diff --git a/cmake/cpplint.cmake b/cmake/cpplint.cmake index e50530411cc74392091c8026fa012ec7631f7f6b..5184f0815faac005b3dff1015395235f4e19d65b 100644 --- a/cmake/cpplint.cmake +++ b/cmake/cpplint.cmake @@ -42,29 +42,21 @@ macro(add_style_check_target TARGET_NAME) if(WITH_STYLE_CHECK) set(SOURCES_LIST ${ARGN}) list(REMOVE_DUPLICATES SOURCES_LIST) - list(SORT SOURCES_LIST) - foreach(filename ${SOURCES_LIST}) - set(LINT ON) foreach(pattern ${IGNORE_PATTERN}) if(filename MATCHES ${pattern}) - message(STATUS "DROP LINT ${filename}") - set(LINT OFF) + list(REMOVE_ITEM SOURCES_LIST ${filename}) endif() endforeach() - if(LINT MATCHES ON) - # cpplint code style - get_filename_component(base_filename ${filename} NAME) - set(CUR_GEN ${CMAKE_CURRENT_BINARY_DIR}/${base_filename}.cpplint) - add_custom_command(OUTPUT ${CUR_GEN} PRE_BUILD - COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py" - "--filter=${STYLE_FILTER}" - "--write-success=${CUR_GEN}" ${filename} - DEPENDS ${filename} ${PROJ_ROOT}/paddle/scripts/cpplint.py - WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) - add_custom_target(${base_filename}.cpplint DEPENDS ${CUR_GEN}) - add_dependencies(${TARGET_NAME} ${base_filename}.cpplint) - endif() endforeach() + + if(SOURCES_LIST) + add_custom_command(TARGET ${TARGET_NAME} POST_BUILD + COMMAND "${PYTHON_EXECUTABLE}" "${PROJ_ROOT}/paddle/scripts/cpplint.py" + "--filter=${STYLE_FILTER}" + ${SOURCES_LIST} + COMMENT "cpplint: Checking source code style" + WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}) + endif() endif() endmacro() diff --git a/cmake/flags.cmake b/cmake/flags.cmake index d00a9bb3a30cfb16623e073414088059481c3e1a..e26d8d9df386e65137aa83cc60a43bfeabf7a4a6 100644 --- a/cmake/flags.cmake +++ b/cmake/flags.cmake @@ -115,7 +115,7 @@ set(COMMON_FLAGS -Wno-error=literal-suffix -Wno-error=sign-compare -Wno-error=unused-local-typedefs - -Wno-error=parentheses-equality # Warnings in Pybind11 + -Wno-error=parentheses-equality # Warnings in pybind11 ) set(GPU_COMMON_FLAGS @@ -195,6 +195,7 @@ endif() # Modern gpu architectures: Pascal if (CUDA_VERSION VERSION_GREATER "8.0" OR CUDA_VERSION VERSION_EQUAL "8.0") list(APPEND __arch_flags " -gencode arch=compute_60,code=sm_60") + list(APPEND CUDA_NVCC_FLAGS --expt-relaxed-constexpr) endif() # Custom gpu architecture diff --git a/doc/design/mkldnn/README.MD b/doc/design/mkldnn/README.MD new file mode 100644 index 0000000000000000000000000000000000000000..e956994431fbb43438c56dcd96ad8313cf516090 --- /dev/null +++ b/doc/design/mkldnn/README.MD @@ -0,0 +1,110 @@ +# Intel® MKL-DNN on PaddlePaddle: Design Doc + +我们计划将Intel深度神经网络数学库(**MKL-DNN**\[[1](#references)\])集成到PaddlePaddle,充分展现英特尔平台的优势,有效提升PaddlePaddle在英特尔架构上的性能。 + +我们短期内的基本目标是: + +- 完成常用layer的MKL-DNN实现。 +- 完成常见深度神经网络VGG,GoogLeNet 和 ResNet的MKL-DNN实现。 + + +## Contents + +- [Overview](#overview) +- [Actions](#actions) + - [CMake](#cmake) + - [Layers](#layers) + - [Activations](#activations) + - [Unit Tests](#unit-tests) + - [Protobuf Messages](#protobuf-messages) + - [Python API](#python-api) + - [Demos](#demos) + - [Benchmarking](#benchmarking) + - [Others](#others) +- [Design Concerns](#design-concerns) + +## Overview + +我们会把MKL-DNN作为第三方库集成进PaddlePaddle,整体框架图 +
+
+Figure 1. PaddlePaddle on IA. +
+ +## Actions +我们把集成方案大致分为了如下几个方面。 + +### CMake +我们会在`CMakeLists.txt`中会添加`WITH_MKLDNN`的选项,当设置这个值为`ON`的时候会启用编译MKL-DNN功能。同时会自动开启OpenMP用于提高MKL-DNN的性能。 + +同时,我们会引入`WITH_MKLML`选项,用于选择是否使用MKL-DNN自带的MKLML安装包。这个安装包可以独立于MKL-DNN使用,但是建议在开启MKL-DNN的同时也打开MKLML的开关,这样才能发挥最好的性能。 + +所以,我们会在`cmake/external`目录新建`mkldnn.cmake`和`mklml.cmake`文件,它们会在编译PaddlePaddle的时候下载对应的软件包,并放到PaddlePaddle的third party目录中。 + +**备注**:当`WITH_MKLML=ON`的时候,会优先使用这个包作为PaddlePaddle的CBLAS和LAPACK库,所以会稍微改动`cmake/cblas.cmake`中的逻辑。 + +### Layers +所有MKL-DNN相关的C++ layers,都会按照PaddlePaddle的目录结构存放在 +`paddle/gserver/layers`中,并且文件名都会一以*Mkldnn*开头。 + +所有MKL-DNN的layers都会继承于一个叫做`MkldnnLayer`的父类,该父类继承于PaddlePaddle的基类`Layer`。 + +### Activations +由于在PaddlePaddle中,激活函数是独立于layer概念的,所以会在`paddle/gserver/activations`目录下添加一个`MkldnnActivation.h`文件定义一些用于MKL-DNN的接口,实现方法还是会在`ActivationFunction.cpp`文件。 + +### Unit Tests +会在`paddle/gserver/test`目录下添加`test_Mkldnn.cpp`和`MkldnnTester.*`用于MKL-DNN的测试。 + +Activation的测试,计划在PaddlePaddle原有的测试文件上直接添加新的测试type。 + +### Protobuf Messages +根据具体layer的需求可能会在`proto/ModelConfig.proto`里面添加必要的选项。 + +### Python API +目前只考虑**v1 API**。 + +计划在`python/paddle/trainer/config_parser.py`里面添加`use_mkldnn`这个选择,方便用户选择使用MKL-DNN的layers。 + +具体实现方式比如: + +```python +use_mkldnn = bool(int(g_command_config_args.get("use_mkldnn", 0))) +if use_mkldnn + self.layer_type = mkldnn_* +``` + +所有MKL-DNN的layer type会以*mkldnn_*开头,以示区分。 + +并且可能在`python/paddle/trainer_config_helper`目录下的`activations.py `和`layers.py`里面添加必要的MKL-DNN的接口。 + +### Demos + +会在`v1_api_demo`目录下添加一个`mkldnn`的文件夹,里面放入一些用于MKL-DNN测试的demo脚本。 + +### Benchmarking +会考虑添加部分逻辑在`benchmark/paddle/image/run.sh`,添加使用MKL-DNN的测试。 + +### Others +1. 如果在使用MKL-DNN的情况下,会把CPU的Buffer对齐为64。 +2. 深入PaddlePaddle,寻找有没有其他可以优化的可能,进一步优化。比如可能会用OpenMP改进SGD的更新性能。 + +## Design Concerns + +为了更好的符合PaddlePaddle的代码风格\[[2](#references)\],同时又尽可能少的牺牲MKL-DNN的性能\[[3](#references)\]。 + +我们总结出一些特别需要注意的点: + +1. 使用**deviceId_**。为了尽可能少的在父类Layer中添加变量或者函数,我们决定使用已有的`deviceId_`变量来区分layer的属性,定义`-2`为`MkldnnLayer`特有的设备ID。 +2. 重写父类Layer的**init**函数,修改`deviceId_`为`-2`,代表这个layer是用于跑在MKL-DNN的环境下。 +3. 创建`MkldnnMatrix`,用于管理MKL-DNN会用到的相关memory函数、接口以及会用的到格式信息。 +4. 创建`MkldnnBase`,定义一些除了layer和memory相关的类和函数。包括MKL-DNN会用到`MkldnnStream`和`CpuEngine`,和未来可能还会用到`FPGAEngine`等。 +5. 在**Argument**里添加两个`MkldnnMatrixPtr`,取名为`mkldnnValue`和`mkldnnGrad`,用于存放`MkldnnLayer`会用到的memory buffer。 并且添加函数cvt(会修改为一个更加合适的函数名),用于处理"CPU device"和"MKL-DNN device"之间memory的相互转化。 +6. 在父类`Layer`中的`getOutput`函数中添加一段逻辑,用于判断`deviceId`,并针对device在MKL-DNN和CPU之间不统一的情况,做一个前期转换。 也就是调用`Argument`的cvt函数把output统一到需要的device上。 +7. 在原来的`FLAGS`中添加一个`use_mkldnn`的flag,用于选择是否使用MKL-DNN的相关功能。 + +## References + +1. [Intel Math Kernel Library for Deep Neural Networks (Intel MKL-DNN)](https://github.com/01org/mkl-dnn "Intel MKL-DNN") +2. [原来的方案](https://github.com/PaddlePaddle/Paddle/pull/3096)会引入**nextLayer**的信息。但是在PaddlePaddle中,无论是重构前的layer还是重构后的op,都不会想要知道next layer/op的信息。 +3. MKL-DNN的高性能格式与PaddlePaddle原有的`NCHW`不同(PaddlePaddle中的CUDNN部分使用的也是`NCHW`,所以不存在这个问题),所以需要引入一个转换方法,并且只需要在必要的时候转换这种格式,才能更好的发挥MKL-DNN的性能。 + diff --git a/doc/design/mkldnn/image/overview.png b/doc/design/mkldnn/image/overview.png new file mode 100644 index 0000000000000000000000000000000000000000..84b455c28230703599a2529f014cfbb222138fef Binary files /dev/null and b/doc/design/mkldnn/image/overview.png differ diff --git a/paddle/gserver/tests/CMakeLists.txt b/paddle/gserver/tests/CMakeLists.txt index 4546d12a903084e7a746b967c39d67a0ade4c0cd..5511ab6b8bb05108e76cc0913264d864d2fecf5b 100644 --- a/paddle/gserver/tests/CMakeLists.txt +++ b/paddle/gserver/tests/CMakeLists.txt @@ -1,10 +1,5 @@ # gserver pacakge unittests -file(GLOB_RECURSE GSERVER_HEADER RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.h") -file(GLOB_RECURSE GSERVER_SOURCES RELATIVE "${CMAKE_CURRENT_SOURCE_DIR}" "*.cpp") -add_style_check_target(paddle_gserver ${GSERVER_SOURCES}) -add_style_check_target(paddle_gserver ${GSERVER_HEADER}) - ################### test_ProtoDataProvider ############ add_unittest_without_exec(test_ProtoDataProvider test_ProtoDataProvider.cpp) diff --git a/paddle/operators/sigmoid_op.cc b/paddle/operators/sigmoid_op.cc index 8564cc9480423b80da41e4ea3c20c036fbe56d24..bc5e0bbb183f9bdf0a3fa8a5a02499282fbd6b98 100644 --- a/paddle/operators/sigmoid_op.cc +++ b/paddle/operators/sigmoid_op.cc @@ -39,10 +39,8 @@ class SigmoidOpMaker : public framework::OpProtoAndCheckerMaker { class SigmoidOpGrad : public framework::OperatorWithKernel { protected: - void InferShape(const framework::InferShapeContext &ctx) const override {} - std::string DebugString() const override { - LOG(INFO) << "SigmoidGrad"; - return ""; + void InferShape(const framework::InferShapeContext &ctx) const override { + ctx.Output(0)->Resize(ctx.Input(0)->dims()); } }; @@ -55,3 +53,5 @@ REGISTER_GRADIENT_OP(sigmoid, sigmoid_grad, ops::SigmoidOpGrad); REGISTER_OP_CPU_KERNEL(sigmoid, ops::SigmoidKernel); +REGISTER_OP_CPU_KERNEL( + sigmoid_grad, ops::SigmoidGradKernel); diff --git a/paddle/operators/sigmoid_op.cu b/paddle/operators/sigmoid_op.cu index 55cad18cebba4fe7ffec229cef99e07252783b1e..9518c3091aec63bfc913ea3bc12a50034b63aac2 100644 --- a/paddle/operators/sigmoid_op.cu +++ b/paddle/operators/sigmoid_op.cu @@ -18,3 +18,5 @@ namespace ops = paddle::operators; REGISTER_OP_GPU_KERNEL(sigmoid, ops::SigmoidKernel); +REGISTER_OP_GPU_KERNEL( + sigmoid_grad, ops::SigmoidGradKernel); diff --git a/paddle/operators/sigmoid_op.h b/paddle/operators/sigmoid_op.h index a5c15740fa98c49fef78699cd77809e6ac33882e..611c236675244383a587d8cfd41a7765272fc1da 100644 --- a/paddle/operators/sigmoid_op.h +++ b/paddle/operators/sigmoid_op.h @@ -32,6 +32,7 @@ class SigmoidKernel : public framework::OpKernel { auto output = context.Output(0); output->mutable_data(context.GetPlace()); + // The clipping is used in Paddle's raw implenmention auto X = EigenVector::Flatten(*input); auto Y = EigenVector::Flatten(*output); auto place = context.GetEigenDevice(); @@ -39,5 +40,23 @@ class SigmoidKernel : public framework::OpKernel { Y.device(place) = 1.0 / (1.0 + (-1.0 * X).exp()); } }; + +template +class SigmoidGradKernel : public OpKernel { + public: + void Compute(const ExecutionContext& context) const override { + auto Y_t = context.Input("Y"); + auto dY_t = context.Input(framework::GradVarName("Y")); + auto dX_t = context.Output(framework::GradVarName("X")); + + dX_t->mutable_data(context.GetPlace()); + + auto dX = EigenVector::Flatten(*dX_t); + auto Y = EigenVector::Flatten(*Y_t); + auto dY = EigenVector::Flatten(*dY_t); + dX.device(context.GetEigenDevice()) = dY * Y * (1. - Y); + } +}; + } // namespace operators } // namespace paddle diff --git a/python/paddle/v2/framework/tests/test_sigmoid_op.py b/python/paddle/v2/framework/tests/test_sigmoid_op.py index 2610bcf16303d492dce3ce63c93b54b0c88f6bba..2a57a41ed8b718fd420062ba68e853a4861b7359 100644 --- a/python/paddle/v2/framework/tests/test_sigmoid_op.py +++ b/python/paddle/v2/framework/tests/test_sigmoid_op.py @@ -12,5 +12,8 @@ class TestSigmoidOp(unittest.TestCase): self.outputs = {'Y': 1 / (1 + np.exp(-self.inputs['X']))} +#class TestSigmoidGradOp(unittest.TestCase): +#TODO(qingqing) add unit test + if __name__ == '__main__': unittest.main()