提交 77236e33 编写于 作者: T tensor-tang

init jitkernel

上级 439af8d5
...@@ -16,6 +16,7 @@ add_subdirectory(metrics) ...@@ -16,6 +16,7 @@ add_subdirectory(metrics)
add_subdirectory(optimizers) add_subdirectory(optimizers)
add_subdirectory(reduce_ops) add_subdirectory(reduce_ops)
add_subdirectory(sequence_ops) add_subdirectory(sequence_ops)
add_subdirectory(jitkernels)
if(WITH_DISTRIBUTE) if(WITH_DISTRIBUTE)
add_subdirectory(distributed) add_subdirectory(distributed)
......
set(JIT_KERNEL_DEPS cpu_info cblas gflags enforce place)
cc_library(jit_kernel_base SRCS kernels.cc DEPS ${JIT_KERNEL_DEPS})
add_subdirectory(more)
add_subdirectory(refer)
if(WITH_XBYAK)
add_subdirectory(jitcode)
endif()
# Debug
message(STATUS "--------${JIT_KERNEL_DEPS}")
cc_library(jit_kernel SRCS kernels.cc DEPS ${JIT_KERNEL_DEPS})
cc_test(jit_kernel_test SRCS test.cc DEPS jit_kernel)
cc_library(jit_kernel_jitcode SRCS jitcode.cc DEPS jit_kernel_base xbyak)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} xbyak jit_kernel_jitcode PARENT_SCOPE)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jitkernels/jitcode/jitcode.h"
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <type_traits>
#include "paddle/fluid/operators/jitkernels/kernels.h"
#define XBYAK_USE_MMAP_ALLOCATOR
#include "xbyak/xbyak.h"
#include "xbyak/xbyak_util.h"
namespace paddle {
namespace operators {
namespace jitkernels {
namespace jitcode {
// Application Binary Interface
constexpr Xbyak::Operand::Code abi_param1(Xbyak::Operand::RDI),
abi_param2(Xbyak::Operand::RSI), abi_param3(Xbyak::Operand::RDX),
abi_param4(Xbyak::Operand::RCX), abi_not_param1(Xbyak::Operand::RCX);
template <KernelType KT, typename Attr>
class JitCode : public JitBase, public Xbyak::CodeGenerator {
public:
JitCode(Attr attr, size_t code_size, void* code_ptr = nullptr)
: Xbyak::CodeGenerator(code_size, code_ptr) {
this->genCode();
}
virtual const char* name() const = 0;
virtual void genCode() = 0;
const unsigned char* getCodeInternal() override {
const Xbyak::uint8* code = CodeGenerator::getCode();
return code;
}
};
} // namespace jitcode
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jitkernels/jitcode_base.h"
DEFINE_bool(dump_jitcode, false, "Whether to dump the jitcode to file");
namespace paddle {
namespace operators {
namespace jitkernels {
// refer do not need useme, it would be the last one.
void JitBase::dumpCode(const unsigned char* code) const {
if (code) {
static int counter = 0;
std::ostringstream filename;
filename << "paddle_jitcode_" << name() << "." << counter << ".bin";
counter++;
std::ofstream fout(filename.str(), std::ios::out);
if (fout.is_open()) {
fout.write(reinterpret_cast<const char*>(code), getSize());
fout.close();
}
}
}
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <gflags/gflags.h>
#include "paddle/fluid/operators/jitkernels/kernel_base.h"
#include "paddle/fluid/platform/macros.h"
DECLARE_bool(dump_jitcode);
namespace paddle {
namespace operators {
namespace jitkernels {
// TODO(TJ): make these functions as virtual of a class
// Every JitCode should estimate the code size itself
template <KernelType KT, typename Attr>
size_t CodeSize(Attr attr) {
return 4096;
}
// Every JitCode should have a condition when to use this JitCode
template <KernelType KT, typename T, typename Attr>
bool UseJitCode(Attr attr) {
return false;
}
// Every JitCode should have a method to get the key from attribution
template <typename Attr>
size_t GetKey(Attr attr);
template <>
size_t GetKey<int>(int d) {
return d;
}
class JitBase {
public:
JitBase() = default;
virtual ~JitBase() = default;
virtual const char* name() const = 0;
virtual const unsigned char* getCodeInternal() = 0;
template <typename FUNC>
const FUNC getCode() {
const unsigned char* code = this->getCodeInternal();
if (FLAGS_dump_jitcode) {
this->dumpCode(code);
}
return reinterpret_cast<const FUNC>(code);
}
DISABLE_COPY_AND_ASSIGN(JitBase);
protected:
void dumpCode(const unsigned char* code);
};
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include "paddle/fluid/platform/macros.h"
namespace paddle {
namespace operators {
namespace jitkernels {
typedef enum { vmul = 0, vadd = 1, vsub, vexp } KernelType;
// Just for adding to kernel pool without template
class Kernel {
public:
Kernel() = default;
DISABLE_COPY_AND_ASSIGN(Kernel);
};
template <typename T, typename Func, typename Attr> // TODO(TJ): use tuple
class KernelImpl : public Kernel {
public:
using ELEMENT_TYPE = T; // TODO(TJ): remove me?
KernelImpl() = default;
virtual ~KernelImpl() = default;
virtual Func GetFunc() { return func; }
virtual bool UseMe(Attr attr) const = 0;
protected:
Func func{nullptr};
};
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include "paddle/fluid/operators/jitkernels/kernel_base.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace operators {
namespace jitkernels {
struct KernelKey {
struct Hash {
size_t operator()(const KernelKey& key) const {
int place = key.place_.which(); // less than 2^8
int type = static_cast<int>(key.type_) << 8; // less than 2^(32-8)
std::hash<int> hasher;
return hasher(place + type);
}
};
KernelType type_;
platform::Place place_;
KernelKey(KernelType type, platform::Place place)
: type_(type), place_(place) {}
size_t hash_key() const { return Hash()(*this); }
bool operator==(const KernelKey& o) const {
return platform::places_are_same_class(place_, o.place_) &&
type_ == o.type_;
}
bool operator!=(const KernelKey& o) const { return !(*this == o); }
};
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jitkernels/kernels.h"
#include <memory> // for shared_ptr
#include <string>
#include <unordered_map>
namespace paddle {
namespace operators {
namespace jitkernels {
// refer do not need useme, it would be the last one.
KernelPool& KernelPool::Instance() {
static KernelPool g_kernel_pool;
return g_kernel_pool;
}
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <memory> // for shared_ptr
#include <string>
#include <unordered_map>
#include <vector>
#include "paddle/fluid/operators/jitkernels/jitcode_base.h"
#include "paddle/fluid/operators/jitkernels/kernel_base.h"
#include "paddle/fluid/operators/jitkernels/kernel_key.h"
#ifdef PADDLE_WITH_XBYAK
#include "paddle/fluid/operators/jitkernels/jitcode/jitcode.h"
#endif
namespace paddle {
namespace operators {
namespace jitkernels {
template <KernelType KT>
class JitCodePool {
public:
static JitCodePool& Instance() {
static thread_local JitCodePool<KT> g_jit_codes;
return g_jit_codes;
}
std::shared_ptr<const JitBase> Get(size_t key) const {
if (codes_.find(key) == codes_.end()) {
return nullptr;
}
return codes_.at(key);
}
void Insert(size_t key, const std::shared_ptr<const JitBase>& value) {
codes_.insert({key, value});
}
private:
JitCodePool() = default;
std::unordered_map<size_t, std::shared_ptr<const JitBase>> codes_;
DISABLE_COPY_AND_ASSIGN(JitCodePool);
};
// std::tuple<T, Func, Attr>
template <typename T, typename Func, typename Attr>
struct KernelAttr {
typedef T data_type;
typedef Func return_type;
typedef Attr attr_type;
};
class KernelPool {
public:
static KernelPool& Instance();
typedef std::unique_ptr<const Kernel> KernelPtr;
typedef std::unordered_map<KernelKey, std::vector<KernelPtr>, KernelKey::Hash>
KernelMap;
KernelMap& AllKernels() { return pool_; }
void Insert(const KernelKey& key, KernelPtr value) {
if (pool_.find(key) == pool_.end()) {
pool_.emplace(key, std::vector<KernelPtr>());
}
pool_.at(key).emplace_back(std::move(value));
}
KernelPool() = default;
private:
KernelMap pool_;
DISABLE_COPY_AND_ASSIGN(KernelPool);
};
// TODO(TJ): create_jitcode;
// TODO(TJ): make tuple? named KernelAttr
template <KernelType KT, typename T, typename Func, typename Attr,
typename PlaceType = platform::CPUPlace>
Func Get(Attr attr) {
size_t key = GetKey<Attr>(attr);
auto jitcode = JitCodePool<KT>().Instance().Get(key);
if (jitcode) {
return jitcode->template getCode<Func>();
}
#ifdef PADDLE_WITH_XBYAK
// // jitcode::JitCode is under protection of PADDLE_WITH_XBYAK
// if (std::is_same<PlaceType, platform::CPUPlace>::value) {
// if (UseJitCode<KT, T, Attr>(attr)) {
// std::shared_ptr<JitBase> p(std::make_shared<jitcode::JitCode<KT, Attr>>(
// attr, CodeSize<KT, Attr>(attr)));
// JitCodePool<KT>().Instance().Insert(key, p);
// return p->getCode<Func>();
// }
// }
#endif
// (KernelKey(type, place), vector<Kernel>)
auto& pool = KernelPool().Instance().AllKernels();
KernelKey kkey(KT, PlaceType());
auto iter = pool.find(kkey);
if (iter != pool.end()) {
auto impls = iter->second;
for (auto impl : impls) {
auto i = std::dynamic_pointer_cast<KernelImpl<T, Func, Attr>>(impl.get());
if (i && i->UseMe(attr)) {
return i->GetFunc();
}
}
}
// The last implementation should be reference function on CPU
// Every kernel should have refer code.
// because of test refer should have it's own pool
// PADDLE_ENFORCE_GT(list.size(), 1) << "Should have refer implemtation";
// const auto& refer = KernelRefer<KT, T>().AllKernels();
// return refer.Get<Func>();
return nullptr;
}
} // namespace jitkernels
} // namespace operators
} // namespace paddle
if(WITH_MKLML)
add_subdirectory(mkl)
endif()
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} PARENT_SCOPE)
cc_library(jit_kernel_mkl SRCS mkl.cc DEPS jit_kernel_base dynload_mklml)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} dynload_mklml jit_kernel_mkl PARENT_SCOPE)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jitkernels/more/mkl/mkl.h"
#include "paddle/fluid/operators/jitkernels/registry.h"
#include "paddle/fluid/platform/dynload/mklml.h"
namespace paddle {
namespace operators {
namespace jitkernels {
namespace more {
namespace mkl {
template <>
void VMul<float>(const float* x, const float* y, float* z, int n) {
platform::dynload::vsMul(n, x, y, z);
}
template <>
void VMul<double>(const double* x, const double* y, double* z, int n) {
platform::dynload::vdMul(n, x, y, z);
}
} // namespace mkl
} // namespace more
} // namespace jitkernels
} // namespace operators
} // namespace paddle
namespace mkl = paddle::operators::jitkernels::more::mkl;
REGISTER_JITKERNEL_MORE(vmul, mkl, mkl::VMulKernel<float>,
mkl::VMulKernel<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <type_traits>
#include "paddle/fluid/operators/jitkernels/kernel_base.h"
#include "paddle/fluid/platform/cpu_info.h"
namespace paddle {
namespace operators {
namespace jitkernels {
namespace more {
namespace mkl {
template <typename T>
void VMul(const T* x, const T* y, T* z, int n);
// template <typename T>
// struct VMulTypes{
// typedef T date_type;
// typedef void (*func)(const T*, const T*, T*, int) func_type;
// typedef int attr_type;
// };
template <typename T>
class VMulKernel
: public KernelImpl<T, void (*)(const T*, const T*, T*, int), int> {
public:
VMulKernel() { this->func = VMul<T>; }
bool UseMe(int d) const override {
if (std::is_same<T, float>::value) {
return platform::jit::MayIUse(platform::jit::avx512f) && d > 512;
} else {
return true;
}
}
};
} // namespace mkl
} // namespace more
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
cc_library(jit_kernel_refer SRCS refer.cc DEPS jit_kernel_base)
set(JIT_KERNEL_DEPS ${JIT_KERNEL_DEPS} jit_kernel_refer PARENT_SCOPE)
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include "paddle/fluid/operators/jitkernels/refer/refer.h"
#include "paddle/fluid/operators/jitkernels/registry.h"
namespace refer = paddle::operators::jitkernels::refer;
// REGISTER_JITKERNEL_REFER(vmul, refer::VMul<float>, refer::VMul<double>);
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include "paddle/fluid/platform/enforce.h"
namespace paddle {
namespace operators {
namespace jitkernels {
namespace refer {
template <typename T>
void VMul(const T* x, const T* y, T* z, int n) {
for (int i = 0; i < n; ++i) {
z[i] = x[i] * y[i];
}
}
} // namespace refer
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#pragma once
#include <memory>
#include <tuple>
#include <type_traits>
#include "paddle/fluid/operators/jitkernels/kernel_base.h"
#include "paddle/fluid/operators/jitkernels/kernels.h"
#include "paddle/fluid/platform/place.h"
namespace paddle {
namespace operators {
namespace jitkernels {
// make_unique is supported from c++14
template <typename T, typename... Args>
inline std::unique_ptr<T> make_unique(Args&&... args) {
static_assert(!std::is_array<T>::value, "T must not be array");
return std::unique_ptr<T>(new T(std::forward<Args>(args)...));
}
template <typename PlaceType, bool IsEnd, size_t I, typename... KernelImpls>
struct JitKernelRegistrarFunctor;
template <typename PlaceType, size_t I, typename... KernelImpls>
struct JitKernelRegistrarFunctor<PlaceType, true, I, KernelImpls...> {
void operator()(KernelType kt) const {}
};
template <typename PlaceType, size_t I, typename... KernelImpls>
struct JitKernelRegistrarFunctor<PlaceType, false, I, KernelImpls...> {
using KERNEL_IMPL_TYPE =
typename std::tuple_element<I, std::tuple<KernelImpls...>>::type;
void operator()(KernelType kt) const {
KernelKey kkey(kt, PlaceType());
KernelPool().Instance().Insert(
kkey, std::move(make_unique<const KERNEL_IMPL_TYPE>()));
constexpr auto size = std::tuple_size<std::tuple<KernelImpls...>>::value;
JitKernelRegistrarFunctor<PlaceType, I + 1 == size, I + 1, KernelImpls...>
func;
func(kt);
}
};
template <typename PlaceType, typename... KernelImpls>
class JitKernelRegistrar {
public:
explicit JitKernelRegistrar(KernelType kt) {
JitKernelRegistrarFunctor<PlaceType, false, 0, KernelImpls...> func;
func(kt);
}
};
#define STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE(uniq_name, msg) \
struct __test_global_namespace_##uniq_name##__ {}; \
static_assert(std::is_same<::__test_global_namespace_##uniq_name##__, \
__test_global_namespace_##uniq_name##__>::value, \
msg)
// kernel_type: should be in paddle::operators::jitkernels::KernelType
// place_type: should be one of CPUPlace and GPUPlace in paddle::platform
#define REGISTER_KERNEL_MORE(kernel_type, impl_type, place_type, ...) \
STATIC_ASSERT_JITKERNEL_GLOBAL_NAMESPACE( \
__reg_jitkernel_##kernel_type##_##impl_type##_##place_type, \
"REGISTER_KERNEL_MORE must be called in global namespace"); \
static ::paddle::operators::jitkernels::JitKernelRegistrar< \
::paddle::platform::place_type, __VA_ARGS__> \
__jit_kernel_registrar_##kernel_type##_##impl_type##_##place_type##__( \
::paddle::operators::jitkernels::KernelType::kernel_type)
// TODO(TJ): Add Touch and use me
#define REGISTER_JITKERNEL_MORE(kernel_type, impl_type, ...) \
REGISTER_KERNEL_MORE(kernel_type, impl_type, CPUPlace, __VA_ARGS__)
#define REGISTER_GPUKERNEL_MORE(kernel_type, impl_type, ...) \
REGISTER_KERNEL_MORE(kernel_type, impl_type, GPUPlace, __VA_ARGS__)
/*
REGISTER_JITKERNEL_JITCODE(vmul, JitKernelCode<vmul, int>);
// refer must be only one and at least one
REGISTER_JITKERNEL_REFER(vmul, VMul); // Refer need support dtype
// you can register more implementations and the condition when use it
REGISTER_JITKERNEL_MORE(vmul, mkl::VMUL<float>, UseMe<float>, mkl::VMUL<double>,
UseMe<double>)
#define STATIC_ASSERT_PASS_GLOBAL_NAMESPACE(uniq_name, msg) \
struct __test_global_namespace_##uniq_name##__ {}; \
static_assert(std::is_same<::__test_global_namespace_##uniq_name##__, \
__test_global_namespace_##uniq_name##__>::value, \
msg)
// Register a new pass that can be applied on the IR.
#define REGISTER_PASS(pass_type, pass_class) \
STATIC_ASSERT_PASS_GLOBAL_NAMESPACE( \
__reg_pass__##pass_type, \
"REGISTER_PASS must be called in global namespace"); \
static ::paddle::framework::ir::PassRegistrar<pass_class> \
__pass_registrar_##pass_type##__(#pass_type); \
int TouchPassRegistrar_##pass_type() { \
__pass_registrar_##pass_type##__.Touch(); \
return 0; \
} \
static ::paddle::framework::ir::PassRegistrar<pass_class>& \
__pass_tmp_registrar_##pass_type##__ UNUSED = \
__pass_registrar_##pass_type##__
#define USE_PASS(pass_type) \
STATIC_ASSERT_PASS_GLOBAL_NAMESPACE( \
__use_pass_itself_##pass_type, \
"USE_PASS must be called in global namespace"); \
extern int TouchPassRegistrar_##pass_type(); \
static int use_pass_itself_##pass_type##_ UNUSED = \
TouchPassRegistrar_##pass_type()
*/
} // namespace jitkernels
} // namespace operators
} // namespace paddle
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License. */
#include <cstring> // for memcpy
#include <random>
#include <string>
#include <vector>
#include "gflags/gflags.h"
#include "glog/logging.h"
#include "gtest/gtest.h"
#include "paddle/fluid/operators/math/jit_kernel.h"
#include "paddle/fluid/operators/math/jit_kernel_refer.h"
#include "paddle/fluid/platform/port.h"
constexpr int repeat = 20000;
inline double GetCurrentUS() {
struct timeval time;
gettimeofday(&time, NULL);
return 1e+6 * time.tv_sec + time.tv_usec;
}
TEST(JitKernel, vmul) {}
TEST(JitKernel, pool) {}
...@@ -73,11 +73,11 @@ endif() ...@@ -73,11 +73,11 @@ endif()
cc_test(concat_test SRCS concat_test.cc DEPS concat_and_split) cc_test(concat_test SRCS concat_test.cc DEPS concat_and_split)
cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info) cc_test(cpu_vec_test SRCS cpu_vec_test.cc DEPS blas cpu_info)
set(JIT_KERNEL_SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc jit_kernel_layer_norm.cc) # set(JIT_KERNEL_SRCS jit_kernel.cc jit_kernel_blas.cc jit_kernel_exp.cc jit_kernel_rnn.cc jit_kernel_crf_decode.cc jit_kernel_layer_norm.cc)
set(JIT_KERNEL_DEPS cpu_info cblas gflags enforce) # set(JIT_KERNEL_DEPS cpu_info cblas gflags enforce)
if(WITH_XBYAK) # if(WITH_XBYAK)
list(APPEND JIT_KERNEL_SRCS jit_gen.cc jit_code.cc) # list(APPEND JIT_KERNEL_SRCS jit_gen.cc jit_code.cc)
list(APPEND JIT_KERNEL_DEPS xbyak) # list(APPEND JIT_KERNEL_DEPS xbyak)
endif() # endif()
cc_library(jit_kernel SRCS ${JIT_KERNEL_SRCS} DEPS ${JIT_KERNEL_DEPS}) # cc_library(jit_kernel SRCS ${JIT_KERNEL_SRCS} DEPS ${JIT_KERNEL_DEPS})
cc_test(jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel) # cc_test(jit_kernel_test SRCS jit_kernel_test.cc DEPS jit_kernel)
...@@ -39,7 +39,7 @@ size_t CUDAPinnedMinChunkSize(); ...@@ -39,7 +39,7 @@ size_t CUDAPinnedMinChunkSize();
//! Get the maximum chunk size for buddy allocator. //! Get the maximum chunk size for buddy allocator.
size_t CUDAPinnedMaxChunkSize(); size_t CUDAPinnedMaxChunkSize();
namespace jit { namespace jit { // remove this namespace
typedef enum { typedef enum {
isa_any, isa_any,
sse42, sse42,
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册