diff --git a/doc/v2/build_and_install/pip_install_cn.rst b/doc/v2/build_and_install/pip_install_cn.rst index ddcd42a0c6554469d702d3a9bbecd16643d6b7ed..b3d882743785e8ee301b71b696230531d2b7ba58 100644 --- a/doc/v2/build_and_install/pip_install_cn.rst +++ b/doc/v2/build_and_install/pip_install_cn.rst @@ -34,15 +34,15 @@ PaddlePaddle可以使用常用的Python包管理工具 :align: center .. csv-table:: 各个版本最新的whl包 - :header: "版本说明", "cp27-cp27mu", "cp27-cp27m", "C-API" - :widths: 1, 3, 3, 3 - - "cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "暂无" - "cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + :header: "版本说明", "cp27-cp27mu", "cp27-cp27m" + :widths: 1, 3, 3 + + "cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_" .. _pip_dependency: diff --git a/doc/v2/build_and_install/pip_install_en.rst b/doc/v2/build_and_install/pip_install_en.rst index e08c84703bfa89352a79acbddd5d7f1bc88ce82e..1e409d86b9775094998f72f92954f4bbc1013ea1 100644 --- a/doc/v2/build_and_install/pip_install_en.rst +++ b/doc/v2/build_and_install/pip_install_en.rst @@ -37,15 +37,15 @@ If the links below shows up the login form, just click "Log in as guest" to star :align: center .. csv-table:: whl package of each version - :header: "version", "cp27-cp27mu", "cp27-cp27m", "C-API" - :widths: 1, 3, 3, 3 - - "cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "Not Available" - "cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" - "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_", "`paddle.tgz `_" + :header: "version", "cp27-cp27mu", "cp27-cp27m" + :widths: 1, 3, 3 + + "cpu_avx_mkl", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cpu_avx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cpu_noavx_openblas", "`paddlepaddle-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cuda7.5_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cuda8.0_cudnn5_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_" + "cuda8.0_cudnn7_avx_mkl", "`paddlepaddle_gpu-0.11.0-cp27-cp27mu-linux_x86_64.whl `_", "`paddlepaddle_gpu-0.11.0-cp27-cp27m-linux_x86_64.whl `_" .. _pip_dependency: diff --git a/doc/v2/howto/capi/compile_paddle_lib_cn.md b/doc/v2/howto/capi/compile_paddle_lib_cn.md index fd8dec8164580b9dcb716e69f3cc5357639f17d3..e223fd33a8420abcdfdad53d1cfc5ed160a1b37e 100644 --- a/doc/v2/howto/capi/compile_paddle_lib_cn.md +++ b/doc/v2/howto/capi/compile_paddle_lib_cn.md @@ -1,22 +1,80 @@ -## 安装与编译C-API预测库 - -### 概述 - -使用 C-API 进行预测依赖于将 PaddlePaddle 核心代码编译成链接库,只需在编译时需配制下面这些编译选项: - -必须配置选项: -- `WITH_C_API`,必须配置为`ON`。 - -推荐配置选项: -- `WITH_PYTHON`,推荐配置为`OFF` -- `WITH_SWIG_PY`,推荐配置为`OFF` -- `WITH_GOLANG`,推荐设置为`OFF` - -可选配置选项: -- `WITH_GPU`,可配置为`ON/OFF` -- `WITH_MKL`,可配置为`ON/OFF` - -对推荐配置中的选项建议按照设置,以避免链接不必要的库。其它可选编译选项按需进行设定。 +## 安装、编译与链接C-API预测库 + +### 直接下载安装 + +从CI系统中下载最新的C-API开发包进行安装,用户可以从下面的表格中找到需要的版本: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
版本说明C-API
cpu_avx_mklpaddle.tgz
cpu_avx_openblas暂无
cpu_noavx_openblaspaddle.tgz
cuda7.5_cudnn5_avx_mklpaddle.tgz
cuda8.0_cudnn5_avx_mklpaddle.tgz
cuda8.0_cudnn7_avx_mklpaddle.tgz
+ +### 从源码编译 + +用户也可以从 PaddlePaddle 核心代码编译C-API链接库,只需在编译时配制下面这些编译选项: + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
选项
WITH_C_APION
WITH_PYTHONOFF(推荐)
WITH_SWIG_PYOFF(推荐)
WITH_GOLANGOFF(推荐)
WITH_GPUON/OFF
WITH_MKLON/OFF
+ +建议按照推荐值设置,以避免链接不必要的库。其它可选编译选项按需进行设定。 下面的代码片段从github拉取最新代码,配制编译选项(需要将PADDLE_ROOT替换为PaddlePaddle预测库的安装路径): @@ -100,23 +158,19 @@ cmake -DCMAKE_INSTALL_PREFIX=$PADDLE_ROOT \ 目前提供三种链接方式: -1. 链接`libpaddle_capi_shared.so` 动态库 - - 使用 PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_shared.so`时,需注意: - 1. 如果编译时指定编译CPU版本,且使用`OpenBLAS`数学库,在使用C-API开发预测程序时,只需要链接`libpaddle_capi_shared.so`这一个库。 - 1. 如果是用编译时指定CPU版本,且使用`MKL`数学库,由于`MKL`库有自己独立的动态库文件,在使用PaddlePaddle C-API开发预测程序时,需要自己链接MKL链接库。 - 1. 如果编译时指定编译GPU版本,CUDA相关库会在预测程序运行时动态装载,需要将CUDA相关的库设置到`LD_LIBRARY_PATH`环境变量中。 - - 这种方式最为简便,链接相对容易,**在无特殊需求情况下,推荐使用此方式**。 - -2. 链接静态库 `libpaddle_capi_whole.a` - - 使用PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_whole.a`时,需注意: - 1. 需要指定`-Wl,--whole-archive`链接选项。 - 1. 需要显式地链接 `gflags`、`glog`、`libz`、`protobuf` 等第三方库,可在`PADDLE_ROOT/third_party`下找到。 - 1. 如果在编译 C-API 时使用OpenBLAS数学库,需要显示地链接`libopenblas.a`。 - 1. 如果在编译 C-API 是使用MKL数学库,需要显示地链接MKL的动态库。 - -3. 链接静态库 `libpaddle_capi_layers.a`和`libpaddle_capi_engine.a` - - 使用PaddlePaddle C-API 开发预测程序链接`libpaddle_capi_whole.a`时,需注意: - 1. 这种链接方式主要用于移动端预测。 - 1. 为了减少生成链接库的大小把`libpaddle_capi_whole.a`拆成以上两个静态链接库。 - 1. 需指定`-Wl,--whole-archive -lpaddle_capi_layers` 和 `-Wl,--no-whole-archive -lpaddle_capi_engine` 进行链接。 - 1. 第三方依赖库需要按照与方式2同样方法显示地进行链接。 +1. 链接`libpaddle_capi_shared.so` 动态库(这种方式最为简便,链接相对容易,**在无特殊需求情况下,推荐使用此方式**),需注意: + 1. 如果编译时指定编译CPU版本,且使用`OpenBLAS`数学库,在使用C-API开发预测程序时,只需要链接`libpaddle_capi_shared.so`这一个库。 + 1. 如果是用编译时指定CPU版本,且使用`MKL`数学库,由于`MKL`库有自己独立的动态库文件,在使用PaddlePaddle C-API开发预测程序时,需要自己链接MKL链接库。 + 1. 如果编译时指定编译GPU版本,CUDA相关库会在预测程序运行时动态装载,需要将CUDA相关的库设置到`LD_LIBRARY_PATH`环境变量中。 + +2. 链接静态库 `libpaddle_capi_whole.a`,需注意: + 1. 需要指定`-Wl,--whole-archive`链接选项。 + 1. 需要显式地链接 `gflags`、`glog`、`libz`、`protobuf` 等第三方库,可在`PADDLE_ROOT/third_party`下找到。 + 1. 如果在编译 C-API 时使用OpenBLAS数学库,需要显示地链接`libopenblas.a`。 + 1. 如果在编译 C-API 是使用MKL数学库,需要显示地链接MKL的动态库。 + +3. 链接静态库 `libpaddle_capi_layers.a`和`libpaddle_capi_engine.a`,需注意: + 1. 这种链接方式主要用于移动端预测。 + 1. 为了减少生成链接库的大小把`libpaddle_capi_whole.a`拆成以上两个静态链接库。 + 1. 需指定`-Wl,--whole-archive -lpaddle_capi_layers` 和 `-Wl,--no-whole-archive -lpaddle_capi_engine` 进行链接。 + 1. 第三方依赖库需要按照与方式2同样方法显示地进行链接。 diff --git a/doc/v2/howto/rnn/hierarchical_layer_cn.rst b/doc/v2/howto/rnn/hierarchical_layer_cn.rst index e05173c2006ff47ecb6ca5a4fe1502de750acc59..2f8f408b40299890da694862a7b9418cf9ff07f2 100644 --- a/doc/v2/howto/rnn/hierarchical_layer_cn.rst +++ b/doc/v2/howto/rnn/hierarchical_layer_cn.rst @@ -22,7 +22,7 @@ pooling ======== -pooling 的使用示例如下,详细见 :ref:`api_v2.layer_pooling` 配置API。 +pooling 的使用示例如下。 .. code-block:: bash @@ -47,7 +47,7 @@ pooling 的使用示例如下,详细见 :ref:`api_v2.layer_pooling` 配置API last_seq 和 first_seq ===================== -last_seq 的使用示例如下( :ref:`api_v2.layer_first_seq` 类似),详细见 :ref:`api_v2.layer_last_seq` 配置API。 +last_seq 的使用示例如下(first_seq 类似)。 .. code-block:: bash @@ -68,7 +68,7 @@ last_seq 的使用示例如下( :ref:`api_v2.layer_first_seq` 类似),详 expand ====== -expand 的使用示例如下,详细见 :ref:`api_v2.layer_expand` 配置API。 +expand 的使用示例如下。 .. code-block:: bash diff --git a/doc/v2/howto/rnn/hrnn_rnn_api_compare_cn.rst b/doc/v2/howto/rnn/hrnn_rnn_api_compare_cn.rst index efdc44455ea4dc81a87b4d4fc8a81e78b15cb06a..b05b66415fbb829f471b1491b9881f65137bfe17 100644 --- a/doc/v2/howto/rnn/hrnn_rnn_api_compare_cn.rst +++ b/doc/v2/howto/rnn/hrnn_rnn_api_compare_cn.rst @@ -4,7 +4,7 @@ 单双层RNN API对比介绍 ##################### -本文以PaddlePaddle的双层RNN单元测试为示例,用多对效果完全相同的、分别使用单双层RNN作为网络配置的模型,来讲解如何使用双层RNN。本文中所有的例子,都只是介绍双层RNN的API接口,并不是使用双层RNN解决实际的问题。如果想要了解双层RNN在具体问题中的使用,请参考\ :ref:`algo_hrnn_demo`\ 。本文中示例所使用的单元测试文件是\ `test_RecurrentGradientMachine.cpp `_\ 。 +本文以PaddlePaddle的双层RNN单元测试为示例,用多对效果完全相同的、分别使用单双层RNN作为网络配置的模型,来讲解如何使用双层RNN。本文中所有的例子,都只是介绍双层RNN的API接口,并不是使用双层RNN解决实际的问题。如果想要了解双层RNN在具体问题中的使用,请参考\ :ref:`algo_hrnn_demo`\ 。本文中示例所使用的单元测试文件是\ `test_RecurrentGradientMachine.cpp `_\ 。 示例1:双层RNN,子序列间无Memory ================================ @@ -166,11 +166,6 @@ 在上面代码中,单层和双层序列的使用和示例2中的示例类似,区别是同时处理了两个输入。而对于双层序列,两个输入的子序列长度也并不相同。但是,我们使用了\ :code:`targetInlink`\ 参数设置了外层\ :code:`recurrent_group`\ 的输出格式。所以外层输出的序列形状,和\ :code:`emb2`\ 的序列形状一致。 -示例4:beam_search的生成 -======================== - -TBD - 词汇表 ======