Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
77f12e00
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
77f12e00
编写于
8月 15, 2018
作者:
M
minqiyang
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into port_pybind11
上级
1f86c88f
0a641ba3
变更
16
显示空白变更内容
内联
并排
Showing
16 changed file
with
442 addition
and
75 deletion
+442
-75
paddle/fluid/API.spec
paddle/fluid/API.spec
+5
-2
paddle/fluid/framework/op_desc.cc
paddle/fluid/framework/op_desc.cc
+14
-1
paddle/fluid/framework/op_desc.h
paddle/fluid/framework/op_desc.h
+3
-1
paddle/fluid/framework/program_desc.cc
paddle/fluid/framework/program_desc.cc
+1
-1
paddle/fluid/platform/profiler.cc
paddle/fluid/platform/profiler.cc
+12
-5
paddle/fluid/pybind/protobuf.cc
paddle/fluid/pybind/protobuf.cc
+2
-1
python/paddle/fluid/backward.py
python/paddle/fluid/backward.py
+2
-2
python/paddle/fluid/framework.py
python/paddle/fluid/framework.py
+97
-34
python/paddle/fluid/initializer.py
python/paddle/fluid/initializer.py
+2
-1
python/paddle/fluid/io.py
python/paddle/fluid/io.py
+6
-2
python/paddle/fluid/tests/unittests/test_desc_clone.py
python/paddle/fluid/tests/unittests/test_desc_clone.py
+196
-0
python/paddle/fluid/tests/unittests/test_dist_base.py
python/paddle/fluid/tests/unittests/test_dist_base.py
+56
-13
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
+1
-1
python/paddle/fluid/tests/unittests/test_program.py
python/paddle/fluid/tests/unittests/test_program.py
+34
-0
python/paddle/fluid/tests/unittests/test_protobuf_descs.py
python/paddle/fluid/tests/unittests/test_protobuf_descs.py
+1
-1
python/paddle/fluid/transpiler/distribute_transpiler.py
python/paddle/fluid/transpiler/distribute_transpiler.py
+10
-10
未找到文件。
paddle/fluid/API.spec
浏览文件 @
77f12e00
...
...
@@ -6,7 +6,7 @@ paddle.fluid.Program.create_block ArgSpec(args=['self', 'parent_idx'], varargs=N
paddle.fluid.Program.current_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.get_desc ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.global_block ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.inference_optimize ArgSpec(args=['self'
], varargs=None, keywords=None, defaults=None
)
paddle.fluid.Program.inference_optimize ArgSpec(args=['self'
, 'export_for_deployment'], varargs=None, keywords=None, defaults=(True,)
)
paddle.fluid.Program.list_vars ArgSpec(args=['self'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Program.optimized_guard ArgSpec(args=[], varargs='args', keywords='kwds', defaults=None)
paddle.fluid.Program.parse_from_string ArgSpec(args=['binary_str'], varargs=None, keywords=None, defaults=None)
...
...
@@ -18,6 +18,9 @@ paddle.fluid.Operator.all_attrs ArgSpec(args=['self'], varargs=None, keywords=No
paddle.fluid.Operator.attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.attr_type ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.block_attr_id ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.blocks_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.blocks_attr_ids ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_attr ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.has_kernel ArgSpec(args=['self', 'op_type'], varargs=None, keywords=None, defaults=None)
paddle.fluid.Operator.input ArgSpec(args=['self', 'name'], varargs=None, keywords=None, defaults=None)
...
...
@@ -74,7 +77,7 @@ paddle.fluid.io.save_persistables ArgSpec(args=['executor', 'dirname', 'main_pro
paddle.fluid.io.load_vars ArgSpec(args=['executor', 'dirname', 'main_program', 'vars', 'predicate', 'filename'], varargs=None, keywords=None, defaults=(None, None, None, None))
paddle.fluid.io.load_params ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.load_persistables ArgSpec(args=['executor', 'dirname', 'main_program', 'filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename'
], varargs=None, keywords=None, defaults=(None, None, Non
e))
paddle.fluid.io.save_inference_model ArgSpec(args=['dirname', 'feeded_var_names', 'target_vars', 'executor', 'main_program', 'model_filename', 'params_filename'
, 'export_for_deployment'], varargs=None, keywords=None, defaults=(None, None, None, Tru
e))
paddle.fluid.io.load_inference_model ArgSpec(args=['dirname', 'executor', 'model_filename', 'params_filename'], varargs=None, keywords=None, defaults=(None, None))
paddle.fluid.io.get_inference_program ArgSpec(args=['target_vars', 'main_program'], varargs=None, keywords=None, defaults=(None,))
paddle.fluid.initializer.ConstantInitializer.__init__ ArgSpec(args=['self', 'value', 'force_cpu'], varargs=None, keywords=None, defaults=(0.0, False))
...
...
paddle/fluid/framework/op_desc.cc
浏览文件 @
77f12e00
...
...
@@ -297,7 +297,20 @@ Attribute OpDesc::GetNullableAttr(const std::string &name) const {
}
}
int
OpDesc
::
GetBlockAttr
(
const
std
::
string
&
name
)
const
{
std
::
vector
<
int
>
OpDesc
::
GetBlocksAttrIds
(
const
std
::
string
&
name
)
const
{
auto
it
=
attrs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
attrs_
.
end
(),
"Attribute %s is not found"
,
name
);
auto
blocks
=
boost
::
get
<
std
::
vector
<
BlockDesc
*>>
(
it
->
second
);
std
::
vector
<
int
>
ids
;
for
(
auto
n
:
blocks
)
{
ids
.
push_back
(
n
->
ID
());
}
return
ids
;
}
int
OpDesc
::
GetBlockAttrId
(
const
std
::
string
&
name
)
const
{
auto
it
=
attrs_
.
find
(
name
);
PADDLE_ENFORCE
(
it
!=
attrs_
.
end
(),
"Attribute %s is not found"
,
name
);
return
boost
::
get
<
BlockDesc
*>
(
it
->
second
)
->
ID
();
...
...
paddle/fluid/framework/op_desc.h
浏览文件 @
77f12e00
...
...
@@ -85,7 +85,9 @@ class OpDesc {
Attribute
GetNullableAttr
(
const
std
::
string
&
name
)
const
;
int
GetBlockAttr
(
const
std
::
string
&
name
)
const
;
int
GetBlockAttrId
(
const
std
::
string
&
name
)
const
;
std
::
vector
<
int
>
GetBlocksAttrIds
(
const
std
::
string
&
name
)
const
;
void
Rename
(
const
std
::
string
&
old_name
,
const
std
::
string
&
new_name
);
...
...
paddle/fluid/framework/program_desc.cc
浏览文件 @
77f12e00
...
...
@@ -58,7 +58,7 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
for
(
const
std
::
string
&
attr_name
:
op
->
AttrNames
())
{
if
(
op
->
GetAttrType
(
attr_name
)
==
proto
::
AttrType
::
BLOCK
)
{
int
sub_block_id
=
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttr
(
attr_name
);
o
.
Block
(
block_id
).
Op
(
op_id
)
->
GetBlockAttr
Id
(
attr_name
);
op
->
SetBlockAttr
(
attr_name
,
MutableBlock
(
sub_block_id
));
}
}
...
...
paddle/fluid/platform/profiler.cc
浏览文件 @
77f12e00
...
...
@@ -270,12 +270,13 @@ struct EventItem {
double
min_time
;
double
max_time
;
double
ave_time
;
float
ratio
;
};
// Print results
void
PrintProfiler
(
const
std
::
vector
<
std
::
vector
<
EventItem
>>&
events_table
,
const
std
::
string
&
sorted_domain
,
const
size_t
name_width
,
const
size_t
data_width
)
{
const
size_t
data_width
,
double
total
)
{
// Output header information
std
::
cout
<<
"
\n
------------------------->"
<<
" Profiling Report "
...
...
@@ -300,7 +301,8 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
std
::
cout
<<
std
::
setw
(
name_width
)
<<
"Event"
<<
std
::
setw
(
data_width
)
<<
"Calls"
<<
std
::
setw
(
data_width
)
<<
"Total"
<<
std
::
setw
(
data_width
)
<<
"Min."
<<
std
::
setw
(
data_width
)
<<
"Max."
<<
std
::
setw
(
data_width
)
<<
"Ave."
<<
std
::
endl
;
<<
"Max."
<<
std
::
setw
(
data_width
)
<<
"Ave."
<<
std
::
setw
(
data_width
)
<<
"Ratio."
<<
std
::
endl
;
for
(
size_t
i
=
0
;
i
<
events_table
.
size
();
++
i
)
{
for
(
size_t
j
=
0
;
j
<
events_table
[
i
].
size
();
++
j
)
{
const
EventItem
&
event_item
=
events_table
[
i
][
j
];
...
...
@@ -309,7 +311,9 @@ void PrintProfiler(const std::vector<std::vector<EventItem>>& events_table,
<<
std
::
setw
(
data_width
)
<<
event_item
.
total_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
min_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
max_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
ave_time
<<
std
::
endl
;
<<
std
::
setw
(
data_width
)
<<
event_item
.
ave_time
<<
std
::
setw
(
data_width
)
<<
event_item
.
total_time
/
total
<<
std
::
endl
;
}
}
std
::
cout
<<
std
::
endl
;
...
...
@@ -359,6 +363,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
std
::
vector
<
std
::
vector
<
EventItem
>>
events_table
;
size_t
max_name_width
=
0
;
double
total
=
0.
;
// the total time
for
(
size_t
i
=
0
;
i
<
events
.
size
();
i
++
)
{
std
::
list
<
Event
>
pushed_events
;
std
::
vector
<
EventItem
>
event_items
;
...
...
@@ -379,6 +384,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
g_state
==
ProfilerState
::
kAll
)
?
rit
->
CudaElapsedMs
(
events
[
i
][
j
])
:
rit
->
CpuElapsedMs
(
events
[
i
][
j
]);
total
+=
event_time
;
std
::
string
event_name
=
"thread"
+
std
::
to_string
(
rit
->
thread_id
())
+
"::"
+
rit
->
name
();
...
...
@@ -387,7 +393,8 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
if
(
event_idx
.
find
(
event_name
)
==
event_idx
.
end
())
{
event_idx
[
event_name
]
=
event_items
.
size
();
EventItem
event_item
=
{
event_name
,
1
,
event_time
,
event_time
,
event_time
,
event_time
};
event_time
,
event_time
,
event_time
,
0.
};
event_items
.
push_back
(
event_item
);
}
else
{
int
index
=
event_idx
[
event_name
];
...
...
@@ -431,7 +438,7 @@ void ParseEvents(const std::vector<std::vector<Event>>& events,
}
// Print report
PrintProfiler
(
events_table
,
sorted_domain
,
max_name_width
+
4
,
12
);
PrintProfiler
(
events_table
,
sorted_domain
,
max_name_width
+
4
,
12
,
total
);
}
void
DisableProfiler
(
EventSortingKey
sorted_key
,
...
...
paddle/fluid/pybind/protobuf.cc
浏览文件 @
77f12e00
...
...
@@ -296,7 +296,8 @@ void BindOpDesc(pybind11::module *m) {
std
::
string
ser
(
seriralized
);
self
.
SetAttr
(
name
,
ser
);
})
.
def
(
"block_attr"
,
&
pd
::
OpDesc
::
GetBlockAttr
)
.
def
(
"block_attr_id"
,
&
pd
::
OpDesc
::
GetBlockAttrId
)
.
def
(
"blocks_attr_ids"
,
&
pd
::
OpDesc
::
GetBlocksAttrIds
)
.
def
(
"check_attrs"
,
&
pd
::
OpDesc
::
CheckAttrs
)
.
def
(
"infer_shape"
,
&
pd
::
OpDesc
::
InferShape
)
.
def
(
"infer_var_type"
,
&
pd
::
OpDesc
::
InferVarType
)
...
...
python/paddle/fluid/backward.py
浏览文件 @
77f12e00
...
...
@@ -344,7 +344,7 @@ def _append_backward_ops_(block,
grad_sub_block_list
=
[]
# If the op has its own sub-block, deal with the sub-block first
if
op
.
has_attr
(
"sub_block"
):
sub_block
=
program
.
block
(
op
.
block_attr
(
"sub_block"
))
sub_block
=
program
.
block
(
op
.
block_attr
_id
(
"sub_block"
))
grad_sub_block
=
program
.
create_block
()
grad_sub_block
.
_set_forward_block_idx
(
sub_block
.
idx
)
cb
=
_callback_lookup_
(
op
)
...
...
@@ -406,7 +406,7 @@ def _append_backward_vars_(block, start_op_idx, grad_to_var, grad_info_map):
for
op_idx
in
range
(
start_op_idx
,
block
.
desc
.
op_size
()):
op_desc
=
block
.
desc
.
op
(
op_idx
)
if
op_desc
.
has_attr
(
"sub_block"
):
sub_block
=
block
.
program
.
block
(
op_desc
.
block_attr
(
"sub_block"
))
sub_block
=
block
.
program
.
block
(
op_desc
.
block_attr
_id
(
"sub_block"
))
_append_backward_vars_
(
sub_block
,
0
,
grad_to_var
,
grad_info_map
)
new_vars
=
set
()
# create new gradient variables
...
...
python/paddle/fluid/framework.py
浏览文件 @
77f12e00
...
...
@@ -477,23 +477,25 @@ class Operator(object):
attrs
=
None
):
self
.
block
=
block
self
.
desc
=
desc
self
.
attrs
=
attrs
if
self
.
attrs
is
None
:
self
.
attrs
=
dict
()
# note: not add self.attrs here:
# https://github.com/PaddlePaddle/Paddle/pull/12583#pullrequestreview-145093173
op_attrs
=
attrs
if
op_attrs
is
None
:
op_attrs
=
dict
()
del
attrs
op_maker
=
core
.
op_proto_and_checker_maker
if
op_maker
.
kOpRoleAttrName
()
not
in
self
.
attrs
:
self
.
attrs
[
op_maker
.
kOpRoleAttrName
()]
=
self
.
block
.
program
.
op_role
if
op_maker
.
kOpRoleAttrName
()
not
in
op_
attrs
:
op_
attrs
[
op_maker
.
kOpRoleAttrName
()]
=
self
.
block
.
program
.
op_role
role_var_name
=
op_maker
.
kOpRoleVarAttrName
()
if
len
(
self
.
block
.
program
.
op_role_var
)
!=
0
and
role_var_name
not
in
self
.
attrs
:
self
.
attrs
[
role_var_name
]
=
self
.
block
.
program
.
op_role_var
op_role_var
)
!=
0
and
role_var_name
not
in
op_
attrs
:
op_
attrs
[
role_var_name
]
=
self
.
block
.
program
.
op_role_var
if
role_var_name
in
self
.
attrs
and
len
(
self
.
attrs
[
role_var_name
])
==
0
:
del
self
.
attrs
[
role_var_name
]
if
role_var_name
in
op_attrs
and
len
(
op_
attrs
[
role_var_name
])
==
0
:
del
op_
attrs
[
role_var_name
]
if
len
(
self
.
desc
.
type
())
!=
0
:
return
...
...
@@ -563,15 +565,14 @@ class Operator(object):
arg
.
op
=
self
self
.
desc
.
set_output
(
out_proto
.
name
,
out_arg_names
)
if
self
.
attrs
is
not
None
:
if
not
isinstance
(
self
.
attrs
,
dict
):
if
op_
attrs
is
not
None
:
if
not
isinstance
(
op_
attrs
,
dict
):
raise
TypeError
(
"'attrs' should be a dict."
)
for
attr
in
proto
.
attrs
:
attr_name
=
attr
.
name
if
(
attr_name
not
in
self
.
attrs
)
or
(
self
.
attrs
[
attr_name
]
is
None
):
if
(
attr_name
not
in
op_attrs
)
or
(
op_attrs
[
attr_name
]
is
None
):
continue
attr_val
=
self
.
attrs
[
attr_name
]
attr_val
=
op_
attrs
[
attr_name
]
self
.
_update_desc_attr
(
attr_name
,
attr_val
)
self
.
desc
.
check_attrs
()
...
...
@@ -719,7 +720,6 @@ class Operator(object):
Raises:
ValueError: If the type of value doesn't match with desc.attr_type(name).
"""
self
.
attrs
[
name
]
=
val
self
.
_update_desc_attr
(
name
,
val
)
def
_update_desc_attr
(
self
,
name
,
val
):
...
...
@@ -761,6 +761,18 @@ class Operator(object):
"""
return
self
.
desc
.
attr
(
name
)
def
block_attr_id
(
self
,
name
):
"""
Get the block attribute's id by name.
Args:
name(str): the attribute name.
Returns:
int: the block index.
"""
return
self
.
desc
.
block_attr_id
(
name
)
def
block_attr
(
self
,
name
):
"""
Get the block attribute by name.
...
...
@@ -769,24 +781,64 @@ class Operator(object):
name(str): the attribute name.
Returns:
int: the block index
.
block: the block attribute
.
"""
return
self
.
desc
.
block_attr
(
name
)
id
=
self
.
block_attr_id
(
name
)
assert
(
id
>=
0
and
id
<
len
(
self
.
block
.
program
.
blocks
))
return
self
.
block
.
program
.
blocks
[
id
]
def
blocks_attr
(
self
,
name
):
"""
Get the blocks attribute by name.
Args:
name(str): the attribute name.
Returns:
list: list of the blocks attribute.
"""
attrs
=
[]
for
i
in
self
.
blocks_attr_ids
(
name
):
assert
(
i
>=
0
and
i
<
len
(
self
.
block
.
program
.
blocks
))
attrs
.
append
(
self
.
block
.
program
.
blocks
[
i
])
return
attrs
def
blocks_attr_ids
(
self
,
name
):
"""
Get the blocks attribute's ids by name.
Args:
name(str): the attribute name.
Returns:
list: list of the blocks ids.
"""
return
self
.
desc
.
blocks_attr_ids
(
name
)
def
all_attrs
(
self
):
"""
Get the attribute dict.
Returns:
dict: The Operator's attribute dict.
dict: The Operator's attribute dict
, name->attr
.
"""
attr_names
=
self
.
attr_names
attr_map
=
{}
for
n
in
attr_names
:
if
n
==
'sub_block'
:
attr_type
=
self
.
desc
.
attr_type
(
n
)
if
attr_type
==
core
.
AttrType
.
BLOCK
:
attr_map
[
n
]
=
self
.
block_attr
(
n
)
else
:
continue
if
attr_type
==
core
.
AttrType
.
BLOCKS
:
attr_map
[
n
]
=
self
.
blocks_attr
(
n
)
continue
attr_map
[
n
]
=
self
.
attr
(
n
)
return
attr_map
...
...
@@ -1507,13 +1559,19 @@ class Program(object):
The two code snippets above will generate same programs.
"""
if
for_test
:
p
=
self
.
inference_optimize
()
p
=
self
.
inference_optimize
(
export_for_deployment
=
False
)
else
:
p
=
Program
()
p
.
current_block_idx
=
self
.
current_block_idx
p
.
_seed
=
self
.
_seed
p
.
desc
=
core
.
ProgramDesc
(
self
.
desc
)
p
.
blocks
=
[
Block
(
p
,
i
)
for
i
in
six
.
moves
.
range
(
self
.
desc
.
num_blocks
())
]
p
.
_current_role
=
self
.
_current_role
p
.
_op_role_var
=
self
.
_op_role_var
p
.
_sync_with_cpp
()
p
.
_copy_param_info_from
(
self
)
...
...
@@ -1571,7 +1629,7 @@ class Program(object):
res
.
_sync_with_cpp
()
return
res
def
inference_optimize
(
self
):
def
inference_optimize
(
self
,
export_for_deployment
=
True
):
"""
This method will create a new program and do following adjustments on it:
1. Remove all reader variables and their creator ops if exist.
...
...
@@ -1582,6 +1640,10 @@ class Program(object):
attribute of operators to :code:`True`. All the :code:`Parameter`
information will be lost.
Args:
export_for_deployment(bool): remove the read ops that are added by py_reader
for cpp inference library
Notes: This API is a very low level API. Use
:code:`Program.clone(for_test=True)` instead.
...
...
@@ -1596,6 +1658,7 @@ class Program(object):
# remove all readers and the read_op if exist
read_op_idx
=
0
root_block
=
res
.
desc
.
block
(
0
)
if
export_for_deployment
:
while
True
:
if
read_op_idx
>=
root_block
.
op_size
()
or
root_block
.
op
(
read_op_idx
).
type
()
==
'read'
:
...
...
python/paddle/fluid/initializer.py
浏览文件 @
77f12e00
...
...
@@ -264,7 +264,8 @@ class NormalInitializer(Initializer):
"dtype"
:
int
(
var
.
dtype
),
"mean"
:
self
.
_mean
,
"std"
:
self
.
_std_dev
,
"seed"
:
self
.
_seed
"seed"
:
self
.
_seed
,
"use_mkldnn"
:
False
})
var
.
op
=
op
return
op
...
...
python/paddle/fluid/io.py
浏览文件 @
77f12e00
...
...
@@ -555,7 +555,8 @@ def save_inference_model(dirname,
executor
,
main_program
=
None
,
model_filename
=
None
,
params_filename
=
None
):
params_filename
=
None
,
export_for_deployment
=
True
):
"""
Prune the given `main_program` to build a new program especially for inference,
and then save it and all related parameters to given `dirname` by the `executor`.
...
...
@@ -577,6 +578,8 @@ def save_inference_model(dirname,
params_filename(str|None): The name of file to save all related parameters.
If it is setted None, parameters will be saved
in separate files .
export_for_deployment(bool): remove the read ops that are added by py_reader
for cpp inference lib. Default True
Returns:
None
...
...
@@ -633,7 +636,8 @@ def save_inference_model(dirname,
copy_program
.
desc
.
flush
()
pruned_program
=
copy_program
.
prune
(
targets
=
target_vars
)
inference_program
=
pruned_program
.
inference_optimize
()
inference_program
=
pruned_program
.
inference_optimize
(
export_for_deployment
=
export_for_deployment
)
fetch_var_names
=
[
v
.
name
for
v
in
target_vars
]
prepend_feed_ops
(
inference_program
,
feeded_var_names
)
...
...
python/paddle/fluid/tests/unittests/test_desc_clone.py
0 → 100644
浏览文件 @
77f12e00
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
numpy
as
np
import
argparse
import
time
import
math
import
paddle
import
paddle.fluid
as
fluid
import
paddle.fluid.profiler
as
profiler
from
paddle.fluid
import
core
import
unittest
from
multiprocessing
import
Process
import
os
import
signal
import
collections
SEED
=
1
DTYPE
=
"float32"
paddle
.
dataset
.
mnist
.
fetch
()
# random seed must set before configuring the network.
# fluid.default_startup_program().random_seed = SEED
def
cnn_model
(
data
):
conv_pool_1
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
data
,
filter_size
=
5
,
num_filters
=
20
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
conv_pool_2
=
fluid
.
nets
.
simple_img_conv_pool
(
input
=
conv_pool_1
,
filter_size
=
5
,
num_filters
=
50
,
pool_size
=
2
,
pool_stride
=
2
,
act
=
"relu"
)
# TODO(dzhwinter) : refine the initializer and random seed settting
SIZE
=
10
input_shape
=
conv_pool_2
.
shape
param_shape
=
[
reduce
(
lambda
a
,
b
:
a
*
b
,
input_shape
[
1
:],
1
)]
+
[
SIZE
]
scale
=
(
2.0
/
(
param_shape
[
0
]
**
2
*
SIZE
))
**
0.5
predict
=
fluid
.
layers
.
fc
(
input
=
conv_pool_2
,
size
=
SIZE
,
act
=
"softmax"
,
param_attr
=
fluid
.
param_attr
.
ParamAttr
(
initializer
=
fluid
.
initializer
.
NormalInitializer
(
loc
=
0.0
,
scale
=
scale
)))
return
predict
def
get_model
(
batch_size
):
# Input data
images
=
fluid
.
layers
.
data
(
name
=
'pixel'
,
shape
=
[
1
,
28
,
28
],
dtype
=
DTYPE
)
label
=
fluid
.
layers
.
data
(
name
=
'label'
,
shape
=
[
1
],
dtype
=
'int64'
)
# Train program
predict
=
cnn_model
(
images
)
cost
=
fluid
.
layers
.
cross_entropy
(
input
=
predict
,
label
=
label
)
avg_cost
=
fluid
.
layers
.
mean
(
x
=
cost
)
# Evaluator
batch_size_tensor
=
fluid
.
layers
.
create_tensor
(
dtype
=
'int64'
)
batch_acc
=
fluid
.
layers
.
accuracy
(
input
=
predict
,
label
=
label
,
total
=
batch_size_tensor
)
inference_program
=
fluid
.
default_main_program
().
clone
()
# Optimization
opt
=
fluid
.
optimizer
.
AdamOptimizer
(
learning_rate
=
0.001
,
beta1
=
0.9
,
beta2
=
0.999
)
# Reader
train_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
train
(),
batch_size
=
batch_size
)
test_reader
=
paddle
.
batch
(
paddle
.
dataset
.
mnist
.
test
(),
batch_size
=
batch_size
)
opt
.
minimize
(
avg_cost
)
return
inference_program
,
avg_cost
,
train_reader
,
test_reader
,
batch_acc
,
predict
def
get_transpiler
(
trainer_id
,
main_program
,
pserver_endpoints
,
trainers
):
t
=
fluid
.
DistributeTranspiler
()
t
.
transpile
(
trainer_id
=
trainer_id
,
program
=
main_program
,
pservers
=
pserver_endpoints
,
trainers
=
trainers
)
return
t
def
operator_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
():
if
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
\
isinstance
(
v
,
fluid
.
framework
.
Block
):
continue
elif
isinstance
(
v
,
core
.
OpDesc
):
if
v
.
serialize_to_string
()
!=
b
.
__dict__
[
k
].
serialize_to_string
():
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
elif
isinstance
(
v
,
collections
.
OrderedDict
):
v0
=
sorted
(
v
.
iteritems
(),
key
=
lambda
x
:
x
[
0
])
v1
=
sorted
(
b
.
__dict__
[
k
].
iteritems
(),
key
=
lambda
x
:
x
[
0
])
if
v0
!=
v1
:
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
elif
(
v
!=
b
.
__dict__
[
k
]):
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
return
True
def
block_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
():
if
isinstance
(
v
,
core
.
ProgramDesc
)
or
isinstance
(
v
,
fluid
.
framework
.
Program
)
or
isinstance
(
v
,
core
.
BlockDesc
):
continue
elif
k
==
"ops"
:
for
i
in
range
(
0
,
len
(
a
.
ops
)):
if
not
operator_equal
(
a
.
ops
[
i
],
b
.
ops
[
i
]):
raise
ValueError
(
"In block_equal not equal:{0}
\n
"
.
format
(
k
))
assert
(
len
(
a
.
ops
)
==
len
(
b
.
ops
))
elif
isinstance
(
v
,
collections
.
OrderedDict
):
v0
=
sorted
(
v
.
iteritems
(),
key
=
lambda
x
:
x
[
0
])
v1
=
sorted
(
b
.
__dict__
[
k
].
iteritems
(),
key
=
lambda
x
:
x
[
0
])
if
v0
!=
v1
:
raise
ValueError
(
"In block_equal not equal:{0}
\n
"
.
format
(
k
))
elif
(
v
!=
b
.
__dict__
[
k
]):
raise
ValueError
(
"In block_equal not equal:{0}
\n
"
.
format
(
k
))
return
True
def
program_equal
(
a
,
b
):
for
k
,
v
in
a
.
__dict__
.
iteritems
():
if
isinstance
(
v
,
core
.
ProgramDesc
):
continue
elif
k
==
'blocks'
:
for
i
in
range
(
0
,
len
(
a
.
blocks
)):
if
not
block_equal
(
a
.
blocks
[
i
],
b
.
blocks
[
i
]):
raise
ValueError
(
"In operator_equal not equal:{0}
\n
"
.
format
(
k
))
return
False
assert
(
len
(
a
.
blocks
)
==
len
(
b
.
blocks
))
elif
(
v
!=
b
.
__dict__
[
k
]):
raise
ValueError
(
"In program_equal not equal:{0}
\n
"
.
format
(
k
))
return
True
class
TestDistMnist
(
unittest
.
TestCase
):
def
test_desc_clone
(
self
):
get_model
(
batch_size
=
20
)
pserver_endpoints
=
"127.0.0.1:9123"
trainers
=
1
current_endpoint
=
"127.0.0.1:9123"
t
=
get_transpiler
(
0
,
fluid
.
default_main_program
(),
pserver_endpoints
,
trainers
)
pserver_prog
=
t
.
get_pserver_program
(
current_endpoint
)
startup_prog
=
t
.
get_startup_program
(
current_endpoint
,
pserver_prog
)
main
=
pserver_prog
.
clone
()
startup
=
startup_prog
.
clone
()
self
.
assertTrue
(
program_equal
(
main
,
pserver_prog
))
self
.
assertTrue
(
program_equal
(
startup
,
startup_prog
))
if
__name__
==
"__main__"
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_dist_base.py
浏览文件 @
77f12e00
...
...
@@ -134,7 +134,7 @@ class TestDistBase(unittest.TestCase):
self
.
_ps_endpoints
=
"127.0.0.1:9123,127.0.0.1:9124"
self
.
_python_interp
=
"python"
def
start_pserver
(
self
,
model_file
):
def
start_pserver
(
self
,
model_file
,
check_error_log
):
ps0_ep
,
ps1_ep
=
self
.
_ps_endpoints
.
split
(
","
)
ps0_cmd
=
"%s %s pserver %s 0 %s %d TRUE"
%
\
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps0_ep
,
...
...
@@ -143,11 +143,23 @@ class TestDistBase(unittest.TestCase):
(
self
.
_python_interp
,
model_file
,
self
.
_ps_endpoints
,
ps1_ep
,
self
.
_trainers
)
ps0_pipe
=
subprocess
.
PIPE
ps1_pipe
=
subprocess
.
PIPE
if
check_error_log
:
print
(
"ps0_cmd:"
,
ps0_cmd
)
print
(
"ps1_cmd:"
,
ps1_cmd
)
ps0_pipe
=
open
(
"/tmp/ps0_err.log"
,
"wb"
)
ps1_pipe
=
open
(
"/tmp/ps1_err.log"
,
"wb"
)
ps0_proc
=
subprocess
.
Popen
(
ps0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
ps0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
ps0_pipe
)
ps1_proc
=
subprocess
.
Popen
(
ps1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
)
return
ps0_proc
,
ps1_proc
ps1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
ps1_pipe
)
if
not
check_error_log
:
return
ps0_proc
,
ps1_proc
,
None
,
None
else
:
return
ps0_proc
,
ps1_proc
,
ps0_pipe
,
ps1_pipe
def
_wait_ps_ready
(
self
,
pid
):
retry_times
=
50
...
...
@@ -164,7 +176,7 @@ class TestDistBase(unittest.TestCase):
(
e
,
retry_times
))
retry_times
-=
1
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
):
def
check_with_place
(
self
,
model_file
,
delta
=
1e-3
,
check_error_log
=
False
):
# *ATTENTION* THIS TEST NEEDS AT LEAST 2GPUS TO RUN
required_envs
=
{
"PATH"
:
os
.
getenv
(
"PATH"
),
...
...
@@ -173,17 +185,32 @@ class TestDistBase(unittest.TestCase):
"FLAGS_fraction_of_gpu_memory_to_use"
:
"0.15"
,
"FLAGS_cudnn_deterministic"
:
"1"
}
if
check_error_log
:
required_envs
[
"GLOG_v"
]
=
"7"
required_envs
[
"GLOG_logtostderr"
]
=
"1"
# Run local to get a base line
env_local
=
{
"CUDA_VISIBLE_DEVICES"
:
"0"
}
env_local
.
update
(
required_envs
)
local_cmd
=
"%s %s trainer %s 0 %s %d FLASE"
%
\
(
self
.
_python_interp
,
model_file
,
"127.0.0.1:1234"
,
"127.0.0.1:1234"
,
1
)
if
not
check_error_log
:
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
env
=
env_local
)
else
:
print
(
"trainer cmd:"
,
local_cmd
)
err_log
=
open
(
"/tmp/trainer.err.log"
,
"wb"
)
local_proc
=
subprocess
.
Popen
(
local_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
err_log
,
env
=
env_local
)
local_proc
.
wait
()
out
,
err
=
local_proc
.
communicate
()
local_ret
=
cpt
.
to_text
(
out
)
...
...
@@ -191,7 +218,8 @@ class TestDistBase(unittest.TestCase):
sys
.
stderr
.
write
(
'local_stderr: %s
\n
'
%
err
)
# Run dist train to compare with local results
ps0
,
ps1
=
self
.
start_pserver
(
model_file
)
ps0
,
ps1
,
ps0_pipe
,
ps1_pipe
=
self
.
start_pserver
(
model_file
,
check_error_log
)
self
.
_wait_ps_ready
(
ps0
.
pid
)
self
.
_wait_ps_ready
(
ps1
.
pid
)
...
...
@@ -209,15 +237,23 @@ class TestDistBase(unittest.TestCase):
env1
.
update
(
required_envs
)
FNULL
=
open
(
os
.
devnull
,
'w'
)
tr0_pipe
=
subprocess
.
PIPE
tr1_pipe
=
subprocess
.
PIPE
if
check_error_log
:
print
(
"tr0_cmd:"
,
tr0_cmd
)
print
(
"tr1_cmd:"
,
tr1_cmd
)
tr0_pipe
=
open
(
"/tmp/tr0_err.log"
,
"wb"
)
tr1_pipe
=
open
(
"/tmp/tr1_err.log"
,
"wb"
)
tr0_proc
=
subprocess
.
Popen
(
tr0_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
stderr
=
tr0_pipe
,
env
=
env0
)
tr1_proc
=
subprocess
.
Popen
(
tr1_cmd
.
split
(
" "
),
stdout
=
subprocess
.
PIPE
,
stderr
=
subprocess
.
PIPE
,
stderr
=
tr1_pipe
,
env
=
env1
)
tr0_proc
.
wait
()
...
...
@@ -234,6 +270,13 @@ class TestDistBase(unittest.TestCase):
local_first_loss
=
eval
(
local_lines
[
0
])[
0
]
local_last_loss
=
eval
(
local_lines
[
1
])[
0
]
# close trainer file
if
check_error_log
:
tr0_pipe
.
close
()
tr1_pipe
.
close
()
ps0_pipe
.
close
()
ps1_pipe
.
close
()
# FIXME: use terminate() instead of sigkill.
os
.
kill
(
ps0
.
pid
,
signal
.
SIGKILL
)
os
.
kill
(
ps1
.
pid
,
signal
.
SIGKILL
)
...
...
python/paddle/fluid/tests/unittests/test_dist_transpiler.py
浏览文件 @
77f12e00
...
...
@@ -260,7 +260,7 @@ class TestLRDecayConditional(TranspilerTest):
serv_op
=
pserver
.
blocks
[
0
].
ops
[
0
]
sub_blocks
=
[]
optimize_blocks
=
[]
for
b
in
serv_op
.
a
ttrs
[
"optimize_blocks"
]:
for
b
in
serv_op
.
a
ll_attrs
()
[
"optimize_blocks"
]:
optimize_blocks
.
append
(
b
.
idx
)
for
b
in
pserver
.
blocks
:
if
b
.
idx
not
in
optimize_blocks
:
...
...
python/paddle/fluid/tests/unittests/test_program.py
浏览文件 @
77f12e00
...
...
@@ -17,6 +17,7 @@ import unittest
from
paddle.fluid.framework
import
Program
,
default_main_program
,
program_guard
,
grad_var_name
import
paddle.fluid.layers
as
layers
import
paddle.fluid
as
fluid
main_program
=
default_main_program
()
...
...
@@ -98,6 +99,39 @@ class TestProgram(unittest.TestCase):
new_program
=
main_program
.
clone
()
self
.
assertNotEqual
(
0
,
len
(
new_program
.
blocks
[
0
].
all_parameters
()))
def
test_program_inference_optimize
(
self
):
def
net
():
reader
=
fluid
.
layers
.
py_reader
(
capacity
=
10
,
shapes
=
[[
-
1
,
10
],
[
-
1
,
1
]],
lod_levels
=
[
0
,
0
],
dtypes
=
[
'float32'
,
'int64'
],
use_double_buffer
=
True
)
in_data
,
label
=
fluid
.
layers
.
read_file
(
reader
)
predict_label
=
fluid
.
layers
.
fc
(
in_data
,
size
=
2
,
act
=
'softmax'
)
loss
=
fluid
.
layers
.
mean
(
fluid
.
layers
.
cross_entropy
(
input
=
predict_label
,
label
=
label
))
optimizer
=
fluid
.
optimizer
.
Adam
()
optimizer
.
minimize
(
loss
)
startup_program
=
fluid
.
Program
()
main_program
=
fluid
.
Program
()
with
fluid
.
program_guard
(
main_program
,
startup_program
):
net
()
no_read_program
=
main_program
.
inference_optimize
()
keep_read_program
=
main_program
.
inference_optimize
(
export_for_deployment
=
False
)
no_read_ops
=
no_read_program
.
global_block
().
ops
keep_read_ops
=
keep_read_program
.
global_block
().
ops
self
.
assertEqual
(
len
(
keep_read_ops
)
-
len
(
no_read_ops
),
2
)
self
.
assertEqual
(
keep_read_ops
[
0
].
type
,
'create_double_buffer_reader'
)
self
.
assertEqual
(
keep_read_ops
[
1
].
type
,
'read'
)
for
i
in
range
(
len
(
no_read_ops
)):
self
.
assertEqual
(
no_read_ops
[
i
].
type
,
keep_read_ops
[
i
+
2
].
type
)
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/fluid/tests/unittests/test_protobuf_descs.py
浏览文件 @
77f12e00
...
...
@@ -69,7 +69,7 @@ class TestOpDesc(unittest.TestCase):
self
.
assertEqual
(
8
,
len
(
op
.
attr_names
()))
op
.
set_block_attr
(
"block_attr"
,
program_desc
.
block
(
0
))
self
.
assertEqual
(
0
,
op
.
block_attr
(
"block_attr"
))
self
.
assertEqual
(
0
,
op
.
block_attr
_id
(
"block_attr"
))
mul_op
=
block
.
append_op
()
mul_op
.
set_type
(
"mul"
)
...
...
python/paddle/fluid/transpiler/distribute_transpiler.py
浏览文件 @
77f12e00
...
...
@@ -586,12 +586,12 @@ class DistributeTranspiler(object):
if
op
.
type
in
[
"gaussian_random"
,
"fill_constant"
,
"uniform_random"
]:
op
.
attrs
[
"shape"
]
=
new_outputs
[
"Out"
].
shape
op
.
set_attr
(
"shape"
,
list
(
new_outputs
[
"Out"
].
shape
))
s_prog
.
global_block
().
append_op
(
type
=
op
.
type
,
inputs
=
new_inputs
,
outputs
=
new_outputs
,
attrs
=
op
.
a
ttrs
)
attrs
=
op
.
a
ll_attrs
()
)
return
s_prog
# ====================== private transpiler functions =====================
...
...
@@ -605,7 +605,7 @@ class DistributeTranspiler(object):
self
.
table_name
=
None
for
op
in
self
.
origin_program
.
global_block
().
ops
:
if
op
.
type
==
LOOKUP_TABLE_TYPE
:
if
op
.
attr
s
[
'is_distributed'
]
is
True
:
if
op
.
attr
(
'is_distributed'
)
is
True
:
if
self
.
table_name
is
None
:
self
.
table_name
=
op
.
input
(
"W"
)[
0
]
if
self
.
table_name
!=
op
.
input
(
"W"
)[
0
]:
...
...
@@ -1265,7 +1265,7 @@ class DistributeTranspiler(object):
type
=
opt_op
.
type
,
inputs
=
new_inputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
a
ttrs
)
attrs
=
opt_op
.
a
ll_attrs
()
)
def
_is_splited_grad_var
(
self
,
var
,
var_dict
):
grad_block
=
None
...
...
@@ -1296,7 +1296,7 @@ class DistributeTranspiler(object):
block
.
_clone_variable
(
var
)
return
block
.
append_op
(
type
=
op
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
op
.
a
ttrs
)
type
=
op
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
op
.
a
ll_attrs
()
)
def
_append_pserver_non_opt_ops
(
self
,
optimize_block
,
opt_op
):
program
=
optimize_block
.
program
...
...
@@ -1337,7 +1337,7 @@ class DistributeTranspiler(object):
type
=
opt_op
.
type
,
inputs
=
inputs
,
outputs
=
outputs
,
attrs
=
opt_op
.
a
ttrs
)
attrs
=
opt_op
.
a
ll_attrs
()
)
def
_is_op_connected
(
self
,
op1
,
op2
):
# If one op's input is another op's output or
...
...
@@ -1442,8 +1442,8 @@ class DistributeTranspiler(object):
# optimize
op_maker
=
core
.
op_proto_and_checker_maker
optimize_role
=
core
.
op_proto_and_checker_maker
.
OpRole
.
Optimize
if
op_maker
.
kOpRoleAttrName
()
in
op
.
attrs
and
\
int
(
op
.
attrs
[
op_maker
.
kOpRoleAttrName
()])
==
int
(
optimize_role
):
if
op_maker
.
kOpRoleAttrName
()
in
op
.
attr
_name
s
and
\
int
(
op
.
all_attrs
()
[
op_maker
.
kOpRoleAttrName
()])
==
int
(
optimize_role
):
return
True
return
False
...
...
@@ -1466,8 +1466,8 @@ class DistributeTranspiler(object):
# and op_role_var to get the pair.
for
input_name
in
op
.
input_arg_names
:
if
input_name
.
find
(
"@GRAD"
)
!=
-
1
and
\
op
.
attr
s
[
RPC_OP_ROLE_ATTR_NAME
]
:
param_name
=
op
.
attr
s
[
OP_ROLE_VAR_ATTR_NAME
]
[
0
]
op
.
attr
(
RPC_OP_ROLE_ATTR_NAME
)
:
param_name
=
op
.
attr
(
OP_ROLE_VAR_ATTR_NAME
)
[
0
]
params_grads
.
append
([
origin_var_dict
[
param_name
],
origin_var_dict
[
input_name
]
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录