Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
68b5e5bf
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
68b5e5bf
编写于
9月 21, 2017
作者:
W
wanghaoshuang
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Use stridecpy instead of CUDA kernel
上级
ce709b75
变更
3
显示空白变更内容
内联
并排
Showing
3 changed file
with
45 addition
and
179 deletion
+45
-179
paddle/operators/crop_op.cc
paddle/operators/crop_op.cc
+1
-49
paddle/operators/crop_op.cu
paddle/operators/crop_op.cu
+1
-120
paddle/operators/crop_op.h
paddle/operators/crop_op.h
+43
-10
未找到文件。
paddle/operators/crop_op.cc
浏览文件 @
68b5e5bf
...
@@ -128,59 +128,11 @@ class CropOpGrad : public framework::OperatorWithKernel {
...
@@ -128,59 +128,11 @@ class CropOpGrad : public framework::OperatorWithKernel {
}
}
};
};
int64_t
transIndex
(
std
::
vector
<
int64_t
>
out_shape
,
std
::
vector
<
int64_t
>
x_shape
,
std
::
vector
<
std
::
pair
<
int
,
int
>>
crop_rules
,
size_t
index
)
{
int64_t
dim_size
=
out_shape
.
size
();
std
::
vector
<
int64_t
>
pos
(
dim_size
);
for
(
int64_t
i
=
out_shape
.
size
()
-
1
;
i
>=
0
;
--
i
)
{
pos
[
i
]
=
(
index
%
out_shape
[
i
])
+
crop_rules
[
i
].
first
;
index
=
index
/
out_shape
[
i
];
}
size_t
result
=
pos
[
0
];
for
(
size_t
i
=
1
;
i
<
x_shape
.
size
();
++
i
)
{
result
=
result
*
x_shape
[
i
]
+
pos
[
i
];
}
return
result
;
}
template
<
typename
T
>
class
CropCPUKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
auto
x_data
=
x
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_dims
=
x
->
dims
();
auto
out_dims
=
out
->
dims
();
int64_t
out_count
=
out
->
numel
();
std
::
vector
<
int64_t
>
x_shape
=
framework
::
vectorize
(
x_dims
);
std
::
vector
<
int64_t
>
out_shape
=
framework
::
vectorize
(
out_dims
);
auto
offsets
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"offsets"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
offsets
.
size
(),
"Offsets size should be equal to dimension size of input tensor."
);
std
::
vector
<
std
::
pair
<
int
,
int
>>
crop_rules
(
x_dims
.
size
());
for
(
size_t
i
=
0
;
i
<
crop_rules
.
size
();
++
i
)
{
crop_rules
[
i
].
first
=
offsets
[
i
];
crop_rules
[
i
].
second
=
x_dims
[
i
]
-
out_dims
[
i
]
-
offsets
[
i
];
}
for
(
int64_t
i
=
0
;
i
<
out_count
;
++
i
)
{
out_data
[
i
]
=
x_data
[
transIndex
(
out_shape
,
x_shape
,
crop_rules
,
i
)];
}
}
};
}
// namespace operators
}
// namespace operators
}
// namespace paddle
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP
(
crop
,
ops
::
CropOp
,
ops
::
CropOpMaker
,
crop_grad
,
ops
::
CropOpGrad
);
REGISTER_OP
(
crop
,
ops
::
CropOp
,
ops
::
CropOpMaker
,
crop_grad
,
ops
::
CropOpGrad
);
REGISTER_OP_CPU_KERNEL
(
crop
,
ops
::
Crop
CPU
Kernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
crop
,
ops
::
CropKernel
<
float
>
);
REGISTER_OP_CPU_KERNEL
(
crop_grad
,
REGISTER_OP_CPU_KERNEL
(
crop_grad
,
ops
::
CropGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
ops
::
CropGradKernel
<
paddle
::
platform
::
CPUPlace
,
float
>
);
paddle/operators/crop_op.cu
浏览文件 @
68b5e5bf
...
@@ -13,128 +13,9 @@
...
@@ -13,128 +13,9 @@
limitations under the License. */
limitations under the License. */
#define EIGEN_USE_GPU
#define EIGEN_USE_GPU
#include <stdio.h>
#include "paddle/operators/crop_op.h"
#include "paddle/operators/crop_op.h"
namespace
paddle
{
namespace
operators
{
using
framework
::
LoDTensor
;
using
framework
::
Tensor
;
template
<
typename
T
,
int
D
>
__global__
void
CropKernel
(
const
int
N
,
const
int64_t
*
out_shape
,
const
int64_t
*
x_shape
,
const
int
*
crop_rules
,
const
T
*
x_data
,
T
*
out_data
)
{
int64_t
pos
[
D
];
int
tmp
;
int64_t
x_index
;
for
(
int
out_index
=
blockIdx
.
x
*
blockDim
.
x
+
threadIdx
.
x
;
out_index
<
N
;
out_index
+=
blockDim
.
x
*
gridDim
.
x
)
{
tmp
=
out_index
;
for
(
int64_t
i
=
D
-
1
;
i
>=
0
;
--
i
)
{
pos
[
i
]
=
(
tmp
%
out_shape
[
i
])
+
crop_rules
[
i
*
2
];
tmp
=
tmp
/
out_shape
[
i
];
}
x_index
=
pos
[
0
];
for
(
size_t
i
=
1
;
i
<
D
;
++
i
)
{
x_index
=
x_index
*
x_shape
[
i
]
+
pos
[
i
];
}
out_data
[
out_index
]
=
x_data
[
x_index
];
}
}
template
<
typename
T
,
int
D
>
void
CropCUDAFunctoin
(
const
framework
::
ExecutionContext
&
context
)
{
PADDLE_ENFORCE
(
platform
::
is_gpu_place
(
context
.
GetPlace
()),
"It must use GPUPlace."
);
auto
*
x
=
context
.
Input
<
LoDTensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
LoDTensor
>
(
"Out"
);
auto
x_data
=
x
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
paddle
::
platform
::
GPUPlace
());
auto
x_dims
=
x
->
dims
();
auto
out_dims
=
out
->
dims
();
int64_t
out_count
=
out
->
numel
();
Tensor
x_shape
;
Tensor
out_shape
;
int64_t
*
x_shape_data
=
x_shape
.
mutable_data
<
int64_t
>
({
D
},
paddle
::
platform
::
CPUPlace
());
int64_t
*
out_shape_data
=
out_shape
.
mutable_data
<
int64_t
>
({
D
},
paddle
::
platform
::
CPUPlace
());
for
(
int
i
=
0
;
i
<
D
;
++
i
)
{
x_shape_data
[
i
]
=
x_dims
[
i
];
out_shape_data
[
i
]
=
out_dims
[
i
];
}
Tensor
x_shape_gpu
;
Tensor
out_shape_gpu
;
x_shape_gpu
.
CopyFrom
<
int64_t
>
(
x_shape
,
paddle
::
platform
::
GPUPlace
());
out_shape_gpu
.
CopyFrom
<
int64_t
>
(
out_shape
,
paddle
::
platform
::
GPUPlace
());
auto
offsets
=
context
.
op
().
Attr
<
std
::
vector
<
int
>>
(
"offsets"
);
PADDLE_ENFORCE_EQ
(
D
,
offsets
.
size
(),
"Offsets size should be equal to dimension size of input tensor."
);
Tensor
crop_rules
;
int
*
crop_rules_data
=
crop_rules
.
mutable_data
<
int
>
({
D
*
2
},
paddle
::
platform
::
CPUPlace
());
for
(
size_t
i
=
0
;
i
<
D
;
++
i
)
{
crop_rules_data
[
i
*
2
]
=
offsets
[
i
];
crop_rules_data
[
i
*
2
+
1
]
=
x_dims
[
i
]
-
out_dims
[
i
]
-
offsets
[
i
];
}
Tensor
crop_rules_gpu
;
crop_rules_gpu
.
CopyFrom
<
int
>
(
crop_rules
,
paddle
::
platform
::
GPUPlace
());
int
n
=
out_dims
[
0
];
int
d
=
out_dims
[
1
];
int
block
=
512
;
int
grid
=
(
n
*
d
+
block
-
1
)
/
block
;
CropKernel
<
T
,
D
><<<
grid
,
block
,
0
,
reinterpret_cast
<
const
platform
::
CUDADeviceContext
&>
(
context
.
device_context
())
.
stream
()
>>>
(
out_count
,
out_shape_gpu
.
data
<
int64_t
>
(),
x_shape_gpu
.
data
<
int64_t
>
(),
crop_rules_gpu
.
data
<
int
>
(),
x_data
,
out_data
);
}
template
<
typename
T
>
class
CropOpCUDAKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
size_t
rank
=
context
.
Input
<
LoDTensor
>
(
"X"
)
->
dims
().
size
();
switch
(
rank
)
{
case
1
:
CropCUDAFunctoin
<
T
,
1
>
(
context
);
break
;
case
2
:
CropCUDAFunctoin
<
T
,
2
>
(
context
);
break
;
case
3
:
CropCUDAFunctoin
<
T
,
3
>
(
context
);
break
;
case
4
:
CropCUDAFunctoin
<
T
,
4
>
(
context
);
break
;
case
5
:
CropCUDAFunctoin
<
T
,
5
>
(
context
);
break
;
case
6
:
CropCUDAFunctoin
<
T
,
6
>
(
context
);
break
;
default:
PADDLE_THROW
(
"CropOp only support tensors with no more than 6 dimensions."
);
}
}
};
}
// namespace operators
}
// namespace paddle
namespace
ops
=
paddle
::
operators
;
namespace
ops
=
paddle
::
operators
;
REGISTER_OP_GPU_KERNEL
(
crop
,
ops
::
Crop
OpCUDA
Kernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
crop
,
ops
::
CropKernel
<
float
>
);
REGISTER_OP_GPU_KERNEL
(
crop_grad
,
REGISTER_OP_GPU_KERNEL
(
crop_grad
,
ops
::
CropGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
ops
::
CropGradKernel
<
paddle
::
platform
::
GPUPlace
,
float
>
);
paddle/operators/crop_op.h
浏览文件 @
68b5e5bf
...
@@ -16,6 +16,7 @@
...
@@ -16,6 +16,7 @@
#include "paddle/framework/eigen.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/strided_memcpy.h"
namespace
paddle
{
namespace
paddle
{
namespace
operators
{
// Internal
namespace
operators
{
// Internal
...
@@ -24,26 +25,58 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor,
...
@@ -24,26 +25,58 @@ template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename
IndexType
=
Eigen
::
DenseIndex
>
typename
IndexType
=
Eigen
::
DenseIndex
>
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
EigenTensor
=
framework
::
EigenTensor
<
T
,
D
,
MajorType
,
IndexType
>
;
using
framework
::
LoDTensor
;
using
framework
::
Tensor
;
using
framework
::
DDim
;
// TODO(wanghaoshuang): move this function to other place
DDim
stride
(
const
DDim
&
ddim
)
{
std
::
vector
<
int64_t
>
strides
(
ddim
.
size
());
strides
[
ddim
.
size
()
-
1
]
=
1
;
for
(
int
i
=
ddim
.
size
()
-
2
;
i
>=
0
;
--
i
)
{
strides
[
i
]
=
strides
[
i
+
1
]
*
ddim
[
i
+
1
];
}
return
make_ddim
(
strides
);
}
template
<
typename
T
>
class
CropKernel
:
public
framework
::
OpKernel
{
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
auto
*
x
=
context
.
Input
<
Tensor
>
(
"X"
);
auto
*
out
=
context
.
Output
<
Tensor
>
(
"Out"
);
T
*
x_data
=
x
->
data
<
T
>
();
T
*
out_data
=
out
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
x_stride
=
stride
(
x
->
dims
());
auto
out_stride
=
stride
(
out
->
dims
());
auto
offsets
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"offsets"
);
PADDLE_ENFORCE_EQ
(
x_dims
.
size
(),
offsets
.
size
(),
"Offsets size should be equal to dimension size of input tensor."
);
int64_t
offset
=
0
;
for
(
int
i
=
0
;
i
<
offsets
.
size
();
++
i
)
{
offset
+=
(
x_stride
[
i
]
*
offsets
[
i
]);
}
StridedMemcpy
<
T
>
(
context
.
device_context
(),
x_data
+
offset
,
x_stride
,
out
->
dims
(),
out_stride
,
out_data
);
}
};
template
<
typename
Place
,
typename
T
,
size_t
D
>
template
<
typename
Place
,
typename
T
,
size_t
D
>
void
CropGradFunction
(
const
framework
::
ExecutionContext
&
context
)
{
void
CropGradFunction
(
const
framework
::
ExecutionContext
&
context
)
{
auto
*
d_out
=
context
.
Input
<
LoDTensor
>
(
framework
::
GradVarName
(
"Out"
));
auto
*
d_x
=
context
.
Output
<
Tensor
>
(
framework
::
GradVarName
(
"X"
));
auto
*
d_x
=
context
.
Output
<
LoDTensor
>
(
framework
::
GradVarName
(
"X"
));
if
(
d_x
!=
nullptr
)
{
if
(
d_x
!=
nullptr
)
{
auto
*
d_out
=
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
));
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
d_x
->
mutable_data
<
T
>
(
context
.
GetPlace
());
auto
d_x_dims
=
d_x
->
dims
();
auto
offsets
=
context
.
Attr
<
std
::
vector
<
int
>>
(
"offsets"
);
auto
d_out_dims
=
d_out
->
dims
();
auto
offsets
=
context
.
op
().
Attr
<
std
::
vector
<
int
>>
(
"offsets"
);
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
Eigen
::
array
<
std
::
pair
<
int
,
int
>
,
D
>
paddings
;
for
(
int
i
=
0
;
i
<
d_out_dims
.
size
()
;
++
i
)
{
for
(
int
i
=
0
;
i
<
D
;
++
i
)
{
paddings
[
i
].
first
=
offsets
[
i
];
paddings
[
i
].
first
=
offsets
[
i
];
paddings
[
i
].
second
=
d_x_dims
[
i
]
-
d_out_dims
[
i
]
-
offsets
[
i
];
paddings
[
i
].
second
=
d_x_dims
[
i
]
-
d_out_dims
[
i
]
-
offsets
[
i
];
}
}
auto
d_x_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
d_x
);
auto
d_x_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
d_x
);
auto
d_out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
d_out
);
auto
d_out_tensor
=
EigenTensor
<
T
,
D
>::
From
(
*
d_out
);
auto
place
=
context
.
GetEigenDevice
<
Place
>
();
d_x_tensor
.
device
(
context
.
GetEigenDevice
<
Place
>
())
=
d_x_tensor
.
device
(
place
)
=
d_out_tensor
.
pad
(
paddings
,
0
);
d_out_tensor
.
pad
(
paddings
,
0
);
}
}
}
}
...
@@ -52,7 +85,7 @@ class CropGradKernel : public framework::OpKernel {
...
@@ -52,7 +85,7 @@ class CropGradKernel : public framework::OpKernel {
public:
public:
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
void
Compute
(
const
framework
::
ExecutionContext
&
context
)
const
override
{
size_t
rank
=
size_t
rank
=
context
.
Input
<
LoD
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
().
size
();
context
.
Input
<
Tensor
>
(
framework
::
GradVarName
(
"Out"
))
->
dims
().
size
();
switch
(
rank
)
{
switch
(
rank
)
{
case
1
:
case
1
:
CropGradFunction
<
Place
,
T
,
1
>
(
context
);
CropGradFunction
<
Place
,
T
,
1
>
(
context
);
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录