Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6ed20474
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6ed20474
编写于
8月 22, 2018
作者:
T
tensor-tang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine attention lstm infershape
上级
508548f8
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
111 addition
and
87 deletion
+111
-87
paddle/fluid/operators/attention_lstm_op.cc
paddle/fluid/operators/attention_lstm_op.cc
+111
-87
未找到文件。
paddle/fluid/operators/attention_lstm_op.cc
浏览文件 @
6ed20474
...
@@ -26,86 +26,102 @@ namespace paddle {
...
@@ -26,86 +26,102 @@ namespace paddle {
namespace
operators
{
namespace
operators
{
void
AttentionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
void
AttentionLSTMOp
::
InferShape
(
framework
::
InferShapeContext
*
ctx
)
const
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
"Input(X) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"X"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightX"
),
"Input(X) of AttentionLSTM should not be null."
);
"Input(WeightX) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"WeightH"
),
"Input(C0) of AttentionLSTM should not be null."
);
"Input(WeightH) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMWeight"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"Bias"
),
"Input(LSTMWeight) of AttentionLSTM should not be null."
);
"Input(Bias) of LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"LSTMBias"
),
"Input(LSTMBias) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"XX"
),
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionWeight"
),
"Output(XX) of LSTM should not be null."
);
"Input(AttentionWeight) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Hidden"
),
"Output(Hidden) of LSTM should not be null."
);
"Output(Hidden) of
Attention
LSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"Cell"
),
"Output(Cell) of LSTM should not be null."
);
"Output(Cell) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchedGate"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionedX"
),
"Output(BatchedGate) of LSTM should not be null."
);
"Output(AttentionedX) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"BatchCellPreAct"
),
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"AttentionFCOut"
),
"Output(BatchedGate) of LSTM should not be null."
);
"Output(AttentionFCOut) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMX"
),
"Output(LSTMX) of AttentionLSTM should not be null."
);
PADDLE_ENFORCE
(
ctx
->
HasOutput
(
"LSTMOUT"
),
"Output(LSTMOUT) of AttentionLSTM should not be null."
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
auto
x_dims
=
ctx
->
GetInputDim
(
"X"
);
const
int
M
=
x_dims
[
1
];
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
2
,
"Input(X)'s rank must be 2."
);
auto
w_dims
=
ctx
->
GetInputDim
(
"LSTMWeight"
);
const
int
D
=
w_dims
[
1
]
/
4
;
PADDLE_ENFORCE_EQ
(
w_dims
.
size
(),
2
,
"Input(LSTMWeight)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
w_dims
[
0
],
D
+
M
,
"LSTMWeight dims should be (%d + %d) * %d."
,
D
+
M
,
4
*
D
);
auto
b_dims
=
ctx
->
GetInputDim
(
"LSTMBias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"Input(LSTMBias)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
"LSTMBias dims should be 1 x (%d + %d)."
,
M
,
D
);
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
M
+
D
,
"LSTMBias dims should be 1 x (%d + %d)."
,
M
,
D
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE_EQ
(
c_dims
.
size
(),
2
,
"Input(C0)'s rank must be 2."
);
PADDLE_ENFORCE_EQ
(
c_dims
[
1
],
D
,
"C0 dims should be N x %d."
,
D
);
if
(
ctx
->
HasInput
(
"H0"
))
{
if
(
ctx
->
HasInput
(
"H0"
))
{
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"C0"
),
"Input(Cell) and Input(Hidden) of LSTM should not "
"be null at the same time."
);
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
auto
h_dims
=
ctx
->
GetInputDim
(
"H0"
);
auto
c_dims
=
ctx
->
GetInputDim
(
"C0"
);
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
PADDLE_ENFORCE
(
h_dims
==
c_dims
,
"The dimension of Input(H0) and Input(C0) "
"The dimension of Input(H0) and Input(C0) "
"should be the same."
);
"should be the same."
);
}
}
// fc_out , shape (maxseqlen,1)
auto
atten_w_dims
=
ctx
->
GetInputDim
(
"AttentionWeight"
);
int
max_seq_len
=
0
;
PADDLE_ENFORCE_EQ
(
atten_w_dims
.
size
(),
2
,
"Input(AttentionWeight)'s rank must be 2."
);
auto
wx_dims
=
ctx
->
GetInputDim
(
"WeightX"
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
0
],
M
+
D
,
PADDLE_ENFORCE_EQ
(
wx_dims
.
size
(),
2
,
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
"The rank of Input(WeightX) should be 2."
);
PADDLE_ENFORCE_EQ
(
atten_w_dims
[
1
],
1
,
PADDLE_ENFORCE_EQ
(
wx_dims
[
0
],
x_dims
[
1
],
"AttentionWeight shapes must be (%d + %d) * 1."
,
M
,
D
);
"The first dimension of Input(WeightX) "
if
(
ctx
->
HasInput
(
"AttentionBias"
))
{
"should be %d."
,
auto
atten_b_dims
=
ctx
->
GetInputDim
(
"AttentionBias"
);
x_dims
[
1
]);
PADDLE_ENFORCE_EQ
(
atten_b_dims
.
size
(),
2
,
"Input(AttentionBias)'s rank must be 2."
);
int
frame_size
=
wx_dims
[
1
]
/
4
;
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
0
],
1
,
auto
wh_dims
=
ctx
->
GetInputDim
(
"WeightH
"
);
"AttentionBias shapes must be 1 * 1.
"
);
PADDLE_ENFORCE_EQ
(
wh_dims
.
size
(),
2
,
PADDLE_ENFORCE_EQ
(
atten_b_dims
[
1
],
1
,
"The rank of Input(WeightH) should be 2
."
);
"AttentionBias shapes must be 1 * 1
."
);
PADDLE_ENFORCE_EQ
(
wh_dims
[
0
],
frame_size
,
}
"The first dimension of Input(WeightH) "
"should be %d."
,
if
(
ctx
->
HasInput
(
"AttentionScalar"
))
{
frame_size
);
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalar"
);
PADDLE_ENFORCE_EQ
(
wh_dims
[
1
],
4
*
frame_size
,
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
"The second dimension of Input(WeightH) "
"Input(AttentionScalar)'s rank must be 2."
);
"should be 4 * %d."
,
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
frame_size
);
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalar shapes must be 1 * 1."
);
}
auto
b_dims
=
ctx
->
GetInputDim
(
"Bias"
);
PADDLE_ENFORCE_EQ
(
b_dims
.
size
(),
2
,
"The rank of Input(Bias) should be 2."
);
if
(
ctx
->
HasInput
(
"AttentionScalarBias"
))
{
PADDLE_ENFORCE_EQ
(
b_dims
[
0
],
1
,
auto
dims
=
ctx
->
GetInputDim
(
"AttentionScalarBias"
);
"The first dimension of Input(Bias) should be 1."
);
PADDLE_ENFORCE
(
ctx
->
HasInput
(
"AttentionScalar"
),
PADDLE_ENFORCE
(
!
ctx
->
Attrs
().
Get
<
bool
>
(
"use_peepholes"
),
"AttentionScalar should not be null when have AttentionScalarBias."
);
"Do not support peephole yet."
);
PADDLE_ENFORCE_EQ
(
dims
.
size
(),
2
,
PADDLE_ENFORCE_EQ
(
b_dims
[
1
],
4
*
frame_size
,
"Input(AttentionScalarBias)'s rank must be 2."
);
"The second dimension of Input(Bias) should be "
PADDLE_ENFORCE_EQ
(
dims
[
0
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
"4 * %d if disable peepholes connection"
,
PADDLE_ENFORCE_EQ
(
dims
[
1
],
1
,
"AttentionScalarBias shapes must be 1 * 1."
);
frame_size
);
}
framework
::
DDim
out_dims
({
x_dims
[
0
],
frame_size
});
framework
::
DDim
out_dims
({
x_dims
[
0
],
D
});
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Hidden"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"Cell"
,
out_dims
);
ctx
->
SetOutputDim
(
"BatchedGate"
,
{
x_dims
[
0
],
wx_dims
[
1
]});
ctx
->
SetOutputDim
(
"AttentionedX"
,
{
x_dims
[
0
],
1
});
ctx
->
SetOutputDim
(
"BatchCellPreAct"
,
out_dims
);
ctx
->
SetOutputDim
(
"LSTMX"
,
{
1
,
M
});
ctx
->
SetOutputDim
(
"LSTMOUT"
,
{
1
,
4
*
D
});
// AttentionFCOut should be reshape as (maxseqlen,1) in runtime
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Hidden"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
ctx
->
ShareLoD
(
"X"
,
"Cell"
);
int
xx_width
=
x_dims
[
1
]
>
wx_dims
[
1
]
?
wx_dims
[
1
]
:
x_dims
[
1
];
ctx
->
SetOutputDim
(
"XX"
,
{
x_dims
[
0
],
xx_width
});
ctx
->
ShareLoD
(
"X"
,
"XX"
);
}
}
framework
::
OpKernelType
AttentionLSTMOp
::
GetExpectedKernelType
(
framework
::
OpKernelType
AttentionLSTMOp
::
GetExpectedKernelType
(
...
@@ -164,9 +180,8 @@ void AttentionLSTMOpMaker::Make() {
...
@@ -164,9 +180,8 @@ void AttentionLSTMOpMaker::Make() {
AddOutput
(
"Cell"
,
AddOutput
(
"Cell"
,
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
"(LoDTensor) (same as LSTMOp) the cell state of LSTM operator. "
"The shape is (T x D), and lod is the same with the `Input`."
);
"The shape is (T x D), and lod is the same with the `Input`."
);
AddOutput
(
AddOutput
(
"AttentionedX"
,
"AttentionedX"
,
"(Tensor) shape is (T x 1), the result after X * AttentionWeight,"
"(LodTensor) shape is (T x 1), the result after X * AttentionWeight,"
" where T is the total time steps in this mini-batch,"
" where T is the total time steps in this mini-batch,"
" D is the hidden size."
)
" D is the hidden size."
)
.
AsIntermediate
();
.
AsIntermediate
();
...
@@ -318,11 +333,30 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
...
@@ -318,11 +333,30 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
// TxD
auto
*
hidden_out
=
ctx
.
Output
<
LoDTensor
>
(
"Hidden"
);
// TxD
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
// TxD
auto
*
cell_out
=
ctx
.
Output
<
LoDTensor
>
(
"Cell"
);
// TxD
auto
*
atted_x
=
ctx
.
Output
<
LoDTensor
>
(
"AttentionedX"
);
// T x 1
auto
*
atted_x
=
ctx
.
Output
<
Tensor
>
(
"AttentionedX"
);
// T x 1
auto
*
fc_out
=
ctx
.
Output
<
Tensor
>
(
'
AttentionFCOut
'
);
// max_seq_len x 1
auto
*
fc_out
=
ctx
.
Output
<
Tensor
>
(
'
AttentionFCOut
'
);
// max_seq_len x 1
auto
*
lstm_x
=
ctx
.
Output
<
Tensor
>
(
"LSTMX"
);
// 1 x M
auto
*
lstm_x
=
ctx
.
Output
<
Tensor
>
(
"LSTMX"
);
// 1 x M
auto
*
lstm_out
=
ctx
.
Output
<
Tensor
>
(
"LSTMOUT"
);
// 1 x 4D
auto
*
lstm_out
=
ctx
.
Output
<
Tensor
>
(
"LSTMOUT"
);
// 1 x 4D
// some shape should be reshape here since infershape can not get lod info
auto
x_lod
=
x
->
lod
();
const
int
N
=
x_lod
[
0
].
size
()
-
1
;
// batch size
auto
x_dims
=
x
->
dims
();
// T x M
auto
w_dims
=
w
->
dims
();
// (D+M) x 4D
const
int
M
=
x_dims
[
1
];
// x frame size
const
int
D
=
w_dims
[
1
]
/
4
;
// gate frame size
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
w_dims
[
1
];
int
max_seq_len
=
x_lod
[
0
][
1
];
for
(
int
i
=
1
;
i
<
N
;
++
i
)
{
int
len
=
x_lod
[
0
][
i
+
1
]
-
x_lod
[
0
][
i
];
max_seq_len
=
max_seq_len
<
len
?
len
:
max_seq_len
;
}
PADDLE_ENFORCE_EQ
(
x_lod
.
size
(),
1
,
"Input(X)'s lod size must be 1."
);
PADDLE_ENFORCE_EQ
(
c0
->
dims
()[
0
],
N
,
"C0 dims should be %d x %d."
,
N
,
D
);
fc_out
->
Resize
({
max_seq_len
,
1
});
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
x_data
=
x
->
data
<
T
>
();
const
T
*
h0_data
=
h0
->
data
<
T
>
();
const
T
*
h0_data
=
h0
->
data
<
T
>
();
const
T
*
c0_data
=
c0
->
data
<
T
>
();
const
T
*
c0_data
=
c0
->
data
<
T
>
();
...
@@ -341,16 +375,6 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
...
@@ -341,16 +375,6 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
T
*
lstm_x_data
=
lstm_x
->
mutable_data
<
T
>
();
T
*
lstm_x_data
=
lstm_x
->
mutable_data
<
T
>
();
T
*
lstm_out_data
=
lstm_out
->
mutable_data
<
T
>
();
T
*
lstm_out_data
=
lstm_out
->
mutable_data
<
T
>
();
auto
x_lod
=
x
->
lod
();
auto
x_dims
=
x
->
dims
();
// T x M
auto
w_dims
=
w
->
dims
();
// (D+M) x 4D
const
int
M
=
x_dims
[
1
];
// x frame size
const
int
D
=
w_dims
[
1
]
/
4
;
// gate frame size
const
int
D2
=
D
*
2
;
const
int
D3
=
D
*
3
;
const
int
D4
=
w_dims
[
1
];
const
int
batch_size
=
x_lod
[
0
].
size
()
-
1
;
// assert lod.size() == 1
// x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
// x(TxM) * fc (Mx1) part of atten_wgt(M+D)x1
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
auto
blas
=
math
::
GetBlas
<
DeviceContext
,
T
>
(
ctx
);
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
T
,
1
,
M
,
x_data
,
atten_w_data
,
math
::
FCCompute
<
DeviceContext
,
T
>
(
blas
,
T
,
1
,
M
,
x_data
,
atten_w_data
,
...
@@ -361,7 +385,7 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
...
@@ -361,7 +385,7 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
const
T
*
prev_hidden_data
=
NULL
;
const
T
*
prev_hidden_data
=
NULL
;
T
*
cur_cell_out_data
=
cell_out_data
;
T
*
cur_cell_out_data
=
cell_out_data
;
T
*
cur_hidden_out_data
=
hidden_out_data
;
T
*
cur_hidden_out_data
=
hidden_out_data
;
for
(
int
i
=
0
;
i
<
batch_size
;
++
i
)
{
for
(
int
i
=
0
;
i
<
N
;
++
i
)
{
int
seq_len
=
x_lod
[
0
][
i
+
1
];
int
seq_len
=
x_lod
[
0
][
i
+
1
];
prev_cell_data
=
c0_data
+
i
*
D
;
prev_cell_data
=
c0_data
+
i
*
D
;
prev_hidden_data
=
h0
?
h0_data
+
i
*
D
:
NULL
;
prev_hidden_data
=
h0
?
h0_data
+
i
*
D
:
NULL
;
...
@@ -370,13 +394,13 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
...
@@ -370,13 +394,13 @@ class AttentionLSTMKernel : public framework::OpKernel<T> {
/// compute attention vector
/// compute attention vector
// prev_cell(1xD) * fc(D) rest part of atten_wgt
// prev_cell(1xD) * fc(D) rest part of atten_wgt
// T = cblas_dot();
// T = cblas_dot();
T
prev_cell_bias
=
blas
.
V
DOT
(
D
,
prev_cell_data
,
atten_w_data
+
M
);
T
prev_cell_bias
=
blas
.
DOT
(
D
,
prev_cell_data
,
atten_w_data
+
M
);
// add cell bias and relu
// add cell bias and relu
bias_relu
<
T
>
(
seq_len
,
atted_x_data
,
&
prev_cell_bias
,
fc_out_data
);
bias_relu
<
T
>
(
seq_len
,
atted_x_data
,
&
prev_cell_bias
,
fc_out_data
);
// fc2: scalar
// fc2: scalar
if
(
atten_scalar_data
)
{
if
(
atten_scalar_data
)
{
// x = a*x
// x = a*x
blas
.
V
SCAL
(
seq_len
,
atten_scalar_data
,
fc_out_data
);
blas
.
SCAL
(
seq_len
,
atten_scalar_data
,
fc_out_data
);
bias_relu
<
T
>
(
seq_len
,
fc_out_data
,
atten_scalar_bias_data
,
bias_relu
<
T
>
(
seq_len
,
fc_out_data
,
atten_scalar_bias_data
,
fc_out_data
);
fc_out_data
);
}
}
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录