diff --git a/README_cn.md b/README_cn.md
index 638226242415ca189ea014c4cf3b3e1609137932..5619effca2e5c9361d1a6405062755a9d6a7b2ea 100644
--- a/README_cn.md
+++ b/README_cn.md
@@ -354,9 +354,7 @@
| 模型名称 | 模型简介 | 推荐场景 | 精度 | 配置文件 | 模型下载 |
|:--------- |:------------------------ |:---------------------------------- |:----------------------:|:---------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------:|
-| DeepSORT | SDE多目标跟踪算法 检测、ReID模型相互独立 |
云边端
| MOT-17 half val: 66.9 | [链接](configs/mot/deepsort/deepsort_jde_yolov3_pcb_pyramid.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/mot/deepsort/deepsort_pcb_pyramid_r101.pdparams) |
| ByteTrack | SDE多目标跟踪算法 仅包含检测模型 | 云边端 | MOT-17 half val: 77.3 | [链接](configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/mot/deepsort/yolox_x_24e_800x1440_mix_det.pdparams) |
-| JDE | JDE多目标跟踪算法 多任务联合学习方法 | 云边端 | MOT-16 test: 64.6 | [链接](configs/mot/jde/jde_darknet53_30e_1088x608.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) |
| FairMOT | JDE多目标跟踪算法 多任务联合学习方法 | 云边端 | MOT-16 test: 75.0 | [链接](configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml) | [下载地址](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) |
| OC-SORT | SDE多目标跟踪算法 仅包含检测模型 | 云边端 | MOT-17 half val: 75.5 | [链接](configs/mot/ocsort/ocsort_yolox.yml) | - |
@@ -365,7 +363,7 @@
- 5. 产业级实时行人分析工具
+ 5. 产业级实时行人分析工具PP-Human
| 任务 | 端到端速度(ms)| 模型方案 | 模型体积 |
@@ -383,6 +381,24 @@
| 打电话识别 | 单人ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[基于人体id的图像分类](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.zip) | 目标检测:182M
基于人体id的图像分类:45M |
+点击模型方案中的模型即可下载指定模型
+
+详细信息参考[文档](deploy/pipeline)
+
+
+
+
+ 6. 产业级实时车辆分析工具PP-Vehicle
+
+| 任务 | 端到端速度(ms)| 模型方案 | 模型体积 |
+| :---------: | :-------: | :------: |:------: |
+| 车辆检测(高精度) | 25.7ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |
+| 车辆检测(轻量级) | 13.2ms | [目标检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M |
+| 车辆跟踪(高精度) | 40ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |
+| 车辆跟踪(轻量级) | 25ms | [多目标跟踪](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M |
+| 车牌识别 | 4.68ms | [车牌检测](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz)
[车牌识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz) | 车牌检测:3.9M
车牌字符识别: 12M |
+| 车辆属性 | 7.31ms | [属性识别](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) | 7.2M |
+
点击模型方案中的模型即可下载指定模型
详细信息参考[文档](deploy/pipeline)
diff --git a/README_en.md b/README_en.md
index aae98b999b94a72a1a20017dfcbec6ba5a1c9686..1c5024dbdd1b75b78ce67f5badaec7c3407b5a1f 100644
--- a/README_en.md
+++ b/README_en.md
@@ -76,10 +76,9 @@
- If you have any question or suggestion, please give us your valuable input via [GitHub Issues](https://github.com/PaddlePaddle/PaddleDetection/issues)
- Welcome to join PaddleDetection user groups on QQ, WeChat (scan the QR code, add and reply "D" to the assistant)
+ Welcome to join PaddleDetection user groups on WeChat (scan the QR code, add and reply "D" to the assistant)
-
@@ -354,9 +353,7 @@ The comparison between COCO mAP and FPS on Qualcomm Snapdragon 865 processor of
| Model | Introduction | Recommended scenarios | Accuracy | Configuration | Download |
|:--------- |:------------------------------------------------------------- |:--------------------- |:----------------------:|:-----------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------:|
-| DeepSORT | SDE Multi-object tracking algorithm, independent ReID models | Edge-Cloud end | MOT-17 half val: 66.9 | [Link](configs/mot/deepsort/deepsort_jde_yolov3_pcb_pyramid.yml) | [Download](https://paddledet.bj.bcebos.com/models/mot/deepsort/deepsort_pcb_pyramid_r101.pdparams) |
| ByteTrack | SDE Multi-object tracking algorithm with detection model only | Edge-Cloud end | MOT-17 half val: 77.3 | [Link](configs/mot/bytetrack/detector/yolox_x_24e_800x1440_mix_det.yml) | [Download](https://paddledet.bj.bcebos.com/models/mot/deepsort/yolox_x_24e_800x1440_mix_det.pdparams) |
-| JDE | JDE multi-object tracking algorithm multi-task learning | Edge-Cloud end | MOT-16 test: 64.6 | [Link](configs/mot/jde/jde_darknet53_30e_1088x608.yml) | [Download](https://paddledet.bj.bcebos.com/models/mot/jde_darknet53_30e_1088x608.pdparams) |
| FairMOT | JDE multi-object tracking algorithm multi-task learning | Edge-Cloud end | MOT-16 test: 75.0 | [Link](configs/mot/fairmot/fairmot_dla34_30e_1088x608.yml) | [Download](https://paddledet.bj.bcebos.com/models/mot/fairmot_dla34_30e_1088x608.pdparams) |
| OC-SORT | SDE multi-object tracking algorithm with detection model only | Edge-Cloud end | MOT-16 half val: 75.5 | [Link](configs/mot/ocsort/ocsort_yolox.yml) | - |
@@ -367,20 +364,40 @@ The comparison between COCO mAP and FPS on Qualcomm Snapdragon 865 processor of
5. Industrial real-time pedestrain analysis tool-PP Human
-| Function \ Model | Obejct detection | Multi- object tracking | Attribute recognition | Keypoint detection | Action recognition | ReID |
-|:------------------------------------ |:-------------------------------------------------------------------------------------- |:-------------------------------------------------------------------------------------- |:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------:|:-----------------------------------------------------------------:|:----------------------------------------------------------------------:|
-| Pedestrian Detection | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | | | | |
-| Pedestrian Tracking | | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | | | |
-| Attribute Recognition (Image) | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | | | |
-| Attribute Recognition (Video) | | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | | | |
-| Falling Detection | | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | |
-| ReID | | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | | | | [✅](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) |
-| **Accuracy** | mAP 56.3 | MOTA 72.0 | mA 94.86 | AP 87.1 | AP 96.43 | mAP 98.8 |
-| **T4 TensorRT FP16 Inference speed** | 28.0ms | 33.1ms | Single person 2ms | Single person 2.9ms | Single person 2.7ms | Single person 1.5ms |
+| Task | End-to-End Speed(ms) | Model | Size |
+|:--------------------------------------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|
+| Pedestrian detection (high precision) | 25.1ms | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | 182M |
+| Pedestrian detection (lightweight) | 16.2ms | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) | 27M |
+| Pedestrian tracking (high precision) | 31.8ms | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | 182M |
+| Pedestrian tracking (lightweight) | 21.0ms | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) | 27M |
+| Attribute recognition (high precision) | Single person8.5ms | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[Attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | Object detection:182M
Attribute recognition:86M |
+| Attribute recognition (lightweight) | Single person 7.1ms | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[Attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/strongbaseline_r50_30e_pa100k.zip) | Object detection:182M
Attribute recognition:86M |
+| Falling detection | Single person 10ms | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[Keypoint detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip)
[Behavior detection based on key points](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) | Multi-object tracking:182M
Keypoint detection:101M
Behavior detection based on key points: 21.8M |
+| Intrusion detection | 31.8ms | [Multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | 182M |
+| Fighting detection | 19.7ms | [Video classification](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) | 90M |
+| Smoking detection | Single person 15.1ms | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[Object detection based on Human Id](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppyoloe_crn_s_80e_smoking_visdrone.zip) | Object detection:182M
Object detection based on Human ID: 27M |
+| Phoning detection | Single person ms | [Object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip)
[Image classification based on Human ID](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.zip) | Object detection:182M
Image classification based on Human ID:45M |
+
+Please refer to [docs](deploy/pipeline/README_en.md) for details.
+
+
+
+
+ 6. Industrial real-time vehicle analysis tool-PP Vehicle
+
+| Task | End-to-End Speed(ms) | Model | Size |
+|:--------------------------------------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|
+| Vehicle detection (high precision) | 25.7ms | [object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |
+| Vehicle detection (lightweight) | 13.2ms | [object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M |
+| Vehicle tracking (high precision) | 40ms | [multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |
+| Vehicle tracking (lightweight) | 25ms | [multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) | 27M |
+| Plate Recognition | 4.68ms | [plate detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz)
[plate recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz) | Plate detection:3.9M
Plate recognition:12M |
+| Vehicle attribute | 7.31ms | [attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) | 7.2M |
+
+Please refer to [docs](deploy/pipeline/README_en.md) for details.
-**Click “ ✅ ” to download**
## Document tutorials
diff --git a/deploy/pipeline/README_en.md b/deploy/pipeline/README_en.md
index 227d08ec7b1467d48c365629373b09c196c32528..a3303d644e9830665e754576f244549df29d7fa5 100644
--- a/deploy/pipeline/README_en.md
+++ b/deploy/pipeline/README_en.md
@@ -32,27 +32,7 @@ PP-Human supports various inputs such as images, single-camera, and multi-camera
## 🗳 Model Zoo
- Single model results (click to expand)
-
-| Task | Application | Accuracy | Inference speed(ms) | Model size | Inference deployment model |
-|:-------------------------------------------:|:---------------------------------------:|:--------------- |:--------------------:|:----------:|:-------------------------------------------------------------------------------------------------------:|
-| Object detection (high precision) | Image input | mAP: 57.8 | 25.1ms | 182M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |
-| Object detection (Lightweight) | Image input | mAP: 53.2 | 16.2ms | 27M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) |
-| Object tracking (high precision) | Video input | MOTA: 82.2 | 31.8ms | 182M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_pipeline.zip) |
-| Object tracking (high precision) | Video input | MOTA: 73.9 | 21.0ms | 27M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) |
-| Attribute recognition (high precision) | Image/Video input Attribute recognition | mA: 95.4 | Single person 4.2ms | 86M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_small_person_attribute_954_infer.zip) |
-| Attribute recognition (Lightweight) | Image/Video input Attribute recognition | mA: 94.5 | Single person 2.9ms | 7.2M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPLCNet_x1_0_person_attribute_945_infer.zip) |
-| Keypoint detection | Video input Attribute recognition | AP: 87.1 | Single person 5.7ms | 101M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/dark_hrnet_w32_256x192.zip) |
-| Classification based on key point sequences | Video input Attribute recognition | Accuracy: 96.43 | Single person 0.07ms | 21.8M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/STGCN.zip) |
-| Detection based on Human ID | Video input Attribute recognition | Accuracy: 86.85 | Single person 1.8ms | 45M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/PPHGNet_tiny_calling_halfbody.zip) |
-| Detection based on Human ID | Video input Attribute recognition | AP50: 79.5 | Single person 10.9ms | 27M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/ppyoloe_crn_s_80e_smoking_visdrone.zip) |
-| Video classification | Video input Attribute recognition | Accuracy: 89.0 | 19.7ms/1s Video | 90M | [Link](https://videotag.bj.bcebos.com/PaddleVideo-release2.3/ppTSM_fight.pdparams) |
-| ReID | Video input ReID | mAP: 98.8 | Single person 0.23ms | 85M | [Link](https://bj.bcebos.com/v1/paddledet/models/pipeline/reid_model.zip) |
-
-
-
-
-End-to-end model results (click to expand)
+PP-Human End-to-end model results (click to expand)
| Task | End-to-End Speed(ms) | Model | Size |
|:--------------------------------------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|
@@ -70,6 +50,21 @@ PP-Human supports various inputs such as images, single-camera, and multi-camera
+
+PP-Vehicle End-to-end model results (click to expand)
+
+| Task | End-to-End Speed(ms) | Model | Size |
+|:--------------------------------------:|:--------------------:|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------------------:|
+| Vehicle detection (high precision) | 25.7ms | [object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |
+| Vehicle detection (lightweight) | 13.2ms | [object detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_ppvehicle.zip) | 27M |
+| Vehicle tracking (high precision) | 40ms | [multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_l_36e_ppvehicle.zip) | 182M |
+| Vehicle tracking (lightweight) | 25ms | [multi-object tracking](https://bj.bcebos.com/v1/paddledet/models/pipeline/mot_ppyoloe_s_36e_pipeline.zip) | 27M |
+| Plate Recognition | 4.68ms | [plate detection](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_det_infer.tar.gz)
[plate recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/ch_PP-OCRv3_rec_infer.tar.gz) | Plate detection:3.9M
Plate recognition:12M |
+| Vehicle attribute | 7.31ms | [attribute recognition](https://bj.bcebos.com/v1/paddledet/models/pipeline/vehicle_attribute_model.zip) | 7.2M |
+
+
+
+
Click to download the model, then unzip and save it in the `. /output_inference`.
## 📚 Doc Tutorials