Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
6b1a91f9
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
6b1a91f9
编写于
2月 28, 2017
作者:
Q
qiaolongfei
浏览文件
操作
浏览文件
下载
差异文件
Merge branch 'develop' of
https://github.com/PaddlePaddle/Paddle
into rnn
上级
876d5974
c444708a
变更
13
显示空白变更内容
内联
并排
Showing
13 changed file
with
452 addition
and
45 deletion
+452
-45
demo/mnist/api_train_v2.py
demo/mnist/api_train_v2.py
+8
-11
python/paddle/v2/__init__.py
python/paddle/v2/__init__.py
+2
-1
python/paddle/v2/data_feeder.py
python/paddle/v2/data_feeder.py
+1
-1
python/paddle/v2/data_type.py
python/paddle/v2/data_type.py
+3
-3
python/paddle/v2/dataset/cifar.py
python/paddle/v2/dataset/cifar.py
+82
-0
python/paddle/v2/dataset/config.py
python/paddle/v2/dataset/config.py
+29
-1
python/paddle/v2/dataset/movielens.py
python/paddle/v2/dataset/movielens.py
+120
-0
python/paddle/v2/layer.py
python/paddle/v2/layer.py
+1
-0
python/paddle/v2/parameters.py
python/paddle/v2/parameters.py
+8
-12
python/paddle/v2/tests/CMakeLists.txt
python/paddle/v2/tests/CMakeLists.txt
+8
-2
python/paddle/v2/tests/test_topology.py
python/paddle/v2/tests/test_topology.py
+83
-0
python/paddle/v2/topology.py
python/paddle/v2/topology.py
+95
-0
python/paddle/v2/trainer.py
python/paddle/v2/trainer.py
+12
-14
未找到文件。
demo/mnist/api_train_v2.py
浏览文件 @
6b1a91f9
...
@@ -39,17 +39,14 @@ def main():
...
@@ -39,17 +39,14 @@ def main():
trainer
=
paddle
.
trainer
.
SGD
(
update_equation
=
adam_optimizer
)
trainer
=
paddle
.
trainer
.
SGD
(
update_equation
=
adam_optimizer
)
trainer
.
train
(
train_data_reader
=
train_reader
,
trainer
.
train
(
topology
=
cost
,
train_data_reader
=
train_reader
,
cost
=
cost
,
parameters
=
parameters
,
parameters
=
parameters
,
event_handler
=
event_handler
,
event_handler
=
event_handler
,
batch_size
=
32
,
# batch size should be refactor in Data reader
batch_size
=
32
,
# batch size should be refactor in Data reader
data_types
=
[
# data_types will be removed, It should be in
reader_dict
=
{
images
.
name
:
0
,
# network topology
label
.
name
:
1
})
(
'pixel'
,
images
.
type
),
(
'label'
,
label
.
type
)],
reader_dict
=
{
'pixel'
:
0
,
'label'
:
1
}
)
if
__name__
==
'__main__'
:
if
__name__
==
'__main__'
:
...
...
python/paddle/v2/__init__.py
浏览文件 @
6b1a91f9
...
@@ -18,6 +18,7 @@ import parameters
...
@@ -18,6 +18,7 @@ import parameters
import
trainer
import
trainer
import
event
import
event
import
data_type
import
data_type
import
topology
import
data_feeder
import
data_feeder
import
attr
import
attr
import
pooling
import
pooling
...
@@ -25,7 +26,7 @@ import py_paddle.swig_paddle as api
...
@@ -25,7 +26,7 @@ import py_paddle.swig_paddle as api
__all__
=
[
__all__
=
[
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'optimizer'
,
'layer'
,
'activation'
,
'parameters'
,
'init'
,
'trainer'
,
'event'
,
'data_type'
,
'attr'
,
'pooling'
,
'data_feeder'
'event'
,
'data_type'
,
'attr'
,
'pooling'
,
'data_feeder'
,
'topology'
]
]
...
...
python/paddle/v2/data_feeder.py
浏览文件 @
6b1a91f9
...
@@ -23,7 +23,7 @@ class DataFeeder(DataProviderConverter):
...
@@ -23,7 +23,7 @@ class DataFeeder(DataProviderConverter):
"""
"""
DataFeeder converts the data returned by paddle.reader into a data structure
DataFeeder converts the data returned by paddle.reader into a data structure
of Arguments which is defined in the API. The paddle.reader usually returns
of Arguments which is defined in the API. The paddle.reader usually returns
a list of mini-batch data entries. Each data entry in the list is one sampe.
a list of mini-batch data entries. Each data entry in the list is one samp
l
e.
Each sample is a list or a tuple with one feature or multiple features.
Each sample is a list or a tuple with one feature or multiple features.
DataFeeder converts this mini-batch data entries into Arguments in order
DataFeeder converts this mini-batch data entries into Arguments in order
to feed it to C++ interface.
to feed it to C++ interface.
...
...
python/paddle/v2/data_type.py
浏览文件 @
6b1a91f9
...
@@ -13,10 +13,10 @@
...
@@ -13,10 +13,10 @@
# limitations under the License.
# limitations under the License.
from
paddle.trainer.PyDataProvider2
import
\
from
paddle.trainer.PyDataProvider2
import
\
InputType
,
dense_vector
,
sparse_binary_vector
,
\
InputType
,
DataType
,
dense_vector
,
sparse_binary_vector
,
\
sparse_vector
,
integer_value
,
integer_value_sequence
sparse_vector
,
integer_value
,
integer_value_sequence
__all__
=
[
__all__
=
[
'InputType'
,
'
dense_vector'
,
'sparse_binary_vector'
,
'sparse
_vector'
,
'InputType'
,
'
DataType'
,
'dense_vector'
,
'sparse_binary
_vector'
,
'integer_value'
,
'integer_value_sequence'
'
sparse_vector'
,
'
integer_value'
,
'integer_value_sequence'
]
]
python/paddle/v2/dataset/cifar.py
0 → 100644
浏览文件 @
6b1a91f9
"""
CIFAR Dataset.
URL: https://www.cs.toronto.edu/~kriz/cifar.html
the default train_creator, test_creator used for CIFAR-10 dataset.
"""
import
cPickle
import
itertools
import
tarfile
import
numpy
from
config
import
download
__all__
=
[
'cifar_100_train_creator'
,
'cifar_100_test_creator'
,
'train_creator'
,
'test_creator'
]
CIFAR10_URL
=
'https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz'
CIFAR10_MD5
=
'c58f30108f718f92721af3b95e74349a'
CIFAR100_URL
=
'https://www.cs.toronto.edu/~kriz/cifar-100-python.tar.gz'
CIFAR100_MD5
=
'eb9058c3a382ffc7106e4002c42a8d85'
def
__read_batch__
(
filename
,
sub_name
):
def
reader
():
def
__read_one_batch_impl__
(
batch
):
data
=
batch
[
'data'
]
labels
=
batch
.
get
(
'labels'
,
batch
.
get
(
'fine_labels'
,
None
))
assert
labels
is
not
None
for
sample
,
label
in
itertools
.
izip
(
data
,
labels
):
yield
(
sample
/
255.0
).
astype
(
numpy
.
float32
),
int
(
label
)
with
tarfile
.
open
(
filename
,
mode
=
'r'
)
as
f
:
names
=
(
each_item
.
name
for
each_item
in
f
if
sub_name
in
each_item
.
name
)
for
name
in
names
:
batch
=
cPickle
.
load
(
f
.
extractfile
(
name
))
for
item
in
__read_one_batch_impl__
(
batch
):
yield
item
return
reader
def
cifar_100_train_creator
():
fn
=
download
(
url
=
CIFAR100_URL
,
md5
=
CIFAR100_MD5
)
return
__read_batch__
(
fn
,
'train'
)
def
cifar_100_test_creator
():
fn
=
download
(
url
=
CIFAR100_URL
,
md5
=
CIFAR100_MD5
)
return
__read_batch__
(
fn
,
'test'
)
def
train_creator
():
"""
Default train reader creator. Use CIFAR-10 dataset.
"""
fn
=
download
(
url
=
CIFAR10_URL
,
md5
=
CIFAR10_MD5
)
return
__read_batch__
(
fn
,
'data_batch'
)
def
test_creator
():
"""
Default test reader creator. Use CIFAR-10 dataset.
"""
fn
=
download
(
url
=
CIFAR10_URL
,
md5
=
CIFAR10_MD5
)
return
__read_batch__
(
fn
,
'test_batch'
)
def
unittest
():
for
_
in
train_creator
()():
pass
for
_
in
test_creator
()():
pass
if
__name__
==
'__main__'
:
unittest
()
python/paddle/v2/dataset/config.py
浏览文件 @
6b1a91f9
import
hashlib
import
os
import
os
import
shutil
import
urllib2
__all__
=
[
'DATA_HOME'
]
__all__
=
[
'DATA_HOME'
,
'download'
]
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle_data_set'
)
DATA_HOME
=
os
.
path
.
expanduser
(
'~/.cache/paddle_data_set'
)
if
not
os
.
path
.
exists
(
DATA_HOME
):
if
not
os
.
path
.
exists
(
DATA_HOME
):
os
.
makedirs
(
DATA_HOME
)
os
.
makedirs
(
DATA_HOME
)
def
download
(
url
,
md5
):
filename
=
os
.
path
.
split
(
url
)[
-
1
]
assert
DATA_HOME
is
not
None
filepath
=
os
.
path
.
join
(
DATA_HOME
,
md5
)
if
not
os
.
path
.
exists
(
filepath
):
os
.
makedirs
(
filepath
)
__full_file__
=
os
.
path
.
join
(
filepath
,
filename
)
def
__file_ok__
():
if
not
os
.
path
.
exists
(
__full_file__
):
return
False
md5_hash
=
hashlib
.
md5
()
with
open
(
__full_file__
,
'rb'
)
as
f
:
for
chunk
in
iter
(
lambda
:
f
.
read
(
4096
),
b
""
):
md5_hash
.
update
(
chunk
)
return
md5_hash
.
hexdigest
()
==
md5
while
not
__file_ok__
():
response
=
urllib2
.
urlopen
(
url
)
with
open
(
__full_file__
,
mode
=
'wb'
)
as
of
:
shutil
.
copyfileobj
(
fsrc
=
response
,
fdst
=
of
)
return
__full_file__
python/paddle/v2/dataset/movielens.py
0 → 100644
浏览文件 @
6b1a91f9
import
zipfile
from
config
import
download
import
re
import
random
import
functools
__all__
=
[
'train_creator'
,
'test_creator'
]
class
MovieInfo
(
object
):
def
__init__
(
self
,
index
,
categories
,
title
):
self
.
index
=
int
(
index
)
self
.
categories
=
categories
self
.
title
=
title
def
value
(
self
):
return
[
self
.
index
,
[
CATEGORIES_DICT
[
c
]
for
c
in
self
.
categories
],
[
MOVIE_TITLE_DICT
[
w
.
lower
()]
for
w
in
self
.
title
.
split
()]
]
class
UserInfo
(
object
):
def
__init__
(
self
,
index
,
gender
,
age
,
job_id
):
self
.
index
=
int
(
index
)
self
.
is_male
=
gender
==
'M'
self
.
age
=
[
1
,
18
,
25
,
35
,
45
,
50
,
56
].
index
(
int
(
age
))
self
.
job_id
=
int
(
job_id
)
def
value
(
self
):
return
[
self
.
index
,
0
if
self
.
is_male
else
1
,
self
.
age
,
self
.
job_id
]
MOVIE_INFO
=
None
MOVIE_TITLE_DICT
=
None
CATEGORIES_DICT
=
None
USER_INFO
=
None
def
__initialize_meta_info__
():
fn
=
download
(
url
=
'http://files.grouplens.org/datasets/movielens/ml-1m.zip'
,
md5
=
'c4d9eecfca2ab87c1945afe126590906'
)
global
MOVIE_INFO
if
MOVIE_INFO
is
None
:
pattern
=
re
.
compile
(
r
'^(.*)\((\d+)\)$'
)
with
zipfile
.
ZipFile
(
file
=
fn
)
as
package
:
for
info
in
package
.
infolist
():
assert
isinstance
(
info
,
zipfile
.
ZipInfo
)
MOVIE_INFO
=
dict
()
title_word_set
=
set
()
categories_set
=
set
()
with
package
.
open
(
'ml-1m/movies.dat'
)
as
movie_file
:
for
i
,
line
in
enumerate
(
movie_file
):
movie_id
,
title
,
categories
=
line
.
strip
().
split
(
'::'
)
categories
=
categories
.
split
(
'|'
)
for
c
in
categories
:
categories_set
.
add
(
c
)
title
=
pattern
.
match
(
title
).
group
(
1
)
MOVIE_INFO
[
int
(
movie_id
)]
=
MovieInfo
(
index
=
movie_id
,
categories
=
categories
,
title
=
title
)
for
w
in
title
.
split
():
title_word_set
.
add
(
w
.
lower
())
global
MOVIE_TITLE_DICT
MOVIE_TITLE_DICT
=
dict
()
for
i
,
w
in
enumerate
(
title_word_set
):
MOVIE_TITLE_DICT
[
w
]
=
i
global
CATEGORIES_DICT
CATEGORIES_DICT
=
dict
()
for
i
,
c
in
enumerate
(
categories_set
):
CATEGORIES_DICT
[
c
]
=
i
global
USER_INFO
USER_INFO
=
dict
()
with
package
.
open
(
'ml-1m/users.dat'
)
as
user_file
:
for
line
in
user_file
:
uid
,
gender
,
age
,
job
,
_
=
line
.
strip
().
split
(
"::"
)
USER_INFO
[
int
(
uid
)]
=
UserInfo
(
index
=
uid
,
gender
=
gender
,
age
=
age
,
job_id
=
job
)
return
fn
def
__reader__
(
rand_seed
=
0
,
test_ratio
=
0.1
,
is_test
=
False
):
fn
=
__initialize_meta_info__
()
rand
=
random
.
Random
(
x
=
rand_seed
)
with
zipfile
.
ZipFile
(
file
=
fn
)
as
package
:
with
package
.
open
(
'ml-1m/ratings.dat'
)
as
rating
:
for
line
in
rating
:
if
(
rand
.
random
()
<
test_ratio
)
==
is_test
:
uid
,
mov_id
,
rating
,
_
=
line
.
strip
().
split
(
"::"
)
uid
=
int
(
uid
)
mov_id
=
int
(
mov_id
)
rating
=
float
(
rating
)
*
2
-
5.0
mov
=
MOVIE_INFO
[
mov_id
]
usr
=
USER_INFO
[
uid
]
yield
usr
.
value
()
+
mov
.
value
()
+
[[
rating
]]
def
__reader_creator__
(
**
kwargs
):
return
lambda
:
__reader__
(
**
kwargs
)
train_creator
=
functools
.
partial
(
__reader_creator__
,
is_test
=
False
)
test_creator
=
functools
.
partial
(
__reader_creator__
,
is_test
=
True
)
def
unittest
():
for
train_count
,
_
in
enumerate
(
train_creator
()()):
pass
for
test_count
,
_
in
enumerate
(
test_creator
()()):
pass
print
train_count
,
test_count
if
__name__
==
'__main__'
:
unittest
()
python/paddle/v2/layer.py
浏览文件 @
6b1a91f9
...
@@ -362,6 +362,7 @@ def mixed(size=0,
...
@@ -362,6 +362,7 @@ def mixed(size=0,
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
return
MixedLayerV2
(
size
,
input
,
name
,
act
,
bias_attr
,
layer_attr
)
LayerV2
=
Layer
data
=
DataLayerV2
data
=
DataLayerV2
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
AggregateLevel
=
conf_helps
.
layers
.
AggregateLevel
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
ExpandLevel
=
conf_helps
.
layers
.
ExpandLevel
...
...
python/paddle/v2/parameters.py
浏览文件 @
6b1a91f9
import
numpy
as
np
import
numpy
as
np
from
.
import
layer
as
v2_layer
import
py_paddle.swig_paddle
as
api
import
py_paddle.swig_paddle
as
api
from
paddle.proto.ParameterConfig_pb2
import
ParameterConfig
from
paddle.proto.ParameterConfig_pb2
import
ParameterConfig
from
topology
import
Topology
__all__
=
[
'Parameters'
,
'create'
]
__all__
=
[
'Parameters'
,
'create'
]
def
create
(
*
layers
):
def
create
(
layers
):
"""
"""
Create parameter pool by layers. In paddle, layer can be represent a
Create parameter pool by topology.
model config.
:param layers:
:param layers:
:return:
:return:
"""
"""
for
layer
in
layers
:
topology
=
Topology
(
layers
)
if
not
isinstance
(
layer
,
v2_layer
.
Layer
):
raise
ValueError
(
'create must pass a topologies which type is paddle.layer.Layer'
)
model_config
=
v2_layer
.
parse_network
(
*
layers
)
pool
=
Parameters
()
pool
=
Parameters
()
for
param
in
model_config
.
parameters
:
for
param
in
topology
.
proto
()
.
parameters
:
pool
.
__append_config__
(
param
)
pool
.
__append_config__
(
param
)
return
pool
return
pool
...
@@ -224,6 +219,7 @@ class Parameters(object):
...
@@ -224,6 +219,7 @@ class Parameters(object):
except
ValueError
:
except
ValueError
:
# If no such parameter in gradient machine, then don't copy
# If no such parameter in gradient machine, then don't copy
pass
pass
self
.
__gradient_machines__
.
append
(
gradient_machine
)
self
.
__gradient_machines__
.
append
(
gradient_machine
)
...
...
python/paddle/v2/tests/CMakeLists.txt
浏览文件 @
6b1a91f9
add_test
(
NAME test_v2_api
COMMAND bash
${
PROJ_ROOT
}
/python/paddle/v2/tests/run_tests.sh
${
PYTHON_EXECUTABLE
}
)
add_test
(
NAME test_v2_layer
add_test
(
NAME test_v2_layer
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_layer.py
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_layer.py
...
@@ -7,5 +10,8 @@ add_test(NAME test_v2_rnn_layer
...
@@ -7,5 +10,8 @@ add_test(NAME test_v2_rnn_layer
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_rnn_layer.py
)
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_rnn_layer.py
)
add_test
(
NAME test_v2_api
COMMAND bash
${
PROJ_ROOT
}
/python/paddle/v2/tests/run_tests.sh
${
PYTHON_EXECUTABLE
}
)
add_test
(
NAME test_topology
COMMAND
${
PROJ_ROOT
}
/paddle/.set_python_path.sh -d
${
PROJ_ROOT
}
/python/
${
PYTHON_EXECUTABLE
}
${
PROJ_ROOT
}
/python/paddle/v2/tests/test_topology.py
WORKING_DIRECTORY
${
PROJ_ROOT
}
/python/paddle
)
python/paddle/v2/tests/test_topology.py
0 → 100644
浏览文件 @
6b1a91f9
# Copyright PaddlePaddle contributors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
unittest
import
paddle.v2.layer
as
layer
import
paddle.v2.topology
as
topology
import
paddle.v2.data_type
as
data_type
import
paddle.trainer_config_helpers
as
conf_helps
class
TestTopology
(
unittest
.
TestCase
):
def
test_data_type
(
self
):
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
inference
=
layer
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
cost
=
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
topo
=
topology
.
Topology
(
cost
)
data_types
=
topo
.
data_type
()
self
.
assertEqual
(
len
(
data_types
),
2
)
pixel_data_type
=
filter
(
lambda
type
:
type
[
0
]
==
"pixel"
,
data_types
)
self
.
assertEqual
(
len
(
pixel_data_type
),
1
)
pixel_data_type
=
pixel_data_type
[
0
]
self
.
assertEqual
(
pixel_data_type
[
1
].
type
,
data_type
.
DataType
.
Dense
)
self
.
assertEqual
(
pixel_data_type
[
1
].
dim
,
784
)
label_data_type
=
filter
(
lambda
type
:
type
[
0
]
==
"label"
,
data_types
)
self
.
assertEqual
(
len
(
label_data_type
),
1
)
label_data_type
=
label_data_type
[
0
]
self
.
assertEqual
(
label_data_type
[
1
].
type
,
data_type
.
DataType
.
Index
)
self
.
assertEqual
(
label_data_type
[
1
].
dim
,
10
)
def
test_get_layer
(
self
):
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
inference
=
layer
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
cost
=
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
topo
=
topology
.
Topology
(
cost
)
pixel_layer
=
topo
.
get_layer
(
"pixel"
)
label_layer
=
topo
.
get_layer
(
"label"
)
self
.
assertEqual
(
pixel_layer
,
pixel
)
self
.
assertEqual
(
label_layer
,
label
)
def
test_parse
(
self
):
pixel
=
layer
.
data
(
name
=
'pixel'
,
type
=
data_type
.
dense_vector
(
784
))
label
=
layer
.
data
(
name
=
'label'
,
type
=
data_type
.
integer_value
(
10
))
hidden
=
layer
.
fc
(
input
=
pixel
,
size
=
100
,
act
=
conf_helps
.
SigmoidActivation
())
inference
=
layer
.
fc
(
input
=
hidden
,
size
=
10
,
act
=
conf_helps
.
SoftmaxActivation
())
maxid
=
layer
.
max_id
(
input
=
inference
)
cost1
=
layer
.
classification_cost
(
input
=
inference
,
label
=
label
)
cost2
=
layer
.
cross_entropy_cost
(
input
=
inference
,
label
=
label
)
topology
.
Topology
(
cost2
).
proto
()
topology
.
Topology
([
cost1
]).
proto
()
topology
.
Topology
([
cost1
,
cost2
]).
proto
()
topology
.
Topology
([
inference
,
maxid
]).
proto
()
if
__name__
==
'__main__'
:
unittest
.
main
()
python/paddle/v2/topology.py
0 → 100644
浏览文件 @
6b1a91f9
# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import
collections
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
import
layer
as
v2_layer
__all__
=
[
'Topology'
]
class
Topology
(
object
):
"""
Topology is used to store the information about all layers
and network configs.
"""
def
__init__
(
self
,
layers
):
if
not
isinstance
(
layers
,
collections
.
Sequence
):
__check_layer_type__
(
layers
)
layers
=
[
layers
]
for
layer
in
layers
:
__check_layer_type__
(
layer
)
self
.
layers
=
layers
self
.
__model_config__
=
v2_layer
.
parse_network
(
*
layers
)
assert
isinstance
(
self
.
__model_config__
,
ModelConfig
)
def
proto
(
self
):
return
self
.
__model_config__
def
get_layer
(
self
,
name
):
"""
get v2.Layer Class instance by layer name
:param name:
:return:
"""
result_layer
=
[]
def
find_layer_by_name
(
layer
,
layer_name
):
if
len
(
result_layer
)
==
1
:
return
elif
layer
.
name
==
layer_name
:
result_layer
.
append
(
layer
)
else
:
for
parent_layer
in
layer
.
__parent_layers__
.
values
():
find_layer_by_name
(
parent_layer
,
layer_name
)
for
layer
in
self
.
layers
:
find_layer_by_name
(
layer
,
name
)
assert
len
(
result_layer
)
==
1
return
result_layer
[
0
]
def
data_layers
(
self
):
"""
get all data layer
:return:
"""
data_layers
=
set
()
def
find_data_layer
(
layer
):
if
isinstance
(
layer
,
v2_layer
.
DataLayerV2
):
data_layers
.
add
(
layer
)
for
parent_layer
in
layer
.
__parent_layers__
.
values
():
find_data_layer
(
parent_layer
)
for
layer
in
self
.
layers
:
find_data_layer
(
layer
)
return
data_layers
def
data_type
(
self
):
"""
get data_type from proto, such as:
[('image', dense_vector(768)), ('label', integer_value(10))]
"""
return
[(
data_layer
.
name
,
data_layer
.
type
)
for
data_layer
in
self
.
data_layers
()]
def
__check_layer_type__
(
layer
):
if
not
isinstance
(
layer
,
v2_layer
.
LayerV2
):
raise
ValueError
(
'layer should have type paddle.layer.Layer'
)
python/paddle/v2/trainer.py
浏览文件 @
6b1a91f9
import
collections
import
collections
import
py_paddle.swig_paddle
as
api
import
py_paddle.swig_paddle
as
api
from
paddle.proto.ModelConfig_pb2
import
ModelConfig
from
data_feeder
import
DataFeeder
from
data_feeder
import
DataFeeder
from
topology
import
Topology
from
.
import
event
as
v2_event
from
.
import
event
as
v2_event
from
.
import
layer
as
v2_layer
from
.
import
optimizer
as
v2_optimizer
from
.
import
optimizer
as
v2_optimizer
from
.
import
parameters
as
v2_parameters
from
.
import
parameters
as
v2_parameters
...
@@ -30,7 +29,7 @@ class ITrainer(object):
...
@@ -30,7 +29,7 @@ class ITrainer(object):
def
train
(
self
,
def
train
(
self
,
train_data_reader
,
train_data_reader
,
topology
,
cost
,
parameters
,
parameters
,
test_data_reader
=
None
,
test_data_reader
=
None
,
event_handler
=
None
):
event_handler
=
None
):
...
@@ -38,7 +37,7 @@ class ITrainer(object):
...
@@ -38,7 +37,7 @@ class ITrainer(object):
train method.
train method.
:param train_data_reader:
:param train_data_reader:
:param
topology
:
:param
cost
:
:param parameters:
:param parameters:
:param test_data_reader:
:param test_data_reader:
:param event_handler:
:param event_handler:
...
@@ -63,19 +62,18 @@ class SGD(ITrainer):
...
@@ -63,19 +62,18 @@ class SGD(ITrainer):
def
train
(
self
,
def
train
(
self
,
train_data_reader
,
train_data_reader
,
topology
,
cost
,
parameters
,
parameters
,
num_passes
=
1
,
num_passes
=
1
,
test_data_reader
=
None
,
test_data_reader
=
None
,
event_handler
=
None
,
event_handler
=
None
,
batch_size
=
32
,
batch_size
=
32
,
data_types
=
None
,
reader_dict
=
None
):
reader_dict
=
None
):
"""
"""
Training method. Will train num_passes of input data.
Training method. Will train num_passes of input data.
:param train_data_reader:
:param train_data_reader:
:param
topology: Network Topology, use one or more Layers to represent it
.
:param
cost: cost layers, to be optimized
.
:param parameters: The parameter pools.
:param parameters: The parameter pools.
:param num_passes: The total train passes.
:param num_passes: The total train passes.
:param test_data_reader:
:param test_data_reader:
...
@@ -83,18 +81,18 @@ class SGD(ITrainer):
...
@@ -83,18 +81,18 @@ class SGD(ITrainer):
occurred.
occurred.
:type event_handler: (BaseEvent) => None
:type event_handler: (BaseEvent) => None
:param batch_size: Not important, will be removed after data refactor.
:param batch_size: Not important, will be removed after data refactor.
:param data_types: Not important, will be removed after data refactor.
:return:
:return:
"""
"""
if
event_handler
is
None
:
if
event_handler
is
None
:
event_handler
=
default_event_handler
event_handler
=
default_event_handler
topology
=
v2_layer
.
parse_network
(
topology
)
topology
=
Topology
(
cost
)
__check_train_args__
(
**
locals
())
__check_train_args__
(
**
locals
())
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
gm
=
api
.
GradientMachine
.
createFromConfigProto
(
topology
,
api
.
CREATE_MODE_NORMAL
,
self
.
__optimizer__
.
enable_types
())
topology
.
proto
(),
api
.
CREATE_MODE_NORMAL
,
self
.
__optimizer__
.
enable_types
())
assert
isinstance
(
gm
,
api
.
GradientMachine
)
assert
isinstance
(
gm
,
api
.
GradientMachine
)
parameters
.
append_gradient_machine
(
gm
)
parameters
.
append_gradient_machine
(
gm
)
gm
.
randParameters
()
gm
.
randParameters
()
...
@@ -108,7 +106,7 @@ class SGD(ITrainer):
...
@@ -108,7 +106,7 @@ class SGD(ITrainer):
assert
isinstance
(
pass_evaluator
,
api
.
Evaluator
)
assert
isinstance
(
pass_evaluator
,
api
.
Evaluator
)
out_args
=
api
.
Arguments
.
createArguments
(
0
)
out_args
=
api
.
Arguments
.
createArguments
(
0
)
feeder
=
DataFeeder
(
data_types
,
reader_dict
)
feeder
=
DataFeeder
(
topology
.
data_type
()
,
reader_dict
)
for
pass_id
in
xrange
(
num_passes
):
for
pass_id
in
xrange
(
num_passes
):
event_handler
(
v2_event
.
BeginPass
(
pass_id
))
event_handler
(
v2_event
.
BeginPass
(
pass_id
))
...
@@ -154,7 +152,7 @@ def __data_reader_to_batch__(reader, batch_size, topology):
...
@@ -154,7 +152,7 @@ def __data_reader_to_batch__(reader, batch_size, topology):
def
input_reorder
(
func
):
def
input_reorder
(
func
):
for
item
in
func
():
for
item
in
func
():
retv
=
[]
retv
=
[]
for
__layer_name__
in
topology
.
input_layer_names
:
for
__layer_name__
in
topology
.
proto
().
input_layer_names
:
retv
.
append
(
item
[
__layer_name__
])
retv
.
append
(
item
[
__layer_name__
])
yield
retv
yield
retv
...
@@ -191,7 +189,7 @@ def __check_train_args__(train_data_reader, topology, parameters,
...
@@ -191,7 +189,7 @@ def __check_train_args__(train_data_reader, topology, parameters,
raise
ValueError
(
'test_data_reader should be a function, which can '
raise
ValueError
(
'test_data_reader should be a function, which can '
'return a iterator'
)
'return a iterator'
)
if
not
isinstance
(
topology
,
ModelConfig
):
if
not
isinstance
(
topology
,
Topology
):
raise
ValueError
(
'topology should be a model config'
)
raise
ValueError
(
'topology should be a model config'
)
if
not
isinstance
(
parameters
,
v2_parameters
.
Parameters
):
if
not
isinstance
(
parameters
,
v2_parameters
.
Parameters
):
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录