提交 624caee5 编写于 作者: Y yuyang18

Merge branch 'develop' of https://github.com/PaddlePaddle/Paddle into fix_fetch_op_handle

...@@ -70,6 +70,12 @@ copy(glog_lib ...@@ -70,6 +70,12 @@ copy(glog_lib
DSTS ${dst_dir} ${dst_dir}/lib DSTS ${dst_dir} ${dst_dir}/lib
) )
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/boost/")
copy(boost_lib
SRCS ${BOOST_INCLUDE_DIR}/boost
DSTS ${dst_dir}
)
if(NOT PROTOBUF_FOUND) if(NOT PROTOBUF_FOUND)
set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/protobuf") set(dst_dir "${CMAKE_INSTALL_PREFIX}/third_party/install/protobuf")
copy(protobuf_lib copy(protobuf_lib
......
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace paddle {
namespace framework {
namespace details {
struct BuildStrategy {
enum class ReduceStrategy { kAllReduce = 0, kReduce = 1 };
enum class GradientScaleStrategy {
kCoeffNumDevice = 0,
kOne = 1,
kCustomized = 2,
};
ReduceStrategy reduce_{ReduceStrategy::kAllReduce};
GradientScaleStrategy gradient_scale_{GradientScaleStrategy::kCoeffNumDevice};
};
} // namespace details
} // namespace framework
} // namespace paddle
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
namespace paddle {
namespace framework {
namespace details {
struct ExecutionStrategy {
size_t num_threads_{0};
bool use_event_{true};
bool allow_op_delay_{false};
};
} // namespace details
} // namespace framework
} // namespace paddle
...@@ -37,31 +37,26 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( ...@@ -37,31 +37,26 @@ MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
const std::string &loss_var_name, const std::string &loss_var_name,
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const std::vector<Scope *> &local_scopes, const std::vector<Scope *> &local_scopes,
platform::NCCLContextMap *nccl_ctxs, bool use_default_grad_scale, platform::NCCLContextMap *nccl_ctxs, const BuildStrategy &strategy)
bool balance_parameter_opt_between_cards)
: loss_var_name_(loss_var_name), : loss_var_name_(loss_var_name),
places_(places), places_(places),
local_scopes_(local_scopes), local_scopes_(local_scopes),
nccl_ctxs_(nccl_ctxs), nccl_ctxs_(nccl_ctxs),
balance_parameter_opt_between_cards_( strategy_(strategy) {
balance_parameter_opt_between_cards) {
#else #else
MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder( MultiDevSSAGraphBuilder::MultiDevSSAGraphBuilder(
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const std::string &loss_var_name, const std::string &loss_var_name,
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const std::vector<Scope *> &local_scopes, bool use_default_grad_scale, const std::vector<Scope *> &local_scopes, const BuildStrategy &strategy)
bool balance_parameter_opt_between_cards)
: loss_var_name_(loss_var_name), : loss_var_name_(loss_var_name),
places_(places), places_(places),
local_scopes_(local_scopes), local_scopes_(local_scopes),
balance_parameter_opt_between_cards_( strategy_(strategy) {
balance_parameter_opt_between_cards) {
#endif #endif
for (auto &p : params) { for (auto &p : params) {
grad_names_.insert(GradVarName(p)); grad_names_.insert(GradVarName(p));
} }
use_default_grad_scale_ = use_default_grad_scale;
} }
void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result, void MultiDevSSAGraphBuilder::CreateOpHandleIOs(SSAGraph *result,
...@@ -146,7 +141,8 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -146,7 +141,8 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
CreateComputationalOps(&result, *op, 1); CreateComputationalOps(&result, *op, 1);
} else if (IsScaleLossOp(*op)) { } else if (IsScaleLossOp(*op)) {
// user can customize loss@grad if not use_default_grad_scale_ // user can customize loss@grad if not use_default_grad_scale_
if (use_default_grad_scale_) { if (strategy_.gradient_scale_ !=
BuildStrategy::GradientScaleStrategy::kCustomized) {
CreateScaleLossGradOp(&result); CreateScaleLossGradOp(&result);
} }
is_forwarding = false; is_forwarding = false;
...@@ -165,19 +161,22 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build( ...@@ -165,19 +161,22 @@ std::unique_ptr<SSAGraph> MultiDevSSAGraphBuilder::Build(
// broadcast, and each gradient is only broadcast once. // broadcast, and each gradient is only broadcast once.
for (auto &og : op->OutputArgumentNames()) { for (auto &og : op->OutputArgumentNames()) {
if (IsParameterGradientOnce(og, &og_has_been_broadcast)) { if (IsParameterGradientOnce(og, &og_has_been_broadcast)) {
if (balance_parameter_opt_between_cards_) { switch (strategy_.reduce_) {
case BuildStrategy::ReduceStrategy::kReduce:
CreateReduceOp(&result, og, cur_device_id); CreateReduceOp(&result, og, cur_device_id);
var_name_on_devices[cur_device_id].emplace(og); var_name_on_devices[cur_device_id].emplace(og);
bcast_var_name_set[cur_device_id].emplace( bcast_var_name_set[cur_device_id].emplace(
og.substr(0, og.size() - strlen(kGradVarSuffix))); og.substr(0, og.size() - strlen(kGradVarSuffix)));
cur_device_id = (cur_device_id + 1) % places_.size(); cur_device_id = (cur_device_id + 1) % places_.size();
} else { break;
case BuildStrategy::ReduceStrategy::kAllReduce:
if (IsSparseGradient(var_types, og)) { if (IsSparseGradient(var_types, og)) {
CreateReduceOp(&result, og, 0); CreateReduceOp(&result, og, 0);
CreateBroadcastOp(&result, og, 0); CreateBroadcastOp(&result, og, 0);
} else { } else {
InsertNCCLAllReduceOp(&result, og); InsertNCCLAllReduceOp(&result, og);
} }
break;
} }
} }
} }
...@@ -303,7 +302,7 @@ bool MultiDevSSAGraphBuilder::IsParameterGradientOnce( ...@@ -303,7 +302,7 @@ bool MultiDevSSAGraphBuilder::IsParameterGradientOnce(
int MultiDevSSAGraphBuilder::GetOpDeviceID( int MultiDevSSAGraphBuilder::GetOpDeviceID(
const std::vector<std::unordered_set<std::string>> &var_name_on_devices, const std::vector<std::unordered_set<std::string>> &var_name_on_devices,
const OpDesc &op) const { const OpDesc &op) const {
if (!balance_parameter_opt_between_cards_) { if (strategy_.reduce_ != BuildStrategy::ReduceStrategy::kReduce) {
return -1; return -1;
} }
......
...@@ -17,6 +17,7 @@ ...@@ -17,6 +17,7 @@
#include <utility> #include <utility>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/build_strategy.h"
#include "paddle/fluid/framework/details/ssa_graph_builder.h" #include "paddle/fluid/framework/details/ssa_graph_builder.h"
namespace paddle { namespace paddle {
...@@ -36,15 +37,13 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { ...@@ -36,15 +37,13 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const std::vector<Scope *> &local_scopes, const std::vector<Scope *> &local_scopes,
platform::NCCLContextMap *nccl_ctxs, platform::NCCLContextMap *nccl_ctxs,
bool use_default_grad_scale, const BuildStrategy &strategy);
bool balance_parameter_opt_between_cards);
#else #else
MultiDevSSAGraphBuilder(const std::vector<platform::Place> &places, MultiDevSSAGraphBuilder(const std::vector<platform::Place> &places,
const std::string &loss_var_name, const std::string &loss_var_name,
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const std::vector<Scope *> &local_scopes, const std::vector<Scope *> &local_scopes,
bool use_default_grad_scale, const BuildStrategy &strategy);
bool balance_parameter_opt_between_cards);
#endif #endif
std::unique_ptr<SSAGraph> Build(const ProgramDesc &program) const override; std::unique_ptr<SSAGraph> Build(const ProgramDesc &program) const override;
...@@ -62,8 +61,6 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { ...@@ -62,8 +61,6 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
platform::NCCLContextMap *nccl_ctxs_; platform::NCCLContextMap *nccl_ctxs_;
#endif #endif
bool balance_parameter_opt_between_cards_;
bool use_default_grad_scale_;
bool IsScaleLossOp(const OpDesc &op) const; bool IsScaleLossOp(const OpDesc &op) const;
...@@ -105,6 +102,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder { ...@@ -105,6 +102,9 @@ class MultiDevSSAGraphBuilder : public SSAGraphBuilder {
bool IsSparseGradient( bool IsSparseGradient(
const std::unordered_map<std::string, proto::VarType::Type> &var_types, const std::unordered_map<std::string, proto::VarType::Type> &var_types,
const std::string &og) const; const std::string &og) const;
private:
BuildStrategy strategy_;
}; };
} // namespace details } // namespace details
} // namespace framework } // namespace framework
......
...@@ -18,18 +18,17 @@ namespace paddle { ...@@ -18,18 +18,17 @@ namespace paddle {
namespace framework { namespace framework {
namespace details { namespace details {
ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor( ThreadedSSAGraphExecutor::ThreadedSSAGraphExecutor(
size_t num_threads, bool use_event, const ExecutionStrategy &strategy, const std::vector<Scope *> &local_scopes,
const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
std::unique_ptr<SSAGraph> &&graph, bool allow_op_delay) std::unique_ptr<SSAGraph> &&graph)
: SSAGraphExecutor(std::move(graph)), : SSAGraphExecutor(std::move(graph)),
pool_(num_threads >= 2 ? new ::ThreadPool(num_threads) : nullptr), pool_(strategy.num_threads_ >= 2 ? new ::ThreadPool(strategy.num_threads_)
: nullptr),
local_scopes_(local_scopes), local_scopes_(local_scopes),
places_(places), places_(places),
fetch_ctxs_(places), fetch_ctxs_(places),
use_event_(use_event),
running_ops_(0), running_ops_(0),
allow_op_delay_(allow_op_delay) {} strategy_(strategy) {}
FeedFetchList ThreadedSSAGraphExecutor::Run( FeedFetchList ThreadedSSAGraphExecutor::Run(
const std::vector<std::string> &fetch_tensors) { const std::vector<std::string> &fetch_tensors) {
...@@ -86,7 +85,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -86,7 +85,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
// //
// NOTE: DelayedOps have a lower priority. It will be scheduled after all // NOTE: DelayedOps have a lower priority. It will be scheduled after all
// ready_ops have been performed. // ready_ops have been performed.
if (ready_ops.empty() && allow_op_delay_ && running_ops_ == 0) { if (ready_ops.empty() && strategy_.allow_op_delay_ && running_ops_ == 0) {
run_all_ops(delayed_ops); run_all_ops(delayed_ops);
} else { } else {
run_all_ops(ready_ops); run_all_ops(ready_ops);
...@@ -113,7 +112,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run( ...@@ -113,7 +112,7 @@ FeedFetchList ThreadedSSAGraphExecutor::Run(
auto &deps = pending_ops[op]; auto &deps = pending_ops[op];
--deps; --deps;
if (deps == 0) { if (deps == 0) {
if (op->IsMultiDeviceTransfer() && allow_op_delay_) { if (op->IsMultiDeviceTransfer() && strategy_.allow_op_delay_) {
delayed_ops.insert(op); delayed_ops.insert(op);
} else { } else {
ready_ops.insert(op); ready_ops.insert(op);
...@@ -191,7 +190,7 @@ void ThreadedSSAGraphExecutor::RunOp( ...@@ -191,7 +190,7 @@ void ThreadedSSAGraphExecutor::RunOp(
auto op_run = [ready_var_q, op, this] { auto op_run = [ready_var_q, op, this] {
try { try {
VLOG(10) << op << " " << op->Name() << " : " << op->DebugString(); VLOG(10) << op << " " << op->Name() << " : " << op->DebugString();
op->Run(use_event_); op->Run(strategy_.use_event_);
VLOG(10) << op << " " << op->Name() << " Done "; VLOG(10) << op << " " << op->Name() << " Done ";
running_ops_--; running_ops_--;
ready_var_q->Extend(op->Outputs()); ready_var_q->Extend(op->Outputs());
......
...@@ -23,6 +23,7 @@ ...@@ -23,6 +23,7 @@
#include <functional> #include <functional>
#include "ThreadPool.h" // ThreadPool in thrird party #include "ThreadPool.h" // ThreadPool in thrird party
#include "paddle/fluid/framework/blocking_queue.h" #include "paddle/fluid/framework/blocking_queue.h"
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/details/fetch_op_handle.h" #include "paddle/fluid/framework/details/fetch_op_handle.h"
#include "paddle/fluid/framework/details/ssa_graph_executor.h" #include "paddle/fluid/framework/details/ssa_graph_executor.h"
...@@ -34,11 +35,10 @@ namespace details { ...@@ -34,11 +35,10 @@ namespace details {
class ThreadedSSAGraphExecutor : public SSAGraphExecutor { class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
public: public:
ThreadedSSAGraphExecutor(size_t num_threads, bool use_event, ThreadedSSAGraphExecutor(const ExecutionStrategy &strategy,
const std::vector<Scope *> &local_scopes, const std::vector<Scope *> &local_scopes,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
std::unique_ptr<SSAGraph> &&graph, std::unique_ptr<SSAGraph> &&graph);
bool allow_op_delay);
// Run a SSAGraph by a thread pool // Run a SSAGraph by a thread pool
// Use topological sort algorithm // Use topological sort algorithm
...@@ -55,10 +55,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -55,10 +55,8 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std::vector<Scope *> local_scopes_; std::vector<Scope *> local_scopes_;
std::vector<platform::Place> places_; std::vector<platform::Place> places_;
platform::DeviceContextPool fetch_ctxs_; platform::DeviceContextPool fetch_ctxs_;
const bool use_event_;
std::unique_ptr<platform::EnforceNotMet> exception_; std::unique_ptr<platform::EnforceNotMet> exception_;
std::atomic<int> running_ops_; std::atomic<int> running_ops_;
bool allow_op_delay_;
void InsertPendingOp(std::unordered_map<OpHandleBase *, size_t> *pending_ops, void InsertPendingOp(std::unordered_map<OpHandleBase *, size_t> *pending_ops,
OpHandleBase *op_instance) const; OpHandleBase *op_instance) const;
...@@ -74,6 +72,9 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor { ...@@ -74,6 +72,9 @@ class ThreadedSSAGraphExecutor : public SSAGraphExecutor {
std::unordered_map<OpHandleBase *, size_t> *pending_ops, std::unordered_map<OpHandleBase *, size_t> *pending_ops,
std::unordered_set<VarHandleBase *> *pending_vars, std::unordered_set<VarHandleBase *> *pending_vars,
BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data); BlockingQueue<VarHandleBase *> *ready_vars, FeedFetchList *fetch_data);
private:
ExecutionStrategy strategy_;
}; };
} // namespace details } // namespace details
......
...@@ -52,13 +52,12 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() { ...@@ -52,13 +52,12 @@ std::vector<Scope *> &ParallelExecutor::GetLocalScopes() {
} }
ParallelExecutor::ParallelExecutor( ParallelExecutor::ParallelExecutor(
size_t num_threads, bool use_event,
const std::vector<platform::Place> &places, const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params, const std::unordered_set<std::string> &params,
const std::unordered_set<std::string> &bcast_vars, const std::unordered_set<std::string> &bcast_vars,
const ProgramDesc &main_program, const std::string &loss_var_name, const ProgramDesc &main_program, const std::string &loss_var_name,
Scope *scope, const std::vector<Scope *> &local_scopes, bool allow_op_delay, Scope *scope, const std::vector<Scope *> &local_scopes,
bool use_default_grad_scale, bool balance_parameter_opt_between_cards, const ExecutionStrategy &exec_strategy, const BuildStrategy &build_strategy,
size_t num_trainers, size_t trainer_id) size_t num_trainers, size_t trainer_id)
: member_(new ParallelExecutorPrivate(places)) { : member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope; member_->global_scope_ = scope;
...@@ -100,18 +99,16 @@ ParallelExecutor::ParallelExecutor( ...@@ -100,18 +99,16 @@ ParallelExecutor::ParallelExecutor(
#ifdef PADDLE_WITH_CUDA #ifdef PADDLE_WITH_CUDA
details::MultiDevSSAGraphBuilder builder( details::MultiDevSSAGraphBuilder builder(
member_->places_, loss_var_name, params, member_->local_scopes_, member_->places_, loss_var_name, params, member_->local_scopes_,
member_->nccl_ctxs_.get(), use_default_grad_scale, member_->nccl_ctxs_.get(), build_strategy);
balance_parameter_opt_between_cards);
#else #else
details::MultiDevSSAGraphBuilder builder( details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
member_->places_, loss_var_name, params, member_->local_scopes_, params, member_->local_scopes_,
use_default_grad_scale, balance_parameter_opt_between_cards); build_strategy);
#endif #endif
auto graph = builder.Build(main_program); auto graph = builder.Build(main_program);
member_->executor_.reset(new details::ThreadedSSAGraphExecutor( member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
num_threads, use_event, member_->local_scopes_, places, std::move(graph), exec_strategy, member_->local_scopes_, places, std::move(graph)));
allow_op_delay));
// Step 3. Create vars in each scope; // Step 3. Create vars in each scope;
for (auto *var : main_program.Block(0).AllVars()) { for (auto *var : main_program.Block(0).AllVars()) {
......
...@@ -14,57 +14,60 @@ limitations under the License. */ ...@@ -14,57 +14,60 @@ limitations under the License. */
#pragma once #pragma once
#include <paddle/fluid/framework/details/build_strategy.h>
#include <string> #include <string>
#include <unordered_set> #include <unordered_set>
#include <vector> #include <vector>
#include "paddle/fluid/framework/details/execution_strategy.h"
#include "paddle/fluid/framework/executor.h" #include "paddle/fluid/framework/executor.h"
#include "paddle/fluid/framework/op_info.h" #include "paddle/fluid/framework/op_info.h"
#include "paddle/fluid/framework/program_desc.h" #include "paddle/fluid/framework/program_desc.h"
#include "paddle/fluid/framework/scope.h" #include "paddle/fluid/framework/scope.h"
#include "paddle/fluid/framework/tensor.h" #include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
namespace paddle { namespace paddle {
namespace framework { namespace framework {
class ParallelExecutorPrivate; class ParallelExecutorPrivate;
using details::BuildStrategy;
using details::ExecutionStrategy;
class ParallelExecutor { class ParallelExecutor {
DISABLE_COPY_AND_ASSIGN(ParallelExecutor); DISABLE_COPY_AND_ASSIGN(ParallelExecutor);
public: public:
explicit ParallelExecutor(size_t num_threads, bool use_event, explicit ParallelExecutor(const std::vector<platform::Place> &places,
const std::vector<platform::Place>& places, const std::unordered_set<std::string> &params,
const std::unordered_set<std::string>& params, const std::unordered_set<std::string> &bcast_vars,
const std::unordered_set<std::string>& bcast_vars, const ProgramDesc &main_program,
const ProgramDesc& main_program, const std::string &loss_var_name, Scope *scope,
const std::string& loss_var_name, Scope* scope, const std::vector<Scope *> &local_scopes,
const std::vector<Scope*>& local_scopes, const ExecutionStrategy &exec_strategy,
bool allow_op_delay, bool use_default_grad_scale, const BuildStrategy &build_strategy,
bool balance_parameter_opt_between_cards,
size_t num_trainers = 1, size_t trainer_id = 0); size_t num_trainers = 1, size_t trainer_id = 0);
~ParallelExecutor(); ~ParallelExecutor();
std::vector<Scope*>& GetLocalScopes(); std::vector<Scope *> &GetLocalScopes();
/** /**
* Feed tensors to local scopes. The size of tensors should be equal to the * Feed tensors to local scopes. The size of tensors should be equal to the
* size of local scopes. * size of local scopes.
*/ */
void FeedTensorsIntoLocalScopes( void FeedTensorsIntoLocalScopes(
const std::vector<std::unordered_map<std::string, LoDTensor>>& tensors); const std::vector<std::unordered_map<std::string, LoDTensor>> &tensors);
void FeedAndSplitTensorIntoLocalScopes( void FeedAndSplitTensorIntoLocalScopes(
const std::unordered_map<std::string, LoDTensor>& tensors); const std::unordered_map<std::string, LoDTensor> &tensors);
void Run(const std::vector<std::string>& fetch_tensors, void Run(const std::vector<std::string> &fetch_tensors,
const std::string& fetched_var_name); const std::string &fetched_var_name);
void BCastParamsToGPUs(const std::unordered_set<std::string>& vars) const; void BCastParamsToGPUs(const std::unordered_set<std::string> &vars) const;
private: private:
ParallelExecutorPrivate* member_; ParallelExecutorPrivate *member_;
}; };
} // namespace framework } // namespace framework
......
...@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS, ...@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#pragma once
namespace paddle { namespace paddle {
namespace inference { namespace inference {
......
...@@ -19,6 +19,7 @@ limitations under the License. */ ...@@ -19,6 +19,7 @@ limitations under the License. */
*/ */
#pragma once #pragma once
#include <limits>
#include <memory> #include <memory>
#include <string> #include <string>
#include <unordered_map> #include <unordered_map>
......
...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. ...@@ -12,7 +12,7 @@ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and See the License for the specific language governing permissions and
limitations under the License. */ limitations under the License. */
#include <fstream> #include <fstream>
#include "paddle/fluid/framework/data_type_transform.h"
#include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/device_context.h"
...@@ -31,6 +31,7 @@ class LoadCombineOp : public framework::OperatorBase { ...@@ -31,6 +31,7 @@ class LoadCombineOp : public framework::OperatorBase {
void RunImpl(const framework::Scope &scope, void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override { const platform::Place &place) const override {
auto filename = Attr<std::string>("file_path"); auto filename = Attr<std::string>("file_path");
auto load_as_fp16 = Attr<bool>("load_as_fp16");
std::ifstream fin(filename); std::ifstream fin(filename);
PADDLE_ENFORCE(static_cast<bool>(fin), PADDLE_ENFORCE(static_cast<bool>(fin),
...@@ -59,17 +60,25 @@ class LoadCombineOp : public framework::OperatorBase { ...@@ -59,17 +60,25 @@ class LoadCombineOp : public framework::OperatorBase {
// Get data from fin to tensor // Get data from fin to tensor
DeserializeFromStream(fin, tensor, dev_ctx); DeserializeFromStream(fin, tensor, dev_ctx);
if (platform::is_gpu_place(place)) { auto in_dtype = framework::ToDataType(tensor->type());
// copy CPU to GPU auto out_dtype =
framework::LoDTensor cpu_tensor; load_as_fp16 ? framework::proto::VarType::FP16 : in_dtype;
cpu_tensor.ShareDataWith(*tensor);
cpu_tensor.set_lod(tensor->lod()); if (in_dtype != out_dtype) {
// convert to float16 tensor
// reset tensor auto in_kernel_type = framework::OpKernelType(in_dtype, place);
auto out_kernel_type = framework::OpKernelType(out_dtype, place);
framework::LoDTensor fp16_tensor;
// copy LoD info to the new tensor
fp16_tensor.set_lod(tensor->lod());
framework::TransDataType(in_kernel_type, out_kernel_type, *tensor,
&fp16_tensor);
// reset output tensor
out_var->Clear(); out_var->Clear();
tensor = out_var->GetMutable<framework::LoDTensor>(); tensor = out_var->GetMutable<framework::LoDTensor>();
tensor->set_lod(cpu_tensor.lod()); tensor->set_lod(fp16_tensor.lod());
TensorCopy(cpu_tensor, place, dev_ctx, tensor); tensor->ShareDataWith(fp16_tensor);
} }
} }
} }
...@@ -82,6 +91,13 @@ class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker { ...@@ -82,6 +91,13 @@ class LoadCombineOpProtoMaker : public framework::OpProtoAndCheckerMaker {
"Out", "Out",
"(vector) The output LoDTensors that will be read from the input file.") "(vector) The output LoDTensors that will be read from the input file.")
.AsDuplicable(); .AsDuplicable();
AddAttr<bool>(
"load_as_fp16",
"(boolean, default false)"
"If true, the tensor will be first loaded and then "
"converted to float16 data type. Otherwise, the tensor will be "
"directly loaded without data type conversion.")
.SetDefault(false);
AddAttr<std::string>("file_path", AddAttr<std::string>("file_path",
"(string) " "(string) "
"LoDTensors will be loaded from \"file_path\".") "LoDTensors will be loaded from \"file_path\".")
......
...@@ -139,8 +139,9 @@ TEST(SaveLoadCombineOp, CPU) { ...@@ -139,8 +139,9 @@ TEST(SaveLoadCombineOp, CPU) {
CheckValues<int, int>(expect4, actual4, expect_lod4, actual_lod4, numel4); CheckValues<int, int>(expect4, actual4, expect_lod4, actual_lod4, numel4);
} }
// FP16 version of SaveLoadCombineOp Test // FP16 version of SaveLoadCombineOp Test, only altering the saving aspect
TEST(SaveLoadCombineFP16Op, CPU) { // to save as FP16.
TEST(SaveCombineFP16Op, CPU) {
paddle::framework::Scope scope; paddle::framework::Scope scope;
paddle::platform::CPUPlace place; paddle::platform::CPUPlace place;
...@@ -169,7 +170,7 @@ TEST(SaveLoadCombineFP16Op, CPU) { ...@@ -169,7 +170,7 @@ TEST(SaveLoadCombineFP16Op, CPU) {
20, 50, lod4, "test_var4", place, &scope, &expect_lod4); 20, 50, lod4, "test_var4", place, &scope, &expect_lod4);
// Set attributes // Set attributes
std::string filename = "check_tensor_fp16.ls"; std::string filename = "check_tensor_fp16_save.ls";
paddle::framework::AttributeMap attrs; paddle::framework::AttributeMap attrs;
attrs.insert({"file_path", std::string(filename)}); attrs.insert({"file_path", std::string(filename)});
attrs.insert({"save_as_fp16", true}); attrs.insert({"save_as_fp16", true});
...@@ -216,6 +217,89 @@ TEST(SaveLoadCombineFP16Op, CPU) { ...@@ -216,6 +217,89 @@ TEST(SaveLoadCombineFP16Op, CPU) {
actual_lod4, numel4); actual_lod4, numel4);
} }
// FP16 version of SaveLoadCombineOp Test, only altering the loading aspect
// to load tensors with FP16 precision.
TEST(LoadCombineFP16Op, CPU) {
paddle::framework::Scope scope;
paddle::platform::CPUPlace place;
std::vector<int> lod1 = {0, 1, 2, 3, 10};
int numel1 = 100;
paddle::framework::LoD expect_lod1;
float* expect1 = CreateForSaveCombineOp<float, paddle::platform::float16>(
10, 10, lod1, "test_var1", place, &scope, &expect_lod1);
std::vector<int> lod2 = {0, 2, 5, 10};
int numel2 = 200;
paddle::framework::LoD expect_lod2;
float* expect2 = CreateForSaveCombineOp<float, paddle::platform::float16>(
10, 20, lod2, "test_var2", place, &scope, &expect_lod2);
std::vector<int> lod3 = {0, 20};
int numel3 = 4000;
paddle::framework::LoD expect_lod3;
float* expect3 = CreateForSaveCombineOp<float, paddle::platform::float16>(
20, 200, lod3, "test_var3", place, &scope, &expect_lod3);
std::vector<int> lod4 = {0, 1, 20};
int numel4 = 1000;
paddle::framework::LoD expect_lod4;
float* expect4 = CreateForSaveCombineOp<float, paddle::platform::float16>(
20, 50, lod4, "test_var4", place, &scope, &expect_lod4);
// Set attributes
std::string filename = "check_tensor_fp16_load.ls";
paddle::framework::AttributeMap attrs;
attrs.insert({"file_path", std::string(filename)});
// Run the save_combine_op
auto save_combine_op = paddle::framework::OpRegistry::CreateOp(
"save_combine",
{{"X", {"test_var1", "test_var2", "test_var3", "test_var4"}}}, {}, attrs);
save_combine_op->Run(scope, place);
// Set up output vars
auto load_var1 = scope.Var("out_var1");
auto load_var2 = scope.Var("out_var2");
auto load_var3 = scope.Var("out_var3");
auto load_var4 = scope.Var("out_var4");
attrs.insert({"load_as_fp16", true});
// Run the load_combine_op
auto load_combine_op = paddle::framework::OpRegistry::CreateOp(
"load_combine", {},
{{"Out", {"out_var1", "out_var2", "out_var3", "out_var4"}}}, attrs);
load_combine_op->Run(scope, place);
auto* target1 = load_var1->GetMutable<paddle::framework::LoDTensor>();
auto* target2 = load_var2->GetMutable<paddle::framework::LoDTensor>();
auto* target3 = load_var3->GetMutable<paddle::framework::LoDTensor>();
auto* target4 = load_var4->GetMutable<paddle::framework::LoDTensor>();
paddle::framework::LoD actual_lod1, actual_lod2, actual_lod3, actual_lod4;
paddle::platform::float16* actual1 =
GetValuesAfterLoadCombineOp<paddle::platform::float16>(target1, scope,
&actual_lod1);
paddle::platform::float16* actual2 =
GetValuesAfterLoadCombineOp<paddle::platform::float16>(target2, scope,
&actual_lod2);
paddle::platform::float16* actual3 =
GetValuesAfterLoadCombineOp<paddle::platform::float16>(target3, scope,
&actual_lod3);
paddle::platform::float16* actual4 =
GetValuesAfterLoadCombineOp<paddle::platform::float16>(target4, scope,
&actual_lod4);
CheckValues<float, paddle::platform::float16>(expect1, actual1, expect_lod1,
actual_lod1, numel1);
CheckValues<float, paddle::platform::float16>(expect2, actual2, expect_lod2,
actual_lod2, numel2);
CheckValues<float, paddle::platform::float16>(expect3, actual3, expect_lod3,
actual_lod3, numel3);
CheckValues<float, paddle::platform::float16>(expect4, actual4, expect_lod4,
actual_lod4, numel4);
}
// Test with original SaveLoadTest // Test with original SaveLoadTest
TEST(SaveLoadTestWithCombineOp, CPU) { TEST(SaveLoadTestWithCombineOp, CPU) {
paddle::framework::Scope scope; paddle::framework::Scope scope;
......
...@@ -53,7 +53,7 @@ class NCCLGroupGuard { ...@@ -53,7 +53,7 @@ class NCCLGroupGuard {
} }
inline ~NCCLGroupGuard() { inline ~NCCLGroupGuard() {
PADDLE_ENFORCE(dynload::ncclGroupEnd()); CHECK_EQ(dynload::ncclGroupEnd(), ncclSuccess);
NCCLMutex().unlock(); NCCLMutex().unlock();
} }
}; };
......
...@@ -494,23 +494,61 @@ All parameter, weight, gradient are variables in Paddle. ...@@ -494,23 +494,61 @@ All parameter, weight, gradient are variables in Paddle.
m.def("disable_profiler", platform::DisableProfiler); m.def("disable_profiler", platform::DisableProfiler);
m.def("reset_profiler", platform::ResetProfiler); m.def("reset_profiler", platform::ResetProfiler);
py::class_<ParallelExecutor>(m, "ParallelExecutor") // -- python binds for parallel executor.
.def("__init__", py::class_<ParallelExecutor> pe(m, "ParallelExecutor");
[](ParallelExecutor &self, size_t num_threads, bool use_event, py::class_<ExecutionStrategy>(pe, "ExecutionStrategy")
const std::vector<platform::Place> &places, .def(py::init())
const std::unordered_set<std::string> &params, .def_property(
const std::unordered_set<std::string> &bcast_vars, "num_threads",
const ProgramDesc &main_program, const std::string &loss_var_name, [](const ExecutionStrategy &self) { return self.num_threads_; },
Scope *scope, std::vector<Scope *> &local_scopes, [](ExecutionStrategy &self, size_t num_threads) {
bool allow_op_delay, bool use_default_grad_scale, self.num_threads_ = num_threads;
bool balance_parameter_opt_between_cards, size_t num_trainers, })
size_t trainer_id) { .def_property(
new (&self) ParallelExecutor( "use_event",
num_threads, use_event, places, params, bcast_vars, [](const ExecutionStrategy &self) { return self.use_event_; },
main_program, loss_var_name, scope, local_scopes, [](ExecutionStrategy &self, bool use_event) {
allow_op_delay, use_default_grad_scale, self.use_event_ = use_event;
balance_parameter_opt_between_cards, num_trainers, trainer_id); })
.def_property(
"allow_op_delay",
[](const ExecutionStrategy &self) { return self.allow_op_delay_; },
[](ExecutionStrategy &self, bool allow_op_delay) {
self.allow_op_delay_ = allow_op_delay;
});
py::class_<BuildStrategy> build_strategy(pe, "BuildStrategy");
py::enum_<BuildStrategy::ReduceStrategy>(build_strategy, "ReduceStrategy")
.value("Reduce", BuildStrategy::ReduceStrategy::kReduce)
.value("AllReduce", BuildStrategy::ReduceStrategy::kAllReduce);
py::enum_<BuildStrategy::GradientScaleStrategy>(build_strategy,
"GradientScaleStrategy")
.value("CoeffNumDevice",
BuildStrategy::GradientScaleStrategy::kCoeffNumDevice)
.value("One", BuildStrategy::GradientScaleStrategy::kOne)
.value("Customized", BuildStrategy::GradientScaleStrategy::kCustomized);
build_strategy.def(py::init())
.def_property(
"reduce_strategy",
[](const BuildStrategy &self) { return self.reduce_; },
[](BuildStrategy &self, BuildStrategy::ReduceStrategy strategy) {
self.reduce_ = strategy;
}) })
.def_property(
"gradient_scale_strategy",
[](const BuildStrategy &self) { return self.gradient_scale_; },
[](BuildStrategy &self,
BuildStrategy::GradientScaleStrategy strategy) {
self.gradient_scale_ = strategy;
});
pe.def(py::init<const std::vector<platform::Place> &,
const std::unordered_set<std::string> &,
const std::unordered_set<std::string> &, const ProgramDesc &,
const std::string &, Scope *, std::vector<Scope *> &,
const ExecutionStrategy &, const BuildStrategy &, size_t,
size_t>())
.def("bcast_params", &ParallelExecutor::BCastParamsToGPUs) .def("bcast_params", &ParallelExecutor::BCastParamsToGPUs)
// NOTE: even we return a vec<Scope*>* to Python use reference policy. // NOTE: even we return a vec<Scope*>* to Python use reference policy.
// We still cannot get local_scope from this vector, since the element // We still cannot get local_scope from this vector, since the element
......
...@@ -44,19 +44,22 @@ import transpiler ...@@ -44,19 +44,22 @@ import transpiler
from param_attr import ParamAttr, WeightNormParamAttr from param_attr import ParamAttr, WeightNormParamAttr
from data_feeder import DataFeeder from data_feeder import DataFeeder
from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace from core import LoDTensor, CPUPlace, CUDAPlace, CUDAPinnedPlace
from transpiler import DistributeTranspiler, SimpleDistributeTranspiler, InferenceTranspiler, memory_optimize, release_memory from transpiler import DistributeTranspiler, SimpleDistributeTranspiler, \
InferenceTranspiler, memory_optimize, release_memory
from concurrency import (Go, make_channel, channel_send, channel_recv, from concurrency import (Go, make_channel, channel_send, channel_recv,
channel_close, Select) channel_close, Select)
import clip import clip
import profiler import profiler
import unique_name import unique_name
import recordio_writer import recordio_writer
from parallel_executor import ParallelExecutor import parallel_executor
from parallel_executor import *
Tensor = LoDTensor Tensor = LoDTensor
__all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ + \
trainer.__all__ + inferencer.__all__ + transpiler.__all__ + [ trainer.__all__ + inferencer.__all__ + transpiler.__all__ + \
parallel_executor.__all__ + [
'io', 'io',
'initializer', 'initializer',
'layers', 'layers',
...@@ -78,8 +81,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\ ...@@ -78,8 +81,7 @@ __all__ = framework.__all__ + executor.__all__ + concurrency.__all__ +\
'profiler', 'profiler',
'unique_name', 'unique_name',
'recordio_writer', 'recordio_writer',
'ParallelExecutor', ]
]
def __bootstrap__(): def __bootstrap__():
......
...@@ -13,29 +13,35 @@ ...@@ -13,29 +13,35 @@
# limitations under the License. # limitations under the License.
import core import core
import framework
import executor import executor
import framework
import io import io
import unique_name
from trainer import check_and_get_place from trainer import check_and_get_place
__all__ = ['Inferencer', ] __all__ = ['Inferencer', ]
class Inferencer(object): class Inferencer(object):
def __init__(self, param_path, place=None): def __init__(self, infer_func, param_path, place=None):
""" """
:param param_path: the path where the inference model is saved by fluid.io.save_inference_model :param infer_func: a function that will return predict Variable
:param param_path: the path where the inference model is saved by fluid.io.save_params
:param place: place to do the inference :param place: place to do the inference
""" """
self.param_path = param_path self.param_path = param_path
self.scope = core.Scope() self.scope = core.Scope()
self.inference_program = framework.Program()
with framework.program_guard(self.inference_program):
with unique_name.guard():
self.predict_var = infer_func()
self.exe = executor.Executor(check_and_get_place(place)) self.exe = executor.Executor(check_and_get_place(place))
with executor.scope_guard(self.scope): with executor.scope_guard(self.scope):
# load params from param_path into scope # load params from param_path into scope
[self.inference_program, _, io.load_params(self.exe, param_path, self.inference_program)
self.fetch_targets] = io.load_inference_model(
executor=self.exe, dirname=param_path)
def infer(self, inputs, return_numpy=True): def infer(self, inputs, return_numpy=True):
""" """
...@@ -51,7 +57,7 @@ class Inferencer(object): ...@@ -51,7 +57,7 @@ class Inferencer(object):
with executor.scope_guard(self.scope): with executor.scope_guard(self.scope):
results = self.exe.run(self.inference_program, results = self.exe.run(self.inference_program,
feed=inputs, feed=inputs,
fetch_list=self.fetch_targets, fetch_list=[self.predict_var],
return_numpy=return_numpy) return_numpy=return_numpy)
return results return results
...@@ -19,7 +19,10 @@ import executor ...@@ -19,7 +19,10 @@ import executor
import warnings import warnings
import sys import sys
__all__ = ['ParallelExecutor'] __all__ = ['ParallelExecutor', 'ExecutionStrategy', 'BuildStrategy']
ExecutionStrategy = core.ParallelExecutor.ExecutionStrategy
BuildStrategy = core.ParallelExecutor.BuildStrategy
class ParallelExecutor(object): class ParallelExecutor(object):
...@@ -27,13 +30,12 @@ class ParallelExecutor(object): ...@@ -27,13 +30,12 @@ class ParallelExecutor(object):
use_cuda, use_cuda,
loss_name=None, loss_name=None,
main_program=None, main_program=None,
num_threads=None,
allow_op_delay=False,
share_vars_from=None, share_vars_from=None,
use_default_grad_scale=True, exec_strategy=None,
balance_parameter_opt_between_cards=False, build_strategy=None,
num_trainers=1, num_trainers=1,
trainer_id=0): trainer_id=0,
**kwargs):
""" """
ParallelExecutor can run program in parallel. ParallelExecutor can run program in parallel.
...@@ -42,21 +44,8 @@ class ParallelExecutor(object): ...@@ -42,21 +44,8 @@ class ParallelExecutor(object):
loss_name(str, default None): The loss name must set in training. loss_name(str, default None): The loss name must set in training.
main_program(Program, default None): The program that need to run, main_program(Program, default None): The program that need to run,
if not provided, then default_main_program will be used. if not provided, then default_main_program will be used.
num_threads(int, default None): How many threads are used for
training.
allow_op_delay(bool, default False): Whether to delay and buffer
some operators together for scheduling or not, which may
improve performance in some cases, default False.
share_vars_from(ParallelExecutor, default None): If provied, share_vars_from(ParallelExecutor, default None): If provied,
it will share variables from the specified ParallelExecutor. it will share variables from the specified ParallelExecutor.
use_default_grad_scale(bool, default True): If set True, a default
scale value equal to `1./device_count` would be multiplied to
gradients of each device and scaled gradients would be
aggregated. Otherwise, a customized scale value should be fed
to the network.
balance_parameter_opt_between_cards(bool, default True): Whether
updating different gradients on different cards. Currently, it
is not recommended.
num_trainers(int, default 1): If greater than 1, NCCL will be num_trainers(int, default 1): If greater than 1, NCCL will be
initialized with multpile rank of nodes, each node should have initialized with multpile rank of nodes, each node should have
same number of GPUs. Distributed training will be enabled then. same number of GPUs. Distributed training will be enabled then.
...@@ -83,6 +72,25 @@ class ParallelExecutor(object): ...@@ -83,6 +72,25 @@ class ParallelExecutor(object):
train_loss, = train_exe.run([loss.name], feed=feed_dict) train_loss, = train_exe.run([loss.name], feed=feed_dict)
test_loss, = test_exe.run([loss.name], feed=feed_dict) test_loss, = test_exe.run([loss.name], feed=feed_dict)
""" """
if len(kwargs) != 0:
err_msg = ""
for key in kwargs:
if key in dir(ExecutionStrategy):
err_msg += \
"Setting {0} by constructor is deprecated. Use " \
"strategy=ExecutionStrategy(); strategy.{0}=xxx; " \
"pe=ParallelExecutor(exec_strategy=strategy) " \
"instead.\n ".format(key)
elif key in dir(BuildStrategy):
err_msg += \
"Setting {0} by constructor is deprecated. Use " \
"strategy=BuildStrategy(); See help(" \
"paddle.fluid.ParallelExecutor.BuildStrategy) \n".format(
key)
else:
err_msg += "Setting {0} by constructor is deprecated. Use strategy.\n".format(
key)
raise ValueError(err_msg)
self._places = [] self._places = []
self._act_places = [] self._act_places = []
...@@ -100,15 +108,25 @@ class ParallelExecutor(object): ...@@ -100,15 +108,25 @@ class ParallelExecutor(object):
self._places.append(p) self._places.append(p)
assert self._places, "no place for execution" assert self._places, "no place for execution"
if num_threads is None: if exec_strategy is None:
exec_strategy = ExecutionStrategy()
if use_cuda:
exec_strategy.use_event = True
else:
exec_strategy.use_event = False
if exec_strategy.num_threads == 0:
if use_cuda: if use_cuda:
# Experiments on se-resnext shows that too many threads hurt # Experiments on se-resnext shows that too many threads hurt
# performance. Worth tunning for other models in the future. # performance. Worth tunning for other models in the future.
num_threads = len(self._places) * 2 exec_strategy.num_threads = len(self._places) * 2
else: else:
num_threads = min( exec_strategy.num_threads = min(
len(self._places) * 2, multiprocessing.cpu_count()) len(self._places) * 2, multiprocessing.cpu_count())
if build_strategy is None:
build_strategy = BuildStrategy()
main = main_program main = main_program
main = main if main else framework.default_main_program() main = main if main else framework.default_main_program()
scope = executor.global_scope() scope = executor.global_scope()
...@@ -127,23 +145,14 @@ class ParallelExecutor(object): ...@@ -127,23 +145,14 @@ class ParallelExecutor(object):
] ]
self.executor = core.ParallelExecutor( self.executor = core.ParallelExecutor(
num_threads,
True if use_cuda else False, # use_event
self._places, self._places,
set([ set([
p.name for p in main.global_block().iter_parameters() p.name for p in main.global_block().iter_parameters()
if not p.stop_gradient if not p.stop_gradient
]), ]),
set(self.persistable_vars), set(self.persistable_vars), main.desc, loss_name
main.desc, if loss_name else '', scope, local_scopes, exec_strategy,
loss_name if loss_name else '', build_strategy, num_trainers, trainer_id)
scope,
local_scopes,
allow_op_delay,
use_default_grad_scale,
balance_parameter_opt_between_cards,
num_trainers,
trainer_id)
self.scope = scope self.scope = scope
def run(self, fetch_list, feed=None, feed_dict=None): def run(self, fetch_list, feed=None, feed_dict=None):
......
...@@ -48,12 +48,11 @@ def linear(): ...@@ -48,12 +48,11 @@ def linear():
return avg_loss return avg_loss
def train(use_cuda, save_dirname): def train(use_cuda, train_program, save_dirname):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
trainer = fluid.Trainer( trainer = fluid.Trainer(
train_func=linear, train_func=train_program,
infer_func=inference_program,
place=place, place=place,
optimizer=fluid.optimizer.SGD(learning_rate=0.001)) optimizer=fluid.optimizer.SGD(learning_rate=0.001))
...@@ -72,11 +71,7 @@ def train(use_cuda, save_dirname): ...@@ -72,11 +71,7 @@ def train(use_cuda, save_dirname):
''' '''
if float(test_metrics[0]) < 20.0: if float(test_metrics[0]) < 20.0:
if save_dirname is not None: if save_dirname is not None:
# NOT clear yet trainer.save_params(save_dirname)
# fluid.io.save_inference_model(save_dirname, ['x'], [y_predict])
# trainer.save_params(save_dirname)
# https://github.com/PaddlePaddle/Paddle/pull/10445
trainer.save_inference_model(save_dirname)
return return
trainer.train( trainer.train(
...@@ -87,12 +82,13 @@ def train(use_cuda, save_dirname): ...@@ -87,12 +82,13 @@ def train(use_cuda, save_dirname):
# infer # infer
def infer(use_cuda, save_dirname=None): def infer(use_cuda, inference_program, save_dirname=None):
if save_dirname is None: if save_dirname is None:
return return
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(param_path=save_dirname, place=place) inferencer = fluid.Inferencer(
infer_func=inference_program, param_path=save_dirname, place=place)
batch_size = 10 batch_size = 10
tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32") tensor_x = numpy.random.uniform(0, 10, [batch_size, 13]).astype("float32")
...@@ -108,8 +104,8 @@ def main(use_cuda): ...@@ -108,8 +104,8 @@ def main(use_cuda):
# Directory for saving the trained model # Directory for saving the trained model
save_dirname = "fit_a_line.inference.model" save_dirname = "fit_a_line.inference.model"
train(use_cuda, save_dirname) train(use_cuda, linear, save_dirname)
infer(use_cuda, save_dirname) infer(use_cuda, inference_program, save_dirname)
class TestFitALine(unittest.TestCase): class TestFitALine(unittest.TestCase):
......
...@@ -53,48 +53,40 @@ def train_program(): ...@@ -53,48 +53,40 @@ def train_program():
predict = inference_program() predict = inference_program()
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
# acc = fluid.layers.accuracy(input=predict, label=label) acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc return [avg_cost, acc]
return avg_cost
def train(use_cuda, save_dirname): def train(use_cuda, train_program, save_dirname):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
optimizer = fluid.optimizer.Adam(learning_rate=0.001) optimizer = fluid.optimizer.Adam(learning_rate=0.001)
trainer = fluid.Trainer( trainer = fluid.Trainer(
train_func=train_program, train_func=train_program, place=place, optimizer=optimizer)
infer_func=inference_program,
place=place,
optimizer=optimizer)
def event_handler(event): def event_handler(event):
if isinstance(event, fluid.EndEpochEvent): if isinstance(event, fluid.EndEpochEvent):
# if (event.epoch + 1) % 10 == 0: test_reader = paddle.batch(
# trainer.save_params(save_dirname) paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
trainer.save_inference_model(save_dirname) test_metrics = trainer.test(
reader=test_reader, feed_order=['img', 'label'])
# TODO: Uncomment this part once we are sure that .train is working avg_cost_set = test_metrics[0]
# test_reader = paddle.batch( acc_set = test_metrics[1]
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
# test_metrics = trainer.test(reader=test_reader) # get test acc and loss
# avg_cost_set = test_metrics[0] acc = numpy.array(acc_set).mean()
# acc_set = test_metrics[1] avg_cost = numpy.array(avg_cost_set).mean()
#
# # get test acc and loss print("avg_cost: %s" % avg_cost)
# acc = numpy.array(acc_set).mean() print("acc : %s" % acc)
# avg_cost = numpy.array(avg_cost_set).mean()
# if float(acc) > 0.2: # Smaller value to increase CI speed
# print("avg_cost: %s" % avg_cost) trainer.save_params(save_dirname)
# print("acc : %s" % acc) else:
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# if float(acc) > 0.2: # Smaller value to increase CI speed event.epoch + 1, float(avg_cost), float(acc)))
# trainer.save_params(save_dirname) if math.isnan(float(avg_cost)):
# else: sys.exit("got NaN loss, training failed.")
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
...@@ -108,10 +100,11 @@ def train(use_cuda, save_dirname): ...@@ -108,10 +100,11 @@ def train(use_cuda, save_dirname):
feed_order=['img', 'label']) feed_order=['img', 'label'])
def infer(use_cuda, save_dirname=None): def infer(use_cuda, inference_program, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(param_path=save_dirname, place=place) inferencer = fluid.Inferencer(
infer_func=inference_program, param_path=save_dirname, place=place)
batch_size = 1 batch_size = 1
tensor_img = numpy.random.uniform(-1.0, 1.0, tensor_img = numpy.random.uniform(-1.0, 1.0,
...@@ -126,8 +119,14 @@ def main(use_cuda): ...@@ -126,8 +119,14 @@ def main(use_cuda):
save_dirname = "recognize_digits_conv.inference.model" save_dirname = "recognize_digits_conv.inference.model"
# call train() with is_local argument to run distributed train # call train() with is_local argument to run distributed train
train(use_cuda=use_cuda, save_dirname=save_dirname) train(
infer(use_cuda=use_cuda, save_dirname=save_dirname) use_cuda=use_cuda,
train_program=train_program,
save_dirname=save_dirname)
infer(
use_cuda=use_cuda,
inference_program=inference_program,
save_dirname=save_dirname)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -40,47 +40,40 @@ def train_program(): ...@@ -40,47 +40,40 @@ def train_program():
predict = inference_program() predict = inference_program()
cost = fluid.layers.cross_entropy(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label)
avg_cost = fluid.layers.mean(cost) avg_cost = fluid.layers.mean(cost)
# acc = fluid.layers.accuracy(input=predict, label=label) acc = fluid.layers.accuracy(input=predict, label=label)
# return avg_cost, acc return [avg_cost, acc]
return avg_cost
def train(use_cuda, save_dirname): def train(use_cuda, train_program, save_dirname):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
optimizer = fluid.optimizer.Adam(learning_rate=0.001) optimizer = fluid.optimizer.Adam(learning_rate=0.001)
trainer = fluid.Trainer( trainer = fluid.Trainer(
train_func=train_program, train_func=train_program, place=place, optimizer=optimizer)
infer_func=inference_program,
place=place,
optimizer=optimizer)
def event_handler(event): def event_handler(event):
if isinstance(event, fluid.EndEpochEvent): if isinstance(event, fluid.EndEpochEvent):
# if (event.epoch + 1) % 10 == 0: test_reader = paddle.batch(
trainer.save_inference_model(save_dirname) paddle.dataset.mnist.test(), batch_size=BATCH_SIZE)
test_metrics = trainer.test(
# TODO: Uncomment this part once we are sure that .train is working reader=test_reader, feed_order=['img', 'label'])
# test_reader = paddle.batch( avg_cost_set = test_metrics[0]
# paddle.dataset.mnist.test(), batch_size=BATCH_SIZE) acc_set = test_metrics[1]
# test_metrics = trainer.test(reader=test_reader)
# avg_cost_set = test_metrics[0] # get test acc and loss
# acc_set = test_metrics[1] acc = numpy.array(acc_set).mean()
# avg_cost = numpy.array(avg_cost_set).mean()
# # get test acc and loss
# acc = numpy.array(acc_set).mean() print("avg_cost: %s" % avg_cost)
# avg_cost = numpy.array(avg_cost_set).mean() print("acc : %s" % acc)
#
# print("avg_cost: %s" % avg_cost) if float(acc) > 0.2: # Smaller value to increase CI speed
# print("acc : %s" % acc) trainer.save_params(save_dirname)
# else:
# if float(acc) > 0.2: # Smaller value to increase CI speed print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format(
# trainer.save_params(save_dirname) event.epoch + 1, float(avg_cost), float(acc)))
# else: if math.isnan(float(avg_cost)):
# print('BatchID {0}, Test Loss {1:0.2}, Acc {2:0.2}'.format( sys.exit("got NaN loss, training failed.")
# event.epoch + 1, float(avg_cost), float(acc)))
# if math.isnan(float(avg_cost)):
# sys.exit("got NaN loss, training failed.")
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.reader.shuffle( paddle.reader.shuffle(
...@@ -94,10 +87,11 @@ def train(use_cuda, save_dirname): ...@@ -94,10 +87,11 @@ def train(use_cuda, save_dirname):
feed_order=['img', 'label']) feed_order=['img', 'label'])
def infer(use_cuda, save_dirname=None): def infer(use_cuda, inference_program, save_dirname=None):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(param_path=save_dirname, place=place) inferencer = fluid.Inferencer(
infer_func=inference_program, param_path=save_dirname, place=place)
batch_size = 1 batch_size = 1
tensor_img = numpy.random.uniform(-1.0, 1.0, tensor_img = numpy.random.uniform(-1.0, 1.0,
...@@ -112,8 +106,14 @@ def main(use_cuda): ...@@ -112,8 +106,14 @@ def main(use_cuda):
save_dirname = "recognize_digits_mlp.inference.model" save_dirname = "recognize_digits_mlp.inference.model"
# call train() with is_local argument to run distributed train # call train() with is_local argument to run distributed train
train(use_cuda=use_cuda, save_dirname=save_dirname) train(
infer(use_cuda=use_cuda, save_dirname=save_dirname) use_cuda=use_cuda,
train_program=train_program,
save_dirname=save_dirname)
infer(
use_cuda=use_cuda,
inference_program=inference_program,
save_dirname=save_dirname)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -90,7 +90,7 @@ def train_program(is_sparse): ...@@ -90,7 +90,7 @@ def train_program(is_sparse):
return avg_cost return avg_cost
def train(use_cuda, is_sparse, save_path): def train(use_cuda, train_program, save_path):
train_reader = paddle.batch( train_reader = paddle.batch(
paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE)
test_reader = paddle.batch( test_reader = paddle.batch(
...@@ -105,23 +105,21 @@ def train(use_cuda, is_sparse, save_path): ...@@ -105,23 +105,21 @@ def train(use_cuda, is_sparse, save_path):
print("loss= ", avg_cost) print("loss= ", avg_cost)
if avg_cost < 5.0: if avg_cost < 5.0:
trainer.save_inference_model(save_path) trainer.save_params(save_path)
return return
if math.isnan(avg_cost): if math.isnan(avg_cost):
sys.exit("got NaN loss, training failed.") sys.exit("got NaN loss, training failed.")
trainer = fluid.Trainer( trainer = fluid.Trainer(
partial(train_program, is_sparse), train_program, fluid.optimizer.SGD(learning_rate=0.001), place=place)
partial(inference_program, is_sparse),
fluid.optimizer.SGD(learning_rate=0.001),
place=place)
trainer.train( trainer.train(
reader=train_reader, num_epochs=1, event_handler=event_handler) reader=train_reader, num_epochs=1, event_handler=event_handler)
def infer(use_cuda, is_sparse, save_path): def infer(use_cuda, inference_program, save_path):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
inferencer = fluid.Inferencer(param_path=save_path, place=place) inferencer = fluid.Inferencer(
infer_func=inference_program, param_path=save_path, place=place)
lod = [0, 1] lod = [0, 1]
first_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1) first_word = create_random_lodtensor(lod, place, low=0, high=dict_size - 1)
...@@ -144,9 +142,9 @@ def main(use_cuda, is_sparse): ...@@ -144,9 +142,9 @@ def main(use_cuda, is_sparse):
if use_cuda and not fluid.core.is_compiled_with_cuda(): if use_cuda and not fluid.core.is_compiled_with_cuda():
return return
save_path = "word2vec.inference.model" save_path = "word2vec.params"
train(use_cuda, is_sparse, save_path) train(use_cuda, partial(train_program, is_sparse), save_path)
infer(use_cuda, is_sparse, save_path) infer(use_cuda, partial(inference_program, is_sparse), save_path)
if __name__ == '__main__': if __name__ == '__main__':
......
...@@ -232,14 +232,18 @@ class TestParallelExecutorBase(unittest.TestCase): ...@@ -232,14 +232,18 @@ class TestParallelExecutorBase(unittest.TestCase):
place = fluid.CUDAPlace(0) place = fluid.CUDAPlace(0)
startup_exe = fluid.Executor(place) startup_exe = fluid.Executor(place)
startup_exe.run(startup) startup_exe.run(startup)
exec_strategy = fluid.ExecutionStrategy()
exec_strategy.allow_op_delay = allow_op_delay
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce if balance_parameter_opt_between_cards else fluid.BuildStrategy.ReduceStrategy.AllReduce
if use_parallel_executor: if use_parallel_executor:
exe = fluid.ParallelExecutor( exe = fluid.ParallelExecutor(
True, True,
loss_name=loss.name, loss_name=loss.name,
allow_op_delay=allow_op_delay, exec_strategy=exec_strategy,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards build_strategy=build_strategy)
)
else: else:
exe = fluid.Executor(place=place) exe = fluid.Executor(place=place)
...@@ -548,7 +552,7 @@ class TestTransformer(TestParallelExecutorBase): ...@@ -548,7 +552,7 @@ class TestTransformer(TestParallelExecutorBase):
class ParallelExecutorTestingDuringTraining(unittest.TestCase): class ParallelExecutorTestingDuringTraining(unittest.TestCase):
def check_network_convergence(self, balance_parameter_opt_between_cards): def check_network_convergence(self, build_strategy=None):
main = fluid.Program() main = fluid.Program()
startup = fluid.Program() startup = fluid.Program()
with fluid.program_guard(main, startup): with fluid.program_guard(main, startup):
...@@ -571,15 +575,13 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -571,15 +575,13 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
use_cuda=True, use_cuda=True,
loss_name=loss.name, loss_name=loss.name,
main_program=main, main_program=main,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards build_strategy=build_strategy)
)
test_exe = fluid.ParallelExecutor( test_exe = fluid.ParallelExecutor(
use_cuda=True, use_cuda=True,
main_program=test_program, main_program=test_program,
share_vars_from=train_exe, share_vars_from=train_exe,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards build_strategy=build_strategy)
)
for i in xrange(5): for i in xrange(5):
test_loss, = test_exe.run([loss.name], feed=feed_dict) test_loss, = test_exe.run([loss.name], feed=feed_dict)
...@@ -594,10 +596,14 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase): ...@@ -594,10 +596,14 @@ class ParallelExecutorTestingDuringTraining(unittest.TestCase):
str(test_loss)) str(test_loss))
def test_parallel_testing(self): def test_parallel_testing(self):
self.check_network_convergence(False) build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
self.check_network_convergence(build_strategy)
def test_parallel_testing_with_new_strategy(self): def test_parallel_testing_with_new_strategy(self):
self.check_network_convergence(True) build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
self.check_network_convergence(build_strategy)
import paddle.dataset.conll05 as conll05 import paddle.dataset.conll05 as conll05
...@@ -617,7 +623,7 @@ embedding_name = 'emb' ...@@ -617,7 +623,7 @@ embedding_name = 'emb'
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
is_sparse, balance_parameter_opt_between_cards, **ignored): is_sparse, **ignored):
# 8 features # 8 features
predicate_embedding = fluid.layers.embedding( predicate_embedding = fluid.layers.embedding(
input=predicate, input=predicate,
...@@ -686,9 +692,7 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark, ...@@ -686,9 +692,7 @@ def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
class TestCRFModel(unittest.TestCase): class TestCRFModel(unittest.TestCase):
def check_network_convergence(self, def check_network_convergence(self, is_sparse, build_strategy=None):
is_sparse,
balance_parameter_opt_between_cards=False):
main = fluid.Program() main = fluid.Program()
startup = fluid.Program() startup = fluid.Program()
with fluid.program_guard(main, startup): with fluid.program_guard(main, startup):
...@@ -739,8 +743,7 @@ class TestCRFModel(unittest.TestCase): ...@@ -739,8 +743,7 @@ class TestCRFModel(unittest.TestCase):
pe = fluid.ParallelExecutor( pe = fluid.ParallelExecutor(
use_cuda=True, use_cuda=True,
loss_name=avg_cost.name, loss_name=avg_cost.name,
balance_parameter_opt_between_cards=balance_parameter_opt_between_cards build_strategy=build_strategy)
)
feeder = fluid.DataFeeder( feeder = fluid.DataFeeder(
feed_list=[ feed_list=[
...@@ -756,19 +759,29 @@ class TestCRFModel(unittest.TestCase): ...@@ -756,19 +759,29 @@ class TestCRFModel(unittest.TestCase):
pe.run(feed=feeder.feed(cur_batch), pe.run(feed=feeder.feed(cur_batch),
fetch_list=[avg_cost.name]))[0] fetch_list=[avg_cost.name]))[0]
def test_update_sparse_parameter(self): def test_update_sparse_parameter_all_reduce(self):
self.check_network_convergence(is_sparse=True) build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
self.check_network_convergence(
is_sparse=True, build_strategy=build_strategy)
def test_update_dense_parameter(self): def test_update_dense_parameter_all_reduce(self):
self.check_network_convergence(is_sparse=False) build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce
self.check_network_convergence(
is_sparse=False, build_strategy=build_strategy)
def test_update_sparse_parameter_with_new_strategy(self): def test_update_sparse_parameter_reduce(self):
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
self.check_network_convergence( self.check_network_convergence(
is_sparse=True, balance_parameter_opt_between_cards=True) is_sparse=True, build_strategy=build_strategy)
def test_update_dense_parameter_with_new_strategy(self): def test_update_dense_parameter_reduce(self):
build_strategy = fluid.BuildStrategy()
build_strategy.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce
self.check_network_convergence( self.check_network_convergence(
is_sparse=False, balance_parameter_opt_between_cards=True) is_sparse=False, build_strategy=build_strategy)
# test fetch all the variables of global_block # test fetch all the variables of global_block
......
...@@ -92,19 +92,13 @@ class Trainer(object): ...@@ -92,19 +92,13 @@ class Trainer(object):
place: The device place of this trainer. place: The device place of this trainer.
""" """
def __init__(self, def __init__(self, train_func, optimizer, param_path=None, place=None):
train_func,
infer_func,
optimizer,
param_path=None,
place=None):
# 1. we need to generate a framework.Program by calling # 1. we need to generate a framework.Program by calling
# program_func. Reference: fluid.program_guard in # program_func. Reference: fluid.program_guard in
# test_word2vec.py # test_word2vec.py
if not isinstance(optimizer, opt_module.Optimizer): if not isinstance(optimizer, opt_module.Optimizer):
raise TypeError("The optimizer should be an instance of Optimizer") raise TypeError("The optimizer should be an instance of Optimizer")
self.infer_func = infer_func
self.scope = core.Scope() self.scope = core.Scope()
self.startup_program = framework.Program() self.startup_program = framework.Program()
...@@ -178,9 +172,9 @@ class Trainer(object): ...@@ -178,9 +172,9 @@ class Trainer(object):
def train(self, def train(self,
num_epochs, num_epochs,
event_handler, event_handler,
reader=None, reader,
parallel=False, feed_order,
feed_order=None): parallel=False):
""" """
Train the model. Train the model.
...@@ -208,7 +202,7 @@ class Trainer(object): ...@@ -208,7 +202,7 @@ class Trainer(object):
self._train_by_executor(num_epochs, event_handler, reader, feed_order) self._train_by_executor(num_epochs, event_handler, reader, feed_order)
def test(self, reader, feed_order=None): def test(self, reader, feed_order):
""" """
Test the model on given test data Test the model on given test data
...@@ -226,15 +220,6 @@ class Trainer(object): ...@@ -226,15 +220,6 @@ class Trainer(object):
exe = executor.Executor(self.place) exe = executor.Executor(self.place)
io.save_persistables(exe, dirname=param_path) io.save_persistables(exe, dirname=param_path)
def save_inference_model(self, model_path):
inference_program = framework.Program()
with framework.program_guard(inference_program):
with unique_name.guard():
predict_var = self.infer_func()
predict_var = self.train_program.block(0).var(predict_var.name)
exe = executor.Executor(self.place)
io.save_inference_model(model_path, [], [predict_var], exe)
@contextlib.contextmanager @contextlib.contextmanager
def _prog_and_scope_guard(self): def _prog_and_scope_guard(self):
with framework.program_guard( with framework.program_guard(
...@@ -291,12 +276,7 @@ def build_feed_var_list(program, feed_order): ...@@ -291,12 +276,7 @@ def build_feed_var_list(program, feed_order):
if not isinstance(program, framework.Program): if not isinstance(program, framework.Program):
raise TypeError("The 'program' should be an object of Program") raise TypeError("The 'program' should be an object of Program")
if feed_order is None: if isinstance(feed_order, list):
feed_var_list = [
var for var in program.global_block().vars.itervalues()
if var.is_data
]
elif isinstance(feed_order, list):
feed_var_list = [ feed_var_list = [
program.global_block().var(var_name) for var_name in feed_order program.global_block().var(var_name) for var_name in feed_order
] ]
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册