Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6f0e630c
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
694
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
体验新版 GitCode,发现更多精彩内容 >>
提交
6f0e630c
编写于
2月 05, 2018
作者:
K
Kexin Zhao
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
fix prune and program desc constructor
上级
c3d27b15
变更
6
显示空白变更内容
内联
并排
Showing
6 changed file
with
85 addition
and
25 deletion
+85
-25
paddle/framework/block_desc.cc
paddle/framework/block_desc.cc
+2
-0
paddle/framework/op_desc.cc
paddle/framework/op_desc.cc
+15
-2
paddle/framework/program_desc.cc
paddle/framework/program_desc.cc
+18
-0
paddle/framework/prune.cc
paddle/framework/prune.cc
+24
-12
python/paddle/v2/fluid/io.py
python/paddle/v2/fluid/io.py
+6
-0
python/paddle/v2/fluid/tests/book/test_rnn_encoder_decoder.py
...on/paddle/v2/fluid/tests/book/test_rnn_encoder_decoder.py
+20
-11
未找到文件。
paddle/framework/block_desc.cc
浏览文件 @
6f0e630c
...
...
@@ -155,6 +155,8 @@ BlockDesc::BlockDesc(ProgramDesc *prog, proto::BlockDesc *desc)
for
(
const
proto
::
OpDesc
&
op_desc
:
desc_
->
ops
())
{
ops_
.
emplace_back
(
new
OpDesc
(
op_desc
,
prog
,
this
));
}
std
::
cout
<<
"Constructed block idx "
<<
desc
->
idx
()
<<
" from protobuf str"
<<
std
::
endl
;
}
BlockDesc
::
BlockDesc
(
const
BlockDesc
&
other
,
proto
::
BlockDesc
*
desc
,
...
...
paddle/framework/op_desc.cc
浏览文件 @
6f0e630c
...
...
@@ -124,11 +124,24 @@ OpDesc::OpDesc(const proto::OpDesc &desc, ProgramDesc *prog, BlockDesc *block)
// restore attrs_
for
(
const
proto
::
OpDesc
::
Attr
&
attr
:
desc_
.
attrs
())
{
std
::
string
attr_name
=
attr
.
name
();
// we use a trick to handle attr.type() is BLOCK here, because at this
// moment the sub_block hasn't beed added to ProgramDesc's vector<Block>
// so we cast the block_idx to a dummy BlockDesc pointer
if
(
attr
.
type
()
!=
proto
::
AttrType
::
BLOCK
)
{
attrs_
[
attr_name
]
=
GetAttrValue
(
attr
);
}
else
{
auto
bid
=
attr
.
block_idx
();
attrs_
[
attr_name
]
=
prog
->
MutableBlock
(
bid
);
size_t
blk_idx
=
attr
.
block_idx
();
if
(
blk_idx
<
prog
->
Size
())
{
attrs_
[
attr_name
]
=
prog
->
MutableBlock
(
blk_idx
);
}
else
{
std
::
cout
<<
"Setting blockdesc attribute for id "
<<
blk_idx
<<
std
::
endl
;
attrs_
[
attr_name
]
=
reinterpret_cast
<
BlockDesc
*>
(
blk_idx
);
std
::
cout
<<
"Testing reinterpret_cast result is "
<<
reinterpret_cast
<
size_t
>
(
boost
::
get
<
BlockDesc
*>
(
attrs_
[
attr_name
]))
<<
std
::
endl
;
}
}
}
this
->
block_
=
block
;
...
...
paddle/framework/program_desc.cc
浏览文件 @
6f0e630c
...
...
@@ -52,9 +52,27 @@ ProgramDesc::ProgramDesc(const ProgramDesc &o) {
ProgramDesc
::
ProgramDesc
(
const
proto
::
ProgramDesc
&
desc
)
{
desc_
=
desc
;
std
::
cout
<<
std
::
endl
<<
"starting in ProgDesc constructor"
<<
std
::
endl
;
for
(
auto
&
block_desc
:
*
desc_
.
mutable_blocks
())
{
blocks_
.
emplace_back
(
new
BlockDesc
(
this
,
&
block_desc
));
std
::
cout
<<
"Done constructing block idx "
<<
block_desc
.
idx
()
<<
" parent idx "
<<
block_desc
.
parent_idx
()
<<
std
::
endl
;
}
for
(
auto
&
block
:
blocks_
)
{
for
(
auto
*
op
:
block
->
AllOps
())
{
for
(
auto
&
name
:
op
->
AttrNames
())
{
if
(
op
->
GetAttrType
(
name
)
==
proto
::
AttrType
::
BLOCK
)
{
auto
attr
=
op
->
GetAttr
(
name
);
size_t
blk_idx
=
reinterpret_cast
<
size_t
>
(
boost
::
get
<
BlockDesc
*>
(
attr
));
op
->
SetBlockAttr
(
name
,
*
this
->
MutableBlock
(
blk_idx
));
std
::
cout
<<
"Update attr name "
<<
name
<<
" for block idx "
<<
blk_idx
<<
std
::
endl
;
}
}
}
}
std
::
cout
<<
"Done ProgDesc construction"
<<
std
::
endl
<<
std
::
endl
;
}
ProgramDesc
::
ProgramDesc
(
const
std
::
string
&
binary_str
)
{
...
...
paddle/framework/prune.cc
浏览文件 @
6f0e630c
...
...
@@ -109,15 +109,14 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
// we reverse the should_run vector
std
::
reverse
(
should_run
.
begin
(),
should_run
.
end
());
//*output = input;
// copy the current block from input to output
auto
*
block_field
=
output
->
mutable_blocks
();
*
block_field
->
Add
()
=
input
.
blocks
(
block_id
);
int
output_block_id
=
output
->
blocks_size
()
-
1
;
auto
*
output_block
=
output
->
mutable_blocks
(
output_block_id
);
output_block
->
set_idx
=
output_block_id
;
output_block
->
set_parent_idx
=
parent_block_id
;
output_block
->
set_idx
(
output_block_id
)
;
output_block
->
set_parent_idx
(
parent_block_id
)
;
auto
*
op_field
=
output_block
->
mutable_ops
();
op_field
->
Clear
();
...
...
@@ -128,17 +127,18 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
if
(
HasSubBlock
(
*
op
))
{
// create sub_block_dependent_vars here to help prune the sub block
std
::
set
<
std
::
string
>
sub_block_dependent_vars
;
for
(
auto
&
var
:
op
.
inputs
())
{
for
(
auto
&
var
:
op
->
inputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
sub_block_dependent_vars
.
insert
(
argu
);
}
}
for
(
auto
&
var
:
op
.
outputs
())
{
for
(
auto
&
var
:
op
->
outputs
())
{
for
(
auto
&
argu
:
var
.
arguments
())
{
sub_block_dependent_vars
.
insert
(
argu
);
}
}
std
::
cout
<<
"pruning the next block, the current output_block_id is "
<<
output_block_id
<<
std
::
endl
;
// GetSubBlockIndex(*op) is the idx of the sub_block in the input desc
// output_block_id is the idx of the current block in the output desc
prune_impl
(
input
,
output
,
GetSubBlockIndex
(
*
op
),
output_block_id
,
...
...
@@ -147,6 +147,8 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
}
}
std
::
cout
<<
"Starting to remove unreferenced variables"
<<
" for block idx "
<<
output_block_id
<<
std
::
endl
;
// remove the VarDescs in BlockDesc that are not referenced in
// the pruned OpDescs
std
::
unordered_map
<
std
::
string
,
proto
::
VarDesc
>
var_map
;
...
...
@@ -155,28 +157,38 @@ void prune_impl(const proto::ProgramDesc& input, proto::ProgramDesc* output,
var_map
[
var
.
name
()]
=
var
;
}
var_field
->
Clear
()
;
std
::
set
<
std
::
string
>
var_names
;
for
(
const
auto
&
op
:
*
op_field
)
{
// add VarDescs of all input arguments for each OpDesc
auto
&
input_field
=
op
.
inputs
();
for
(
auto
&
input_var
:
input_field
)
{
for
(
auto
&
arg
:
input_var
.
arguments
())
{
*
var_field
->
Add
()
=
var_map
.
at
(
arg
);
if
(
var_map
.
count
(
arg
)
!=
0
)
{
var_names
.
insert
(
arg
);
}
}
}
// add VarDescs of all output arguments for each OpDesc
auto
&
output_field
=
op
.
outputs
();
for
(
auto
&
output_var
:
output_field
)
{
for
(
auto
&
arg
:
output_var
.
arguments
())
{
*
var_field
->
Add
()
=
var_map
.
at
(
arg
);
if
(
var_map
.
count
(
arg
)
!=
0
)
{
var_names
.
insert
(
arg
);
}
}
}
}
var_field
->
Clear
();
for
(
const
auto
&
name
:
var_names
)
{
*
var_field
->
Add
()
=
var_map
[
name
];
}
}
// TODO(fengjiayi): Prune() could be inplaced to avoid unnecessary copies
void
Prune
(
const
proto
::
ProgramDesc
&
input
,
proto
::
ProgramDesc
*
output
)
{
prune_impl
(
input
,
output
,
0
,
-
1
,
{});
std
::
set
<
std
::
string
>
dependent_vars
;
std
::
cout
<<
std
::
endl
<<
"Start C++ framework::prune"
<<
std
::
endl
;
prune_impl
(
input
,
output
,
0
,
-
1
,
dependent_vars
);
std
::
cout
<<
"Finished C++ framework::prune"
<<
std
::
endl
<<
std
::
endl
;
}
void
inference_optimize_impl
(
const
proto
::
ProgramDesc
&
input
,
...
...
python/paddle/v2/fluid/io.py
浏览文件 @
6f0e630c
...
...
@@ -342,6 +342,12 @@ def save_inference_model(dirname,
prepend_feed_ops
(
inference_program
,
feeded_var_names
)
append_fetch_ops
(
inference_program
,
fetch_var_names
)
# save for checking
curstr
=
inference_program
.
to_string
(
True
)
f
=
open
(
"save_inf_prog_after_feed_fetch.txt"
,
'w'
)
f
.
write
(
curstr
)
f
.
close
()
model_file_name
=
dirname
+
"/__model__"
with
open
(
model_file_name
,
"wb"
)
as
f
:
f
.
write
(
inference_program
.
desc
.
serialize_to_string
())
...
...
python/paddle/v2/fluid/tests/book/test_rnn_encoder_decoder.py
浏览文件 @
6f0e630c
...
...
@@ -197,14 +197,15 @@ def train(save_dirname=None):
" avg_cost="
+
str
(
avg_cost_val
))
if
batch_id
>
3
:
if
save_dirname
is
not
None
:
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'source_sequence'
,
'target_sequence'
,
'label_sequence'
],
[
prediction
],
exe
)
fluid
.
io
.
save_inference_model
(
save_dirname
,
[
'source_sequence'
,
'target_sequence'
],
[
prediction
],
exe
)
return
exit
(
0
)
batch_id
+=
1
def
infer
ence
(
save_dirname
=
None
):
def
infer
(
save_dirname
=
None
):
if
save_dirname
is
None
:
return
...
...
@@ -221,24 +222,32 @@ def inference(save_dirname=None):
data
=
[[
0
,
1
,
0
,
1
],
[
0
,
1
,
1
,
0
,
0
,
1
]]
word_data
=
to_lodtensor
(
data
,
place
)
trg_word
=
to_lodtensor
(
data
,
place
)
trg_word_next
=
to_lodtensor
(
data
,
place
)
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
# and results will contain a list of data corresponding to fetch_targets.
print
(
"Print feed fetch target names as follows"
)
print
(
feed_target_names
)
assert
feed_target_names
[
0
]
==
'source_sequence'
assert
feed_target_names
[
1
]
==
'target_sequence'
assert
feed_target_names
[
2
]
==
'label_sequence'
print
([
var
.
name
for
var
in
fetch_targets
])
# save for checking
curstr
=
inference_program
.
to_string
(
True
)
f
=
open
(
"loaded_infer_prog.txt"
,
'w'
)
f
.
write
(
curstr
)
f
.
close
()
results
=
exe
.
run
(
inference_program
,
feed
=
{
feed_target_names
[
0
]:
word_data
,
feed_target_names
[
1
]:
trg_word
,
feed_target_names
[
2
]:
trg_word_next
},
fetch_list
=
fetch_targets
)
print
(
"Inference Shape: "
,
results
[
0
].
shape
)
print
(
"infer results: "
,
results
[
0
])
fetch_list
=
fetch_targets
,
return_numpy
=
False
)
print
(
results
[
0
].
lod
())
np_data
=
np
.
array
(
results
[
0
])
print
(
"Inference shape: "
,
np_data
.
shape
)
print
(
"Inference results: "
,
np_data
)
if
__name__
==
'__main__'
:
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录