diff --git a/paddle/framework/shape_inference.cc b/paddle/framework/shape_inference.cc index 0af41b164f5894db17b2f86d4eba371cf05e3b41..2298507471c54c5b7751beff900466737eea36d4 100644 --- a/paddle/framework/shape_inference.cc +++ b/paddle/framework/shape_inference.cc @@ -22,6 +22,12 @@ std::vector InferShapeContext::GetInputsDim( return GetDims(names); } +DDim InferShapeContext::GetInputsElementDim(const std::string &name, + int idx) const { + const std::vector &names = Inputs(name); + return this->GetDim(names[idx]); +} + void InferShapeContext::SetOutputsDim( const std::string &name, const std::vector &dims) { auto &names = Outputs(name); diff --git a/paddle/framework/shape_inference.h b/paddle/framework/shape_inference.h index 05dc47f06ac81f0acb6d0317cbecb3009c7dd7f0..46f2ea84b4b64292cc9026ef9864621efba79c7a 100644 --- a/paddle/framework/shape_inference.h +++ b/paddle/framework/shape_inference.h @@ -37,6 +37,7 @@ class InferShapeContext { virtual framework::DDim GetInputDim(const std::string &name) const = 0; std::vector GetInputsDim(const std::string &name) const; + DDim GetInputsElementDim(const std::string &name, int idx) const; virtual void SetOutputDim(const std::string &name, const DDim &dim) = 0; void SetOutputsDim(const std::string &name, diff --git a/paddle/operators/tensor_array_read_write_op.cc b/paddle/operators/tensor_array_read_write_op.cc index ad09fb53ce8c9bf0187e595fe3cdcb6685ab9889..efde850143ce188300667b21e4b539b1d150d9ae 100644 --- a/paddle/operators/tensor_array_read_write_op.cc +++ b/paddle/operators/tensor_array_read_write_op.cc @@ -37,9 +37,15 @@ class WriteToArrayOp : public ArrayOp { << " to " << offset + 1; out->resize(offset + 1); } - auto *out_tensor = &out->at(offset); - CopyFrom(x_tensor, dev_ctx.GetPlace(), dev_ctx, out_tensor); - out_tensor->set_lod(x_tensor.lod()); + if (x_tensor.memory_size() > 0) { + auto *out_tensor = &out->at(offset); + CopyFrom(x_tensor, dev_ctx.GetPlace(), dev_ctx, out_tensor); + out_tensor->set_lod(x_tensor.lod()); + } else { + VLOG(10) << "WARNING: The input tensor 'x_tensor' holds no memory, so " + "nothing has been written to output array[" + << offset << "]."; + } } }; diff --git a/paddle/operators/while_op.cc b/paddle/operators/while_op.cc index 68b4f7705995e5ecb6c9b8216db7373c1777a31e..59460f6c879cf2c14fd27e33ecb1ba45b21da485 100644 --- a/paddle/operators/while_op.cc +++ b/paddle/operators/while_op.cc @@ -287,7 +287,6 @@ class WhileGradOpShapeInference : public framework::InferShapeBase { auto p_names = ctx->Inputs(kParameters); auto pg_names = ctx->Outputs(kParamGrads); - auto dims = ctx->GetInputsDim(kParameters); auto var_types = ctx->GetInputsVarType(kParameters); std::vector names_to_set; std::vector dims_to_set; @@ -295,13 +294,14 @@ class WhileGradOpShapeInference : public framework::InferShapeBase { if (pg_names[i] == framework::kEmptyVarName) { continue; } + auto dims = ctx->GetInputsElementDim(kParameters, i); if (var_types[i] == framework::VarDesc::LOD_TENSOR) { names_to_set.push_back(pg_names[i]); - dims_to_set.push_back(dims[i]); + dims_to_set.push_back(dims); } else if (var_types[i] == framework::VarDesc::LOD_TENSOR_ARRAY) { // not sure how to set the dim of LOD_TENSOR_ARRAY names_to_set.push_back(pg_names[i]); - dims_to_set.push_back(dims[i]); + dims_to_set.push_back(dims); } } ctx->SetDims(names_to_set, dims_to_set); diff --git a/python/paddle/v2/fluid/layers.py b/python/paddle/v2/fluid/layers.py index 9dcc11d21618ec12ac6a2112ed8e307ab028f6c0..5a977978bf811cfe3bed0ca1fc1116dde3dcfd2f 100644 --- a/python/paddle/v2/fluid/layers.py +++ b/python/paddle/v2/fluid/layers.py @@ -185,6 +185,7 @@ def data(name, shape, append_batch_size=True, dtype='float32', + lod_level=0, type=core.VarDesc.VarType.LOD_TENSOR, main_program=None, startup_program=None, @@ -198,6 +199,7 @@ def data(name, append_batch_size: Whether or not to append the data as a batch. dtype: The type of data : float32, float_16, int etc type: The output type. By default it is LOD_TENSOR. + lod_level(int): The LoD Level. 0 means the input data is not a sequence. main_program: Name of the main program that calls this startup_program: Name of the startup program stop_gradient: A boolean that mentions whether gradient should flow. @@ -228,7 +230,8 @@ def data(name, shape=shape, dtype=dtype, type=type, - stop_gradient=stop_gradient) + stop_gradient=stop_gradient, + lod_level=lod_level) def create_tensor(dtype, name=None, main_program=None, startup_program=None):