Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
65efebb8
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
65efebb8
编写于
9月 19, 2018
作者:
Q
qingqing01
提交者:
GitHub
9月 19, 2018
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Fix detection.py after merge slice_op. (#13435)
上级
289acfa2
变更
1
显示空白变更内容
内联
并排
Showing
1 changed file
with
4 addition
and
9 deletion
+4
-9
python/paddle/fluid/layers/detection.py
python/paddle/fluid/layers/detection.py
+4
-9
未找到文件。
python/paddle/fluid/layers/detection.py
浏览文件 @
65efebb8
...
@@ -723,11 +723,10 @@ def ssd_loss(location,
...
@@ -723,11 +723,10 @@ def ssd_loss(location,
target_label
.
stop_gradient
=
True
target_label
.
stop_gradient
=
True
conf_loss
=
nn
.
softmax_with_cross_entropy
(
confidence
,
target_label
)
conf_loss
=
nn
.
softmax_with_cross_entropy
(
confidence
,
target_label
)
# 3. Mining hard examples
# 3. Mining hard examples
actual_shape
=
ops
.
slice
(
conf_shape
,
axes
=
[
0
],
starts
=
[
0
],
ends
=
[
2
])
actual_shape
.
stop_gradient
=
True
conf_loss
=
nn
.
reshape
(
conf_loss
=
nn
.
reshape
(
x
=
conf_loss
,
x
=
conf_loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
actual_shape
)
shape
=
(
num
,
num_prior
),
actual_shape
=
ops
.
slice
(
conf_shape
,
axes
=
[
0
],
starts
=
[
0
],
ends
=
[
2
]))
conf_loss
.
stop_gradient
=
True
conf_loss
.
stop_gradient
=
True
neg_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
neg_indices
=
helper
.
create_tmp_variable
(
dtype
=
'int32'
)
dtype
=
matched_indices
.
dtype
dtype
=
matched_indices
.
dtype
...
@@ -796,11 +795,7 @@ def ssd_loss(location,
...
@@ -796,11 +795,7 @@ def ssd_loss(location,
# 5.3 Compute overall weighted loss.
# 5.3 Compute overall weighted loss.
loss
=
conf_loss_weight
*
conf_loss
+
loc_loss_weight
*
loc_loss
loss
=
conf_loss_weight
*
conf_loss
+
loc_loss_weight
*
loc_loss
# reshape to [N, Np], N is the batch size and Np is the prior box number.
# reshape to [N, Np], N is the batch size and Np is the prior box number.
loss
=
nn
.
reshape
(
loss
=
nn
.
reshape
(
x
=
loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
actual_shape
)
x
=
loss
,
shape
=
(
num
,
num_prior
),
actual_shape
=
ops
.
slice
(
conf_shape
,
axes
=
[
0
],
starts
=
[
0
],
ends
=
[
2
]))
loss
=
nn
.
reduce_sum
(
loss
,
dim
=
1
,
keep_dim
=
True
)
loss
=
nn
.
reduce_sum
(
loss
,
dim
=
1
,
keep_dim
=
True
)
if
normalize
:
if
normalize
:
normalizer
=
nn
.
reduce_sum
(
target_loc_weight
)
normalizer
=
nn
.
reduce_sum
(
target_loc_weight
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录