Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6bfa6a0a
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6bfa6a0a
编写于
10月 30, 2018
作者:
Y
Yancey1989
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
add fused broadcast op unit test, test=develop
上级
e74267ae
变更
4
显示空白变更内容
内联
并排
Showing
4 changed file
with
438 addition
and
221 deletion
+438
-221
paddle/fluid/framework/details/CMakeLists.txt
paddle/fluid/framework/details/CMakeLists.txt
+1
-0
paddle/fluid/framework/details/broadcast_op_handle_test.cc
paddle/fluid/framework/details/broadcast_op_handle_test.cc
+1
-221
paddle/fluid/framework/details/broadcast_op_handle_test.h
paddle/fluid/framework/details/broadcast_op_handle_test.h
+271
-0
paddle/fluid/framework/details/fused_broadcast_op_handle_test.cc
...fluid/framework/details/fused_broadcast_op_handle_test.cc
+165
-0
未找到文件。
paddle/fluid/framework/details/CMakeLists.txt
浏览文件 @
6bfa6a0a
...
@@ -56,6 +56,7 @@ cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_execu
...
@@ -56,6 +56,7 @@ cc_library(scope_buffered_ssa_graph_executor SRCS scope_buffered_ssa_graph_execu
# device_context reduce_op_handle )
# device_context reduce_op_handle )
cc_library
(
fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc
cc_library
(
fast_threaded_ssa_graph_executor SRCS fast_threaded_ssa_graph_executor.cc
DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context
)
DEPS fetch_op_handle ssa_graph_executor scope simple_threadpool device_context
)
cc_test
(
fused_broadcast_op_test SRCS fused_broadcast_op_handle_test.cc DEPS fused_broadcast_op_handle
)
cc_library
(
build_strategy SRCS build_strategy.cc DEPS
cc_library
(
build_strategy SRCS build_strategy.cc DEPS
graph_viz_pass multi_devices_graph_pass
graph_viz_pass multi_devices_graph_pass
...
...
paddle/fluid/framework/details/broadcast_op_handle_test.cc
浏览文件 @
6bfa6a0a
...
@@ -12,232 +12,12 @@
...
@@ -12,232 +12,12 @@
// See the License for the specific language governing permissions and
// See the License for the specific language governing permissions and
// limitations under the License.
// limitations under the License.
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/framework/details/broadcast_op_handle_test.h"
#include "gtest/gtest.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
paddle
{
namespace
framework
{
namespace
framework
{
namespace
details
{
namespace
details
{
namespace
f
=
paddle
::
framework
;
namespace
p
=
paddle
::
platform
;
// test data amount
const
f
::
DDim
kDims
=
{
20
,
20
};
struct
TestBroadcastOpHandle
{
std
::
vector
<
std
::
unique_ptr
<
p
::
DeviceContext
>>
ctxs_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
Scope
*>
param_scopes_
;
Scope
g_scope_
;
std
::
unique_ptr
<
OpHandleBase
>
op_handle_
;
std
::
vector
<
std
::
unique_ptr
<
VarHandleBase
>>
vars_
;
std
::
vector
<
p
::
Place
>
gpu_list_
;
bool
use_gpu_
;
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
void
WaitAll
()
{
for
(
size_t
j
=
0
;
j
<
ctxs_
.
size
();
++
j
)
{
ctxs_
[
j
]
->
Wait
();
}
#ifdef PADDLE_WITH_CUDA
if
(
nccl_ctxs_
)
{
nccl_ctxs_
->
WaitAll
();
}
#endif
}
void
InitCtxOnGpu
(
bool
use_gpu
)
{
use_gpu_
=
use_gpu
;
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
int
count
=
p
::
GetCUDADeviceCount
();
if
(
count
<=
1
)
{
LOG
(
WARNING
)
<<
"Cannot test multi-gpu Broadcast, because the CUDA "
"device count is "
<<
count
;
exit
(
0
);
}
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CUDAPlace
(
i
);
gpu_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CUDADeviceContext
(
p
));
}
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
gpu_list_
));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
int
count
=
8
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CPUPlace
();
gpu_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CPUDeviceContext
(
p
));
}
#ifdef PADDLE_WITH_CUDA
nccl_ctxs_
.
reset
(
nullptr
);
#endif
}
}
void
InitBroadcastOp
(
size_t
input_scope_idx
)
{
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
local_scopes_
.
push_back
(
&
(
g_scope_
.
NewScope
()));
Scope
&
local_scope
=
local_scopes_
.
back
()
->
NewScope
();
*
local_scopes_
.
back
()
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
local_scope
.
Var
(
"out"
);
param_scopes_
.
emplace_back
(
&
local_scope
);
}
param_scopes_
[
input_scope_idx
]
->
Var
(
"input"
);
std
::
unique_ptr
<
ir
::
Node
>
n
=
ir
::
CreateNodeForTest
(
"node0"
,
ir
::
Node
::
Type
::
kOperation
);
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
gpu_list_
,
nccl_ctxs_
.
get
()));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
gpu_list_
,
nccl_ctxs_
.
get
()));
#else
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
gpu_list_
));
#endif
}
std
::
unique_ptr
<
ir
::
Node
>
v
=
ir
::
CreateNodeForTest
(
"node1"
,
ir
::
Node
::
Type
::
kVariable
);
auto
*
in_var_handle
=
new
VarHandle
(
v
.
get
(),
1
,
input_scope_idx
,
"input"
,
gpu_list_
[
input_scope_idx
]);
vars_
.
emplace_back
(
in_var_handle
);
op_handle_
->
AddInput
(
in_var_handle
);
// add dummy var
std
::
unique_ptr
<
ir
::
Node
>
v2
=
ir
::
CreateNodeForTest
(
"node2"
,
ir
::
Node
::
Type
::
kVariable
);
vars_
.
emplace_back
(
new
DummyVarHandle
(
v2
.
get
()));
DummyVarHandle
*
dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
dummy_var_handle
->
ClearGeneratedOp
();
op_handle_
->
AddInput
(
dummy_var_handle
);
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
if
(
!
use_gpu_
)
{
op_handle_
->
SetDeviceContext
(
gpu_list_
[
j
],
ctxs_
[
j
].
get
());
}
std
::
unique_ptr
<
ir
::
Node
>
v3
=
ir
::
CreateNodeForTest
(
"node3"
,
ir
::
Node
::
Type
::
kVariable
);
VarHandle
*
out_var_handle
=
new
VarHandle
(
v3
.
get
(),
2
,
j
,
"out"
,
gpu_list_
[
j
]);
vars_
.
emplace_back
(
out_var_handle
);
op_handle_
->
AddOutput
(
out_var_handle
);
}
// add dummy var
std
::
unique_ptr
<
ir
::
Node
>
v4
=
ir
::
CreateNodeForTest
(
"node4"
,
ir
::
Node
::
Type
::
kVariable
);
vars_
.
emplace_back
(
new
DummyVarHandle
(
v4
.
get
()));
DummyVarHandle
*
out_dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
out_dummy_var_handle
->
ClearGeneratedOp
();
op_handle_
->
AddOutput
(
out_dummy_var_handle
);
}
void
TestBroadcastLodTensor
(
size_t
input_scope_idx
)
{
auto
in_var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
"input"
);
PADDLE_ENFORCE_NOT_NULL
(
in_var
);
auto
in_lod_tensor
=
in_var
->
GetMutable
<
f
::
LoDTensor
>
();
in_lod_tensor
->
mutable_data
<
float
>
(
kDims
,
gpu_list_
[
input_scope_idx
]);
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
;
}
f
::
LoD
lod
{{
0
,
10
,
20
}};
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
in_lod_tensor
);
in_lod_tensor
->
set_lod
(
lod
);
in_lod_tensor
->
Resize
(
kDims
);
op_handle_
->
Run
(
false
);
WaitAll
();
p
::
CPUPlace
cpu_place
;
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
auto
out_var
=
param_scopes_
[
j
]
->
FindVar
(
"out"
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
auto
out_tensor
=
out_var
->
Get
<
f
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
out_tensor
.
lod
(),
lod
,
"lod is not equal."
);
f
::
Tensor
result_tensor
;
f
::
TensorCopySync
(
out_tensor
,
cpu_place
,
&
result_tensor
);
float
*
ct
=
result_tensor
.
mutable_data
<
float
>
(
cpu_place
);
for
(
int64_t
i
=
0
;
i
<
f
::
product
(
kDims
);
++
i
)
{
ASSERT_NEAR
(
ct
[
i
],
send_vector
[
i
],
1e-5
);
}
}
}
void
TestBroadcastSelectedRows
(
size_t
input_scope_idx
)
{
auto
in_var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
"input"
);
PADDLE_ENFORCE_NOT_NULL
(
in_var
);
auto
in_selected_rows
=
in_var
->
GetMutable
<
f
::
SelectedRows
>
();
auto
value
=
in_selected_rows
->
mutable_value
();
value
->
mutable_data
<
float
>
(
kDims
,
gpu_list_
[
input_scope_idx
]);
int
height
=
static_cast
<
int
>
(
kDims
[
0
])
*
2
;
std
::
vector
<
int64_t
>
rows
{
0
,
1
,
2
,
3
,
3
,
0
,
14
,
7
,
3
,
1
,
2
,
4
,
6
,
3
,
1
,
1
,
1
,
1
,
3
,
7
};
in_selected_rows
->
set_height
(
height
);
in_selected_rows
->
set_rows
(
rows
);
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
;
}
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
value
);
op_handle_
->
Run
(
false
);
WaitAll
();
p
::
CPUPlace
cpu_place
;
for
(
size_t
j
=
0
;
j
<
gpu_list_
.
size
();
++
j
)
{
auto
out_var
=
param_scopes_
[
j
]
->
FindVar
(
"out"
);
PADDLE_ENFORCE_NOT_NULL
(
out_var
);
auto
&
out_select_rows
=
out_var
->
Get
<
f
::
SelectedRows
>
();
auto
rt
=
out_select_rows
.
value
();
PADDLE_ENFORCE_EQ
(
out_select_rows
.
height
(),
height
,
"height is not equal."
);
for
(
size_t
k
=
0
;
k
<
out_select_rows
.
rows
().
size
();
++
k
)
{
PADDLE_ENFORCE_EQ
(
out_select_rows
.
rows
()[
k
],
rows
[
k
]);
}
f
::
Tensor
result_tensor
;
f
::
TensorCopySync
(
rt
,
cpu_place
,
&
result_tensor
);
float
*
ct
=
result_tensor
.
data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
f
::
product
(
kDims
);
++
i
)
{
ASSERT_NEAR
(
ct
[
i
],
send_vector
[
i
],
1e-5
);
}
}
}
};
TEST
(
BroadcastTester
,
TestCPUBroadcastTestLodTensor
)
{
TEST
(
BroadcastTester
,
TestCPUBroadcastTestLodTensor
)
{
TestBroadcastOpHandle
test_op
;
TestBroadcastOpHandle
test_op
;
size_t
input_scope_idx
=
0
;
size_t
input_scope_idx
=
0
;
...
...
paddle/fluid/framework/details/broadcast_op_handle_test.h
0 → 100644
浏览文件 @
6bfa6a0a
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include <string>
#include <vector>
#include "gtest/gtest.h"
#include "paddle/fluid/framework/details/broadcast_op_handle.h"
#include "paddle/fluid/platform/device_context.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
namespace
f
=
paddle
::
framework
;
namespace
p
=
paddle
::
platform
;
// test data amount
const
f
::
DDim
kDims
=
{
20
,
20
};
struct
TestBroadcastOpHandle
{
std
::
vector
<
std
::
unique_ptr
<
p
::
DeviceContext
>>
ctxs_
;
std
::
vector
<
Scope
*>
local_scopes_
;
std
::
vector
<
Scope
*>
param_scopes_
;
Scope
g_scope_
;
std
::
unique_ptr
<
OpHandleBase
>
op_handle_
;
std
::
vector
<
std
::
unique_ptr
<
VarHandleBase
>>
vars_
;
std
::
vector
<
p
::
Place
>
place_list_
;
bool
use_gpu_
;
#ifdef PADDLE_WITH_CUDA
std
::
unique_ptr
<
platform
::
NCCLContextMap
>
nccl_ctxs_
;
#endif
void
WaitAll
()
{
for
(
size_t
j
=
0
;
j
<
ctxs_
.
size
();
++
j
)
{
ctxs_
[
j
]
->
Wait
();
}
#ifdef PADDLE_WITH_CUDA
if
(
nccl_ctxs_
)
{
nccl_ctxs_
->
WaitAll
();
}
#endif
}
void
InitCtxOnGpu
(
bool
use_gpu
)
{
use_gpu_
=
use_gpu
;
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
int
count
=
p
::
GetCUDADeviceCount
();
if
(
count
<=
1
)
{
LOG
(
WARNING
)
<<
"Cannot test multi-gpu Broadcast, because the CUDA "
"device count is "
<<
count
;
exit
(
0
);
}
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CUDAPlace
(
i
);
place_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CUDADeviceContext
(
p
));
}
nccl_ctxs_
.
reset
(
new
platform
::
NCCLContextMap
(
place_list_
));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
int
count
=
8
;
for
(
int
i
=
0
;
i
<
count
;
++
i
)
{
auto
p
=
p
::
CPUPlace
();
place_list_
.
push_back
(
p
);
ctxs_
.
emplace_back
(
new
p
::
CPUDeviceContext
(
p
));
}
#ifdef PADDLE_WITH_CUDA
nccl_ctxs_
.
reset
(
nullptr
);
#endif
}
}
void
InitBroadcastOp
(
size_t
input_scope_idx
)
{
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
local_scopes_
.
push_back
(
&
(
g_scope_
.
NewScope
()));
Scope
&
local_scope
=
local_scopes_
.
back
()
->
NewScope
();
*
local_scopes_
.
back
()
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
local_scope
.
Var
(
"out"
);
param_scopes_
.
emplace_back
(
&
local_scope
);
}
param_scopes_
[
input_scope_idx
]
->
Var
(
"input"
);
std
::
unique_ptr
<
ir
::
Node
>
n
=
ir
::
CreateNodeForTest
(
"node0"
,
ir
::
Node
::
Type
::
kOperation
);
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
,
nccl_ctxs_
.
get
()));
#else
PADDLE_THROW
(
"CUDA is not support."
);
#endif
}
else
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
,
nccl_ctxs_
.
get
()));
#else
op_handle_
.
reset
(
new
BroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
));
#endif
}
std
::
unique_ptr
<
ir
::
Node
>
v
=
ir
::
CreateNodeForTest
(
"node1"
,
ir
::
Node
::
Type
::
kVariable
);
auto
*
in_var_handle
=
new
VarHandle
(
v
.
get
(),
1
,
input_scope_idx
,
"input"
,
place_list_
[
input_scope_idx
]);
vars_
.
emplace_back
(
in_var_handle
);
op_handle_
->
AddInput
(
in_var_handle
);
// add dummy var
std
::
unique_ptr
<
ir
::
Node
>
v2
=
ir
::
CreateNodeForTest
(
"node2"
,
ir
::
Node
::
Type
::
kVariable
);
vars_
.
emplace_back
(
new
DummyVarHandle
(
v2
.
get
()));
DummyVarHandle
*
dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
dummy_var_handle
->
ClearGeneratedOp
();
op_handle_
->
AddInput
(
dummy_var_handle
);
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
if
(
!
use_gpu_
)
{
op_handle_
->
SetDeviceContext
(
place_list_
[
j
],
ctxs_
[
j
].
get
());
}
std
::
unique_ptr
<
ir
::
Node
>
v3
=
ir
::
CreateNodeForTest
(
"node3"
,
ir
::
Node
::
Type
::
kVariable
);
VarHandle
*
out_var_handle
=
new
VarHandle
(
v3
.
get
(),
2
,
j
,
"out"
,
place_list_
[
j
]);
vars_
.
emplace_back
(
out_var_handle
);
op_handle_
->
AddOutput
(
out_var_handle
);
}
// add dummy var
std
::
unique_ptr
<
ir
::
Node
>
v4
=
ir
::
CreateNodeForTest
(
"node4"
,
ir
::
Node
::
Type
::
kVariable
);
vars_
.
emplace_back
(
new
DummyVarHandle
(
v4
.
get
()));
DummyVarHandle
*
out_dummy_var_handle
=
static_cast
<
DummyVarHandle
*>
(
vars_
.
back
().
get
());
out_dummy_var_handle
->
ClearGeneratedOp
();
op_handle_
->
AddOutput
(
out_dummy_var_handle
);
}
std
::
vector
<
float
>
InitLoDTensor
(
const
std
::
string
&
varname
,
size_t
input_scope_idx
,
const
f
::
LoD
&
lod
,
float
val_scalar
=
0.0
)
{
auto
var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
lod_tensor
=
var
->
GetMutable
<
f
::
LoDTensor
>
();
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
+
val_scalar
;
}
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
lod_tensor
);
lod_tensor
->
set_lod
(
lod
);
lod_tensor
->
Resize
(
kDims
);
return
send_vector
;
}
std
::
vector
<
float
>
InitSelectedRows
(
const
std
::
string
&
varname
,
size_t
input_scope_idx
,
const
std
::
vector
<
int64_t
>&
rows
,
int
height
,
float
value_scalar
=
0.0
)
{
std
::
vector
<
float
>
send_vector
(
static_cast
<
size_t
>
(
f
::
product
(
kDims
)));
for
(
size_t
k
=
0
;
k
<
send_vector
.
size
();
++
k
)
{
send_vector
[
k
]
=
k
+
value_scalar
;
}
auto
var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
selected_rows
=
var
->
GetMutable
<
f
::
SelectedRows
>
();
auto
value
=
selected_rows
->
mutable_value
();
value
->
mutable_data
<
float
>
(
kDims
,
place_list_
[
input_scope_idx
]);
selected_rows
->
set_height
(
height
);
selected_rows
->
set_rows
(
rows
);
paddle
::
framework
::
TensorFromVector
<
float
>
(
send_vector
,
*
(
ctxs_
[
input_scope_idx
]),
value
);
return
send_vector
;
}
void
SelectedRowsEqual
(
const
std
::
string
&
varname
,
int
input_scope_idx
,
const
std
::
vector
<
float
>&
send_vector
,
const
std
::
vector
<
int64_t
>&
rows
,
int
height
)
{
auto
var
=
param_scopes_
[
input_scope_idx
]
->
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
&
selected_rows
=
var
->
Get
<
f
::
SelectedRows
>
();
auto
rt
=
selected_rows
.
value
();
PADDLE_ENFORCE_EQ
(
selected_rows
.
height
(),
height
,
"height is not equal."
);
for
(
size_t
k
=
0
;
k
<
selected_rows
.
rows
().
size
();
++
k
)
{
PADDLE_ENFORCE_EQ
(
selected_rows
.
rows
()[
k
],
rows
[
k
]);
}
p
::
CPUPlace
cpu_place
;
f
::
Tensor
result_tensor
;
f
::
TensorCopySync
(
rt
,
cpu_place
,
&
result_tensor
);
float
*
ct
=
result_tensor
.
data
<
float
>
();
for
(
int64_t
i
=
0
;
i
<
f
::
product
(
kDims
);
++
i
)
{
ASSERT_NEAR
(
ct
[
i
],
send_vector
[
i
],
1e-5
);
}
}
void
LoDTensorEqual
(
const
std
::
string
&
varname
,
const
std
::
vector
<
float
>&
send_vec
,
const
f
::
LoD
&
lod
,
framework
::
Scope
*
scope
)
{
p
::
CPUPlace
cpu_place
;
auto
var
=
scope
->
FindVar
(
varname
);
PADDLE_ENFORCE_NOT_NULL
(
var
);
auto
tensor
=
var
->
Get
<
f
::
LoDTensor
>
();
PADDLE_ENFORCE_EQ
(
tensor
.
lod
(),
lod
,
"lod is not equal."
);
f
::
Tensor
result_tensor
;
f
::
TensorCopySync
(
tensor
,
cpu_place
,
&
result_tensor
);
float
*
ct
=
result_tensor
.
mutable_data
<
float
>
(
cpu_place
);
for
(
int64_t
k
=
0
;
k
<
f
::
product
(
kDims
);
++
k
)
{
ASSERT_NEAR
(
ct
[
k
],
send_vec
[
k
],
1e-5
);
}
}
void
TestBroadcastLodTensor
(
size_t
input_scope_idx
)
{
f
::
LoD
lod
{{
0
,
10
,
20
}};
auto
send_vector
=
InitLoDTensor
(
"input"
,
input_scope_idx
,
lod
);
op_handle_
->
Run
(
false
);
WaitAll
();
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
LoDTensorEqual
(
"out"
,
send_vector
,
lod
,
param_scopes_
[
j
]);
}
}
void
TestBroadcastSelectedRows
(
size_t
input_scope_idx
)
{
std
::
vector
<
int64_t
>
rows
{
0
,
1
,
2
,
3
,
3
,
0
,
14
,
7
,
3
,
1
,
2
,
4
,
6
,
3
,
1
,
1
,
1
,
1
,
3
,
7
};
int
height
=
static_cast
<
int
>
(
kDims
[
0
]
*
2
);
auto
send_vector
=
InitSelectedRows
(
"input"
,
input_scope_idx
,
rows
,
height
);
op_handle_
->
Run
(
false
);
WaitAll
();
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
SelectedRowsEqual
(
"out"
,
input_scope_idx
,
send_vector
,
rows
,
height
);
}
}
};
}
// namespace details
}
// namespace framework
}
// namespace paddle
paddle/fluid/framework/details/fused_broadcast_op_handle_test.cc
0 → 100644
浏览文件 @
6bfa6a0a
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/framework/details/fused_broadcast_op_handle.h"
#include "gtest/gtest.h"
#include "paddle/fluid/framework/details/broadcast_op_handle_test.h"
namespace
paddle
{
namespace
framework
{
namespace
details
{
struct
TestFusedBroadcastOpHandle
:
TestBroadcastOpHandle
{
std
::
vector
<
std
::
string
>
out_varnames_
;
void
InitFusedBroadcastOp
(
std
::
vector
<
size_t
>
input_scope_idxes
)
{
// initialize scope and var
for
(
size_t
i
=
0
;
i
<
place_list_
.
size
();
++
i
)
{
local_scopes_
.
push_back
(
&
(
g_scope_
.
NewScope
()));
Scope
&
local_scope
=
local_scopes_
.
back
()
->
NewScope
();
*
local_scopes_
.
back
()
->
Var
(
details
::
kLocalExecScopeName
)
->
GetMutable
<
Scope
*>
()
=
&
local_scope
;
for
(
size_t
j
=
0
;
j
<
input_scope_idxes
.
size
();
++
j
)
{
local_scope
.
Var
(
"out_var"
+
j
);
if
(
i
==
j
)
local_scope
.
Var
(
"in_var"
+
j
);
}
param_scopes_
.
emplace_back
(
&
local_scope
);
}
// create op handle node
std
::
unique_ptr
<
ir
::
Node
>
n
=
ir
::
CreateNodeForTest
(
"fused_broadcast"
,
ir
::
Node
::
Type
::
kOperation
);
if
(
use_gpu_
)
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
FusedBroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
,
nccl_ctxs_
.
get
()));
#else
PADDLE_THROW
(
"CUDA is not supported."
);
#endif
}
else
{
#ifdef PADDLE_WITH_CUDA
op_handle_
.
reset
(
new
FusedBroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
,
nccl_ctxs_
.
get
()));
#else
op_handle_
.
reset
(
new
FusedBroadcastOpHandle
(
n
.
get
(),
local_scopes_
,
place_list_
));
#endif
}
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
// add input var handle
std
::
unique_ptr
<
ir
::
Node
>
in_node
=
ir
::
CreateNodeForTest
(
"in_node"
+
i
,
ir
::
Node
::
Type
::
kVariable
);
VarHandle
*
in_var_handle
=
new
VarHandle
(
in_node
.
get
(),
1
,
input_scope_idxes
[
i
],
"in_var"
+
i
,
place_list_
[
input_scope_idxes
[
i
]]);
vars_
.
emplace_back
(
in_var_handle
);
op_handle_
->
AddInput
(
in_var_handle
);
// add output var handle
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
std
::
unique_ptr
<
ir
::
Node
>
out_node
=
ir
::
CreateNodeForTest
(
"out_node"
+
i
,
ir
::
Node
::
Type
::
kVariable
);
VarHandle
*
out_var_handle
=
new
VarHandle
(
out_node
.
get
(),
2
,
j
,
"out_var"
+
i
,
place_list_
[
j
]);
vars_
.
emplace_back
(
out_var_handle
);
op_handle_
->
AddOutput
(
out_var_handle
);
}
}
}
void
TestFusedBroadcastLoDTensor
(
std
::
vector
<
size_t
>
input_scope_idxes
)
{
std
::
vector
<
std
::
vector
<
float
>>
send_vec
;
f
::
LoD
lod
{{
0
,
10
,
20
}};
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
const
std
::
string
varname
(
"in_var"
+
i
);
float
val_scalar
=
static_cast
<
float
>
(
i
);
send_vec
.
push_back
(
InitLoDTensor
(
varname
,
input_scope_idxes
[
i
],
lod
,
val_scalar
));
}
op_handle_
->
Run
(
false
);
WaitAll
();
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
const
std
::
string
&
varname
(
"out_var"
+
i
);
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
LoDTensorEqual
(
varname
,
send_vec
[
i
],
lod
,
param_scopes_
[
j
]);
}
}
}
void
TestFusedBroadcastSelectedRows
(
std
::
vector
<
size_t
>
input_scope_idxes
)
{
std
::
vector
<
std
::
vector
<
float
>>
send_vector
;
std
::
vector
<
int64_t
>
rows
{
0
,
1
,
2
,
3
,
3
,
0
,
14
,
7
,
3
,
1
,
2
,
4
,
6
,
3
,
1
,
1
,
1
,
1
,
3
,
7
};
int
height
=
static_cast
<
int
>
(
kDims
[
0
]
*
2
);
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
const
std
::
string
varname
(
"in_var"
+
i
);
float
val_scalar
=
static_cast
<
float
>
(
i
);
send_vector
.
push_back
(
InitSelectedRows
(
varname
,
input_scope_idxes
[
i
],
rows
,
height
,
val_scalar
));
}
op_handle_
->
Run
(
false
);
WaitAll
();
for
(
size_t
i
=
0
;
i
<
input_scope_idxes
.
size
();
++
i
)
{
const
std
::
string
&
varname
(
"out_var"
+
i
);
for
(
size_t
j
=
0
;
j
<
place_list_
.
size
();
++
j
)
{
SelectedRowsEqual
(
varname
,
input_scope_idxes
[
i
],
send_vector
[
i
],
rows
,
height
);
}
}
}
};
TEST
(
FusedBroadcastTester
,
CPULodTensor
)
{
TestFusedBroadcastOpHandle
test_op
;
std
::
vector
<
size_t
>
input_scope_idxes
=
{
0
,
1
};
test_op
.
InitCtxOnGpu
(
false
);
test_op
.
InitFusedBroadcastOp
(
input_scope_idxes
);
test_op
.
TestFusedBroadcastLoDTensor
(
input_scope_idxes
);
}
TEST
(
FusedBroadcastTester
,
CPUSelectedRows
)
{
TestFusedBroadcastOpHandle
test_op
;
std
::
vector
<
size_t
>
input_scope_idxes
=
{
0
,
1
};
test_op
.
InitCtxOnGpu
(
false
);
test_op
.
InitFusedBroadcastOp
(
input_scope_idxes
);
test_op
.
TestFusedBroadcastSelectedRows
(
input_scope_idxes
);
}
#ifdef PADDLE_WITH_CUDA
TEST
(
FusedBroadcastTester
,
GPULodTensor
)
{
TestFusedBroadcastOpHandle
test_op
;
std
::
vector
<
size_t
>
input_scope_idxes
=
{
0
,
1
};
test_op
.
InitCtxOnGpu
(
true
);
test_op
.
InitFusedBroadcastOp
(
input_scope_idxes
);
test_op
.
TestFusedBroadcastLoDTensor
(
input_scope_idxes
);
}
TEST
(
FusedBroadcastTester
,
GPUSelectedRows
)
{
TestFusedBroadcastOpHandle
test_op
;
std
::
vector
<
size_t
>
input_scope_idxes
=
{
0
,
1
};
test_op
.
InitCtxOnGpu
(
true
);
test_op
.
InitFusedBroadcastOp
(
input_scope_idxes
);
test_op
.
TestFusedBroadcastSelectedRows
(
input_scope_idxes
);
}
#endif
}
// namespace details
}
// namespace framework
}
// namespace paddle
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录