerConfig.set_size(conv->output_x() * conv->output_x() *
+  conv->set_output_y(outputSize(conv->img_size_y(),
+                                conv->filter_size_y(),
+                                conv->padding_y(),
+                                conv->stride_y(),
+                                /* caffeMode */ true));
+  config.layerConfig.set_size(conv->output_x() * conv->output_y() *
                               config.layerConfig.num_filters());
 
   testLayerGrad(config, "conv", 100, trans, useGpu);
@@ -472,10 +478,11 @@ TEST(Layer, maxoutLayer) {
   config.inputDefs.push_back({INPUT_DATA, "layer_0", 4096, 0});
   LayerInputConfig* input = config.layerConfig.add_inputs();
   MaxOutConfig* maxout = input->mutable_maxout_conf();
+  ImageConfig* image = maxout->mutable_image_conf();
 
-  maxout->set_img_size_x(32);
-  maxout->set_img_size_y(32);
-  maxout->set_channels(4);
+  image->set_img_size(32);
+  image->set_img_size_y(32);
+  image->set_channels(4);
   maxout->set_groups(2);
 
   for (auto useGpu : {false, true}) {
@@ -987,7 +994,7 @@ void testNormLayer(const string& normType, bool trans, bool useGpu) {
   config.layerConfig.set_type("norm");
   config.layerConfig.set_active_type("relu");
 
-  config.inputDefs.push_back({INPUT_DATA, "layer_0", 3136, 0});
+  config.inputDefs.push_back({INPUT_DATA, "layer_0", 1568, 0});
   LayerInputConfig* input = config.layerConfig.add_inputs();
   NormConfig* norm = input->mutable_norm_conf();
   norm->set_norm_type(normType);
@@ -997,7 +1004,9 @@ void testNormLayer(const string& normType, bool trans, bool useGpu) {
   norm->set_pow(0.75);
   norm->set_blocked(0);
   norm->set_img_size(14);
+  norm->set_img_size_y(7);
   norm->set_output_x(norm->img_size());
+  norm->set_output_y(norm->img_size_y());
   if (norm->norm_type() == "cmrnorm" ||
       norm->norm_type() == "cmrnorm-projection") {
     norm->set_scale(norm->scale() / norm->size());
@@ -1005,7 +1014,7 @@ void testNormLayer(const string& normType, bool trans, bool useGpu) {
     norm->set_scale(norm->scale() / (norm->size() * norm->size()));
   }
 
-  config.layerConfig.set_size(norm->output_x() * norm->output_x() *
+  config.layerConfig.set_size(norm->output_x() * norm->output_y() *
                               norm->channels());
   config.biasSize = 0;
 
@@ -1106,11 +1115,12 @@ void testSppLayer(const string& poolType,
   SppConfig* sppConfig = input->mutable_spp_conf();
   sppConfig->set_pool_type(poolType);
   sppConfig->set_pyramid_height(pyramidHeight);
-  sppConfig->set_channels(16);
-  sppConfig->set_img_size(10);
-  sppConfig->set_img_size_y(20);
+  ImageConfig* imageConfig = sppConfig->mutable_image_conf();
+  imageConfig->set_channels(16);
+  imageConfig->set_img_size(10);
+  imageConfig->set_img_size_y(20);
   int outputSize = (std::pow(4, sppConfig->pyramid_height()) - 1) / (4 - 1);
-  config.layerConfig.set_size(outputSize * sppConfig->channels());
+  config.layerConfig.set_size(outputSize * imageConfig->channels());
   testLayerGrad(config, "spp", 100, trans, useGpu);
 }
 
@@ -1420,13 +1430,15 @@ void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
   TestConfig config;
   const int CHANNELS = 10;
   const int IMG_SIZE = 16;
+  const int IMG_SIZE_Y = 8;
+  size_t size = CHANNELS * IMG_SIZE * IMG_SIZE_Y;
   config.layerConfig.set_type(type);
-  config.layerConfig.set_size(CHANNELS * IMG_SIZE * IMG_SIZE);
+  config.layerConfig.set_size(size);
   config.layerConfig.set_active_type("sigmoid");
   config.biasSize = CHANNELS;
   config.inputDefs.push_back({INPUT_DATA,
                               "layer_0",
-                              /* dim= */ IMG_SIZE * IMG_SIZE * CHANNELS,
+                              /* dim= */ size,
                               /* paraSize= */ CHANNELS});
 
   config.inputDefs.push_back({INPUT_DATA, "layer_1_running_mean", 1, CHANNELS});
@@ -1441,6 +1453,7 @@ void testBatchNormLayer(const string& type, bool trans, bool useGpu) {
   ImageConfig* img_conf = input->mutable_image_conf();
   img_conf->set_channels(CHANNELS);
   img_conf->set_img_size(IMG_SIZE);
+  img_conf->set_img_size_y(IMG_SIZE_Y);
 
   testLayerGrad(config,
                 "batch_norm",
@@ -1467,6 +1480,7 @@ TEST(Operator, conv) {
   const int FILTER_SIZE_Y = 3;
   const int CHANNELS = 3;
   const int IMAGE_SIZE = 16;
+  const int IMAGE_SIZE_Y = 8;
   OperatorConfig& operatorConf = *config.layerConfig.add_operator_confs();
   operatorConf.set_type("conv");
   ConvConfig* conv = operatorConf.mutable_conv_conf();
@@ -1481,19 +1495,22 @@ TEST(Operator, conv) {
   conv->set_groups(1);
   conv->set_filter_channels(conv->channels() / conv->groups());
   conv->set_img_size(IMAGE_SIZE);
-  int output_x = outputSize(conv->img_size(),
-                            conv->filter_size(),
-                            conv->padding(),
-                            conv->stride(),
-                            /* caffeMode */ true);
-  conv->set_output_x(output_x);
-  config.layerConfig.set_size(output_x * output_x *
-                              config.layerConfig.num_filters());
-  config.layerConfig.set_size(conv->output_x() * conv->output_x() *
+  conv->set_img_size_y(IMAGE_SIZE_Y);
+  conv->set_output_x(outputSize(conv->img_size(),
+                                conv->filter_size(),
+                                conv->padding(),
+                                conv->stride(),
+                                /*  caffeMode */ true));
+  conv->set_output_y(outputSize(conv->img_size_y(),
+                                conv->filter_size_y(),
+                                conv->padding_y(),
+                                conv->stride_y(),
+                                /*  caffeMode */ true));
+  config.layerConfig.set_size(conv->output_x() * conv->output_y() *
                               NUM_FILTERS);
 
   config.inputDefs.push_back(
-      {INPUT_DATA, "layer_0", IMAGE_SIZE * IMAGE_SIZE * CHANNELS, 0});
+      {INPUT_DATA, "layer_0", IMAGE_SIZE * IMAGE_SIZE_Y * CHANNELS, 0});
   config.inputDefs.push_back(
       {INPUT_DATA,
        "layer_1",
diff --git a/paddle/math/BaseMatrix.cu b/paddle/math/BaseMatrix.cu
index a723ef7bc8329329fa82113f8e96a1bdbe750277..351744f1ef0e99d4978a8286f00e110ac77a5d42 100644
--- a/paddle/math/BaseMatrix.cu
+++ b/paddle/math/BaseMatrix.cu
@@ -1584,11 +1584,6 @@ void BaseMatrixT<real>::minRows(BaseMatrixT& b) {
   applyRow(aggregate::min(), b);
 }
 
-template<>
-void BaseMatrixT<real>::sumCols(BaseMatrixT& b) {
-  applyCol(aggregate::sum(), b);
-}
-
 template<>
 void BaseMatrixT<real>::maxCols(BaseMatrixT& b) {
   applyCol(aggregate::max(), b);
diff --git a/paddle/math/BaseMatrix.h b/paddle/math/BaseMatrix.h
index ea58c861a3d6a03642291c172af76795e90fcb92..4cc4f4d29ddabfc05f5837633fb73a650920823e 100644
--- a/paddle/math/BaseMatrix.h
+++ b/paddle/math/BaseMatrix.h
@@ -1018,8 +1018,6 @@ public:
   /// calculate the minimum value of each row of the matrix b.
   void minRows(BaseMatrixT& b);
 
-  /// calculate the sum of each column of the matrix b.
-  void sumCols(BaseMatrixT& b);
   /// calculate the maximum value of each column of the matrix b.
   void maxCols(BaseMatrixT& b);
   /// calculate the minimum value of each column of the matrix b.
diff --git a/paddle/math/tests/CMakeLists.txt b/paddle/math/tests/CMakeLists.txt
index 33d4478b4d36d7be5da6fb43365acb95e5bc7d04..893597b158750876c307defc87d55c8fa1a10173 100644
--- a/paddle/math/tests/CMakeLists.txt
+++ b/paddle/math/tests/CMakeLists.txt
@@ -2,7 +2,7 @@
 
 add_simple_unittest(test_ExecViaCpu)
 add_simple_unittest(test_SIMDFunctions)
-add_simple_unittest(test_matrix)
+add_simple_unittest(test_SparseMatrix)
 
 # TODO(yuyang18): Refactor TestUtil.cpp. Remove this cross module reference.
 add_unittest(test_matrixCompare
@@ -14,4 +14,6 @@ add_simple_unittest(test_perturbation)
 add_simple_unittest(test_CpuGpuVector)
 add_simple_unittest(test_Allocator)
 add_simple_unittest(test_FPException)
-add_simple_unittest(test_GpuProfiler)
\ No newline at end of file
+add_simple_unittest(test_GpuProfiler)
+add_simple_unittest(test_BaseMatrix)
+add_simple_unittest(test_Matrix)
diff --git a/paddle/math/tests/TensorCheck.h b/paddle/math/tests/TensorCheck.h
new file mode 100644
index 0000000000000000000000000000000000000000..956bcf61a455dea6fdded823cd2fdd4801b0771a
--- /dev/null
+++ b/paddle/math/tests/TensorCheck.h
@@ -0,0 +1,216 @@
+/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+
+/**
+ * This file provides a TensorCheck template function, which can be used to
+ * compare CpuMatrix and GpuMatrix, CpuVector and GpuVector, and so on.
+ */
+
+#include <cmath>
+#include "paddle/math/Matrix.h"
+
+namespace autotest {
+
+using paddle::Matrix;
+using paddle::CpuMatrix;
+using paddle::GpuMatrix;
+using paddle::VectorT;
+using paddle::CpuVectorT;
+using paddle::GpuVectorT;
+
+class AssertEqual {
+public:
+  AssertEqual(real err = 0) : err_(err) {}
+
+  inline bool operator()(real a, real b) {
+    if (err_ == 0) {
+      if (a != b) {
+        return false;
+      }
+    } else {
+      if (std::fabs(a - b) > err_) {
+        if ((std::fabs(a - b) / std::fabs(a)) > (err_ / 10.0f)) {
+          return false;
+        }
+      }
+    }
+
+    return true;
+  }
+
+private:
+  real err_;
+};
+
+template <typename Tensor>
+class CopyToCpu;
+
+template <>
+class CopyToCpu<CpuMatrix> {
+public:
+  explicit CopyToCpu(const CpuMatrix& arg) : arg_(arg) {}
+  const CpuMatrix& copiedArg() const { return arg_; }
+
+private:
+  const CpuMatrix& arg_;
+};
+
+template <>
+class CopyToCpu<GpuMatrix> {
+public:
+  explicit CopyToCpu(const GpuMatrix& arg)
+      : arg_(arg.getHeight(), arg.getWidth()) {
+    arg_.copyFrom(arg);
+  }
+  CpuMatrix& copiedArg() { return arg_; }
+
+private:
+  CpuMatrix arg_;
+};
+
+template <>
+class CopyToCpu<Matrix> {
+public:
+  explicit CopyToCpu(const Matrix& arg)
+      : arg_(arg.getHeight(), arg.getWidth()) {
+    arg_.copyFrom(arg);
+  }
+  CpuMatrix& copiedArg() { return arg_; }
+
+private:
+  CpuMatrix arg_;
+};
+
+template <typename T>
+class CopyToCpu<CpuVectorT<T>> {
+public:
+  explicit CopyToCpu(const CpuVectorT<T>& arg) : arg_(arg) {}
+  const CpuVectorT<T>& copiedArg() const { return arg_; }
+
+private:
+  const CpuVectorT<T>& arg_;
+};
+
+template <typename T>
+class CopyToCpu<GpuVectorT<T>> {
+public:
+  explicit CopyToCpu(const GpuVectorT<T>& arg) : arg_(arg.getSize()) {
+    arg_.copyFrom(arg);
+  }
+  CpuVectorT<T>& copiedArg() { return arg_; }
+
+private:
+  CpuVectorT<T> arg_;
+};
+
+template <typename T>
+class CopyToCpu<VectorT<T>> {
+public:
+  explicit CopyToCpu(const VectorT<T>& arg) : arg_(arg.getSize()) {
+    arg_.copyFrom(arg);
+  }
+  CpuVectorT<T>& copiedArg() { return arg_; }
+
+private:
+  CpuVectorT<T> arg_;
+};
+
+template <typename AssertEq>
+void TensorCheck(AssertEq compare,
+                 const CpuMatrix& matrix1,
+                 const CpuMatrix& matrix2) {
+  CHECK(matrix1.getHeight() == matrix2.getHeight());
+  CHECK(matrix1.getWidth() == matrix2.getWidth());
+
+  int height = matrix1.getHeight();
+  int width = matrix1.getWidth();
+  const real* data1 = matrix1.getData();
+  const real* data2 = matrix2.getData();
+  int count = 0;
+  for (int i = 0; i < height; i++) {
+    for (int j = 0; j < width; j++) {
+      real a = data1[i * width + j];
+      real b = data2[i * width + j];
+      if (!compare(a, b)) {
+        count++;
+      }
+    }
+  }
+  EXPECT_EQ(count, 0) << "There are " << count << " different element.";
+}
+
+template <typename AssertEq, class T>
+void TensorCheck(AssertEq compare,
+                 const CpuVectorT<T>& vector1,
+                 const CpuVectorT<T>& vector2) {
+  CHECK(vector1.getSize() == vector2.getSize());
+
+  const T* data1 = vector1.getData();
+  const T* data2 = vector2.getData();
+  size_t size = vector1.getSize();
+  int count = 0;
+  for (size_t i = 0; i < size; i++) {
+    real a = data1[i];
+    real b = data2[i];
+    if (!compare(a, b)) {
+      count++;
+    }
+  }
+  EXPECT_EQ(count, 0) << "There are " << count << " different element.";
+}
+
+template <typename AssertEq, typename Tensor1, typename Tensor2>
+void TensorCheck(AssertEq compare,
+                 const Tensor1& tensor1,
+                 const Tensor2& tensor2) {
+  TensorCheck(compare,
+              CopyToCpu<Tensor1>(tensor1).copiedArg(),
+              CopyToCpu<Tensor2>(tensor2).copiedArg());
+}
+
+template <typename AssertEq>
+void TensorCheck(AssertEq compare, real args1, real args2) {
+  EXPECT_EQ(compare(args1, args2), true) << "[Test error] args1 = " << args1
+                                         << ", args2 = " << args2;
+}
+
+template <typename AssertEq>
+void TensorCheck(AssertEq compare, size_t args1, size_t args2) {
+  EXPECT_EQ(args1, args2) << "[Test error] args1 = " << args1
+                          << ", args2 = " << args2;
+}
+
+template <typename Tensor1, typename Tensor2>
+void TensorCheckEqual(const Tensor1& tensor1, const Tensor2& tensor2) {
+  AssertEqual compare(0);
+  TensorCheck(compare,
+              CopyToCpu<Tensor1>(tensor1).copiedArg(),
+              CopyToCpu<Tensor2>(tensor2).copiedArg());
+}
+
+template <typename Tensor1, typename Tensor2>
+void TensorCheckErr(const Tensor1& tensor1, const Tensor2& tensor2) {
+#ifndef PADDLE_TYPE_DOUBLE
+  AssertEqual compare(1e-3);
+#else
+  AssertEqual compare(1e-10);
+#endif
+  TensorCheck(compare,
+              CopyToCpu<Tensor1>(tensor1).copiedArg(),
+              CopyToCpu<Tensor2>(tensor2).copiedArg());
+}
+
+}  // namespace autotest
diff --git a/paddle/math/tests/TestUtils.h b/paddle/math/tests/TestUtils.h
new file mode 100644
index 0000000000000000000000000000000000000000..2edb07de0144ba194cd18e644fbc93efcbe4837a
--- /dev/null
+++ b/paddle/math/tests/TestUtils.h
@@ -0,0 +1,294 @@
+/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+
+/**
+ * This file provides a AutoCompare calss to simplify the comparison
+ * of CPU and GPU member functions.
+ *
+ * This takes two steps
+ * 1. Construct an AutoCompare object.
+ *    When constructing an AutoCompare object, you can set the err argument
+ * to specify the maximum error for CPU and GPU functions.
+ *
+ * 2. Use the template functions cmpWithArg or cmpWithoutArg.
+ * A. [cmpWithArg] Requires the caller construct the cpu arguments.
+ *
+ *  AutoCompare test;
+ *  Init Argument arg1,arg2...
+ *  test.cmpWithArg(function, arg1, arg2....)
+ *
+ * B. [cmpWithoutArg] The caller do not need construct arguments.
+ *    If matrix used in these functions arguments is the same size.
+ *    Such as the element wise function and the aggregate function
+ *    defined in the BaseMatrix.cpp.
+ *
+ *  AutoCompare test;
+ *  test.cmpWithoutArg<I...>(function, height, width)
+*/
+
+#include <gtest/gtest.h>
+#include "paddle/math/Matrix.h"
+#include "paddle/math/SparseMatrix.h"
+#include "TensorCheck.h"
+
+namespace autotest {
+
+using paddle::BaseMatrix;
+using paddle::CpuMatrix;
+using paddle::GpuMatrix;
+using paddle::CpuIVector;
+using paddle::GpuIVector;
+using paddle::CpuSparseMatrix;
+using paddle::GpuSparseMatrix;
+
+template <typename T1, typename T2>
+class ReplaceType {
+public:
+  typedef T1 type;
+};
+
+template <>
+class ReplaceType<BaseMatrix, CpuMatrix> {
+public:
+  typedef CpuMatrix type;
+};
+
+template <>
+class ReplaceType<BaseMatrix, GpuMatrix> {
+public:
+  typedef GpuMatrix type;
+};
+
+template <>
+class ReplaceType<Matrix, CpuMatrix> {
+public:
+  typedef CpuMatrix type;
+};
+
+template <>
+class ReplaceType<Matrix, GpuMatrix> {
+public:
+  typedef GpuMatrix type;
+};
+
+// construct a argument
+template <typename T>
+T construct(int height, int width);
+
+template <>
+float construct(int height, int width) {
+  return 0.5;
+}
+
+template <>
+double construct(int height, int width) {
+  return 0.5;
+}
+
+template <>
+size_t construct(int height, int width) {
+  size_t offset = std::rand() % (height < width ? height : width);
+  return offset;
+}
+
+template <>
+CpuMatrix construct(int height, int width) {
+  CpuMatrix a(height, width);
+  return a;
+}
+
+template <>
+GpuMatrix construct(int height, int width) {
+  GpuMatrix a(height, width);
+  return a;
+}
+
+// init a argument
+template <typename T>
+void init(T& v) {
+  return;
+}
+
+template <>
+void init(CpuMatrix& v) {
+  v.randomizeUniform();
+}
+
+template <>
+void init(GpuMatrix& v) {
+  v.randomizeUniform();
+}
+
+// init a tuple which contains a set of arguments.
+template <std::size_t I = 0, typename... Args>
+inline typename std::enable_if<I == sizeof...(Args), void>::type initTuple(
+    std::tuple<Args...>& t) {}
+
+template <std::size_t I = 0, typename... Args>
+    inline typename std::enable_if <
+    I<sizeof...(Args), void>::type initTuple(std::tuple<Args...>& t) {
+  init(std::get<I>(t));
+  initTuple<I + 1>(t);
+}
+
+// copy a argument, copy src to dest
+template <typename T1, typename T2>
+void copy(T1& dest, T2& src) {
+  dest = src;
+}
+
+template <>
+void copy(GpuMatrix& dest, CpuMatrix& src) {
+  dest.copyFrom(src);
+}
+
+// copy a tuple, copy src to dest
+template <std::size_t I = 0, typename... Args1, typename... Args2>
+inline typename std::enable_if<I == sizeof...(Args1), void>::type copyTuple(
+    std::tuple<Args1...>& dest, std::tuple<Args2...>& src) {}
+
+template <std::size_t I = 0, typename... Args1, typename... Args2>
+    inline typename std::enable_if <
+    I<sizeof...(Args1), void>::type copyTuple(std::tuple<Args1...>& dest,
+                                              std::tuple<Args2...>& src) {
+  copy(std::get<I>(dest), std::get<I>(src));
+  copyTuple<I + 1>(dest, src);
+}
+
+// call member function
+template <typename C,
+          typename FC,
+          typename R,
+          typename... FArgs,
+          typename... Args>
+R call(C& obj, R (FC::*f)(FArgs...), Args&&... args) {
+  return (obj.*f)(args...);
+}
+
+template <typename T>
+class ReturnType {
+public:
+  typedef T type;
+};
+
+template <>
+class ReturnType<CpuMatrix> {
+public:
+  typedef GpuMatrix type;
+};
+
+template <>
+class ReturnType<CpuIVector> {
+public:
+  typedef GpuIVector type;
+};
+
+template <>
+class ReturnType<CpuSparseMatrix> {
+public:
+  typedef GpuSparseMatrix type;
+};
+
+template <typename T>
+typename ReturnType<T>::type autoArgs(T& v) {
+  return v;
+}
+
+template <>
+GpuMatrix autoArgs(CpuMatrix& v) {
+  GpuMatrix a(v.getHeight(), v.getWidth());
+  a.copyFrom(v);
+  return a;
+}
+
+template <>
+GpuIVector autoArgs(CpuIVector& v) {
+  GpuIVector a(v.getSize());
+  a.copyFrom(v);
+  return a;
+}
+
+template <>
+GpuSparseMatrix autoArgs(CpuSparseMatrix& v) {
+  GpuSparseMatrix a(v.getHeight(),
+                    v.getWidth(),
+                    v.getElementCnt(),
+                    v.getValueType(),
+                    v.getFormat());
+  a.copyFrom(v, HPPL_STREAM_DEFAULT);
+  hl_stream_synchronize(HPPL_STREAM_DEFAULT);
+  return a;
+}
+
+class AutoCompare {
+public:
+  /**
+   * err is the allowed calculation error.
+   * The smaller the value of err,
+   * the stricter the comparison is between CPU and GPU calculations.
+   */
+  AutoCompare(size_t height, size_t width, real err = 1e-3)
+      : cpu(height, width), gpu(height, width), compare(err) {
+    init(cpu);
+    copy(gpu, cpu);
+  }
+
+  template <typename C, typename R, typename... FArgs, typename... Args>
+  void cmpWithArg(R (C::*f)(FArgs...), Args&&... args) {
+    static_assert(sizeof...(FArgs) == sizeof...(Args),
+                  "size of parameter packs are not equal");
+    call(cpu, f, args...);
+    call(gpu, f, autoArgs(args)...);
+
+    TensorCheck(compare, cpu, gpu);
+  }
+
+  template <std::size_t... I, typename C, typename R, typename... Args>
+  void cmpWithoutArg(R (C::*f)(Args...), size_t height, size_t width) {
+    static_assert(sizeof...(I) == sizeof...(Args),
+                  "size of parameter packs are not equal");
+    (void)height;
+    (void)width;
+    auto tuple1 = std::make_tuple(
+        construct<typename ReplaceType<
+            typename std::decay<
+                typename std::tuple_element<I,
+                                            std::tuple<Args...>>::type>::type,
+            CpuMatrix>::type>(height, width)...);
+
+    auto tuple2 = std::make_tuple(
+        construct<typename ReplaceType<
+            typename std::decay<
+                typename std::tuple_element<I,
+                                            std::tuple<Args...>>::type>::type,
+            GpuMatrix>::type>(height, width)...);
+
+    initTuple(tuple1);
+    copyTuple(tuple2, tuple1);
+
+    call(cpu, f, std::get<I>(tuple1)...);
+    call(gpu, f, std::get<I>(tuple2)...);
+
+    TensorCheck(compare, cpu, gpu);
+  }
+
+protected:
+  CpuMatrix cpu;
+  GpuMatrix gpu;
+  AssertEqual compare;
+};
+
+}  // namespace autotest
diff --git a/paddle/math/tests/test_BaseMatrix.cpp b/paddle/math/tests/test_BaseMatrix.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..521ea8aeb09744a59e64d493062ce42748ee716b
--- /dev/null
+++ b/paddle/math/tests/test_BaseMatrix.cpp
@@ -0,0 +1,251 @@
+/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#ifndef PADDLE_ONLY_CPU
+/**
+ * This test file use autotest::AutoCompare and cmpWithoutArg to compares the
+ * implementation of CPU and GPU member function in
+ * BaseMatrix.cpp and Matrix.cpp.
+ */
+
+#include <gtest/gtest.h>
+#include "paddle/math/BaseMatrix.h"
+#include "TestUtils.h"
+
+using paddle::BaseMatrix;
+using paddle::Matrix;
+using autotest::AutoCompare;
+
+// Test all void (BaseMatrix::*)() function
+TEST(BaseMatrix, void) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
+      auto compare = [height, width](void (BaseMatrix::*f)()) {
+        AutoCompare test(height, width, 1e-5);
+        test.cmpWithoutArg(f, height, width);
+      };
+
+      compare(&BaseMatrix::neg);
+      compare(&BaseMatrix::exp);
+      compare(&BaseMatrix::log);
+      compare(&BaseMatrix::sqrt);
+      compare(&BaseMatrix::square);
+      compare(&BaseMatrix::reciprocal);
+      compare(&BaseMatrix::abs);
+      compare(&BaseMatrix::sign);
+      compare(&BaseMatrix::zero);
+      compare(&BaseMatrix::one);
+    }
+  }
+}
+
+// Test all void (BaseMatrix::*)(real) function
+TEST(BaseMatrix, real) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
+      auto compare = [height, width](void (BaseMatrix::*f)(real)) {
+        AutoCompare test(height, width, 1e-5);
+        test.cmpWithoutArg<0>(f, height, width);
+      };
+
+      compare(&BaseMatrix::pow);
+      compare(&BaseMatrix::subScalar);
+      compare(&BaseMatrix::mulScalar);
+      compare(&BaseMatrix::divScalar);
+      compare(&BaseMatrix::assign);
+      compare(&BaseMatrix::add);
+      compare(&BaseMatrix::biggerThanScalar);
+      compare(&BaseMatrix::downClip);
+    }
+  }
+}
+
+// Test all void (BaseMatrix::*)(BaseMatrix&) function
+TEST(BaseMatrix, BaseMatrix) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
+      auto compare = [height, width](void (BaseMatrix::*f)(BaseMatrix&)) {
+        AutoCompare test(height, width, 1e-5);
+        test.cmpWithoutArg<0>(f, height, width);
+      };
+
+      compare(&BaseMatrix::assign);
+      compare(&BaseMatrix::add);
+      compare(&BaseMatrix::relu);
+      compare(&BaseMatrix::reluDerivative);
+      compare(&BaseMatrix::softrelu);
+      compare(&BaseMatrix::softreluDerivative);
+      compare(&BaseMatrix::brelu);
+      compare(&BaseMatrix::breluDerivative);
+      compare(&BaseMatrix::square);
+      compare(&BaseMatrix::squareDerivative);
+      compare(&BaseMatrix::tanh);
+      compare(&BaseMatrix::tanhDerivative);
+      compare(&BaseMatrix::reciprocal);
+      compare(&BaseMatrix::reciprocalDerivative);
+      compare(&BaseMatrix::abs);
+      compare(&BaseMatrix::absDerivative);
+      compare(&BaseMatrix::sigmoid);
+      compare(&BaseMatrix::sigmoidDerivative);
+      compare(&BaseMatrix::expDerivative);
+      compare(&BaseMatrix::sign);
+      compare(&BaseMatrix::exp);
+      compare(&BaseMatrix::log);
+      compare(&BaseMatrix::sqrt);
+      compare(&BaseMatrix::dotMul);
+      compare(&BaseMatrix::dotMulSquare);
+      compare(&BaseMatrix::dotSquareMul);
+      compare(&BaseMatrix::addColVector);
+      compare(&BaseMatrix::addRowVector);
+      compare(&BaseMatrix::mulRowVector);
+      compare(&BaseMatrix::divRowVector);
+      compare(&BaseMatrix::addP2P);
+      compare(&BaseMatrix::invSqrt);
+    }
+  }
+}
+
+// Test all void (BaseMatrix::*)(real, real) function
+TEST(BaseMatrix, real_real) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
+      auto compare = [height, width](void (BaseMatrix::*f)(real, real)) {
+        AutoCompare test(height, width, 1e-5);
+        test.cmpWithoutArg<0, 1>(f, height, width);
+      };
+
+      compare(&BaseMatrix::add);
+      compare(&BaseMatrix::clip);
+    }
+  }
+}
+
+// Test all void (BaseMatrix::*)(BaseMatrix&, real) function
+TEST(BaseMatrix, BaseMatrix_real) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
+      auto compare = [height, width](void (BaseMatrix::*f)(BaseMatrix&, real)) {
+        AutoCompare test(height, width, 1e-5);
+        test.cmpWithoutArg<0, 1>(f, height, width);
+      };
+
+      compare(&BaseMatrix::addBias);
+      compare(&BaseMatrix::add);
+      compare(&BaseMatrix::sub);
+      compare(&BaseMatrix::pow);
+      compare(&BaseMatrix::addScalar);
+      compare(&BaseMatrix::subScalar);
+      compare(&BaseMatrix::mulScalar);
+      compare(&BaseMatrix::divScalar);
+      compare(&BaseMatrix::scalarDiv);
+      compare(&BaseMatrix::addSquare);
+      compare(&BaseMatrix::isEqualTo);
+    }
+  }
+}
+
+// Test all void (BaseMatrix::*)(BaseMatrix&, BaseMatrix&) function
+TEST(BaseMatrix, BaseMatrix_BaseMatrix) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
+      auto compare = [height,
+                      width](void (BaseMatrix::*f)(BaseMatrix&, BaseMatrix&)) {
+        AutoCompare test(height, width, 1e-5);
+        test.cmpWithoutArg<0, 1>(f, height, width);
+      };
+
+      compare(&BaseMatrix::softCrossEntropy);
+      compare(&BaseMatrix::softCrossEntropyBp);
+      compare(&BaseMatrix::binaryLabelCrossEntropy);
+      compare(&BaseMatrix::binaryLabelCrossEntropyBp);
+      compare(&BaseMatrix::sub);
+      compare(&BaseMatrix::add2);
+      compare(&BaseMatrix::dotMul);
+      compare(&BaseMatrix::dotDiv);
+      compare(&BaseMatrix::logisticRegressionLoss);
+      compare(&BaseMatrix::logisticRegressionLossBp);
+      compare(&BaseMatrix::biggerThan);
+      compare(&BaseMatrix::max);
+      compare(&BaseMatrix::dotMulSquare);
+      compare(&BaseMatrix::dotSquareSquare);
+    }
+  }
+}
+
+void TestEelementWise(size_t height, size_t width) {
+  AutoCompare rowScale(height, width);
+  rowScale.cmpWithoutArg<0, 1, 2>(&BaseMatrix::rowScale, height, width);
+
+  AutoCompare rowDotMul(height, width);
+  rowDotMul.cmpWithoutArg<0, 1, 2>(&BaseMatrix::rowDotMul, height, width);
+
+  AutoCompare binaryClassificationError(height, width);
+  binaryClassificationError.cmpWithoutArg<0, 1, 2, 3>(
+      &BaseMatrix::binaryClassificationError, height, width);
+
+  AutoCompare sumOfSquaresBp(height, width);
+  sumOfSquaresBp.cmpWithoutArg<0, 1>(&Matrix::sumOfSquaresBp, height, width);
+}
+
+void TestAggregateToRow(size_t height, size_t width) {
+  AutoCompare maxCols(1, width);
+  maxCols.cmpWithoutArg<0>(&BaseMatrix::maxCols, height, width);
+
+  AutoCompare minCols(1, width);
+  minCols.cmpWithoutArg<0>(&BaseMatrix::minCols, height, width);
+
+  AutoCompare addDotMulVMM(1, width);
+  addDotMulVMM.cmpWithoutArg<0, 1>(&BaseMatrix::addDotMulVMM, height, width);
+
+  AutoCompare sumCols(1, width);
+  sumCols.cmpWithoutArg<0, 1, 2>(&BaseMatrix::sumCols, height, width);
+
+  AutoCompare collectBias(1, width);
+  collectBias.cmpWithoutArg<0, 1>(
+      static_cast<void (Matrix::*)(Matrix&, real)>(&Matrix::collectBias),
+      height,
+      width);
+}
+
+void TestAggregateToCol(size_t height, size_t width) {
+  AutoCompare maxRows(height, 1);
+  maxRows.cmpWithoutArg<0>(&BaseMatrix::maxRows, height, width);
+
+  AutoCompare minRows(height, 1);
+  minRows.cmpWithoutArg<0>(&BaseMatrix::minRows, height, width);
+
+  AutoCompare sumRows(height, 1);
+  sumRows.cmpWithoutArg<0, 1, 2>(&BaseMatrix::sumRows, height, width);
+
+  AutoCompare sumOfSquares(height, 1);
+  sumOfSquares.cmpWithoutArg<0, 1>(&Matrix::sumOfSquares, height, width);
+}
+
+TEST(BaseMatrix, Other) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
+      TestEelementWise(height, width);
+      TestAggregateToRow(height, width);
+      TestAggregateToCol(height, width);
+    }
+  }
+}
+
+int main(int argc, char** argv) {
+  testing::InitGoogleTest(&argc, argv);
+  paddle::initMain(argc, argv);
+  return RUN_ALL_TESTS();
+}
+
+#endif
diff --git a/paddle/math/tests/test_Matrix.cpp b/paddle/math/tests/test_Matrix.cpp
new file mode 100644
index 0000000000000000000000000000000000000000..edc9d74103240ff3790a4baf2ae796cab4aca55b
--- /dev/null
+++ b/paddle/math/tests/test_Matrix.cpp
@@ -0,0 +1,300 @@
+/* Copyright (c) 2016 Baidu, Inc. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+    http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#ifndef PADDLE_ONLY_CPU
+/**
+ * This test file use autotest::AutoCompare and cmpWithArg to compares the
+ * implementation of CPU and GPU member function in Matrix.cpp.
+ */
+
+#include <gtest/gtest.h>
+#include "TestUtils.h"
+
+using paddle::BaseMatrix;
+using paddle::Matrix;
+using paddle::CpuMatrix;
+using paddle::CpuIVector;
+using paddle::CpuSparseMatrix;
+using autotest::AutoCompare;
+
+void testBilinearFwdBwd(int numSamples,
+                        int imgSizeH,
+                        int imgSizeW,
+                        int channels) {
+  int inWidth = imgSizeH * imgSizeW * channels;
+  int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels;
+  real ratioH = 0.5;
+  real ratioW = 0.5;
+
+  AutoCompare forward(numSamples, outWidth);
+  CpuMatrix arg1(numSamples, inWidth);
+  arg1.randomizeUniform();
+  forward.cmpWithArg(&Matrix::bilinearForward,
+                     arg1,
+                     imgSizeH,
+                     imgSizeW,
+                     2 * imgSizeH,
+                     2 * imgSizeW,
+                     channels,
+                     ratioH,
+                     ratioW);
+
+  AutoCompare backward(numSamples, inWidth);
+  CpuMatrix arg2(numSamples, outWidth);
+  arg2.randomizeUniform();
+  backward.cmpWithArg(&Matrix::bilinearBackward,
+                      arg2,
+                      2 * imgSizeH,
+                      2 * imgSizeW,
+                      imgSizeH,
+                      imgSizeW,
+                      channels,
+                      ratioH,
+                      ratioW);
+}
+
+TEST(Matrix, BilinearFwdBwd) {
+  for (auto numSamples : {5, 10}) {
+    for (auto channels : {8, 16}) {
+      for (auto imgSizeH : {14, 28}) {
+        for (auto imgSizeW : {16, 30}) {
+          VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
+                  << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
+          testBilinearFwdBwd(numSamples, imgSizeH, imgSizeW, channels);
+        }
+      }
+    }
+  }
+}
+
+void testMatrixAddBias(int height, int width, real scale) {
+  AutoCompare test(height, width);
+  CpuMatrix arg1(1, width);
+  arg1.randomizeUniform();
+  test.cmpWithArg(
+      static_cast<void (Matrix::*)(Matrix&, real)>(&Matrix::addBias),
+      arg1,
+      scale);
+}
+
+void testMatrixAddDotMulMMV(int height, int width) {
+  AutoCompare test(height, width);
+  CpuMatrix arg1(height, width);
+  CpuMatrix arg2(1, width);
+  arg1.randomizeUniform();
+  arg2.randomizeUniform();
+  test.cmpWithArg(&BaseMatrix::addDotMulMMV, arg1, arg2);
+}
+
+TEST(Matrix, unary) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
+      VLOG(3) << " height=" << height << " width=" << width;
+      testMatrixAddBias(height, width, 1.0);
+      testMatrixAddBias(height, width, 3.5);
+      testMatrixAddDotMulMMV(height, width);
+    }
+  }
+}
+
+void testMatrixAddAtOffset(int height, int width1, int width2, int offset) {
+  AutoCompare test(height, width2);
+  CpuMatrix arg1(height, width1);
+  arg1.randomizeUniform();
+  test.cmpWithArg(&Matrix::addAtOffset, arg1, offset);
+}
+
+void testMatrixAssignAtOffset(int height, int width1, int width2, int offset) {
+  AutoCompare test(height, width2);
+  CpuMatrix arg1(height, width1);
+  arg1.randomizeUniform();
+  test.cmpWithArg(&Matrix::assignAtOffset, arg1, offset);
+}
+
+TEST(Matrix, AtOffset) {
+  for (auto height : {1, 11, 73, 128, 200}) {
+    for (auto width1 : {1, 32, 100, 512, 1000}) {
+      for (auto width2 : {1, 32, 100, 512, 1000}) {
+        int columnOffset = 0;
+        int offset = std::abs(width1 - width2);
+        if (offset) {
+          columnOffset = std::rand() % offset;
+        }
+        VLOG(3) << " height=" << height << " width1=" << width1
+                << " width2=" << width2 << " columnOffset = " << columnOffset;
+        testMatrixAddAtOffset(height, width1, width2, columnOffset);
+        testMatrixAssignAtOffset(height, width1, width2, columnOffset);
+      }
+    }
+  }
+}
+
+void testMatrixSelectRows(int numSamples, int tableSize, int inputDim) {
+  AutoCompare test(numSamples, inputDim);
+  CpuMatrix arg1(tableSize, inputDim);
+  CpuIVector arg2(numSamples);
+  arg1.randomizeUniform();
+  arg2.rand(tableSize);
+  test.cmpWithArg(&Matrix::selectRows, arg1, arg2);
+}
+
+TEST(Matrix, tableProjection) {
+  for (auto numSamples : {10, 100, 1000, 10000, 80000}) {
+    for (auto tableSize : {10, 100}) {
+      for (auto inputDim : {20, 50}) {
+        VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
+                << " inputDim=" << inputDim;
+        testMatrixSelectRows(numSamples, tableSize, inputDim);
+      }
+    }
+  }
+}
+
+void testMatrixCopyByRowIndex(int outHeight, int inHeight, int width) {
+  AutoCompare test(outHeight, width);
+  CpuMatrix arg1(inHeight, width);
+  CpuIVector arg2(outHeight);
+  arg1.randomizeUniform();
+  arg2.rand(inHeight);
+  test.cmpWithArg(&Matrix::copyByRowIndex, arg1, arg2);
+}
+
+TEST(Matrix, copyByRowIndex) {
+  for (auto outHeight : {31, 500, 1000}) {
+    for (auto inHeight : {17, 257, 500, 1200}) {
+      for (auto width : {512, 1024}) {
+        VLOG(3) << outHeight << " " << inHeight << " " << width;
+        testMatrixCopyByRowIndex(outHeight, inHeight, width);
+      }
+    }
+  }
+}
+
+void testCosSim(int heightX, int heightY, int width, real scale) {
+  AutoCompare test(heightX, 1);
+  CpuMatrix arg1(heightX, width);
+  CpuMatrix arg2(heightY, width);
+  arg1.randomizeUniform();
+  arg2.randomizeUniform();
+  arg2.add(-0.5);
+  test.cmpWithArg(&Matrix::cosSim, arg1, arg2, scale);
+}
+
+TEST(Matrix, cosSim) {
+  for (auto heightX : {10, 100, 1000}) {
+    for (auto heightY : {1, heightX}) {
+      for (auto width : {10, 100, 1000}) {
+        for (auto scale : {1.0, 2.0}) {
+          testCosSim(heightX, heightY, width, scale);
+        }
+      }
+    }
+  }
+}
+
+void testParamReluForward(int height, int width, int w_height, int w_width) {
+  AutoCompare test(height, width);
+  CpuMatrix arg1(height, width);
+  CpuMatrix arg2(w_height, w_width);
+  arg1.randomizeUniform();
+  arg2.randomizeUniform();
+  arg1.add(-0.5);
+  test.cmpWithArg(&Matrix::paramReluForward, arg1, arg2);
+}
+
+void testParamReluBackwardW(int height, int width, int w_height, int w_width) {
+  AutoCompare test(w_height, w_width);
+  CpuMatrix arg1(height, width);
+  CpuMatrix arg2(height, width);
+  arg1.randomizeUniform();
+  arg2.randomizeUniform();
+  arg2.add(-0.5);
+  test.cmpWithArg(&Matrix::paramReluBackwardW, arg1, arg2);
+}
+
+TEST(Matrix, paramRelu) {
+  for (auto height : {10, 100}) {
+    for (auto width : {10, 100}) {
+      for (auto w_height : {1, 2}) {
+        for (auto w_width : {1, 2}) {
+          testParamReluForward(height, width, w_height, w_width);
+          testParamReluBackwardW(height, width, w_height, w_width);
+        }
+      }
+    }
+  }
+}
+
+void testAddSharedBias(int numSamples, int dim, int channel) {
+  AutoCompare test(numSamples, dim);
+  CpuMatrix arg1(1, channel);
+  arg1.randomizeUniform();
+  test.cmpWithArg(&Matrix::addSharedBias, arg1, 1.0);
+}
+
+void testCollectSharedBias(int numSamples, int dim, int channel) {
+  AutoCompare test(1, channel);
+  CpuMatrix arg1(numSamples, dim);
+  arg1.randomizeUniform();
+  test.cmpWithArg(&Matrix::collectSharedBias, arg1, 1.0);
+}
+
+TEST(Matrix, sharedBias) {
+  for (auto numSamples : {1, 100, 520}) {
+    for (auto dim : {100 * 16, 100 * 32}) {
+      for (auto channel : {8, 16}) {
+        VLOG(3) << " numSamples=" << numSamples << " dim=" << dim
+                << " channel=" << channel;
+        testAddSharedBias(numSamples, dim, channel);
+        testCollectSharedBias(numSamples, dim, channel);
+      }
+    }
+  }
+}
+
+void testMultiBinaryLabelCrossEntropy(int numSamples, int dim) {
+  AutoCompare forward(numSamples, 1);
+  CpuMatrix arg1(numSamples, dim);
+  CpuSparseMatrix arg2(
+      numSamples, dim, numSamples, paddle::NO_VALUE, paddle::SPARSE_CSR);
+
+  CpuMatrix output1(numSamples, dim);
+  output1.randomizeUniform();
+  output1.softmax(arg1);
+  for (int i = 0; i < numSamples; i++) {
+    const unsigned int id = std::rand() % dim;
+    arg2.setRow(i, 1, &id, nullptr);
+  }
+  forward.cmpWithArg(&Matrix::multiBinaryLabelCrossEntropy, arg1, arg2);
+
+  AutoCompare backward(numSamples, dim);
+  backward.cmpWithArg(&Matrix::multiBinaryLabelCrossEntropyBp, arg1, arg2);
+}
+
+TEST(Matrix, multiBinaryCrossEntropy) {
+  for (auto numSamples : {100, 1000, 10000}) {
+    for (auto dim : {100, 1000, 10000}) {
+      VLOG(3) << " numSamples=" << numSamples << " dim=" << dim;
+      testMultiBinaryLabelCrossEntropy(numSamples, dim);
+    }
+  }
+}
+
+int main(int argc, char** argv) {
+  testing::InitGoogleTest(&argc, argv);
+  paddle::initMain(argc, argv);
+  return RUN_ALL_TESTS();
+}
+
+#endif
diff --git a/paddle/math/tests/test_matrix.cpp b/paddle/math/tests/test_SparseMatrix.cpp
similarity index 100%
rename from paddle/math/tests/test_matrix.cpp
rename to paddle/math/tests/test_SparseMatrix.cpp
diff --git a/paddle/math/tests/test_matrixCompare.cpp b/paddle/math/tests/test_matrixCompare.cpp
index de540dad4c8eefe5084c7089d7960d8ca8cf9875..0883066947ae67cd55c2c505eef72168f3139b8d 100644
--- a/paddle/math/tests/test_matrixCompare.cpp
+++ b/paddle/math/tests/test_matrixCompare.cpp
@@ -22,163 +22,12 @@ limitations under the License. */
 #include <gtest/gtest.h>
 #include "paddle/gserver/tests/TestUtil.h"
 #include "paddle/utils/Stat.h"
+#include "TensorCheck.h"
 
 using namespace paddle;  // NOLINT
 using namespace std;     // NOLINT
-
-template <class T>
-void VectorCheckEqual(const VectorT<T>& vector1, const VectorT<T>& vector2) {
-  CHECK(vector1.getSize() == vector2.getSize());
-
-  const T* data1 = vector1.getData();
-  const T* data2 = vector2.getData();
-  size_t size = vector1.getSize();
-  int count = 0;
-  for (size_t i = 0; i < size; i++) {
-    if (data1[i] != data2[i]) {
-      count++;
-    }
-  }
-  EXPECT_EQ(count, 0) << "There are " << count << " different element.";
-}
-
-void MatrixCheckEqual(const Matrix& matrix1, const Matrix& matrix2) {
-  CHECK(matrix1.getHeight() == matrix2.getHeight());
-  CHECK(matrix1.getWidth() == matrix2.getWidth());
-
-  int height = matrix1.getHeight();
-  int width = matrix1.getWidth();
-  const real* data1 = matrix1.getData();
-  const real* data2 = matrix2.getData();
-  int count = 0;
-  for (int i = 0; i < height; i++) {
-    for (int j = 0; j < width; j++) {
-      if (data1[i * width + j] != data2[i * width + j]) {
-        count++;
-      }
-    }
-  }
-  EXPECT_EQ(count, 0) << "There are " << count << " different element.";
-}
-
-void MatrixCheckErr(const Matrix& matrix1, const Matrix& matrix2) {
-  CHECK(matrix1.getHeight() == matrix2.getHeight());
-  CHECK(matrix1.getWidth() == matrix2.getWidth());
-#ifndef PADDLE_TYPE_DOUBLE
-  real err = 1e-3;
-#else
-  real err = 1e-10;
-#endif
-
-  int height = matrix1.getHeight();
-  int width = matrix1.getWidth();
-  const real* data1 = matrix1.getData();
-  const real* data2 = matrix2.getData();
-  int count = 0;
-  for (int i = 0; i < height; i++) {
-    for (int j = 0; j < width; j++) {
-      real a = data1[i * width + j];
-      real b = data2[i * width + j];
-      if (fabs(a - b) > err) {
-        if ((fabsf(a - b) / fabsf(a)) > (err / 10.0f)) {
-          count++;
-        }
-      }
-    }
-  }
-  EXPECT_EQ(count, 0) << "There are " << count << " different element.";
-}
-
-void testBilinearFwdBwd(int numSamples,
-                        int imgSizeH,
-                        int imgSizeW,
-                        int channels) {
-  int inWidth = imgSizeH * imgSizeW * channels;
-  int outWidth = 2 * imgSizeH * 2 * imgSizeW * channels;
-  real ratioH = 0.5;
-  real ratioW = 0.5;
-  // forward
-  MatrixPtr input = CpuMatrix::create(numSamples, inWidth, false, false);
-  MatrixPtr inputGpu = GpuMatrix::create(numSamples, inWidth, false, true);
-
-  MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
-  MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);
-  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
-
-  input->randomizeUniform();
-  inputGpu->copyFrom(*input);
-
-  target->bilinearForward(*input,
-                          imgSizeH,
-                          imgSizeW,
-                          2 * imgSizeH,
-                          2 * imgSizeW,
-                          channels,
-                          ratioH,
-                          ratioW);
-  targetGpu->bilinearForward(*inputGpu,
-                             imgSizeH,
-                             imgSizeW,
-                             2 * imgSizeH,
-                             2 * imgSizeW,
-                             channels,
-                             ratioH,
-                             ratioW);
-
-  // check
-  targetCheck->copyFrom(*targetGpu);
-  MatrixCheckErr(*target, *targetCheck);
-
-  // backward
-  MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
-  MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
-
-  MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
-  MatrixPtr targetGpuGrad =
-      GpuMatrix::create(numSamples, outWidth, false, true);
-  MatrixPtr targetCheckGrad =
-      CpuMatrix::create(numSamples, inWidth, false, false);
-
-  inputGrad->randomizeUniform();
-  targetGrad->randomizeUniform();
-  inputGpuGrad->copyFrom(*inputGrad);
-  targetGpuGrad->copyFrom(*targetGrad);
-
-  inputGrad->bilinearBackward(*targetGrad,
-                              2 * imgSizeH,
-                              2 * imgSizeW,
-                              imgSizeH,
-                              imgSizeW,
-                              channels,
-                              ratioH,
-                              ratioW);
-  inputGpuGrad->bilinearBackward(*targetGpuGrad,
-                                 2 * imgSizeH,
-                                 2 * imgSizeW,
-                                 imgSizeH,
-                                 imgSizeW,
-                                 channels,
-                                 ratioH,
-                                 ratioW);
-
-  // check
-  targetCheckGrad->copyFrom(*inputGpuGrad);
-  MatrixCheckErr(*inputGrad, *targetCheckGrad);
-}
-
-TEST(Matrix, BilinearFwdBwd) {
-  for (auto numSamples : {5, 10}) {
-    for (auto channels : {8, 16}) {
-      for (auto imgSizeH : {14, 28}) {
-        for (auto imgSizeW : {16, 30}) {
-          VLOG(3) << " numSamples=" << numSamples << " channels=" << channels
-                  << " imgSizeH=" << imgSizeH << " imgSizeW=" << imgSizeW;
-          testBilinearFwdBwd(numSamples, imgSizeH, imgSizeW, channels);
-        }
-      }
-    }
-  }
-}
+using autotest::TensorCheckEqual;
+using autotest::TensorCheckErr;
 
 void testMatrixProjectionForward(int contextStart,
                                  int contextLength,
@@ -232,12 +81,7 @@ void testMatrixProjectionForward(int contextStart,
                                       beginPad,
                                       padding);
 
-  // check
-  MatrixPtr outputCheck =
-      std::make_shared<CpuMatrix>(batchSize, inputDim * contextLength);
-  outputCheck->copyFrom(*gpuOutput);
-
-  MatrixCheckEqual(*cpuOutput, *outputCheck);
+  TensorCheckEqual(*cpuOutput, *gpuOutput);
 }
 
 void testMatrixProjectionBackward(int contextStart,
@@ -294,15 +138,9 @@ void testMatrixProjectionBackward(int contextStart,
                                                    beginPad);
   }
 
-  // check
-  MatrixPtr inputGradCheck = std::make_shared<CpuMatrix>(batchSize, inputDim);
-  inputGradCheck->copyFrom(*gpuInputGrad);
-  MatrixCheckErr(*cpuInputGrad, *inputGradCheck);
-
+  TensorCheckErr(*cpuInputGrad, *gpuInputGrad);
   if (padding) {
-    MatrixPtr weightGradChcek = std::make_shared<CpuMatrix>(pad, inputDim);
-    weightGradChcek->copyFrom(*gpuWeightGrad);
-    MatrixCheckErr(*cpuWeightGrad, *weightGradChcek);
+    TensorCheckErr(*cpuWeightGrad, *gpuWeightGrad);
   }
 }
 
@@ -361,15 +199,8 @@ void testMatrixMaxSequence(int batchSize, int inputDim) {
   cpuOutput->maxSequenceForward(*cpuInput, *cpuSequence, *cpuIndex);
   gpuOutput->maxSequenceForward(*gpuInput, *gpuSequence, *gpuIndex);
 
-  // check
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
-  outputCheck->copyFrom(*gpuOutput);
-  MatrixCheckEqual(*cpuOutput, *outputCheck);
-
-  IVectorPtr indexCheck = nullptr;
-  IVector::resizeOrCreate(indexCheck, newBatchSize * inputDim, false);
-  indexCheck->copyFrom(*gpuIndex);
-  VectorCheckEqual(*cpuIndex, *indexCheck);
+  TensorCheckEqual(*cpuOutput, *gpuOutput);
+  TensorCheckEqual(*cpuIndex, *gpuIndex);
 
   // backward
   MatrixPtr cpuOutputGrad = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
@@ -385,10 +216,7 @@ void testMatrixMaxSequence(int batchSize, int inputDim) {
   cpuInputGrad->maxSequenceBackward(*cpuOutputGrad, *cpuSequence, *cpuIndex);
   gpuInputGrad->maxSequenceBackward(*gpuOutputGrad, *gpuSequence, *gpuIndex);
 
-  // check
-  MatrixPtr inputGradCheck = std::make_shared<CpuMatrix>(batchSize, inputDim);
-  inputGradCheck->copyFrom(*gpuInputGrad);
-  MatrixCheckEqual(*cpuInputGrad, *inputGradCheck);
+  TensorCheckEqual(*cpuInputGrad, *gpuInputGrad);
 }
 
 TEST(Matrix, maxSequence) {
@@ -431,6 +259,8 @@ void testMatrixZeroAtOffset(int height, int width) {
   int columnOffset = rand() % width;  // NOLINT we just use rand() for test.
   int numColumns = rand() % (width - columnOffset);  // NOLINT
 
+  if (numColumns == 0) return;
+
   cpuA->zeroAtOffset(columnOffset, numColumns);
   gpuA->zeroAtOffset(columnOffset, numColumns);
 
@@ -442,10 +272,8 @@ void testMatrixZeroAtOffset(int height, int width) {
     }
   }
 
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckEqual(*cpuA, *outputCheck);
-  MatrixCheckEqual(*cpuA, *cpuTest);
+  TensorCheckEqual(*cpuA, *gpuA);
+  TensorCheckEqual(*cpuA, *cpuTest);
 }
 
 void testMatrixDeepSwap(int height, int width) {
@@ -462,303 +290,8 @@ void testMatrixDeepSwap(int height, int width) {
   // swap matrix cpuA and cpuB
   cpuA->deepSwap(*cpuB);
 
-  MatrixCheckEqual(*cpuA, *cpuCopyB);
-  MatrixCheckEqual(*cpuB, *cpuCopyA);
-}
-
-void testMatrixBinaryAdd(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  cpuA->add(*cpuB);
-  gpuA->add(*gpuB);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckEqual(*cpuA, *outputCheck);
-}
-
-void testMatrixAssign(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  cpuA->assign(2.5);
-  gpuA->assign(2.5);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckEqual(*cpuA, *outputCheck);
-}
-
-
-void testMatrixAdd(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  cpuA->add(2.5);
-  gpuA->add(2.5);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckEqual(*cpuA, *outputCheck);
-}
-
-void testMatrixSqrt(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  cpuA->sqrt();
-  gpuA->sqrt();
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixTanhDerivative(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  cpuA->tanhDerivative(*cpuB);
-  gpuA->tanhDerivative(*gpuB);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixTanh(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  cpuA->tanh(*cpuB);
-  gpuA->tanh(*gpuB);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixTernarySub(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuC = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  cpuC->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  gpuC->copyFrom(*cpuC);
-
-  cpuA->sub(*cpuB, *cpuC);
-  gpuA->sub(*gpuB, *gpuC);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckEqual(*cpuA, *outputCheck);
-}
-
-void testMatrixSumOfSquaresBp(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuC = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  cpuC->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  gpuC->copyFrom(*cpuC);
-
-  cpuA->sumOfSquaresBp(*cpuB, *cpuC);
-  gpuA->sumOfSquaresBp(*gpuB, *gpuC);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixBinaryRowScale(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, 1);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, 1);
-
-  MatrixPtr cpuA1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB1 = std::make_shared<CpuMatrix>(height, 1);
-  MatrixPtr gpuA1 = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB1 = std::make_shared<GpuMatrix>(height, 1);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  cpuA1->copyFrom(*cpuA);
-  cpuB1->copyFrom(*cpuB);
-  gpuA1->copyFrom(*cpuA);
-  gpuB1->copyFrom(*cpuB);
-
-  cpuA->addColVector(*cpuB);
-  gpuA->addColVector(*gpuB);
-  cpuA1->addColumnVector(*cpuB1);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckEqual(*cpuA, *outputCheck);
-
-  MatrixCheckEqual(*cpuA, *cpuA1);
-}
-
-void testMatrixAddBias(int height, int width, real scale) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(1, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(1, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-
-  cpuA->addBias(*cpuB, scale);
-  gpuA->addBias(*gpuB, scale);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixTernaryRowScale(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuC = std::make_shared<GpuMatrix>(height, width);
-
-  MatrixPtr cpuA1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC1 = std::make_shared<CpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  cpuC->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  gpuC->copyFrom(*cpuC);
-  cpuA1->copyFrom(*cpuA);
-  cpuB1->copyFrom(*cpuB);
-  cpuC1->copyFrom(*cpuC);
-
-  int columnOffset = rand() % width;  // NOLINT
-
-  cpuA->rowScale(columnOffset, *cpuB, *cpuC);
-  gpuA->rowScale(columnOffset, *gpuB, *gpuC);
-  cpuA1->rowScale2(columnOffset, *cpuB1, *cpuC1);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckEqual(*cpuA, *outputCheck);
-
-  MatrixCheckEqual(*cpuA, *cpuA1);
-}
-
-void testMatrixTernaryRowDotMul(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC = std::make_shared<CpuMatrix>(height, width);
-
-  MatrixPtr cpuA1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC1 = std::make_shared<CpuMatrix>(height, width);
-
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuC = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  cpuC->randomizeUniform();
-  cpuA1->copyFrom(*cpuA);
-  cpuB1->copyFrom(*cpuB);
-  cpuC1->copyFrom(*cpuC);
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  gpuC->copyFrom(*cpuC);
-
-  int columnOffset = rand() % width;  // NOLINT
-
-  cpuA->rowDotMul(columnOffset, *cpuB, *cpuC);
-  gpuA->rowDotMul(columnOffset, *gpuB, *gpuC);
-  cpuA1->rowDotMul2(columnOffset, *cpuB1, *cpuC1);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *cpuA1);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixAddDotMulMMV(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC = std::make_shared<CpuMatrix>(1, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuC = std::make_shared<GpuMatrix>(1, width);
-
-  MatrixPtr cpuA1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC1 = std::make_shared<CpuMatrix>(1, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  cpuC->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  gpuC->copyFrom(*cpuC);
-  cpuA1->copyFrom(*cpuA);
-  cpuB1->copyFrom(*cpuB);
-  cpuC1->copyFrom(*cpuC);
-
-  cpuA->addDotMulMMV(*cpuB, *cpuC);
-  gpuA->addDotMulMMV(*gpuB, *gpuC);
-  cpuA1->addDotMulMMV2(*cpuB1, *cpuC1);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-  MatrixCheckEqual(*cpuA, *cpuA1);
+  TensorCheckEqual(*cpuA, *cpuCopyB);
+  TensorCheckEqual(*cpuB, *cpuCopyA);
 }
 
 void testMatrixTranspose(int height, int width) {
@@ -772,9 +305,7 @@ void testMatrixTranspose(int height, int width) {
   cpu->transpose(cpuT, false);
   gpu->transpose(gpuT, false);
 
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(width, height);
-  outputCheck->copyFrom(*gpuT);
-  MatrixCheckEqual(*cpuT, *outputCheck);
+  TensorCheckEqual(*cpuT, *gpuT);
 }
 
 void testMatrixInverse(int height) {
@@ -795,530 +326,127 @@ void testMatrixInverse(int height) {
   cpu->inverse(cpuI, false);
   gpu->inverse(gpuI, false);
 
-  outputCheck->copyFrom(*gpuI);
-  MatrixCheckErr(*cpuI, *outputCheck);
+  TensorCheckErr(*cpuI, *gpuI);
 
   outputCheck->mul(cpu, cpuI);
-  cpu->setDiag(1.0);
-  MatrixCheckErr(*cpu, *outputCheck);
-}
-
-TEST(Matrix, unary) {
-  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
-    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
-      VLOG(3) << " height=" << height << " width=" << width;
-
-      // applyUnary
-      testMatrixAssign(height, width);
-      testMatrixAdd(height, width);
-      testMatrixSqrt(height, width);
-
-      // applyBinary
-      testMatrixBinaryAdd(height, width);
-      testMatrixTanh(height, width);
-      testMatrixTanhDerivative(height, width);
-      testMatrixDeepSwap(height, width);
-
-      // applyTernary
-      testMatrixTernarySub(height, width);
-      testMatrixSumOfSquaresBp(height, width);
-
-      // asRowVector
-      testMatrixAddBias(height, width, 1.0);
-      testMatrixAddBias(height, width, 3.5);
-      testMatrixAddDotMulMMV(height, width);
-
-      // asColVector
-      testMatrixTernaryRowScale(height, width);
-      testMatrixBinaryRowScale(height, width);
-
-      // sum
-      testMatrixGetSum(height, width);
-
-      // transpose
-      testMatrixTranspose(height, width);
-    }
-    // inverse
-    testMatrixInverse(height);
-  }
-}
-
-void testMatrixSoftmax(int height, int width) {
-  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);
-
-  cpuInput->randomizeUniform();
-  gpuInput->copyFrom(*cpuInput);
-  cpuOutput->zero();
-  gpuOutput->zero();
-  cpuInput->softmax(*cpuOutput);
-  gpuInput->softmax(*gpuOutput);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuOutput);
-  MatrixCheckErr(*cpuOutput, *outputCheck);
-}
-
-void testSequenceSoftmax(int batchSize) {
-  // forward
-  int inputDim = 1;
-  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
-  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
-  cpuInput->randomizeUniform();
-  gpuInput->copyFrom(*cpuInput);
-
-  IVectorPtr cpuSequence;
-  generateSequenceStartPositions(batchSize, cpuSequence);
-  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
-  gpuSequence->copyFrom(*cpuSequence);
-
-  cpuInput->sequenceSoftmax(*cpuInput, *cpuSequence);
-  gpuInput->sequenceSoftmax(*gpuInput, *gpuSequence);
-
-  // check
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(batchSize, inputDim);
-  outputCheck->copyFrom(*gpuInput);
-  MatrixCheckErr(*cpuInput, *outputCheck);
-}
-
-void testMatrixSoftmaxThreshold(int height, int width) {
-  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);
-
-  cpuInput->randomizeUniform();
-  cpuInput->getData()[0] = 100.0;
-  gpuInput->copyFrom(*cpuInput);
-  cpuOutput->zero();
-  gpuOutput->zero();
-  cpuInput->softmax(*cpuOutput);
-  gpuInput->softmax(*gpuOutput);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuOutput);
-  // check output zero
-  int cpuCount = 0;
-  int gpuCount = 0;
-  auto zeroNum = [](MatrixPtr out, int& count) {
-    for (size_t i = 0; i < out->getHeight(); i++) {
-      for (size_t j = 0; j < out->getWidth(); j++) {
-        if (out->getElement(i, j) == 0) count++;
-      }
-    }
-  };
-  zeroNum(cpuOutput, cpuCount);
-  zeroNum(outputCheck, gpuCount);
-  EXPECT_EQ(cpuCount, 0) << "Cpu softmax output value 0";
-  EXPECT_EQ(gpuCount, 0) << "Gpu softmax output value 0";
-}
-
-void testMatrixSoftmaxBp(int height, int width) {
-  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);
-
-  cpuInput->randomizeUniform();
-  gpuInput->copyFrom(*cpuInput);
-  cpuOutput->randomizeUniform();
-  gpuOutput->copyFrom(*cpuOutput);
-  gpuOutput->softmaxBackward(*gpuInput);
-
-  MatrixPtr sftMaxSum = std::make_shared<CpuMatrix>(height, 1);
-  MatrixPtr sftMaxDot = std::make_shared<CpuMatrix>(height, width);
-  sftMaxDot->dotMul(*cpuOutput, *cpuInput);
-  sftMaxSum->colMerge(*sftMaxDot);
-  cpuOutput->softmaxDerivative(*cpuInput, *sftMaxSum);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuOutput);
-  MatrixCheckErr(*cpuOutput, *outputCheck);
-}
-
-TEST(Matrix, softmax) {
-  for (auto height : {1, 11, 73, 128, 200}) {
-    for (auto width : {1, 32, 100, 512, 1000}) {
-      VLOG(3) << " height=" << height << " width=" << width;
-
-      testMatrixSoftmax(height, width);
-      testMatrixSoftmaxBp(height, width);
-      testMatrixSoftmaxThreshold(height, width);
-    }
-    testSequenceSoftmax(height);
-  }
-}
-
-void testMatrixAddDotMulVMM(int height, int width, int endCol = 0) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(1, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(1, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuC = std::make_shared<GpuMatrix>(height, width);
-
-  MatrixPtr cpuA1 = std::make_shared<CpuMatrix>(1, width);
-  MatrixPtr cpuB1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC1 = std::make_shared<CpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  cpuC->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  gpuC->copyFrom(*cpuC);
-  cpuA1->copyFrom(*cpuA);
-  cpuB1->copyFrom(*cpuB);
-  cpuC1->copyFrom(*cpuC);
-
-  if (!endCol) {
-    cpuA->addDotMulVMM(*cpuB, *cpuC);
-    gpuA->addDotMulVMM(*gpuB, *gpuC);
-    cpuA1->addDotMulVMM2(*cpuB1, *cpuC1);
-
-    MatrixCheckErr(*cpuA, *cpuA1);
-  } else {
-    MatrixPtr subCpuA = cpuA->subColMatrix(0, endCol);
-    MatrixPtr subCpuB = cpuB->subColMatrix(0, endCol);
-    MatrixPtr subCpuC = cpuC->subColMatrix(0, endCol);
-    MatrixPtr subGpuA = gpuA->subColMatrix(0, endCol);
-    MatrixPtr subGpuB = gpuB->subColMatrix(0, endCol);
-    MatrixPtr subGpuC = gpuC->subColMatrix(0, endCol);
-    subCpuA->addDotMulVMM(*subCpuB, *subCpuC);
-    subGpuA->addDotMulVMM(*subGpuB, *subGpuC);
-  }
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(1, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixRowSum(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, 1);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, 1);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-
-  MatrixPtr cpuA1 = std::make_shared<CpuMatrix>(height, 1);
-  MatrixPtr cpuB1 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA1 = std::make_shared<GpuMatrix>(height, 1);
-  MatrixPtr gpuB1 = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  cpuA1->copyFrom(*cpuA);
-  cpuB1->copyFrom(*cpuB);
-  gpuA1->copyFrom(*cpuA);
-  gpuB1->copyFrom(*cpuB);
-
-  cpuA->colMerge(*cpuB);
-  gpuA->colMerge(*gpuB);
-
-  cpuB1->rowSum(*cpuA1);
-  gpuB1->rowSum(*gpuA1);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, 1);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-  outputCheck->copyFrom(*gpuA1);
-  MatrixCheckErr(*cpuA1, *outputCheck);
-}
-
-void testMatrixRowMax(int height, int width, int endCol = 0) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, 1);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, 1);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-
-  if (!endCol) {
-    cpuB->rowMax(*cpuA);
-    gpuB->rowMax(*gpuA);
-  } else {
-    MatrixPtr subCpuB = cpuB->subColMatrix(0, endCol);
-    MatrixPtr subGpuB = gpuB->subColMatrix(0, endCol);
-    subCpuB->rowMax(*cpuA);
-    subGpuB->rowMax(*gpuA);
-  }
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, 1);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixColSum(int height, int width, int endCol = 0) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(1, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(1, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-
-  if (!endCol) {
-    cpuA->accumulateColSum(*cpuB);
-    gpuA->accumulateColSum(*gpuB);
-  } else {
-    MatrixPtr subCpuA = cpuA->subColMatrix(0, endCol);
-    MatrixPtr subGpuA = gpuA->subColMatrix(0, endCol);
-    MatrixPtr subCpuB = cpuB->subColMatrix(0, endCol);
-    MatrixPtr subGpuB = gpuB->subColMatrix(0, endCol);
-    subCpuA->accumulateColSum(*subCpuB);
-    subGpuA->accumulateColSum(*subGpuB);
-  }
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(1, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixColMax(int height, int width, int endCol = 0) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(1, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(1, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-
-  if (!endCol) {
-    cpuB->colMax(*cpuA);
-    gpuB->colMax(*gpuA);
-  } else {
-    MatrixPtr subCpuA = cpuA->subColMatrix(0, endCol);
-    MatrixPtr subGpuA = gpuA->subColMatrix(0, endCol);
-    MatrixPtr subCpuB = cpuB->subColMatrix(0, endCol);
-    MatrixPtr subGpuB = gpuB->subColMatrix(0, endCol);
-    subCpuB->colMax(*subCpuA);
-    subGpuB->colMax(*subGpuA);
-  }
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(1, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixCollectBias(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(1, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(1, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-
-  real scale = 1.0f / (rand() % 10);  // NOLINT
-
-  cpuA->collectBias(*cpuB, scale);
-  gpuA->collectBias(*gpuB, scale);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(1, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixSumOfSquares(int height, int width, int endCol = 0) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, 1);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, 1);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuC = std::make_shared<GpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  cpuC->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  gpuC->copyFrom(*cpuC);
-
-  if (!endCol) {
-    cpuA->sumOfSquares(*cpuB, *cpuC);
-    gpuA->sumOfSquares(*gpuB, *gpuC);
-  } else {
-    MatrixPtr subCpuB = cpuB->subColMatrix(0, endCol);
-    MatrixPtr subCpuC = cpuC->subColMatrix(0, endCol);
-    MatrixPtr subGpuB = gpuB->subColMatrix(0, endCol);
-    MatrixPtr subGpuC = gpuC->subColMatrix(0, endCol);
-    cpuA->sumOfSquares(*subCpuB, *subCpuC);
-    gpuA->sumOfSquares(*subGpuB, *subGpuC);
-  }
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, 1);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-}
-
-void testMatrixBinaryClassificationError(int height, int width) {
-  MatrixPtr cpuA = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr gpuA = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuB = std::make_shared<GpuMatrix>(height, width);
-  MatrixPtr gpuC = std::make_shared<GpuMatrix>(height, width);
-
-  MatrixPtr cpuA2 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuB2 = std::make_shared<CpuMatrix>(height, width);
-  MatrixPtr cpuC2 = std::make_shared<CpuMatrix>(height, width);
-
-  cpuA->randomizeUniform();
-  cpuB->randomizeUniform();
-  cpuC->randomizeUniform();
-  gpuA->copyFrom(*cpuA);
-  gpuB->copyFrom(*cpuB);
-  gpuC->copyFrom(*cpuC);
-  cpuA2->copyFrom(*cpuA);
-  cpuB2->copyFrom(*cpuB);
-  cpuC2->copyFrom(*cpuC);
-
-  real scale = 0.5;
-  int columnOffset = rand() % width;  // NOLINT
-
-  cpuA->binaryClassificationError(columnOffset, *cpuB, *cpuC, scale);
-  gpuA->binaryClassificationError(columnOffset, *gpuB, *gpuC, scale);
-  cpuA2->binaryClassificationError2(columnOffset, *cpuB2, *cpuC2, scale);
-
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
-  outputCheck->copyFrom(*gpuA);
-  MatrixCheckErr(*cpuA, *outputCheck);
-  MatrixCheckErr(*cpuA, *cpuA2);
-}
-
-TEST(Matrix, aggregate) {
-  for (auto height : {1, 11, 16, 32, 64, 73, 128, 200, 1024, 2345}) {
-    for (auto width : {1, 9, 16, 32, 64, 100, 512, 1000, 1024, 2453}) {
-      VLOG(3) << " height=" << height << " width=" << width;
-      testMatrixRowSum(height, width);
-      testMatrixRowMax(height, width);
-      testMatrixColSum(height, width);
-      testMatrixColMax(height, width);
-      testMatrixCollectBias(height, width);
-      testMatrixTernaryRowDotMul(height, width);
-      testMatrixAddDotMulVMM(height, width);
-
-      testMatrixSumOfSquares(height, width);
-      testMatrixBinaryClassificationError(height, width);
-    }
-  }
+  cpu->setDiag(1.0);
+  TensorCheckErr(*cpu, *outputCheck);
 }
 
-TEST(Matrix, aggregate2) {
-  for (auto height : {16, 32, 128, 512, 1024}) {
-    for (auto width :
-         {16, 32, 64, 128, 256, 512, 768, 1024, 2048, 3072, 4096}) {
+TEST(Matrix, unary) {
+  for (auto height : {1, 3, 11, 73, 128, 200, 330}) {
+    for (auto width : {1, 3, 32, 100, 512, 1000, 3210}) {
       VLOG(3) << " height=" << height << " width=" << width;
 
-      int endCol = rand() % width;  // NOLINT
-      testMatrixRowMax(height, width, endCol);
-      testMatrixSumOfSquares(height, width, endCol);
-      testMatrixColSum(height, width, endCol);
-      testMatrixColMax(height, width, endCol);
-      testMatrixAddDotMulVMM(height, width, endCol);
+      testMatrixDeepSwap(height, width);
+      testMatrixZeroAtOffset(height, width);
+      testMatrixGetSum(height, width);
+      testMatrixTranspose(height, width);
     }
+    // inverse
+    testMatrixInverse(height);
   }
 }
 
-void testMatrixAddAtOffset(int height, int width1, int width2) {
-  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width1);
-  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width2);
-  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width1);
-  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width2);
+void testMatrixSoftmax(int height, int width) {
+  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
+  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
+  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
+  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);
 
   cpuInput->randomizeUniform();
   gpuInput->copyFrom(*cpuInput);
-  cpuOutput->randomizeUniform();
-  gpuOutput->copyFrom(*cpuOutput);
-
-  int columnOffset = 0;
-  int offset = std::abs(width1 - width2);
-  if (offset) {
-    columnOffset = rand() % offset;  // NOLINT
-  }
-  cpuOutput->addAtOffset(*cpuInput, columnOffset);
-  gpuOutput->addAtOffset(*gpuInput, columnOffset);
+  cpuOutput->zero();
+  gpuOutput->zero();
+  cpuInput->softmax(*cpuOutput);
+  gpuInput->softmax(*gpuOutput);
 
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width2);
-  outputCheck->copyFrom(*gpuOutput);
-  MatrixCheckEqual(*cpuOutput, *outputCheck);
+  TensorCheckErr(*cpuOutput, *gpuOutput);
 }
 
-void testMatrixAssignAtOffset(int height, int width1, int width2) {
-  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width1);
-  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width2);
-  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width1);
-  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width2);
-
+void testSequenceSoftmax(int batchSize) {
+  // forward
+  int inputDim = 1;
+  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
+  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
   cpuInput->randomizeUniform();
   gpuInput->copyFrom(*cpuInput);
-  cpuOutput->randomizeUniform();
-  gpuOutput->copyFrom(*cpuOutput);
 
-  int columnOffset = 0;
-  int offset = std::abs(width1 - width2);
-  if (offset) {
-    columnOffset = rand() % offset;  // NOLINT
-  }
-  cpuOutput->assignAtOffset(*cpuInput, columnOffset);
-  gpuOutput->assignAtOffset(*gpuInput, columnOffset);
+  IVectorPtr cpuSequence;
+  generateSequenceStartPositions(batchSize, cpuSequence);
+  IVectorPtr gpuSequence = IVector::create(cpuSequence->getSize(), true);
+  gpuSequence->copyFrom(*cpuSequence);
 
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width2);
-  outputCheck->copyFrom(*gpuOutput);
-  MatrixCheckEqual(*cpuOutput, *outputCheck);
+  cpuInput->sequenceSoftmax(*cpuInput, *cpuSequence);
+  gpuInput->sequenceSoftmax(*gpuInput, *gpuSequence);
+
+  TensorCheckErr(*cpuInput, *gpuInput);
 }
 
-TEST(Matrix, AtOffset) {
-  for (auto height : {1, 11, 73, 128, 200}) {
-    for (auto width1 : {1, 32, 100, 512, 1000}) {
-      for (auto width2 : {1, 32, 100, 512, 1000}) {
-        VLOG(3) << " height=" << height << " width1=" << width1
-                << " width2=" << width2;
+void testMatrixSoftmaxThreshold(int height, int width) {
+  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
+  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
+  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
+  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);
+
+  cpuInput->randomizeUniform();
+  cpuInput->getData()[0] = 100.0;
+  gpuInput->copyFrom(*cpuInput);
+  cpuOutput->zero();
+  gpuOutput->zero();
+  cpuInput->softmax(*cpuOutput);
+  gpuInput->softmax(*gpuOutput);
 
-        testMatrixAddAtOffset(height, width1, width2);
-        testMatrixAssignAtOffset(height, width1, width2);
+  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(height, width);
+  outputCheck->copyFrom(*gpuOutput);
+  // check output zero
+  int cpuCount = 0;
+  int gpuCount = 0;
+  auto zeroNum = [](MatrixPtr out, int& count) {
+    for (size_t i = 0; i < out->getHeight(); i++) {
+      for (size_t j = 0; j < out->getWidth(); j++) {
+        if (out->getElement(i, j) == 0) count++;
       }
     }
-  }
+  };
+  zeroNum(cpuOutput, cpuCount);
+  zeroNum(outputCheck, gpuCount);
+  EXPECT_EQ(cpuCount, 0) << "Cpu softmax output value 0";
+  EXPECT_EQ(gpuCount, 0) << "Gpu softmax output value 0";
 }
 
-void testMatrixSelectRows(int numSamples, int tableSize, int inputDim) {
-  MatrixPtr cpuTable = std::make_shared<CpuMatrix>(tableSize, inputDim);
-  MatrixPtr gpuTable = std::make_shared<GpuMatrix>(tableSize, inputDim);
-  cpuTable->randomizeUniform();
-  gpuTable->copyFrom(*cpuTable);
-
-  IVectorPtr cpuIds;
-  IVectorPtr gpuIds;
-  cpuIds = VectorT<int>::create(numSamples, false);
-  gpuIds = VectorT<int>::create(numSamples, true);
-  cpuIds->rand(tableSize);
-  gpuIds->copyFrom(*cpuIds);
+void testMatrixSoftmaxBp(int height, int width) {
+  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(height, width);
+  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(height, width);
+  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(height, width);
+  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(height, width);
 
-  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, inputDim);
-  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, inputDim);
+  cpuInput->randomizeUniform();
+  gpuInput->copyFrom(*cpuInput);
   cpuOutput->randomizeUniform();
   gpuOutput->copyFrom(*cpuOutput);
+  gpuOutput->softmaxBackward(*gpuInput);
 
-  cpuOutput->selectRows(*cpuTable, *cpuIds);
-  gpuOutput->selectRows(*gpuTable, *gpuIds);
+  MatrixPtr sftMaxSum = std::make_shared<CpuMatrix>(height, 1);
+  MatrixPtr sftMaxDot = std::make_shared<CpuMatrix>(height, width);
+  sftMaxDot->dotMul(*cpuOutput, *cpuInput);
+  sftMaxSum->colMerge(*sftMaxDot);
+  cpuOutput->softmaxDerivative(*cpuInput, *sftMaxSum);
 
-  // check
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(numSamples, inputDim);
-  outputCheck->copyFrom(*gpuOutput);
-  MatrixCheckEqual(*cpuOutput, *outputCheck);
+  TensorCheckErr(*cpuOutput, *gpuOutput);
+}
+
+TEST(Matrix, softmax) {
+  for (auto height : {1, 11, 73, 128, 200}) {
+    for (auto width : {1, 32, 100, 512, 1000}) {
+      VLOG(3) << " height=" << height << " width=" << width;
+
+      testMatrixSoftmax(height, width);
+      testMatrixSoftmaxBp(height, width);
+      testMatrixSoftmaxThreshold(height, width);
+    }
+    testSequenceSoftmax(height);
+  }
 }
 
 void testMatrixAddToRows(int numSamples, int tableSize, int inputDim) {
@@ -1342,10 +470,7 @@ void testMatrixAddToRows(int numSamples, int tableSize, int inputDim) {
   cpuOutput->addToRows(*cpuTable, *cpuIds);
   gpuOutput->addToRows(*gpuTable, *gpuIds);
 
-  // check
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(tableSize, inputDim);
-  outputCheck->copyFrom(*gpuTable);
-  MatrixCheckErr(*cpuTable, *outputCheck);
+  TensorCheckErr(*cpuTable, *gpuTable);
 }
 
 TEST(Matrix, tableProjection) {
@@ -1354,7 +479,6 @@ TEST(Matrix, tableProjection) {
       for (auto inputDim : {20, 50}) {
         VLOG(3) << " numSamples=" << numSamples << " tableSize=" << tableSize
                 << " inputDim=" << inputDim;
-        testMatrixSelectRows(numSamples, tableSize, inputDim);
         testMatrixAddToRows(numSamples, tableSize, inputDim);
       }
     }
@@ -1388,9 +512,7 @@ void testMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
   cpuC->mul(cpuA, cpuB, alpha, beta);
   gpuC->mul(gpuA, gpuB, alpha, beta);
 
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(heightC, widthC);
-  outputCheck->copyFrom(*gpuC);
-  MatrixCheckErr(*cpuC, *outputCheck);
+  TensorCheckErr(*cpuC, *gpuC);
 }
 
 void testSubMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
@@ -1462,9 +584,7 @@ void testSubMatrixMul(bool transa, bool transb, int dimM, int dimN, int dimK) {
   subCpuC->mul(subCpuA, subCpuB, alpha, beta);
   subGpuC->mul(subGpuA, subGpuB, alpha, beta);
 
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(heightC, widthC);
-  outputCheck->copyFrom(*gpuC);
-  MatrixCheckErr(*cpuC, *outputCheck);
+  TensorCheckErr(*cpuC, *gpuC);
 }
 
 TEST(Matrix, mul) {
@@ -1518,9 +638,7 @@ void testVectorReset(int size) {
   cpu->reset(value);
   gpu->reset(value);
 
-  std::shared_ptr<CpuVectorT<T>> out = std::make_shared<CpuVectorT<T>>(size);
-  out->copyFrom(*gpu);
-  VectorCheckEqual(*cpu, *out);
+  TensorCheckEqual(*cpu, *gpu);
 }
 
 template <class T>
@@ -1546,9 +664,7 @@ void testVecortSelectFrom(int size) {
   cpuDst->selectFrom(*cpuSrc, *cpuIds);
   gpuDst->selectFrom(*gpuSrc, *gpuIds);
 
-  std::shared_ptr<CpuVectorT<T>> out = std::make_shared<CpuVectorT<T>>(size);
-  out->copyFrom(*gpuDst);
-  VectorCheckEqual(*cpuDst, *out);
+  TensorCheckEqual(*cpuDst, *gpuDst);
 }
 
 template <class T>
@@ -1559,9 +675,7 @@ void testVecotrZeroMem(int size) {
   cpu->zeroMem();
   gpu->zeroMem();
 
-  std::shared_ptr<CpuVectorT<T>> out = std::make_shared<CpuVectorT<T>>(size);
-  out->copyFrom(*gpu);
-  VectorCheckEqual(*cpu, *out);
+  TensorCheckEqual(*cpu, *gpu);
 }
 
 template <class T>
@@ -1582,9 +696,7 @@ void testVectorIsEqual(int size) {
   cpuA->isEqualTo(*cpuB, value);
   gpuA->isEqualTo(*gpuB, value);
 
-  std::shared_ptr<CpuVectorT<T>> out = std::make_shared<CpuVectorT<T>>(size);
-  out->copyFrom(*gpuA);
-  VectorCheckEqual(*cpuA, *out);
+  TensorCheckEqual(*cpuA, *gpuA);
 }
 
 TEST(Vector, Equal) {
@@ -1615,9 +727,7 @@ void testMatrixTopK(int samples, int dim, int beamSize) {
   cpuSrc->rowMax(*cpuIds, *cpuVal);
   gpuSrc->rowMax(*gpuIds, *gpuVal);
 
-  MatrixPtr outVal = std::make_shared<CpuMatrix>(samples, beamSize);
-  outVal->copyFrom(*gpuVal);
-  MatrixCheckEqual(*cpuVal, *outVal);
+  TensorCheckEqual(*cpuVal, *gpuVal);
 }
 
 TEST(Matrix, topK) {
@@ -1653,9 +763,7 @@ void testSMatrixTopK(int samples, int dim, int beamSize, real ratio) {
   cpuSrc->rowMax(*cpuIds, *cpuVal);
   gpuSrc->rowMax(*gpuIds, *gpuVal);
 
-  MatrixPtr outCheckMaxVal = std::make_shared<CpuMatrix>(samples, beamSize);
-  outCheckMaxVal->copyFrom(*gpuVal);
-  MatrixCheckEqual(*cpuVal, *outCheckMaxVal);
+  TensorCheckEqual(*cpuVal, *gpuVal);
 
   IVectorPtr outCheckIds = std::make_shared<CpuIVector>(samples * beamSize);
   outCheckIds->copyFrom(*gpuIds);
@@ -1685,42 +793,6 @@ TEST(SMatrix, topK) {
   }
 }
 
-void testMatrixCopyByRowIndex(int outHeight, int inHeight, int width) {
-  MatrixPtr cpuInput = std::make_shared<CpuMatrix>(inHeight, width);
-  MatrixPtr gpuInput = std::make_shared<GpuMatrix>(inHeight, width);
-  cpuInput->randomizeUniform();
-  gpuInput->copyFrom(*cpuInput);
-
-  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(outHeight, width);
-  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(outHeight, width);
-  cpuOutput->zero();
-  gpuOutput->zero();
-
-  IVectorPtr cpuRowIndex = IVector::create(outHeight, false);
-  IVectorPtr gpuRowIndex = IVector::create(outHeight, true);
-  cpuRowIndex->rand(inHeight);
-  gpuRowIndex->copyFrom(*cpuRowIndex);
-
-  cpuOutput->copyByRowIndex(*cpuInput, *cpuRowIndex);
-  gpuOutput->copyByRowIndex(*gpuInput, *gpuRowIndex);
-
-  // check
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(outHeight, width);
-  outputCheck->copyFrom(*gpuOutput);
-  MatrixCheckEqual(*cpuOutput, *outputCheck);
-}
-
-TEST(Matrix, copyByRowIndex) {
-  for (auto outHeight : {31, 500, 1000}) {
-    for (auto inHeight : {17, 257, 500, 1200}) {
-      for (auto width : {512, 1024}) {
-        VLOG(3) << outHeight << " " << inHeight << " " << width;
-        testMatrixCopyByRowIndex(outHeight, inHeight, width);
-      }
-    }
-  }
-}
-
 void testMatrixSequenceAvgForward(int batchSize, int inputDim, int mode) {
   MatrixPtr cpuInput = std::make_shared<CpuMatrix>(batchSize, inputDim);
   MatrixPtr gpuInput = std::make_shared<GpuMatrix>(batchSize, inputDim);
@@ -1741,10 +813,7 @@ void testMatrixSequenceAvgForward(int batchSize, int inputDim, int mode) {
   cpuOutput->sequenceAvgForward(*cpuInput, *cpuSequence, mode);
   gpuOutput->sequenceAvgForward(*gpuInput, *gpuSequence, mode);
 
-  // check
-  MatrixPtr outputCheck = std::make_shared<CpuMatrix>(newBatchSize, inputDim);
-  outputCheck->copyFrom(*gpuOutput);
-  MatrixCheckErr(*cpuOutput, *outputCheck);
+  TensorCheckErr(*cpuOutput, *gpuOutput);
 }
 
 TEST(Matrix, sequenceAvgForward) {
@@ -1759,45 +828,6 @@ TEST(Matrix, sequenceAvgForward) {
   }
 }
 
-void testCosSim(int heightX, int heightY, int width, real scale) {
-  MatrixPtr prevOutX = CpuMatrix::create(heightX, width, false, false);
-  MatrixPtr prevOutY = CpuMatrix::create(heightY, width, false, false);
-  MatrixPtr output = CpuMatrix::create(heightX, 1, false, false);
-
-  prevOutX->randomizeUniform();
-  prevOutY->randomizeUniform();
-  prevOutX->add(-0.5);
-  prevOutY->add(-0.5);
-  output->randomizeUniform();
-
-  MatrixPtr prevOutXGpu = GpuMatrix::create(heightX, width, false, true);
-  MatrixPtr prevOutYGpu = GpuMatrix::create(heightY, width, false, true);
-  MatrixPtr outputGpu = GpuMatrix::create(heightX, 1, false, true);
-
-  prevOutXGpu->copyFrom(*prevOutX);
-  prevOutYGpu->copyFrom(*prevOutY);
-  outputGpu->copyFrom(*output);
-
-  output->cosSim(*prevOutX, *prevOutY, scale);
-  outputGpu->cosSim(*prevOutXGpu, *prevOutYGpu, scale);
-
-  MatrixPtr outputCheck = CpuMatrix::create(heightX, 1, false, false);
-  outputCheck->copyFrom(*outputGpu);
-  MatrixCheckErr(*output, *outputCheck);
-}
-
-TEST(Matrix, cosSim) {
-  for (auto heightX : {10, 100, 1000}) {
-    for (auto heightY : {1, heightX}) {
-      for (auto width : {10, 100, 1000}) {
-        for (auto scale : {1.0, 2.0}) {
-          testCosSim(heightX, heightY, width, scale);
-        }
-      }
-    }
-  }
-}
-
 void testCosSimDerivate(int heightX, int heightY, int width, real scale) {
   MatrixPtr prevOutX = CpuMatrix::create(heightX, width, false, false);
   MatrixPtr prevOutY = CpuMatrix::create(heightY, width, false, false);
@@ -1837,12 +867,8 @@ void testCosSimDerivate(int heightX, int heightY, int width, real scale) {
                             *prevGradYGpu,
                             scale);
 
-  MatrixPtr prevGradXCheck = CpuMatrix::create(heightX, width, false, false);
-  MatrixPtr prevGradYCheck = CpuMatrix::create(heightY, width, false, false);
-  prevGradXCheck->copyFrom(*prevGradXGpu);
-  prevGradYCheck->copyFrom(*prevGradYGpu);
-  MatrixCheckErr(*prevGradX, *prevGradXCheck);
-  MatrixCheckErr(*prevGradY, *prevGradYCheck);
+  TensorCheckErr(*prevGradX, *prevGradXGpu);
+  TensorCheckErr(*prevGradY, *prevGradYGpu);
 }
 
 TEST(Matrix, cosSimDerivate) {
@@ -1857,80 +883,6 @@ TEST(Matrix, cosSimDerivate) {
   }
 }
 
-void testParamReluForward(int height, int width, int w_height, int w_width) {
-  MatrixPtr output = CpuMatrix::create(height, width, false, false);
-  MatrixPtr input = CpuMatrix::create(height, width, false, false);
-  MatrixPtr w = CpuMatrix::create(w_height, w_width, false, false);
-
-  output->randomizeUniform();
-  input->randomizeUniform();
-  w->randomizeUniform();
-  input->add(-0.5);
-
-  MatrixPtr outputGpu = GpuMatrix::create(height, width, false, true);
-  MatrixPtr inputGpu = GpuMatrix::create(height, width, false, true);
-  MatrixPtr wGpu = GpuMatrix::create(w_height, w_width, false, true);
-
-  inputGpu->copyFrom(*input);
-  wGpu->copyFrom(*w);
-
-  output->paramReluForward(*input, *w);
-  outputGpu->paramReluForward(*inputGpu, *wGpu);
-
-  MatrixPtr outputCheck = CpuMatrix::create(height, width, false, false);
-  outputCheck->copyFrom(*outputGpu);
-  MatrixCheckEqual(*output, *outputCheck);
-}
-
-TEST(Matrix, paramReluForward) {
-  for (auto height : {10, 100}) {
-    for (auto width : {10, 100}) {
-      for (auto w_height : {1, 2}) {
-        for (auto w_width : {1, 2}) {
-          testParamReluForward(height, width, w_height, w_width);
-        }
-      }
-    }
-  }
-}
-
-void testParamReluBackwardW(int height, int width, int w_height, int w_width) {
-  MatrixPtr oGrad = CpuMatrix::create(height, width, false, false);
-  MatrixPtr input = CpuMatrix::create(height, width, false, false);
-  MatrixPtr w = CpuMatrix::create(w_height, w_width, false, false);
-
-  oGrad->randomizeUniform();
-  input->randomizeUniform();
-  w->randomizeUniform();
-  input->add(-0.5);
-
-  MatrixPtr oGradGpu = GpuMatrix::create(height, width, false, true);
-  MatrixPtr inputGpu = GpuMatrix::create(height, width, false, true);
-  MatrixPtr wGpu = GpuMatrix::create(w_height, w_width, false, true);
-
-  oGradGpu->copyFrom(*oGrad);
-  inputGpu->copyFrom(*input);
-  wGpu->copyFrom(*w);
-
-  w->paramReluBackwardW(*oGrad, *input);
-  wGpu->paramReluBackwardW(*oGradGpu, *inputGpu);
-  MatrixPtr wCheck = CpuMatrix::create(w_height, w_width, false, false);
-  wCheck->copyFrom(*wGpu);
-  MatrixCheckErr(*w, *wCheck);
-}
-
-TEST(Matrix, paramReluBackwardW) {
-  for (auto height : {10, 100}) {
-    for (auto width : {10, 100}) {
-      for (auto w_height : {1, 2}) {
-        for (auto w_width : {1, 2}) {
-          testParamReluBackwardW(height, width, w_height, w_width);
-        }
-      }
-    }
-  }
-}
-
 void testParamReluBackwardDiff(int height,
                                int width,
                                int w_height,
@@ -1959,9 +911,7 @@ void testParamReluBackwardDiff(int height,
   diff->paramReluBackwardDiff(*oGrad, *input, *w);
   diffGpu->paramReluBackwardDiff(*oGradGpu, *inputGpu, *wGpu);
 
-  MatrixPtr diffCheck = CpuMatrix::create(height, width, false, false);
-  diffCheck->copyFrom(*diffGpu);
-  MatrixCheckErr(*diff, *diffCheck);
+  TensorCheckErr(*diff, *diffGpu);
 }
 
 TEST(Matrix, paramReluBackwardDiff) {
@@ -1992,9 +942,7 @@ void testClassificationError(int numSamples, int dim) {
   cpuError->classificationError(cpuOutput, cpuLabel);
   gpuError->classificationError(gpuOutput, gpuLabel);
 
-  MatrixPtr check = std::make_shared<CpuMatrix>(numSamples, 1);
-  check->copyFrom(*gpuError);
-  MatrixCheckEqual(*cpuError, *check);
+  TensorCheckEqual(*cpuError, *gpuError);
 }
 
 TEST(Matrix, classificationError) {
@@ -2159,9 +1107,8 @@ void testAvgPoolFwdBwd(int numSamples,
                             outW,
                             padH,
                             padW);
-  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
-  targetCheck->copyFrom(*targetGpu);
-  MatrixCheckErr(*target, *targetCheck);
+
+  TensorCheckErr(*target, *targetGpu);
 
   MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
   MatrixPtr inputGpuGrad = GpuMatrix::create(numSamples, inWidth, false, true);
@@ -2200,10 +1147,8 @@ void testAvgPoolFwdBwd(int numSamples,
                                 1.0,
                                 padH,
                                 padW);
-  MatrixPtr targetBwdCheck =
-      CpuMatrix::create(numSamples, inWidth, false, false);
-  targetBwdCheck->copyFrom(*inputGpuGrad);
-  MatrixCheckErr(*inputGrad, *targetBwdCheck);
+
+  TensorCheckErr(*inputGrad, *inputGpuGrad);
 }
 
 TEST(Matrix, PoolFwdBwd) {
@@ -2268,11 +1213,9 @@ void testMaxOutFwdBwd(
 
   MatrixPtr target = CpuMatrix::create(numSamples, outWidth, false, false);
   MatrixPtr targetGpu = GpuMatrix::create(numSamples, outWidth, false, true);
-  MatrixPtr targetCheck = CpuMatrix::create(numSamples, outWidth, false, false);
 
   IVectorPtr id = CpuIVector::create(numSamples * outWidth, false);
   IVectorPtr idGpu = GpuIVector::create(numSamples * outWidth, true);
-  IVectorPtr idCheck = CpuIVector::create(numSamples * outWidth, false);
 
   input->randomizeUniform();
   inputGpu->copyFrom(*input);
@@ -2280,11 +1223,8 @@ void testMaxOutFwdBwd(
   target->maxoutForward(*input, *id, outChannels, groups);
   targetGpu->maxoutForward(*inputGpu, *idGpu, outChannels, groups);
 
-  // check
-  targetCheck->copyFrom(*targetGpu);
-  MatrixCheckErr(*target, *targetCheck);
-  idCheck->copyFrom(*idGpu);
-  VectorCheckEqual(*id, *idCheck);
+  TensorCheckErr(*target, *targetGpu);
+  TensorCheckEqual(*id, *idGpu);
 
   // backward
   MatrixPtr inputGrad = CpuMatrix::create(numSamples, inWidth, false, false);
@@ -2293,8 +1233,6 @@ void testMaxOutFwdBwd(
   MatrixPtr targetGrad = CpuMatrix::create(numSamples, outWidth, false, false);
   MatrixPtr targetGpuGrad =
       GpuMatrix::create(numSamples, outWidth, false, true);
-  MatrixPtr targetCheckGrad =
-      CpuMatrix::create(numSamples, inWidth, false, false);
 
   inputGrad->randomizeUniform();
   targetGrad->randomizeUniform();
@@ -2304,9 +1242,7 @@ void testMaxOutFwdBwd(
   inputGrad->maxoutBackward(*targetGrad, *id, outChannels, groups);
   inputGpuGrad->maxoutBackward(*targetGpuGrad, *idGpu, outChannels, groups);
 
-  // check
-  targetCheckGrad->copyFrom(*inputGpuGrad);
-  MatrixCheckErr(*inputGrad, *targetCheckGrad);
+  TensorCheckErr(*inputGrad, *inputGpuGrad);
 }
 
 TEST(Matrix, MaxOutFwdBwd) {
@@ -2326,113 +1262,6 @@ TEST(Matrix, MaxOutFwdBwd) {
   }
 }
 
-void testAddSharedBias(int numSamples, int dim, int channel) {
-  MatrixPtr cpuData = std::make_shared<CpuMatrix>(numSamples, dim);
-  MatrixPtr gpuData = std::make_shared<GpuMatrix>(numSamples, dim);
-
-  MatrixPtr cpuBias = std::make_shared<CpuMatrix>(1, channel);
-  MatrixPtr gpuBias = std::make_shared<GpuMatrix>(1, channel);
-
-  cpuData->randomizeUniform();
-  gpuData->copyFrom(*cpuData);
-  cpuBias->randomizeUniform();
-  gpuBias->copyFrom(*cpuBias);
-
-  cpuData->addSharedBias(*cpuBias, 1.0);
-  gpuData->addSharedBias(*gpuBias, 1.0);
-
-  MatrixPtr check = std::make_shared<CpuMatrix>(numSamples, dim);
-  check->copyFrom(*gpuData);
-  MatrixCheckErr(*cpuData, *check);
-}
-
-void testCollectSharedBias(int numSamples, int dim, int channel) {
-  MatrixPtr cpuData = std::make_shared<CpuMatrix>(numSamples, dim);
-  MatrixPtr gpuData = std::make_shared<GpuMatrix>(numSamples, dim);
-
-  MatrixPtr cpuBias = std::make_shared<CpuMatrix>(1, channel);
-  MatrixPtr gpuBias = std::make_shared<GpuMatrix>(1, channel);
-
-  cpuData->randomizeUniform();
-  gpuData->copyFrom(*cpuData);
-  cpuBias->randomizeUniform();
-  gpuBias->copyFrom(*cpuBias);
-
-  cpuBias->collectSharedBias(*cpuData, 1.0);
-  gpuBias->collectSharedBias(*gpuData, 1.0);
-
-  MatrixPtr check = std::make_shared<CpuMatrix>(1, channel);
-  check->copyFrom(*gpuBias);
-  MatrixCheckErr(*cpuBias, *check);
-}
-
-TEST(Matrix, sharedBias) {
-  for (auto numSamples : {1, 100, 520}) {
-    for (auto dim : {100 * 16, 100 * 32}) {
-      for (auto channel : {8, 16}) {
-        VLOG(3) << " numSamples=" << numSamples << " dim=" << dim
-                << " channel=" << channel;
-        testAddSharedBias(numSamples, dim, channel);
-        testCollectSharedBias(numSamples, dim, channel);
-      }
-    }
-  }
-}
-
-void testMultiBinaryLabelCrossEntropy(int numSamples, int dim) {
-  MatrixPtr output = std::make_shared<CpuMatrix>(numSamples, dim);
-  MatrixPtr cpuOutput = std::make_shared<CpuMatrix>(numSamples, dim);
-  MatrixPtr gpuOutput = std::make_shared<GpuMatrix>(numSamples, dim);
-
-  MatrixPtr cpuEntropy = std::make_shared<CpuMatrix>(numSamples, 1);
-  MatrixPtr gpuEntropy = std::make_shared<GpuMatrix>(numSamples, 1);
-
-  MatrixPtr cpuGrad = std::make_shared<CpuMatrix>(numSamples, dim);
-  MatrixPtr gpuGrad = std::make_shared<GpuMatrix>(numSamples, dim);
-
-  MatrixPtr cpuLabel = std::make_shared<CpuSparseMatrix>(
-      numSamples, dim, numSamples, NO_VALUE, SPARSE_CSR, false);
-  MatrixPtr gpuLabel = std::make_shared<GpuSparseMatrix>(
-      numSamples, dim, numSamples, NO_VALUE, SPARSE_CSR, false);
-  for (int i = 0; i < numSamples; i++) {
-    const unsigned int id = rand() % dim;  // NOLINT
-    cpuLabel->setRow(i, 1, &id, nullptr);
-    gpuLabel->setRow(i, 1, &id, nullptr);
-  }
-
-  output->randomizeUniform();
-  cpuOutput->zeroMem();
-  output->softmax(*cpuOutput);
-  gpuOutput->copyFrom(*cpuOutput);
-
-  cpuEntropy->zeroMem();
-  gpuEntropy->zeroMem();
-  cpuEntropy->multiBinaryLabelCrossEntropy(*cpuOutput, *cpuLabel);
-  gpuEntropy->multiBinaryLabelCrossEntropy(*gpuOutput, *gpuLabel);
-
-  MatrixPtr check1 = std::make_shared<CpuMatrix>(numSamples, 1);
-  check1->copyFrom(*gpuEntropy);
-  MatrixCheckErr(*cpuEntropy, *check1);
-
-  cpuGrad->zeroMem();
-  gpuGrad->zeroMem();
-  cpuGrad->multiBinaryLabelCrossEntropyBp(*cpuOutput, *cpuLabel);
-  gpuGrad->multiBinaryLabelCrossEntropyBp(*gpuOutput, *gpuLabel);
-
-  MatrixPtr check2 = std::make_shared<CpuMatrix>(numSamples, dim);
-  check2->copyFrom(*gpuGrad);
-  MatrixCheckErr(*cpuGrad, *check2);
-}
-
-TEST(Matrix, multiBinaryCrossEntropy) {
-  for (auto numSamples : {100, 1000, 10000}) {
-    for (auto dim : {100, 1000, 10000}) {
-      VLOG(3) << " numSamples=" << numSamples << " dim=" << dim;
-      testMultiBinaryLabelCrossEntropy(numSamples, dim);
-    }
-  }
-}
-
 int main(int argc, char** argv) {
   testing::InitGoogleTest(&argc, argv);
   initMain(argc, argv);
diff --git a/paddle/parameter/Argument.cpp b/paddle/parameter/Argument.cpp
index 81d53f065b84b2699141fc599b9efba794bbd25a..0f414b4463b6993ca7bf0bc1eafebbbf9f1a8e00 100644
--- a/paddle/parameter/Argument.cpp
+++ b/paddle/parameter/Argument.cpp
@@ -225,6 +225,8 @@ void Argument::resizeAndCopyFrom(const Argument& src,
   }
   resizeAndCopy(udp, src.udp, useGpu, stream);
   resizeAndCopy(strs, src.strs, useGpu, stream);
+  frameWidth = src.frameWidth;
+  frameHeight = src.frameHeight;
 }
 
 int32_t Argument::resizeAndCopyFrom(const Argument& src,
diff --git a/paddle/scripts/docker/Dockerfile b/paddle/scripts/docker/Dockerfile
new file mode 100644
index 0000000000000000000000000000000000000000..247f0b5a7a39f5e7772fcf0c1cee756a13093acf
--- /dev/null
+++ b/paddle/scripts/docker/Dockerfile
@@ -0,0 +1,34 @@
+FROM ubuntu:14.04
+MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
+
+RUN apt-get update \
+    && apt-get install -y cmake libprotobuf-dev protobuf-compiler git \
+    libgoogle-glog-dev libgflags-dev libatlas-dev libatlas3-base g++ m4 python-pip \
+    python-protobuf python-numpy python-dev swig openssh-server \
+    wget unzip python-matplotlib tar xz-utils bzip2 gzip coreutils \
+    sed grep graphviz libjpeg-dev zlib1g-dev doxygen \
+    clang-3.8 llvm-3.8 libclang-3.8-dev \
+    && apt-get clean -y
+RUN pip install -U BeautifulSoup docopt PyYAML pillow \
+    sphinx sphinx_rtd_theme breathe recommonmark
+
+ARG WITH_AVX
+ENV WITH_AVX=${WITH_AVX:-ON}
+ENV WITH_GPU=OFF
+
+RUN mkdir /paddle
+COPY . /paddle/
+RUN /paddle/paddle/scripts/docker/build.sh
+VOLUME ["/usr/share/nginx/html/data", "/usr/share/nginx/html/paddle"]
+
+RUN echo 'export LD_LIBRARY_PATH=/usr/lib64:${LD_LIBRARY_PATH}' >> /etc/profile
+RUN pip install /usr/local/opt/paddle/share/wheels/*.whl
+RUN paddle version  # print version after build
+
+# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
+RUN mkdir /var/run/sshd
+RUN echo 'root:root' | chpasswd
+RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
+RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
+EXPOSE 22
+CMD ["/usr/sbin/sshd", "-D"]
diff --git a/paddle/scripts/docker/Dockerfile.gpu b/paddle/scripts/docker/Dockerfile.gpu
new file mode 100644
index 0000000000000000000000000000000000000000..987121686e8dfa22e4c26c8c4e07781546284cc1
--- /dev/null
+++ b/paddle/scripts/docker/Dockerfile.gpu
@@ -0,0 +1,34 @@
+FROM nvidia/cuda:7.5-cudnn5-devel-ubuntu14.04
+MAINTAINER PaddlePaddle Authors <paddle-dev@baidu.com>
+
+RUN apt-get update \
+    && apt-get install -y cmake libprotobuf-dev protobuf-compiler git \
+    libgoogle-glog-dev libgflags-dev libatlas-dev libatlas3-base g++ m4 python-pip \
+    python-protobuf python-numpy python-dev swig openssh-server \
+    wget unzip python-matplotlib tar xz-utils bzip2 gzip coreutils \
+    sed grep graphviz libjpeg-dev zlib1g-dev doxygen \
+    clang-3.8 llvm-3.8 libclang-3.8-dev \
+    && apt-get clean -y
+RUN pip install -U BeautifulSoup docopt PyYAML pillow \
+    sphinx sphinx_rtd_theme breathe recommonmark
+
+ARG WITH_AVX
+ENV WITH_AVX=${WITH_AVX:-ON}
+ENV WITH_GPU=ON
+
+RUN mkdir /paddle
+COPY . /paddle/
+RUN /paddle/paddle/scripts/docker/build.sh
+VOLUME ["/usr/share/nginx/html/data", "/usr/share/nginx/html/paddle"]
+
+RUN echo 'export LD_LIBRARY_PATH=/usr/lib64:${LD_LIBRARY_PATH}' >> /etc/profile
+RUN pip install /usr/local/opt/paddle/share/wheels/*.whl
+RUN paddle version  # print version after build
+
+# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
+RUN mkdir /var/run/sshd
+RUN echo 'root:root' | chpasswd
+RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
+RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
+EXPOSE 22
+CMD ["/usr/sbin/sshd", "-D"]
diff --git a/paddle/scripts/docker/Dockerfile.m4 b/paddle/scripts/docker/Dockerfile.m4
deleted file mode 100644
index f2822acdde757c78769c4a4f0dba317eb2d94a4c..0000000000000000000000000000000000000000
--- a/paddle/scripts/docker/Dockerfile.m4
+++ /dev/null
@@ -1,37 +0,0 @@
-FROM PADDLE_BASE_IMAGE
-MAINTAINER PaddlePaddle Dev Team <paddle-dev@baidu.com>
-
-# It is good to run apt-get install with Dockerfile RUN directive,
-# because if the following invocation to /root/build.sh fails, `docker
-# build` wouldn't have to re-install packages after we fix
-# /root/build.sh.  For more about Docker build cache, please refer to
-# https://docs.docker.com/engine/userguide/eng-image/dockerfile_best-practices/#/build-cache.
-RUN apt-get update && \
-    apt-get install -y cmake libprotobuf-dev protobuf-compiler git \
-    libgoogle-glog-dev libgflags-dev libatlas-dev libatlas3-base g++ m4 python-pip \
-    python-protobuf python-numpy python-dev swig openssh-server \
-    wget unzip python-matplotlib tar xz-utils bzip2 gzip coreutils \
-    sed grep graphviz libjpeg-dev zlib1g-dev doxygen && \
-    apt-get clean -y
-RUN pip install BeautifulSoup docopt PyYAML pillow \
-    'sphinx>=1.4.0' sphinx_rtd_theme breathe recommonmark
-
-ENV WITH_GPU=PADDLE_WITH_GPU
-ENV WITH_AVX=PADDLE_WITH_AVX
-
-RUN mkdir /paddle
-COPY . /paddle/
-COPY paddle/scripts/docker/build.sh /root/
-RUN /root/build.sh
-
-RUN echo 'export LD_LIBRARY_PATH=/usr/lib64:${LD_LIBRARY_PATH}' >> /etc/profile
-RUN pip install /usr/local/opt/paddle/share/wheels/*.whl
-RUN paddle version  # print version after build
-
-# Configure OpenSSH server. c.f. https://docs.docker.com/engine/examples/running_ssh_service
-RUN mkdir /var/run/sshd
-RUN echo 'root:root' | chpasswd
-RUN sed -ri 's/^PermitRootLogin\s+.*/PermitRootLogin yes/' /etc/ssh/sshd_config
-RUN sed -ri 's/UsePAM yes/#UsePAM yes/g' /etc/ssh/sshd_config
-EXPOSE 22
-CMD ["/usr/sbin/sshd", "-D"]
diff --git a/paddle/scripts/docker/build.sh b/paddle/scripts/docker/build.sh
index 8e2e26b6ba614ce2e82f2cd4b56de78dc883248d..ca3f1c3f1896feaae657f47c121ce6cd858dc2c9 100755
--- a/paddle/scripts/docker/build.sh
+++ b/paddle/scripts/docker/build.sh
@@ -20,8 +20,28 @@ cmake .. \
       -DWITH_AVX=${WITH_AVX} \
       -DWITH_SWIG_PY=ON \
       -DCUDNN_ROOT=/usr/ \
-      -DWITH_STYLE_CHECK=OFF
+      -DWITH_STYLE_CHECK=OFF \
+      -DCMAKE_EXPORT_COMPILE_COMMANDS=ON
 make -j `nproc`
 make install
 
+# Install woboq_codebrowser.
+git clone https://github.com/woboq/woboq_codebrowser /woboq
+cd /woboq
+cmake -DLLVM_CONFIG_EXECUTABLE=/usr/bin/llvm-config-3.8 \
+      -DCMAKE_BUILD_TYPE=Release \
+      .
+make
+
+export WOBOQ_OUT=/usr/share/nginx/html/paddle
+export BUILD_DIR=/paddle/build
+mkdir -p $WOBOQ_OUT
+cp -rv /woboq/data $WOBOQ_OUT/../data
+/woboq/generator/codebrowser_generator \
+    -b /paddle/build \
+    -a \
+    -o $WOBOQ_OUT \
+    -p paddle:/paddle
+/woboq/indexgenerator/codebrowser_indexgenerator $WOBOQ_OUT
+
 trap : 0
diff --git a/paddle/scripts/docker/generate.sh b/paddle/scripts/docker/generate.sh
deleted file mode 100755
index b808a62ec29cab6058ec76cd46fff4cbd72e36cd..0000000000000000000000000000000000000000
--- a/paddle/scripts/docker/generate.sh
+++ /dev/null
@@ -1,24 +0,0 @@
-#!/bin/bash
-
-set -e
-cd `dirname $0`
-
-m4 -DPADDLE_WITH_GPU=OFF \
-   -DPADDLE_WITH_AVX=ON  \
-   -DPADDLE_BASE_IMAGE=ubuntu:14.04 \
-   Dockerfile.m4 > Dockerfile.cpu
-
-m4 -DPADDLE_WITH_GPU=OFF \
-   -DPADDLE_WITH_AVX=OFF \
-   -DPADDLE_BASE_IMAGE=ubuntu:14.04 \
-   Dockerfile.m4 > Dockerfile.cpu-noavx
-
-m4 -DPADDLE_WITH_GPU=ON \
-   -DPADDLE_WITH_AVX=ON \
-   -DPADDLE_BASE_IMAGE=nvidia/cuda:7.5-cudnn5-devel-ubuntu14.04 \
-   Dockerfile.m4 > Dockerfile.gpu
-
-m4 -DPADDLE_WITH_GPU=ON  \
-   -DPADDLE_WITH_AVX=OFF \
-   -DPADDLE_BASE_IMAGE=nvidia/cuda:7.5-cudnn5-devel-ubuntu14.04 \
-   Dockerfile.m4 > Dockerfile.gpu-noavx
diff --git a/paddle/scripts/tools/build_docs/Dockerfile b/paddle/scripts/tools/build_docs/Dockerfile
index 5db0b29c4739943f9e677dc7973b392a345b7da1..506b13210ba1ee7277e2671870d79750cf63e900 100644
--- a/paddle/scripts/tools/build_docs/Dockerfile
+++ b/paddle/scripts/tools/build_docs/Dockerfile
@@ -1,6 +1,7 @@
 FROM paddledev/paddle:cpu-devel-latest
 COPY build.sh /
 RUN pip install sphinx &&\
+    pip install sphinx_rtd_theme &&\
     apt install -y doxygen graphviz &&\
     pip install breathe recommonmark numpy protobuf==2.6.1
 CMD /build.sh
diff --git a/paddle/trainer/Tester.cpp b/paddle/trainer/Tester.cpp
index 30e92682baec2fc6035ecfa9dbd90415acd5abe1..db7916cf1413d19dd82062886d7adeeb1a3aa61f 100644
--- a/paddle/trainer/Tester.cpp
+++ b/paddle/trainer/Tester.cpp
@@ -87,10 +87,8 @@ void Tester::testOneDataBatch(const DataBatch& dataBatch,
 void Tester::testOnePeriod() {
   DataBatch dataBatch;
   int64_t batchSize = config_->getOptConfig().batch_size();
-  bool testAllData =
-      intconfig_->testPeriod == 0 || intconfig_->testAllDataInOnePeriod;
-  int batches =
-      testAllData ? std::numeric_limits<int>::max() : intconfig_->testPeriod;
+
+  int batches = std::numeric_limits<int>::max();
 
   std::vector<Argument> outArgs;
 
@@ -102,11 +100,7 @@ void Tester::testOnePeriod() {
       if (intconfig_->prevBatchState) {
         gradientMachine_->resetState();
       }
-      if (testAllData) {
-        break;
-      } else {
-        num = testDataProvider_->getNextBatch(batchSize, &dataBatch);
-      }
+      break;
     }
     testOneDataBatch(dataBatch, &outArgs);
   }
diff --git a/paddle/trainer/TesterConfig.h b/paddle/trainer/TesterConfig.h
index 90267e68d768f2a144e0041d0f493072ef9eb9a1..f490e5734415c0939fd925a6c7dd34c1e6d3a34f 100644
--- a/paddle/trainer/TesterConfig.h
+++ b/paddle/trainer/TesterConfig.h
@@ -39,11 +39,6 @@ struct TesterConfig {
    */
   int testPeriod;
 
-  /**
-   * indicate whether testing data in one period
-   */
-  bool testAllDataInOnePeriod;
-
   /**
    * indicate whether to save previous batch state
    */
diff --git a/paddle/trainer/Trainer.cpp b/paddle/trainer/Trainer.cpp
index a361386b90235162f5e1c4e5936d384dde33b455..99bf45d247a9c61819ba92147616cb7ff75f89fb 100644
--- a/paddle/trainer/Trainer.cpp
+++ b/paddle/trainer/Trainer.cpp
@@ -39,20 +39,16 @@ limitations under the License. */
 #include "TrainerConfigHelper.h"
 
 P_DEFINE_string(config, "", "Trainer config file");
-P_DEFINE_int32(test_period,
-               0,
-               "Run test every so many train batches."
-               " 0 for testing after each pass."
-               " If not 0, test log_period batches."
-               " If 0, test on all test data");
 
-P_DEFINE_bool(local, true, "Train in local mode or not");
+P_DEFINE_int32(test_period, 0,
+               "if equal 0, do test on all test data at the end of "
+               "each pass. While if equal non-zero, do test on all test "
+               "data every test_period batches");
+P_DEFINE_bool(test_all_data_in_one_period, false,
+               "This option was deprecated, since we will always do "
+               "test on all test set ");
 
-P_DEFINE_bool(
-    test_all_data_in_one_period,
-    false,
-    "true will test all data in one test peroid."
-    "Otherwise test (batch_size * log_peroid) data in one test period.");
+P_DEFINE_bool(local, true, "Train in local mode or not");
 
 P_DEFINE_int32(average_test_period,
                0,
@@ -633,8 +629,19 @@ void Trainer::test() { tester_->test(); }
 
 std::unique_ptr<TesterConfig> Trainer::createTesterConfig() {
   TesterConfig* conf = new TesterConfig;
+  if (FLAGS_test_period) {
+    LOG(WARNING)
+      << "The meaning of --test_period is changed: "
+      << "if equal 0, do test on all test data at the end of "
+      << "each pass. While if equal non-zero, do test on all test "
+      << "data every test_period batches ";
+  }
+  if (FLAGS_test_all_data_in_one_period) {
+    LOG(WARNING)
+      << "--test_all_data_in_one_period was deprecated, since "
+      << "we will always do test on all test set ";
+  }
   conf->testPeriod = FLAGS_test_period;
-  conf->testAllDataInOnePeriod = FLAGS_test_all_data_in_one_period;
   conf->prevBatchState = FLAGS_prev_batch_state;
   conf->logPeriod = FLAGS_log_period;
   conf->loadsaveParametersInPserver = FLAGS_loadsave_parameters_in_pserver;
diff --git a/paddle/trainer/tests/test_config.conf b/paddle/trainer/tests/test_config.conf
index 664e18cb986811ffca2a4865c5f50045ace122e1..2a4548896ffe0770f48b6c375c41eaf452b19366 100644
--- a/paddle/trainer/tests/test_config.conf
+++ b/paddle/trainer/tests/test_config.conf
@@ -59,7 +59,6 @@ pool = img_pool_layer(input=fc2,
                       padding_y=2,
                       stride=2,
                       stride_y=3,
-                      img_width=3,
                       pool_type=CudnnAvgPooling())
 
 concat = concat_layer(input=[fc3, fc4])
diff --git a/proto/ModelConfig.proto.m4 b/proto/ModelConfig.proto.m4
index 08108a46661b5c0ebb104e5972b736a468a76cce..4e8ed36f4ed4446193fab6fb710a0283d87b4b3a 100644
--- a/proto/ModelConfig.proto.m4
+++ b/proto/ModelConfig.proto.m4
@@ -77,6 +77,12 @@ message ConvConfig {
   required uint32 filter_size_y = 10;
   required uint32 padding_y = 11;
   required uint32 stride_y = 12;
+
+  // if not set, use output_x
+  optional uint32 output_y = 13;
+
+  // if not set, use img_size
+  optional uint32 img_size_y = 14;
 }
 
 message PoolConfig {
@@ -122,11 +128,9 @@ message PoolConfig {
 }
 
 message SppConfig {
-  required string pool_type = 1;
-  required uint32 pyramid_height = 2;
-  required uint32 channels = 3;
-  required uint32 img_size = 4;
-  optional uint32 img_size_y = 5;
+  required ImageConfig image_conf = 1;
+  required string pool_type = 2;
+  required uint32 pyramid_height = 3;
 }
 
 message NormConfig {
@@ -156,6 +160,12 @@ message NormConfig {
   // fixed window: shared a fixed window for each value
   // sliding window: have a different window for each value
   optional bool blocked = 8;
+
+  // if not set, use output_x
+  optional uint32 output_y = 9;
+
+  // if not set, use img_size
+  optional uint32 img_size_y = 10;
 }
 
 message BlockExpandConfig {
@@ -180,12 +190,8 @@ message BlockExpandConfig {
 }
 
 message MaxOutConfig {
-  required uint32 channels = 1;
+  required ImageConfig image_conf = 1;
   required uint32 groups = 2;
-
-  // The size of input feature map.
-  required uint32 img_size_x = 3;
-  required uint32 img_size_y = 4;
 }
 
 message ProjectionConfig {
@@ -226,12 +232,10 @@ message OperatorConfig {
 
 message BilinearInterpConfig {
   // The size of input feature map.
-  optional uint32 img_size_x = 1;
-  optional uint32 img_size_y = 2;
+  required ImageConfig image_conf = 1;
   // The size of output feature map.
-  required uint32 out_size_x = 3;
-  required uint32 out_size_y = 4;
-  required uint32 num_channels = 5;
+  required uint32 out_size_x = 2;
+  required uint32 out_size_y = 3;
 }
 
 message ImageConfig {
@@ -241,6 +245,7 @@ message ImageConfig {
 
   // The size of input feature map.
   required uint32 img_size = 8;
+  required uint32 img_size_y = 9;
 }
 
 message LayerInputConfig {
@@ -413,9 +418,13 @@ sinclude(`ModelConfigLayer.proto.m4')
   // string type is used for flexibility: different types can be converted
   // to string and reinterpreted in the user's own layer implementation.  
   optional string user_arg = 49;
+  
+  // to indicate rectangle image data
+  optional uint64 height = 50;
+  optional uint64 width = 51;
 
-  // For WarpCTCLayer
-  optional uint32 blank = 50 [default = 0];
+  // blank label used in ctc loss
+  optional uint32 blank = 52 [default = 0];
 }
 
 message EvaluatorConfig {
diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py
index 7526209f6acd639d384fe2026c44d58d1f3572b1..25e979186cc84fed37de78163fa88d9c3360bc79 100644
--- a/python/paddle/trainer/config_parser.py
+++ b/python/paddle/trainer/config_parser.py
@@ -138,7 +138,14 @@ def init_config_environment(
         g_root_submodel=None,
         g_submodel_map={},
         g_submodel_stack=[],
-        g_add_submodel_suffix=False, ):
+        g_add_submodel_suffix=False,
+
+        # Whether current layer needs to pass the image height and width.
+        # Default value is true, but if it encounters recurrent_layer_group, 
+        # it will be false. The reason is that image is converted to be sequence, 
+        # image height will be sequence length, and image width will be feature 
+        # length of each timestep.
+        g_pass_height_width=True, ):
 
     for k, v in locals().iteritems():
         globals()[k] = copy.deepcopy(v)
@@ -686,9 +693,9 @@ class ConvProjection(Projection):
 
         parse_conv(conv_conf, input_layer_name, self.proj_conf.conv_conf,
                    num_filters)
-        # TODO: support rectangle input
-        self.proj_conf.output_size = (self.proj_conf.conv_conf.output_x
-                                      **2) * num_filters
+        self.proj_conf.output_size = self.proj_conf.conv_conf.output_x * \
+                                     self.proj_conf.conv_conf.output_y * \
+                                     num_filters
 
     def calc_output_size(self, input_layer_config):
         return self.proj_conf.output_size
@@ -764,8 +771,9 @@ class ConvOperator(Operator):
         parse_conv(conv_conf,
                    MakeLayerNameInSubmodel(input_layer_names[0]),
                    self.operator_conf.conv_conf, num_filters)
-        self.operator_conf.output_size = (self.operator_conf.conv_conf.output_x
-                                          **2) * num_filters
+        self.operator_conf.output_size = self.operator_conf.conv_conf.output_x * \
+                                         self.operator_conf.conv_conf.output_y * \
+                                         num_filters
 
         config_assert(len(input_layer_names) == 2, "Conv is binary operator")
 
@@ -800,14 +808,12 @@ class Conv(Cfg):
             config_assert(output_x <= 0)
 
 
-# please refer to the comments in proto/ModelConfig.proto
 @config_class
 class BilinearInterp(Cfg):
-    def __init__(self, out_size_x=None, out_size_y=None, num_channels=None):
+    def __init__(self, out_size_x=None, out_size_y=None, channels=None):
         self.add_keys(locals())
 
 
-# please refer to the comments in proto/ModelConfig.proto
 @config_class
 class Pool(Cfg):
     def __init__(
@@ -825,14 +831,12 @@ class Pool(Cfg):
         self.add_keys(locals())
 
 
-# please refer to the comments in proto/ModelConfig.proto
 @config_class
 class SpatialPyramidPool(Cfg):
-    def __init__(self, pool_type, pyramid_height, channels, img_width=None):
+    def __init__(self, pool_type, pyramid_height, channels):
         self.add_keys(locals())
 
 
-# please refer to the comments in proto/ModelConfig.proto
 @config_class
 class Norm(Cfg):
     def __init__(self,
@@ -847,7 +851,6 @@ class Norm(Cfg):
         self.add_keys(locals())
 
 
-# please refer to the comments in proto/ModelConfig.proto
 @config_class
 class Image(Cfg):
     def __init__(self, channels, img_size=None):
@@ -1054,18 +1057,8 @@ def TestData(data_config, async_load_data=None):
         g_config.test_data_config.async_load_data = async_load_data
 
 
-def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
-    bilinear_conf.out_size_x = bilinear.out_size_x
-    bilinear_conf.out_size_y = bilinear.out_size_y
-    bilinear_conf.num_channels = bilinear.num_channels
-
-
-'''
-caffe_mode: compute the output size using floor instead of ceil,
-            which is consistent of caffe and CuDNN's convention.
-'''
-
-
+#caffe_mode: compute the output size using floor instead of ceil,
+#            which is consistent of caffe and CuDNN's convention.
 def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
     output = (2 * padding + img_size - filter_size) / float(stride)
     if caffe_mode:
@@ -1074,20 +1067,34 @@ def cnn_output_size(img_size, filter_size, padding, stride, caffe_mode):
         return 1 + int(math.ceil(output))
 
 
-'''
-calcualte image_size based on output_size for convolution. 
-It is the reverse function of cnn_output_size
-'''
-
-
+#calcualte image_size based on output_size for de-convolution (ConvTransLayer). 
+#It is the reverse function of cnn_output_size
 def cnn_image_size(output_size, filter_size, padding, stride, caffe_mode):
-    if caffe_mode:
-        img_size = (output_size - 1) * stride + filter_size - 2 * padding
-    else:
-        img_size = (output_size - 2) * stride + filter_size - 2 * padding + 1
+    img_size = (output_size - 1) * stride + filter_size - 2 * padding
+    if not caffe_mode:
+        img_size = img_size + 1
     return img_size
 
 
+def get_img_size(input_layer_name, channels):
+    input = g_layer_map[input_layer_name]
+    img_pixels = input.size / channels
+    img_size = input.width if input.width > 0 else int(img_pixels**0.5)
+    img_size_y = input.height if input.height > 0 else int(img_pixels /
+                                                           img_size)
+    config_assert(
+        img_size * img_size_y == img_pixels,
+        "Input layer %s: Incorrect input image size %d * %d for input image pixels %d"
+        % (input_layer_name, img_size, img_size_y, img_pixels))
+    return img_size, img_size_y
+
+
+def parse_bilinear(bilinear, input_layer_name, bilinear_conf):
+    parse_image(bilinear, input_layer_name, bilinear_conf.image_conf)
+    bilinear_conf.out_size_x = bilinear.out_size_x
+    bilinear_conf.out_size_y = bilinear.out_size_y
+
+
 def parse_pool(pool, input_layer_name, pool_conf):
     pool_conf.pool_type = pool.pool_type
     config_assert(pool.pool_type in [
@@ -1103,14 +1110,8 @@ def parse_pool(pool, input_layer_name, pool_conf):
     pool_conf.size_y = default(pool.size_y, pool_conf.size_x)
     pool_conf.stride_y = default(pool.stride_y, pool_conf.stride)
 
-    img_pixels = g_layer_map[input_layer_name].size / pool.channels
-    # the img_width may be removed,
-    # and it can be calculated automatically later.
-    pool_conf.img_size = default(pool.img_width, int(img_pixels**0.5))
-    pool_conf.img_size_y = img_pixels / pool_conf.img_size
-    config_assert(pool_conf.img_size * pool_conf.img_size_y == img_pixels,
-                  "Incorrect input image size %d for input image pixels %d" %
-                  (pool_conf.img_size, img_pixels))
+    pool_conf.img_size, pool_conf.img_size_y = \
+        get_img_size(input_layer_name, pool.channels)
 
     config_assert(not pool.start, "start is deprecated in pooling.")
 
@@ -1126,29 +1127,18 @@ def parse_pool(pool, input_layer_name, pool_conf):
 
 
 def parse_spp(spp, input_layer_name, spp_conf):
+    parse_image(spp, input_layer_name, spp_conf.image_conf)
     spp_conf.pool_type = spp.pool_type
     config_assert(spp.pool_type in ['max-projection', 'avg-projection'],
                   "pool-type %s is not in "
                   "['max-projection', 'avg-projection']" % spp.pool_type)
     spp_conf.pyramid_height = spp.pyramid_height
-    spp_conf.channels = spp.channels
-
-    img_pixels = g_layer_map[input_layer_name].size / spp_conf.channels
-
-    spp_conf.img_size = default(spp.img_width, int(img_pixels**0.5))
-    spp_conf.img_size_y = img_pixels / spp_conf.img_size
-    config_assert(spp_conf.img_size * spp_conf.img_size_y == img_pixels,
-                  "Incorrect input image size %d for input image pixels %d" %
-                  (spp_conf.img_size, img_pixels))
 
 
 def parse_image(image, input_layer_name, image_conf):
     image_conf.channels = image.channels
-    image_pixels = g_layer_map[input_layer_name].size / image_conf.channels
-    image_conf.img_size = int(image_pixels**0.5)
-    config_assert((image_conf.img_size**2) == image_pixels,
-                  "Incorrect input image size %d for input image pixels %d" %
-                  (image_conf.img_size, image_pixels))
+    image_conf.img_size, image_conf.img_size_y = \
+        get_img_size(input_layer_name, image_conf.channels)
 
 
 def parse_norm(norm, input_layer_name, norm_conf):
@@ -1162,24 +1152,18 @@ def parse_norm(norm, input_layer_name, norm_conf):
     norm_conf.pow = norm.pow
     norm_conf.blocked = norm.blocked
 
-    img_pixels = g_layer_map[input_layer_name].size / norm.channels
-    norm_conf.img_size = int(img_pixels**0.5)
-    config_assert((norm_conf.img_size**2) == img_pixels,
-                  "Incorrect input image size %d for input image pixels %d" %
-                  (norm_conf.img_size, img_pixels))
+    norm_conf.img_size, norm_conf.img_size_y = \
+        get_img_size(input_layer_name, norm.channels)
     norm_conf.output_x = norm_conf.img_size
+    norm_conf.output_y = norm_conf.img_size_y
     if norm.norm_type in ['cmrnorm-projection']:
         norm_conf.scale /= norm.size
     else:
         norm_conf.scale /= norm.size**2
 
 
-'''
-caffe_mode: compute the output size using floor instead of ceil,
-            which is consistent of caffe and CuDNN's convention.
-'''
-
-
+#caffe_mode: compute the output size using floor instead of ceil,
+#            which is consistent of caffe and CuDNN's convention.
 def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
     conv_conf.filter_size = conv.filter_size
     conv_conf.filter_size_y = conv.filter_size_y
@@ -1193,33 +1177,24 @@ def parse_conv(conv, input_layer_name, conv_conf, num_filters, trans=False):
 
     if not trans:
         conv_conf.filter_channels = conv.channels / conv.groups
-
-        img_pixels = g_layer_map[input_layer_name].size / conv.channels
-        print('channels=%d size=%d' % (conv.channels,
-                                       g_layer_map[input_layer_name].size))
-        conv_conf.img_size = int(img_pixels**0.5)
-        config_assert((conv_conf.img_size**2) == img_pixels, (
-            "Input layer %s: Incorrect input image size %d for input " +
-            "image pixels %d") %
-                      (input_layer_name, conv_conf.img_size, img_pixels))
-
+        conv_conf.img_size, conv_conf.img_size_y = \
+            get_img_size(input_layer_name, conv.channels)
         conv_conf.output_x = cnn_output_size(
             conv_conf.img_size, conv_conf.filter_size, conv_conf.padding,
             conv_conf.stride, conv_conf.caffe_mode)
+        conv_conf.output_y = cnn_output_size(
+            conv_conf.img_size_y, conv_conf.filter_size_y, conv_conf.padding_y,
+            conv_conf.stride_y, conv_conf.caffe_mode)
     else:
         conv_conf.filter_channels = num_filters / conv.groups
-
-        outputSize = g_layer_map[input_layer_name].size / conv.channels
-        print('channels=%d size=%d' % (conv.channels,
-                                       g_layer_map[input_layer_name].size))
-        conv_conf.output_x = int(outputSize**0.5)
-        config_assert((conv_conf.output_x**2) == outputSize, (
-            "Input layer %s: Incorrect input image size %d for input " +
-            "image pixels %d") %
-                      (input_layer_name, conv_conf.output_x, outputSize))
+        conv_conf.output_x, conv_conf.output_y = \
+            get_img_size(input_layer_name, conv.channels)
         conv_conf.img_size = cnn_image_size(
             conv_conf.output_x, conv_conf.filter_size, conv_conf.padding,
             conv_conf.stride, conv_conf.caffe_mode)
+        conv_conf.img_size_y = cnn_image_size(
+            conv_conf.output_y, conv_conf.filter_size_y, conv_conf.padding_y,
+            conv_conf.stride_y, conv_conf.caffe_mode)
 
 
 def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
@@ -1248,10 +1223,8 @@ def parse_block_expand(block_expand, input_layer_name, block_expand_conf):
 
 
 def parse_maxout(maxout, input_layer_name, maxout_conf):
-    maxout_conf.channels = maxout.channels
+    parse_image(maxout, input_layer_name, maxout_conf.image_conf)
     maxout_conf.groups = maxout.groups
-    maxout_conf.img_size_x = maxout.img_size_x
-    maxout_conf.img_size_y = maxout.img_size_y
 
 
 # Define an evaluator
@@ -1378,6 +1351,12 @@ class LayerBase(object):
 
         g_current_submodel.layer_names.append(self.config.name)
 
+        if self.config.type != 'data' and g_pass_height_width:
+            height = self.get_input_layer(0).height
+            width = self.get_input_layer(0).width
+            if height and width:
+                self.set_layer_height_width(height, width)
+
     def get_input_layer(self, input_index):
         return g_layer_map[self.config.inputs[input_index].input_layer_name]
 
@@ -1495,6 +1474,23 @@ class LayerBase(object):
                           'Different inputs result in' +
                           'different layer size at layer %s' % self.config.name)
 
+    def set_layer_height_width(self, height, width):
+        self.config.height = height
+        self.config.width = width
+
+    def set_cnn_layer(self,
+                      input_layer_name,
+                      height,
+                      width,
+                      channels,
+                      is_print=True):
+        size = height * width * channels
+        self.set_layer_size(size)
+        self.set_layer_height_width(height, width)
+        if is_print:
+            print("output for %s: c = %d, h = %d, w = %d, size = %d" %
+                  (input_layer_name, channels, height, width, size))
+
 
 @config_layer('multi_class_cross_entropy_with_selfnorm')
 class MultiClassCrossEntropySelfNormCostLayer(LayerBase):
@@ -1584,9 +1580,11 @@ class PrintLayer(LayerBase):
 
 @config_layer('data')
 class DataLayer(LayerBase):
-    def __init__(self, name, size, device=None):
+    def __init__(self, name, size, height=None, width=None, device=None):
         super(DataLayer, self).__init__(
             name, 'data', size, inputs=[], device=device)
+        if height and width:
+            self.set_layer_height_width(height, width)
 
 
 '''
@@ -1685,14 +1683,13 @@ class ConvLayerBase(LayerBase):
 
         for input_index in xrange(len(self.inputs)):
             input_layer = self.get_input_layer(input_index)
-            parse_conv(self.inputs[input_index].conv, input_layer.name,
-                       self.config.inputs[input_index].conv_conf, num_filters)
             conv_conf = self.config.inputs[input_index].conv_conf
+            parse_conv(self.inputs[input_index].conv, input_layer.name,
+                       conv_conf, num_filters)
             psize = self.calc_parameter_size(conv_conf)
-            print("output size for %s is %d " % (name, conv_conf.output_x))
             self.create_input_parameter(input_index, psize)
-            self.set_layer_size(
-                (conv_conf.output_x**2) * self.config.num_filters)
+            self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
+                               self.config.num_filters)
 
         psize = self.config.size
         if shared_biases:
@@ -1779,10 +1776,11 @@ class NormLayer(LayerBase):
             name, 'norm', 0, inputs=inputs, device=device)
         for input_index in xrange(len(self.inputs)):
             input_layer = self.get_input_layer(input_index)
-            parse_norm(self.inputs[input_index].norm, input_layer.name,
-                       self.config.inputs[input_index].norm_conf)
             norm_conf = self.config.inputs[input_index].norm_conf
-            self.set_layer_size((norm_conf.output_x**2) * norm_conf.channels)
+            parse_norm(self.inputs[input_index].norm, input_layer.name,
+                       norm_conf)
+            self.set_cnn_layer(name, norm_conf.output_y, norm_conf.output_x,
+                               norm_conf.channels, False)
 
 
 @config_layer('pool')
@@ -1792,13 +1790,11 @@ class PoolLayer(LayerBase):
             name, 'pool', 0, inputs=inputs, device=device)
         for input_index in xrange(len(self.inputs)):
             input_layer = self.get_input_layer(input_index)
-            parse_pool(self.inputs[input_index].pool, input_layer.name,
-                       self.config.inputs[input_index].pool_conf)
             pool_conf = self.config.inputs[input_index].pool_conf
-            print("output size for %s is %d*%d " % (name, pool_conf.output_y,
-                                                    pool_conf.output_x))
-            self.set_layer_size(
-                (pool_conf.output_x * pool_conf.output_y) * pool_conf.channels)
+            parse_pool(self.inputs[input_index].pool, input_layer.name,
+                       pool_conf)
+            self.set_cnn_layer(name, pool_conf.output_y, pool_conf.output_x,
+                               pool_conf.channels)
 
 
 @config_layer('spp')
@@ -1808,12 +1804,10 @@ class SpatialPyramidPoolLayer(LayerBase):
             name, 'spp', 0, inputs=inputs, device=device)
         for input_index in xrange(len(self.inputs)):
             input_layer = self.get_input_layer(input_index)
-            parse_spp(self.inputs[input_index].spp, input_layer.name,
-                      self.config.inputs[input_index].spp_conf)
             spp_conf = self.config.inputs[input_index].spp_conf
-            output_size = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
-            print("output size for %s is %d " % (name, output_size))
-            self.set_layer_size(output_size * spp_conf.channels)
+            parse_spp(self.inputs[input_index].spp, input_layer.name, spp_conf)
+            output_x = (pow(4, spp_conf.pyramid_height) - 1) / (4 - 1)
+            self.set_cnn_layer(name, 1, output_x, spp_conf.image_conf.channels)
 
 
 @config_layer('batch_norm')
@@ -1875,10 +1869,10 @@ class BatchNormLayer(LayerBase):
             self.config.moving_average_fraction = moving_average_fraction
 
         input_layer = self.get_input_layer(0)
-        parse_image(self.inputs[0].image, input_layer.name,
-                    self.config.inputs[0].image_conf)
         image_conf = self.config.inputs[0].image_conf
-        self.set_layer_size((image_conf.img_size**2) * image_conf.channels)
+        parse_image(self.inputs[0].image, input_layer.name, image_conf)
+        self.set_cnn_layer(name, image_conf.img_size_y, image_conf.img_size,
+                           image_conf.channels)
 
         psize = self.calc_parameter_size(image_conf)
         dims = [1, psize]
@@ -1936,11 +1930,11 @@ class MaxOutLayer(LayerBase):
         super(MaxOutLayer, self).__init__(
             name, 'maxout', 0, inputs=inputs, **xargs)
         input_layer = self.get_input_layer(0)
-        parse_maxout(self.inputs[0].maxout, input_layer.name,
-                     self.config.inputs[0].maxout_conf)
         maxout_conf = self.config.inputs[0].maxout_conf
-        self.set_layer_size(g_layer_map[input_layer.name].size /
-                            maxout_conf.groups)
+        parse_maxout(self.inputs[0].maxout, input_layer.name, maxout_conf)
+        out_channels = maxout_conf.image_conf.channels / maxout_conf.groups
+        self.set_cnn_layer(name, g_layer_map[input_layer.name].height,
+                           g_layer_map[input_layer.name].width, out_channels)
 
 
 # key: cost type
@@ -2520,11 +2514,10 @@ class BilinearInterpLayer(LayerBase):
         super(BilinearInterpLayer, self).__init__(
             name, 'bilinear_interp', 0, inputs=inputs, **xargs)
         input_layer = self.get_input_layer(0)
-        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name,
-                       self.config.inputs[0].bilinear_interp_conf)
-        conf = self.inputs[0].bilinear_interp
-        self.set_layer_size(conf.out_size_x * conf.out_size_y *
-                            conf.num_channels)
+        conf = self.config.inputs[0].bilinear_interp_conf
+        parse_bilinear(self.inputs[0].bilinear_interp, input_layer.name, conf)
+        self.set_cnn_layer(name, conf.out_size_y, conf.out_size_x,
+                           conf.image_conf.channels)
 
 
 @config_layer('sum_to_one_norm')
@@ -3018,6 +3011,8 @@ class WarpCTCLayer(LayerBase):
 @config_layer('recurrent_layer_group')
 class RecurrentLayerGroup(LayerBase):
     def __init__(self, name, device=None):
+        global g_pass_height_width
+        g_pass_height_width = False
         super(RecurrentLayerGroup, self).__init__(
             name, 'recurrent_layer_group', 0, inputs=[], device=device)
 
@@ -3403,7 +3398,21 @@ def parse_config(config_file, config_arg_str):
     g_root_submodel.is_recurrent_layer_group = False
     g_current_submodel = g_root_submodel
 
-    execfile(config_file, make_config_environment(config_file, config_args))
+    # for paddle on spark, need support non-file config.
+    # you can use parse_config like below:
+    #
+    # from paddle.trainer.config_parser import parse_config
+    # def configs():
+    #    #your paddle config code, which is same as config file.
+    #
+    # config = parse_config(configs, "is_predict=1")
+    # # then you get config proto object.
+    if hasattr(config_file, '__call__'):
+        config_file.func_globals.update(
+            make_config_environment("", config_args))
+        config_file()
+    else:
+        execfile(config_file, make_config_environment(config_file, config_args))
     for k, v in settings.iteritems():
         if v is None:
             continue
diff --git a/python/paddle/trainer_config_helpers/layers.py b/python/paddle/trainer_config_helpers/layers.py
index bec675a8cea346c3976fc895f977d35412247388..4541b6fd8deddbd9cd3f8cb02f01e8328718d6e7 100644
--- a/python/paddle/trainer_config_helpers/layers.py
+++ b/python/paddle/trainer_config_helpers/layers.py
@@ -768,7 +768,7 @@ def mixed_layer(size=0,
 
 
 @layer_support()
-def data_layer(name, size, layer_attr=None):
+def data_layer(name, size, height=None, width=None, layer_attr=None):
     """
     Define DataLayer For NeuralNetwork.
 
@@ -783,6 +783,10 @@ def data_layer(name, size, layer_attr=None):
     :type name: basestring
     :param size: Size of this data layer.
     :type size: int
+    :param height: Height of this data layer, used for image
+    :type size: int|None
+    :param width: Width of this data layer, used for image
+    :type size: int|None
     :param layer_attr: Extra Layer Attribute.
     :type layer_attr: ExtraLayerAttribute.
     :return: LayerOutput object.
@@ -792,6 +796,8 @@ def data_layer(name, size, layer_attr=None):
         type=LayerType.DATA,
         name=name,
         size=size,
+        height=height,
+        width=width,
         **ExtraLayerAttribute.to_kwargs(layer_attr))
 
     return LayerOutput(name, LayerType.DATA, size=size)
@@ -1485,7 +1491,7 @@ def bilinear_interp_layer(input,
             bilinear_interp=BilinearInterp(
                 out_size_x=out_size_x,
                 out_size_y=out_size_y,
-                num_channels=num_channels)),
+                channels=num_channels)),
         type=LayerType.BILINEAR_INTERP_LAYER,
         **ExtraLayerAttribute.to_kwargs(layer_attr))
     return LayerOutput(
@@ -1925,8 +1931,7 @@ def img_pool_layer(input,
                    layer_attr=None,
                    pool_size_y=None,
                    stride_y=None,
-                   padding_y=None,
-                   img_width=None):
+                   padding_y=None):
     """
     Image pooling Layer.
 
@@ -1957,9 +1962,6 @@ def img_pool_layer(input,
     :type stride_y: int|None
     :param layer_attr: Extra Layer attribute.
     :type layer_attr: ExtraLayerAttribute
-    :param img_width: the width of input feature map. If it is None, the input feature
-                      map should be square.
-    :type img_width: int|None
     :return: LayerOutput object.
     :rtype: LayerOutput
     """
@@ -1995,8 +1997,7 @@ def img_pool_layer(input,
                     padding=padding,
                     size_y=pool_size_y,
                     stride_y=stride_y,
-                    padding_y=padding_y,
-                    img_width=img_width))
+                    padding_y=padding_y))
         ],
         **ExtraLayerAttribute.to_kwargs(layer_attr))
     return LayerOutput(
@@ -2014,7 +2015,6 @@ def spp_layer(input,
               num_channels=None,
               pool_type=None,
               pyramid_height=None,
-              img_width=None,
               layer_attr=None):
     """
     Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition.
@@ -2031,9 +2031,6 @@ def spp_layer(input,
     :type scale: BasePoolingType
     :param pyramid_height: pyramid height.
     :type pyramid_height: int
-    :param img_width: the width of input feature map. If it is None, the input feature
-                      map should be square.
-    :type img_width: int|None
     :param layer_attr: Extra Layer Attribute.
     :type layer_attr: ExtraLayerAttribute
     :return: LayerOutput object.
@@ -2060,8 +2057,7 @@ def spp_layer(input,
             spp=SpatialPyramidPool(
                 pool_type=type_name,
                 channels=num_channels,
-                pyramid_height=pyramid_height,
-                img_width=img_width)),
+                pyramid_height=pyramid_height)),
         **ExtraLayerAttribute.to_kwargs(layer_attr))
     return LayerOutput(
         name,
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
index 1f262af21126c17eb133b92c84a1ae3bb280a1d6..1a577b8d9b1e1915236ba6afcfa97040d70c707a 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_layers.protostr
@@ -26,11 +26,15 @@ layers {
       filter_size_y: 32
       padding_y: 1
       stride_y: 1
+      output_y: 227
+      img_size_y: 256
     }
   }
   bias_parameter_name: "___conv_0__.wbias"
   num_filters: 64
   shared_biases: true
+  height: 227
+  width: 227
 }
 layers {
   name: "__batch_norm_0__"
@@ -43,6 +47,7 @@ layers {
     image_conf {
       channels: 64
       img_size: 227
+      img_size_y: 227
     }
   }
   inputs {
@@ -55,6 +60,8 @@ layers {
   }
   bias_parameter_name: "___batch_norm_0__.wbias"
   moving_average_fraction: 0.9
+  height: 227
+  width: 227
 }
 layers {
   name: "__crmnorm_0__"
@@ -72,8 +79,12 @@ layers {
       output_x: 227
       img_size: 227
       blocked: false
+      output_y: 227
+      img_size_y: 227
     }
   }
+  height: 227
+  width: 227
 }
 layers {
   name: "__pool_0__"
@@ -97,6 +108,8 @@ layers {
       padding_y: 0
     }
   }
+  height: 196
+  width: 196
 }
 parameters {
   name: "___conv_0__.w0"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
index 38346354080b02bebd937fd998fd3c63c8030346..cd310bd13b39aca57d7a1f38ac2a8966c706b60a 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/img_trans_layers.protostr
@@ -26,6 +26,8 @@ layers {
       filter_size_y: 32
       padding_y: 1
       stride_y: 1
+      output_y: 227
+      img_size_y: 256
     }
   }
   bias_parameter_name: "___conv_0__.wbias"
@@ -43,6 +45,7 @@ layers {
     image_conf {
       channels: 64
       img_size: 256
+      img_size_y: 256
     }
   }
   inputs {
@@ -55,6 +58,8 @@ layers {
   }
   bias_parameter_name: "___batch_norm_0__.wbias"
   moving_average_fraction: 0.9
+  height: 256
+  width: 256
 }
 layers {
   name: "__crmnorm_0__"
@@ -72,8 +77,12 @@ layers {
       output_x: 256
       img_size: 256
       blocked: false
+      output_y: 256
+      img_size_y: 256
     }
   }
+  height: 256
+  width: 256
 }
 layers {
   name: "__pool_0__"
@@ -97,6 +106,8 @@ layers {
       padding_y: 0
     }
   }
+  height: 225
+  width: 225
 }
 parameters {
   name: "___conv_0__.w0"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
index 2b3951c242411e0c0990a52bcb2ae6b1723a9367..2943ab130bd7d6f3b78ea611f1c35850ccaf5e92 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/projections.protostr
@@ -177,6 +177,8 @@ layers {
       filter_size_y: 3
       padding_y: 0
       stride_y: 1
+      output_y: 30
+      img_size_y: 32
     }
     num_filters: 64
   }
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
index 13d0d477eb58f6da887d0ad9c683caef37e00010..9fae596f281d44dc24c45cb3c750233266e95948 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_bilinear_interp.protostr
@@ -26,11 +26,15 @@ layers {
       filter_size_y: 3
       padding_y: 1
       stride_y: 1
+      output_y: 48
+      img_size_y: 48
     }
   }
   bias_parameter_name: "___conv_0__.wbias"
   num_filters: 16
   shared_biases: true
+  height: 48
+  width: 48
 }
 layers {
   name: "__bilinear_interp_layer_0__"
@@ -40,11 +44,17 @@ layers {
   inputs {
     input_layer_name: "__conv_0__"
     bilinear_interp_conf {
+      image_conf {
+        channels: 16
+        img_size: 48
+        img_size_y: 48
+      }
       out_size_x: 64
       out_size_y: 64
-      num_channels: 16
     }
   }
+  height: 64
+  width: 64
 }
 layers {
   name: "__pool_0__"
@@ -55,19 +65,21 @@ layers {
     input_layer_name: "__bilinear_interp_layer_0__"
     pool_conf {
       pool_type: "max-projection"
-      channels: 4
+      channels: 16
       size_x: 2
       stride: 2
-      output_x: 64
-      img_size: 128
+      output_x: 32
+      img_size: 64
       padding: 0
       size_y: 2
       stride_y: 2
-      output_y: 64
-      img_size_y: 128
+      output_y: 32
+      img_size_y: 64
       padding_y: 0
     }
   }
+  height: 32
+  width: 32
 }
 layers {
   name: "__fc_layer_0__"
@@ -78,6 +90,8 @@ layers {
     input_layer_name: "__pool_0__"
     input_parameter_name: "___fc_layer_0__.w0"
   }
+  height: 32
+  width: 32
 }
 parameters {
   name: "___conv_0__.w0"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
index 1be2a7ceebfb74d677ac056dcc3a9f72fd31ccd6..c763a95f9d1aefa022f38e0beef6d1c86ebb360d 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_maxout.protostr
@@ -4,6 +4,8 @@ layers {
   type: "data"
   size: 2304
   active_type: ""
+  height: 48
+  width: 48
 }
 layers {
   name: "__conv_0__"
@@ -26,11 +28,15 @@ layers {
       filter_size_y: 3
       padding_y: 1
       stride_y: 1
+      output_y: 48
+      img_size_y: 48
     }
   }
   bias_parameter_name: "___conv_0__.wbias"
   num_filters: 16
   shared_biases: true
+  height: 48
+  width: 48
 }
 layers {
   name: "__maxout_layer_0__"
@@ -40,12 +46,16 @@ layers {
   inputs {
     input_layer_name: "__conv_0__"
     maxout_conf {
-      channels: 16
+      image_conf {
+        channels: 16
+        img_size: 48
+        img_size_y: 48
+      }
       groups: 2
-      img_size_x: 0
-      img_size_y: 0
     }
   }
+  height: 48
+  width: 48
 }
 layers {
   name: "__pool_0__"
@@ -69,48 +79,58 @@ layers {
       padding_y: 0
     }
   }
+  height: 24
+  width: 24
 }
 layers {
   name: "__conv_1__"
   type: "exconv"
-  size: 18432
+  size: 73728
   active_type: ""
   inputs {
     input_layer_name: "__pool_0__"
     input_parameter_name: "___conv_1__.w0"
     conv_conf {
       filter_size: 3
-      channels: 32
+      channels: 8
       stride: 1
       padding: 1
       groups: 1
-      filter_channels: 32
-      output_x: 12
-      img_size: 12
+      filter_channels: 8
+      output_x: 24
+      img_size: 24
       caffe_mode: true
       filter_size_y: 3
       padding_y: 1
       stride_y: 1
+      output_y: 24
+      img_size_y: 24
     }
   }
   bias_parameter_name: "___conv_1__.wbias"
   num_filters: 128
   shared_biases: true
+  height: 24
+  width: 24
 }
 layers {
   name: "__maxout_layer_1__"
   type: "maxout"
-  size: 9216
+  size: 18432
   active_type: ""
   inputs {
-    input_layer_name: "__conv_0__"
+    input_layer_name: "__conv_1__"
     maxout_conf {
-      channels: 128
+      image_conf {
+        channels: 128
+        img_size: 24
+        img_size_y: 24
+      }
       groups: 4
-      img_size_x: 0
-      img_size_y: 0
     }
   }
+  height: 24
+  width: 24
 }
 layers {
   name: "__block_expand_layer_0__"
@@ -118,7 +138,7 @@ layers {
   size: 192
   active_type: ""
   inputs {
-    input_layer_name: "__maxout_layer_0__"
+    input_layer_name: "__maxout_layer_1__"
     block_expand_conf {
       channels: 32
       stride_x: 1
@@ -133,6 +153,8 @@ layers {
       img_size_y: 0
     }
   }
+  height: 24
+  width: 24
 }
 layers {
   name: "__fc_layer_0__"
@@ -143,6 +165,8 @@ layers {
     input_layer_name: "__block_expand_layer_0__"
     input_parameter_name: "___fc_layer_0__.w0"
   }
+  height: 24
+  width: 24
 }
 parameters {
   name: "___conv_0__.w0"
@@ -164,9 +188,9 @@ parameters {
 }
 parameters {
   name: "___conv_1__.w0"
-  size: 36864
+  size: 9216
   initial_mean: 0.0
-  initial_std: 0.0833333333333
+  initial_std: 0.166666666667
   initial_strategy: 0
   initial_smart: false
 }
diff --git a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_spp_layer.protostr b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_spp_layer.protostr
index 8b0a8f2146b709ee67981049da8061597e1716be..ca1b2d8cffd6b472dfe40feeeb762e169bc853c7 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/protostr/test_spp_layer.protostr
+++ b/python/paddle/trainer_config_helpers/tests/configs/protostr/test_spp_layer.protostr
@@ -4,6 +4,8 @@ layers {
   type: "data"
   size: 3200
   active_type: ""
+  height: 20
+  width: 10
 }
 layers {
   name: "__spp_0__"
@@ -13,13 +15,17 @@ layers {
   inputs {
     input_layer_name: "data"
     spp_conf {
+      image_conf {
+        channels: 16
+        img_size: 10
+        img_size_y: 20
+      }
       pool_type: "max-projection"
       pyramid_height: 2
-      channels: 16
-      img_size: 10
-      img_size_y: 20
     }
   }
+  height: 1
+  width: 5
 }
 input_layer_names: "data"
 output_layer_names: "__spp_0__"
diff --git a/python/paddle/trainer_config_helpers/tests/configs/run_tests.sh b/python/paddle/trainer_config_helpers/tests/configs/run_tests.sh
index 5f6ed91030bc54481495f42539e3581eefc64b1a..73f8b333b236a8850e4c2dfa8fc75addeb143e9d 100755
--- a/python/paddle/trainer_config_helpers/tests/configs/run_tests.sh
+++ b/python/paddle/trainer_config_helpers/tests/configs/run_tests.sh
@@ -5,7 +5,7 @@ set -e
 
 protostr=`dirname $0`/protostr
 
-files=`ls $protostr | grep -v "unitest"`
+files=`ls $protostr | grep -v "unittest"`
 
 ./generate_protostr.sh
 
diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py b/python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
index e15a55b412f9459ecd89a0f654256097099c1398..be83f4f83c5d05ea2ffd9e3df0c09fb1a37a3e57 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
+++ b/python/paddle/trainer_config_helpers/tests/configs/test_bilinear_interp.py
@@ -17,7 +17,7 @@ bilinear = bilinear_interp_layer(input=conv, out_size_x=64, out_size_y=64)
 
 pool = img_pool_layer(
     input=bilinear,
-    num_channels=4,
+    num_channels=16,
     pool_size=2,
     stride=2,
     pool_type=MaxPooling())
diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_maxout.py b/python/paddle/trainer_config_helpers/tests/configs/test_maxout.py
index 081430d716093877db6b2e44ac5417c37ede9a6e..eb14270baa0c4ca0b84d2121a80fde0b45eda54a 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/test_maxout.py
+++ b/python/paddle/trainer_config_helpers/tests/configs/test_maxout.py
@@ -2,7 +2,7 @@ from paddle.trainer_config_helpers import *
 
 settings(batch_size=1000, learning_rate=1e-5)
 
-data = data_layer(name='data', size=2304)
+data = data_layer(name='data', size=2304, height=48, width=48)
 
 conv = img_conv_layer(
     input=data,
@@ -21,16 +21,21 @@ pool = img_pool_layer(
 conv2 = img_conv_layer(
     input=pool,
     filter_size=3,
-    num_channels=32,
+    num_channels=8,
     num_filters=128,
     padding=1,
     act=LinearActivation(),
     bias_attr=True)
 
-maxout2 = maxout_layer(input=conv, num_channels=128, groups=4)
+maxout2 = maxout_layer(input=conv2, num_channels=128, groups=4)
 
 block = block_expand_layer(
-    input=maxout, num_channels=32, stride_x=1, stride_y=1, block_x=1, block_y=6)
+    input=maxout2,
+    num_channels=32,
+    stride_x=1,
+    stride_y=1,
+    block_x=1,
+    block_y=6)
 
 fc = fc_layer(input=block, size=384, bias_attr=False)
 
diff --git a/python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py b/python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py
index e20ffb584e8bdd86100455d4e55fe633b878e034..e0b0d0d3be252700d99f7097f0353df885efcf07 100644
--- a/python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py
+++ b/python/paddle/trainer_config_helpers/tests/configs/test_spp_layer.py
@@ -2,13 +2,9 @@ from paddle.trainer_config_helpers import *
 
 settings(batch_size=100, learning_rate=1e-5)
 
-data = data_layer(name='data', size=3200)
+data = data_layer(name='data', size=3200, height=20, width=10)
 
 spp = spp_layer(
-    input=data,
-    pyramid_height=2,
-    num_channels=16,
-    pool_type=MaxPooling(),
-    img_width=10)
+    input=data, pyramid_height=2, num_channels=16, pool_type=MaxPooling())
 
 outputs(spp)