Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6ebc6bf5
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6ebc6bf5
编写于
3月 21, 2018
作者:
Y
Yu Yang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
ReorganizeCode
上级
a478a11e
变更
7
显示空白变更内容
内联
并排
Showing
7 changed file
with
244 addition
and
176 deletion
+244
-176
paddle/fluid/framework/CMakeLists.txt
paddle/fluid/framework/CMakeLists.txt
+2
-1
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-0
paddle/fluid/framework/details/var_handle.cc
paddle/fluid/framework/details/var_handle.cc
+32
-0
paddle/fluid/framework/details/var_handle.h
paddle/fluid/framework/details/var_handle.h
+66
-0
paddle/fluid/framework/parallel_executor.cc
paddle/fluid/framework/parallel_executor.cc
+108
-160
paddle/fluid/framework/parallel_executor.h
paddle/fluid/framework/parallel_executor.h
+0
-14
paddle/fluid/platform/nccl_helper.h
paddle/fluid/platform/nccl_helper.h
+35
-1
未找到文件。
paddle/fluid/framework/CMakeLists.txt
浏览文件 @
6ebc6bf5
add_subdirectory
(
details
)
# ddim lib
proto_library
(
framework_proto SRCS framework.proto
)
...
...
@@ -87,7 +88,7 @@ cc_library(feed_fetch_method SRCS feed_fetch_method.cc DEPS lod_tensor scope glo
cc_library
(
executor SRCS executor.cc DEPS op_registry device_context scope
framework_proto backward glog lod_rank_table feed_fetch_method
)
cc_library
(
parallel_executor SRCS parallel_executor.cc DEPS op_registry device_context scope
framework_proto backward glog lod_rank_table feed_fetch_method executor simple_threadpool
concat
)
framework_proto backward glog lod_rank_table feed_fetch_method executor simple_threadpool
var_handle
)
cc_library
(
prune SRCS prune.cc DEPS framework_proto
)
cc_test
(
prune_test SRCS prune_test.cc DEPS op_info prune recurrent_op device_context
)
...
...
paddle/fluid/framework/details/CMakeLists.txt
0 → 100644
浏览文件 @
6ebc6bf5
cc_library
(
var_handle SRCS var_handle.cc DEPS place
)
paddle/fluid/framework/details/var_handle.cc
0 → 100644
浏览文件 @
6ebc6bf5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/var_handle.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
VarHandleBase
::~
VarHandleBase
()
{}
std
::
string
VarHandle
::
DebugString
()
const
{
std
::
stringstream
ss
;
ss
<<
name_
<<
":"
<<
place_
;
return
ss
.
str
();
}
std
::
string
DummyVarHandle
::
DebugString
()
const
{
return
"dummy"
;
}
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/var_handle.h
0 → 100644
浏览文件 @
6ebc6bf5
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <sstream>
#include <string>
#include <unordered_set>
#include "paddle/fluid/platform/place.h"
namespace
paddle
{
namespace
framework
{
struct
OpHandleBase
;
namespace
details
{
// VarHandleBase is the var node in the dependency graph.
// A variable can only be generated by a single operator. i.e.
// This is a single assignment graph.
struct
VarHandleBase
{
virtual
~
VarHandleBase
();
virtual
std
::
string
DebugString
()
const
=
0
;
// The operator who generate this variable. nullptr if the variable
// is a root node.
OpHandleBase
*
generated_op_
;
// Operators which depend on this variable ready.
std
::
unordered_set
<
OpHandleBase
*>
pending_ops_
;
};
// VarHandle is actually a single version of Runtime Variable.
// Variable in Runtime mapped to many VarHandles in Graph.
// Each assignment will generate a new var handle with newer version.
//
// NOTE: runtime variables have place.
struct
VarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
;
// version field currently is not used, however, just store the version to
// debug easily.
size_t
version_
;
std
::
string
name_
;
platform
::
Place
place_
;
};
// Dummy Variable. It is used to represent dependencies between operators
struct
DummyVarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
;
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.cc
浏览文件 @
6ebc6bf5
...
...
@@ -18,6 +18,7 @@ limitations under the License. */
#include "lod_tensor.h"
#include "lod_tensor_array.h"
#include "op_registry.h"
#include "paddle/fluid/framework/details/var_handle.h"
#include "paddle/fluid/framework/feed_fetch_type.h"
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/platform/nccl_helper.h"
...
...
@@ -25,35 +26,11 @@ limitations under the License. */
namespace
paddle
{
namespace
framework
{
struct
OpHandle
;
using
details
::
DummyVarHandle
;
using
details
::
VarHandle
;
using
details
::
VarHandleBase
;
struct
VarHandleBase
{
virtual
~
VarHandleBase
()
{}
virtual
std
::
string
DebugString
()
const
=
0
;
OpHandle
*
generated_op_
;
std
::
unordered_set
<
OpHandle
*>
pending_ops_
;
};
struct
VarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
{
std
::
stringstream
ss
;
ss
<<
name_
<<
":"
<<
place_
;
return
ss
.
str
();
}
// version field currently is not used, however, just store the version to
// debug easily.
size_t
version_
;
std
::
string
name_
;
platform
::
Place
place_
;
};
struct
DummyVarHandle
:
public
VarHandleBase
{
std
::
string
DebugString
()
const
override
{
return
"dummy"
;
}
};
struct
OpHandle
{
struct
OpHandleBase
{
std
::
vector
<
VarHandleBase
*>
inputs_
;
std
::
vector
<
VarHandleBase
*>
outputs_
;
std
::
unordered_map
<
platform
::
Place
,
platform
::
DeviceContext
*
,
...
...
@@ -76,7 +53,7 @@ struct OpHandle {
return
ss
.
str
();
}
virtual
~
OpHandle
()
{}
virtual
~
OpHandle
Base
()
{}
void
Run
(
bool
use_event
)
{
if
(
events_
.
empty
()
&&
use_event
)
{
...
...
@@ -117,7 +94,7 @@ struct OpHandle {
virtual
void
RunImpl
()
=
0
;
};
struct
ScaleLossGradOpHandle
:
public
OpHandle
{
struct
ScaleLossGradOpHandle
:
public
OpHandle
Base
{
float
coeff_
;
Scope
*
scope_
;
platform
::
Place
place_
;
...
...
@@ -150,7 +127,7 @@ struct ScaleLossGradOpHandle : public OpHandle {
}
};
struct
FetchOpHandle
:
public
OpHandle
{
struct
FetchOpHandle
:
public
OpHandle
Base
{
FeedFetchList
*
data_
;
size_t
offset_
;
std
::
vector
<
Scope
*>
*
local_scopes_
;
...
...
@@ -216,51 +193,13 @@ class ParallelExecutorPrivate {
std
::
vector
<
Scope
*>
local_scopes_
;
Scope
*
global_scope_
;
#ifdef PADDLE_WITH_CUDA
struct
NCCLContext
{
std
::
unique_ptr
<
platform
::
CUDADeviceContext
>
ctx_
;
ncclComm_t
comm
;
explicit
NCCLContext
(
int
dev_id
)
{
ctx_
.
reset
(
new
platform
::
CUDADeviceContext
(
platform
::
CUDAPlace
(
dev_id
)));
}
cudaStream_t
stream
()
const
{
return
ctx_
->
stream
();
}
std
::
unordered_map
<
int
,
platform
::
NCCLContext
>
communication_streams_
;
int
device_id
()
const
{
return
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx_
->
GetPlace
()).
device
;
}
static
void
InitNCCLContext
(
std
::
unordered_map
<
int
,
NCCLContext
>
&
contexts
,
const
std
::
vector
<
platform
::
Place
>
&
places
)
{
std
::
vector
<
ncclComm_t
>
comms
;
std
::
vector
<
int
>
devs
;
comms
.
resize
(
contexts
.
size
());
devs
.
reserve
(
contexts
.
size
());
for
(
auto
&
p
:
places
)
{
devs
.
push_back
(
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
);
}
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclCommInitAll
(
&
comms
[
0
],
static_cast
<
int
>
(
contexts
.
size
()),
&
devs
[
0
]));
int
i
=
0
;
for
(
auto
&
dev_id
:
devs
)
{
contexts
.
at
(
dev_id
).
comm
=
comms
[
i
++
];
}
}
};
std
::
unordered_map
<
int
,
NCCLContext
>
communication_streams_
;
NCCLContext
&
GetNCCLCtx
(
platform
::
Place
p
)
{
platform
::
NCCLContext
&
GetNCCLCtx
(
platform
::
Place
p
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
return
communication_streams_
.
at
(
dev_id
);
}
#endif
platform
::
DeviceContext
*
CommunicationDevCtx
(
const
platform
::
Place
&
place
)
{
if
(
platform
::
is_cpu_place
(
place
)
||
local_scopes_
.
size
()
==
1
)
{
return
const_cast
<
platform
::
DeviceContext
*>
(
...
...
@@ -282,27 +221,95 @@ class ParallelExecutorPrivate {
vars_
;
std
::
unordered_set
<
std
::
unique_ptr
<
VarHandleBase
>>
dep_vars_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandle
>>
ops_
;
std
::
vector
<
std
::
unique_ptr
<
OpHandle
Base
>>
ops_
;
// Use a simpler thread pool, might be faster.
std
::
unique_ptr
<
ThreadPool
>
pool_
;
std
::
unique_ptr
<
platform
::
EnforceNotMet
>
exception_
;
};
struct
NCCLAllReduceOpHandle
:
public
OpHandle
{
ParallelExecutorPrivate
*
member_
;
VarHandle
*
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
{
auto
&
var_holders
=
vars_
[
place
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
var
=
&
init_var
;
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
}
return
var
;
}
explicit
NCCLAllReduceOpHandle
(
ParallelExecutorPrivate
*
member
)
:
member_
(
member
)
{}
void
RunOp
(
bool
use_event
,
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>
&
pending_vars
,
OpHandleBase
*
op
)
{
std
::
vector
<
std
::
atomic
<
bool
>
*>
*
ready_buffer
=
new
std
::
vector
<
std
::
atomic
<
bool
>
*>
();
for
(
auto
*
var
:
op
->
outputs_
)
{
ready_buffer
->
emplace_back
(
&
pending_vars
[
var
]);
}
auto
op_run
=
[
ready_buffer
,
op
,
this
,
use_event
]
{
try
{
VLOG
(
10
)
<<
op
->
DebugString
();
op
->
Run
(
use_event
);
for
(
auto
*
ready
:
*
ready_buffer
)
{
ready
->
store
(
true
,
std
::
memory_order_release
);
}
delete
ready_buffer
;
}
catch
(
platform
::
EnforceNotMet
ex
)
{
exception_
.
reset
(
new
platform
::
EnforceNotMet
(
ex
));
}
catch
(...)
{
LOG
(
FATAL
)
<<
"Unknown exception catched"
;
}
};
if
(
pool_
)
{
pool_
->
enqueue
(
op_run
);
}
else
{
op_run
();
}
}
void
GenerateVar
(
OpHandleBase
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
{
auto
&
vars
=
vars_
[
place
][
each_var_name
];
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
var
.
version_
=
version
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
each_var_name
;
var
.
place_
=
place
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
}
};
// namespace framework
struct
NCCLAllReduceOpHandle
:
public
OpHandleBase
{
const
std
::
vector
<
Scope
*>
&
local_scopes_
;
const
std
::
vector
<
platform
::
Place
>
&
places_
;
const
std
::
unordered_map
<
int
,
platform
::
NCCLContext
>
&
communication_ctxs_
;
explicit
NCCLAllReduceOpHandle
(
const
std
::
vector
<
Scope
*>
&
local_scopes
,
const
std
::
vector
<
platform
::
Place
>
&
places
,
const
std
::
unordered_map
<
int
,
platform
::
NCCLContext
>
&
ctxs
)
:
local_scopes_
(
local_scopes
),
places_
(
places
),
communication_ctxs_
(
ctxs
)
{}
void
Wait
(
platform
::
DeviceContext
*
waited_dev
)
override
{
OpHandle
::
Wait
(
waited_dev
);
OpHandle
Base
::
Wait
(
waited_dev
);
}
protected:
void
RunImpl
()
override
{
if
(
this
->
inputs_
.
size
()
==
1
)
{
if
(
inputs_
.
size
()
==
1
)
{
return
;
// No need to all reduce when GPU count = 1;
}
else
{
// Wait input done
...
...
@@ -317,9 +324,9 @@ struct NCCLAllReduceOpHandle : public OpHandle {
platform
::
NCCLGroupGuard
guard
;
for
(
size_t
i
=
0
;
i
<
member_
->
local_scopes_
.
size
();
++
i
)
{
auto
&
p
=
member_
->
places_
[
i
];
auto
*
s
=
member_
->
local_scopes_
[
i
];
for
(
size_t
i
=
0
;
i
<
local_scopes_
.
size
();
++
i
)
{
auto
&
p
=
places_
[
i
];
auto
*
s
=
local_scopes_
[
i
];
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
;
auto
&
lod_tensor
=
s
->
FindVar
(
var_name
)
->
Get
<
framework
::
LoDTensor
>
();
...
...
@@ -336,16 +343,16 @@ struct NCCLAllReduceOpHandle : public OpHandle {
if
(
numel
==
0
)
{
numel
=
static_cast
<
size_t
>
(
lod_tensor
.
numel
());
}
auto
&
nccl_ctx
=
member_
->
communication_stream
s_
.
at
(
dev_id
);
auto
&
nccl_ctx
=
communication_ctx
s_
.
at
(
dev_id
);
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclAllReduce
(
buffer
,
buffer
,
numel
,
static_cast
<
ncclDataType_t
>
(
dtype
),
ncclSum
,
nccl_ctx
.
comm
,
nccl_ctx
.
stream
()));
nccl_ctx
.
comm
_
,
nccl_ctx
.
stream
()));
}
}
}
};
struct
ComputationOpHandle
:
public
OpHandle
{
struct
ComputationOpHandle
:
public
OpHandle
Base
{
std
::
unique_ptr
<
OperatorBase
>
op_
;
Scope
*
scope_
;
platform
::
Place
place_
;
...
...
@@ -443,14 +450,14 @@ void ParallelExecutor::ConstructDependencyGraph(
auto
var_names
=
op
->
InputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
VarHandle
*
var
=
GetVarHandle
(
each_var_name
,
p
);
VarHandle
*
var
=
member_
->
GetVarHandle
(
each_var_name
,
p
);
op_handle
->
inputs_
.
emplace_back
(
var
);
var
->
pending_ops_
.
emplace
(
op_handle
);
}
var_names
=
op
->
OutputArgumentNames
();
for
(
auto
&
each_var_name
:
var_names
)
{
GenerateVar
(
op_handle
,
each_var_name
,
p
);
member_
->
GenerateVar
(
op_handle
,
each_var_name
,
p
);
}
if
(
is_forwarding
)
{
...
...
@@ -468,7 +475,7 @@ void ParallelExecutor::ConstructDependencyGraph(
// loss->pending_ops_.emplace_back(op_handle);
// op_handle->inputs_.emplace_back(loss);
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
p
);
member_
->
GenerateVar
(
op_handle
,
loss_var_name
+
"@GRAD"
,
p
);
change_forward
=
true
;
}
}
...
...
@@ -483,7 +490,9 @@ void ParallelExecutor::ConstructDependencyGraph(
for
(
auto
&
og
:
var_names
)
{
if
(
grads
.
count
(
og
)
!=
0
)
{
// is param grad
// Insert NCCL AllReduce Op
member_
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
(
member_
));
member_
->
ops_
.
emplace_back
(
new
NCCLAllReduceOpHandle
(
member_
->
local_scopes_
,
member_
->
places_
,
member_
->
communication_streams_
));
auto
*
op_handle
=
member_
->
ops_
.
back
().
get
();
for
(
size_t
i
=
0
;
i
<
member_
->
places_
.
size
();
++
i
)
{
...
...
@@ -562,37 +571,6 @@ void ParallelExecutor::PolishGraphToSupportDataHazards() const {
}
}
void
ParallelExecutor
::
GenerateVar
(
OpHandle
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
{
auto
&
vars
=
member_
->
vars_
[
place
][
each_var_name
];
size_t
version
=
vars
.
size
();
auto
&
var
=
vars
[
version
];
var
.
version_
=
version
;
var
.
generated_op_
=
op_handle
;
var
.
name_
=
each_var_name
;
var
.
place_
=
place
;
op_handle
->
outputs_
.
emplace_back
(
&
var
);
}
VarHandle
*
ParallelExecutor
::
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
{
auto
&
var_holders
=
member_
->
vars_
[
place
];
auto
&
var_holder
=
var_holders
[
each_var_name
];
VarHandle
*
var
=
nullptr
;
if
(
var_holder
.
empty
())
{
auto
&
init_var
=
var_holder
[
0
];
init_var
.
place_
=
place
;
init_var
.
name_
=
each_var_name
;
init_var
.
generated_op_
=
nullptr
;
init_var
.
version_
=
0
;
var
=
&
init_var
;
}
else
{
var
=
&
var_holder
.
rbegin
()
->
second
;
}
return
var
;
}
void
ParallelExecutor
::
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
{
#ifdef PADDLE_WITH_CUDA
...
...
@@ -621,8 +599,8 @@ void ParallelExecutor::BCastParamsToGPUs(
}
auto
&
nccl_ctx
=
member_
->
GetNCCLCtx
(
place
);
platform
::
dynload
::
ncclBcast
(
buffer
,
numel
,
data_type
,
0
,
nccl_ctx
.
comm
,
nccl_ctx
.
stream
());
platform
::
dynload
::
ncclBcast
(
buffer
,
numel
,
data_type
,
0
,
nccl_ctx
.
comm_
,
nccl_ctx
.
stream
());
}
}
...
...
@@ -640,12 +618,12 @@ void ParallelExecutor::BuildNCCLCommunicator() const {
for
(
auto
&
place
:
member_
->
places_
)
{
int
dev_id
=
boost
::
get
<
platform
::
CUDAPlace
>
(
place
).
device
;
member_
->
communication_streams_
.
emplace
(
dev_id
,
ParallelExecutorPrivate
::
NCCLContext
(
dev_id
));
member_
->
communication_streams_
.
emplace
(
dev_id
,
platform
::
NCCLContext
(
dev_id
));
}
ParallelExecutorPrivate
::
NCCLContext
::
InitNCCLContext
(
member_
->
communication_streams_
,
member_
->
places_
);
platform
::
NCCLContext
::
InitNCCLContext
(
member_
->
communication_streams_
,
member_
->
places_
);
#endif
}
...
...
@@ -656,7 +634,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
// Version --> VarHandle
member_
->
exception_
.
reset
();
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>
pending_vars
;
std
::
unordered_map
<
OpHandle
*
,
size_t
>
pending_ops
;
std
::
unordered_map
<
OpHandle
Base
*
,
size_t
>
pending_ops
;
std
::
vector
<
DummyVarHandle
>
dummy_vars
;
for
(
auto
&
place_pair
:
member_
->
vars_
)
{
...
...
@@ -672,7 +650,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
pending_vars
[
var
.
get
()]
=
var
->
generated_op_
==
nullptr
;
}
std
::
vector
<
OpHandle
*>
to_run
;
std
::
vector
<
OpHandle
Base
*>
to_run
;
for
(
auto
&
op
:
member_
->
ops_
)
{
if
(
op
->
inputs_
.
empty
())
{
// Special case, Op has no input.
...
...
@@ -722,7 +700,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
}
for
(
auto
*
op
:
to_run
)
{
RunOp
(
use_event
,
pending_vars
,
op
);
member_
->
RunOp
(
use_event
,
pending_vars
,
op
);
}
while
(
!
pending_vars
.
empty
())
{
...
...
@@ -750,7 +728,7 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
}
for
(
auto
*
op
:
to_run
)
{
pending_ops
.
erase
(
op
);
RunOp
(
use_event
,
pending_vars
,
op
);
member_
->
RunOp
(
use_event
,
pending_vars
,
op
);
}
}
...
...
@@ -762,35 +740,5 @@ void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
fetched_data
;
}
void
ParallelExecutor
::
RunOp
(
bool
use_event
,
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>
&
pending_vars
,
OpHandle
*
op
)
const
{
std
::
vector
<
std
::
atomic
<
bool
>
*>
*
ready_buffer
=
new
std
::
vector
<
std
::
atomic
<
bool
>
*>
();
for
(
auto
*
var
:
op
->
outputs_
)
{
ready_buffer
->
emplace_back
(
&
pending_vars
[
var
]);
}
auto
op_run
=
[
ready_buffer
,
op
,
this
,
use_event
]
{
try
{
VLOG
(
10
)
<<
op
->
DebugString
();
op
->
Run
(
use_event
);
for
(
auto
*
ready
:
*
ready_buffer
)
{
ready
->
store
(
true
,
std
::
memory_order_release
);
}
delete
ready_buffer
;
}
catch
(
platform
::
EnforceNotMet
ex
)
{
member_
->
exception_
.
reset
(
new
platform
::
EnforceNotMet
(
ex
));
}
catch
(...)
{
LOG
(
FATAL
)
<<
"Unknown exception catched"
;
}
};
if
(
member_
->
pool_
)
{
member_
->
pool_
->
enqueue
(
op_run
);
}
else
{
op_run
();
}
}
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/parallel_executor.h
浏览文件 @
6ebc6bf5
...
...
@@ -29,9 +29,6 @@ namespace paddle {
namespace
framework
{
class
ParallelExecutorPrivate
;
class
VarHandle
;
class
OpHandle
;
class
VarHandleBase
;
class
ParallelExecutor
{
public:
...
...
@@ -50,23 +47,12 @@ class ParallelExecutor {
void
BCastParamsToGPUs
(
const
ProgramDesc
&
startup_program
)
const
;
VarHandle
*
GetVarHandle
(
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
;
void
GenerateVar
(
OpHandle
*
op_handle
,
const
std
::
string
&
each_var_name
,
const
platform
::
Place
&
place
)
const
;
void
ConstructDependencyGraph
(
const
std
::
unordered_set
<
std
::
string
>&
params
,
const
ProgramDesc
&
main_program
,
const
std
::
string
&
loss_var_name
)
const
;
void
BuildNCCLCommunicator
()
const
;
void
RunOp
(
bool
use_event
,
std
::
unordered_map
<
VarHandleBase
*
,
std
::
atomic
<
bool
>>&
pending_vars
,
OpHandle
*
op
)
const
;
void
PolishGraphToSupportDataHazards
()
const
;
};
...
...
paddle/fluid/platform/nccl_helper.h
浏览文件 @
6ebc6bf5
...
...
@@ -47,11 +47,45 @@ class NCCLGroupGuard {
}
private:
static
std
::
mutex
&
mutex
()
{
static
std
::
mutex
&
mutex
()
{
static
std
::
mutex
mtx
;
return
mtx
;
}
};
struct
NCCLContext
{
std
::
unique_ptr
<
CUDADeviceContext
>
ctx_
;
ncclComm_t
comm_
;
explicit
NCCLContext
(
int
dev_id
)
:
ctx_
(
new
CUDADeviceContext
(
CUDAPlace
(
dev_id
)))
{}
cudaStream_t
stream
()
const
{
return
ctx_
->
stream
();
}
int
device_id
()
const
{
return
boost
::
get
<
platform
::
CUDAPlace
>
(
ctx_
->
GetPlace
()).
device
;
}
static
void
InitNCCLContext
(
std
::
unordered_map
<
int
,
NCCLContext
>
&
contexts
,
const
std
::
vector
<
platform
::
Place
>
&
places
)
{
std
::
vector
<
ncclComm_t
>
comms
;
std
::
vector
<
int
>
devs
;
comms
.
resize
(
contexts
.
size
());
devs
.
reserve
(
contexts
.
size
());
for
(
auto
&
p
:
places
)
{
devs
.
push_back
(
boost
::
get
<
platform
::
CUDAPlace
>
(
p
).
device
);
}
PADDLE_ENFORCE
(
platform
::
dynload
::
ncclCommInitAll
(
&
comms
[
0
],
static_cast
<
int
>
(
contexts
.
size
()),
&
devs
[
0
]));
int
i
=
0
;
for
(
auto
&
dev_id
:
devs
)
{
contexts
.
at
(
dev_id
).
comm_
=
comms
[
i
++
];
}
}
};
}
// namespace platform
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录