提交 77ff97ab 编写于 作者: X xzl

fuse interface of depthwise to expand in python api

上级 21ab0eb8
...@@ -1799,56 +1799,6 @@ class ParameterReluLayer(LayerBase): ...@@ -1799,56 +1799,6 @@ class ParameterReluLayer(LayerBase):
self.create_input_parameter(0, input_layer.size / partial_sum) self.create_input_parameter(0, input_layer.size / partial_sum)
@config_layer('depthwise_conv')
class DepthwiseConvLayer(LayerBase):
layer_type = 'depthwise_conv'
def __init__(self,
name,
inputs=[],
bias=True,
num_filters=None,
shared_biases=False,
**xargs):
super(DepthwiseConvLayer, self).__init__(
name, self.layer_type, 0, inputs=inputs, **xargs)
if num_filters is not None:
self.config.num_filters = num_filters
use_gpu = int(g_command_config_args.get("use_gpu", 0))
parallel_nn = int(g_command_config_args.get("parallel_nn", 0))
self.layer_type = "depthwise_conv"
# need to specify layer in config
self.config.type = self.layer_type
if shared_biases is not None:
self.config.shared_biases = shared_biases
for input_index in xrange(len(self.inputs)):
input_layer = self.get_input_layer(input_index)
conv_conf = self.config.inputs[input_index].conv_conf
#set the groups, the groups equals the input channels
self.inputs[input_index].conv.groups = self.inputs[
input_index].conv.channels
parse_conv(self.inputs[input_index].conv, input_layer.name,
conv_conf, num_filters)
psize = self.calc_parameter_size(conv_conf)
self.create_input_parameter(input_index, psize)
self.set_cnn_layer(name, conv_conf.output_y, conv_conf.output_x,
self.config.num_filters)
psize = self.config.size
if shared_biases:
psize = self.config.num_filters
self.create_bias_parameter(bias, psize, [psize, 1])
def calc_parameter_size(self, conv_conf):
return self.config.num_filters * conv_conf.filter_channels \
* (conv_conf.filter_size * conv_conf.filter_size_y)
@config_layer('conv') @config_layer('conv')
class ConvLayerBase(LayerBase): class ConvLayerBase(LayerBase):
layer_type = 'conv' layer_type = 'conv'
......
...@@ -57,7 +57,6 @@ __all__ = [ ...@@ -57,7 +57,6 @@ __all__ = [
'classification_cost', 'classification_cost',
'LayerOutput', 'LayerOutput',
'img_conv_layer', 'img_conv_layer',
'img_depthwise_conv_layer',
'img_pool_layer', 'img_pool_layer',
'batch_norm_layer', 'batch_norm_layer',
'img_cmrnorm_layer', 'img_cmrnorm_layer',
...@@ -152,7 +151,6 @@ class LayerType(object): ...@@ -152,7 +151,6 @@ class LayerType(object):
HSIGMOID = 'hsigmoid' HSIGMOID = 'hsigmoid'
CONV_LAYER = 'conv' CONV_LAYER = 'conv'
CONVTRANS_LAYER = 'convt' CONVTRANS_LAYER = 'convt'
DEPTHWISE_CONV_LAYER = 'depthwise_conv'
EXCONV_LAYER = 'exconv' EXCONV_LAYER = 'exconv'
EXCONVTRANS_LAYER = 'exconvt' EXCONVTRANS_LAYER = 'exconvt'
CUDNNCONV_LAYER = 'cudnn_conv' CUDNNCONV_LAYER = 'cudnn_conv'
...@@ -2259,163 +2257,6 @@ def hsigmoid(input, ...@@ -2259,163 +2257,6 @@ def hsigmoid(input,
name, LayerType.HSIGMOID, parents=parents, size=l.config.size) name, LayerType.HSIGMOID, parents=parents, size=l.config.size)
@wrap_name_default("depthwise_conv")
@wrap_param_attr_default()
@wrap_bias_attr_default()
@wrap_act_default(act=ReluActivation())
@layer_support(DROPOUT)
def img_depthwise_conv_layer(input,
filter_size,
num_filters,
name=None,
num_channels=None,
act=None,
stride=1,
padding=0,
bias_attr=None,
param_attr=None,
shared_biases=True,
layer_attr=None,
filter_size_y=None,
stride_y=None,
padding_y=None,
trans=False,
layer_type=None):
"""
DepthwiseConvolution layer for image.
The details of depthwise convolution layer, please refer
https://arxiv.org/abs/1704.04861
The Depthwise Convolution layer must meet this requirement that the groups equals to the
inputChannels. And the groups must be divisible by outputChannels.
So the filter shape will be (groups, outputChannels/groups, 1, filter_size, filter_size_y)
The example usage is:
.. code-block:: python
conv = img_depthwise_conv_layer(input=data, filter_size=1, filter_size_y=1,
num_channels=8,
num_filters=16, stride=1,
bias_attr=False,
act=ReluActivation())
:param name: Layer name.
:type name: basestring
:param input: Layer Input.
:type input: LayerOutput
:param filter_size: The x dimension of a filter kernel. Or input a tuple for
two image dimension.
:type filter_size: int|tuple|list
:param filter_size_y: The y dimension of a filter kernel. Since PaddlePaddle
currently supports rectangular filters, the filter's
shape will be (filter_size, filter_size_y).
:type filter_size_y: int|None
:param num_filters: Each filter group's number of filter
:param act: Activation type. Default is tanh
:type act: BaseActivation
:param stride: The x dimension of the stride. Or input a tuple for two image
dimension.
:type stride: int|tuple|list
:param stride_y: The y dimension of the stride.
:type stride_y: int
:param padding: The x dimension of the padding. Or input a tuple for two
image dimension
:type padding: int|tuple|list
:param padding_y: The y dimension of the padding.
:type padding_y: int
:param bias_attr: DepthwiseConvolution bias attribute. None means default bias.
False means no bias.
:type bias_attr: ParameterAttribute|False
:param num_channels: number of input channels. If None will be set
automatically from previous output.
:type num_channels: int
:param param_attr: DepthwiseConvolution param attribute. None means default attribute
:type param_attr: ParameterAttribute
:param shared_biases: Is biases will be shared between filters or not.
:type shared_biases: bool
:param layer_attr: Layer Extra Attribute.
:type layer_attr: ExtraLayerAttribute
:param trans: true if it is a convTransLayer, false if it is a convLayer
:type trans: bool
:param layer_type: specify the layer_type, default is None. If trans=True,
layer_type has to be "exconvt" or "cudnn_convt",
otherwise layer_type has to be either "exconv" or
"cudnn_conv"
:type layer_type: String
:return: LayerOutput object.
:rtype: LayerOutput
"""
if num_channels is None:
assert input.num_filters is not None
num_channels = input.num_filters
# the groups in depthwise conv should be equal to input channels.
groups = num_channels
if filter_size_y is None:
if isinstance(filter_size, collections.Sequence):
assert len(filter_size) == 2
filter_size, filter_size_y = filter_size
else:
filter_size_y = filter_size
if stride_y is None:
if isinstance(stride, collections.Sequence):
assert len(stride) == 2
stride, stride_y = stride
else:
stride_y = stride
if padding_y is None:
if isinstance(padding, collections.Sequence):
assert len(padding) == 2
padding, padding_y = padding
else:
padding_y = padding
if param_attr.attr.get('initial_smart'):
# special initial for conv layers.
init_w = (2.0 / (filter_size**2 * num_channels))**0.5
param_attr.attr["initial_mean"] = 0.0
param_attr.attr["initial_std"] = init_w
param_attr.attr["initial_strategy"] = 0
param_attr.attr["initial_smart"] = False
lt = LayerType.DEPTHWISE_CONV_LAYER
l = Layer(
name=name,
inputs=Input(
input.name,
conv=Conv(
filter_size=filter_size,
padding=padding,
stride=stride,
channels=num_channels,
groups=groups,
filter_size_y=filter_size_y,
padding_y=padding_y,
stride_y=stride_y),
**param_attr.attr),
active_type=act.name,
num_filters=num_filters,
bias=ParamAttr.to_bias(bias_attr),
shared_biases=shared_biases,
type=lt,
**ExtraLayerAttribute.to_kwargs(layer_attr))
return LayerOutput(
name,
lt,
parents=[input],
activation=act,
num_filters=num_filters,
size=l.config.size)
@wrap_name_default("conv") @wrap_name_default("conv")
@wrap_param_attr_default() @wrap_param_attr_default()
@wrap_bias_attr_default() @wrap_bias_attr_default()
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册