Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PaddleDetection
提交
610c6442
P
PaddleDetection
项目概览
PaddlePaddle
/
PaddleDetection
大约 1 年 前同步成功
通知
695
Star
11112
Fork
2696
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
184
列表
看板
标记
里程碑
合并请求
40
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PaddleDetection
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
184
Issue
184
列表
看板
标记
里程碑
合并请求
40
合并请求
40
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
610c6442
编写于
4月 10, 2019
作者:
C
chengduo
提交者:
GitHub
4月 10, 2019
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
Make test_parallel_executor_seresnet.py Faster (#16701)
* slimming test_parallel_executor_seresnet.py
上级
112f1614
变更
2
隐藏空白更改
内联
并排
Showing
2 changed file
with
120 addition
and
132 deletion
+120
-132
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
...ddle/fluid/tests/unittests/parallel_executor_test_base.py
+2
-1
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
...fluid/tests/unittests/test_parallel_executor_seresnext.py
+118
-131
未找到文件。
python/paddle/fluid/tests/unittests/parallel_executor_test_base.py
浏览文件 @
610c6442
...
...
@@ -29,7 +29,8 @@ __all__ = ['TestParallelExecutorBase']
class
TestParallelExecutorBase
(
unittest
.
TestCase
):
def
check_network_convergence
(
self
,
@
classmethod
def
check_network_convergence
(
cls
,
method
,
use_cuda
=
True
,
memory_opt
=
True
,
...
...
python/paddle/fluid/tests/unittests/test_parallel_executor_seresnext.py
浏览文件 @
610c6442
...
...
@@ -29,7 +29,7 @@ import unittest
import
math
import
numpy
as
np
from
functools
import
partial
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
# FIXME(zcd): If the neural net has dropout_op, the output of ParallelExecutor
# and Executor is different. Because, for ParallelExecutor, the dropout_op of
# the neural net will be copied N copies(N is the number of device). This will
...
...
@@ -113,7 +113,6 @@ def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
return
fluid
.
layers
.
elementwise_add
(
x
=
short
,
y
=
scale
,
act
=
'relu'
)
batch_size
=
12
img_shape
=
[
3
,
224
,
224
]
...
...
@@ -181,43 +180,84 @@ def optimizer(learning_rate=0.01):
return
optimizer
def
_batch_size
():
return
12
def
_iter
(
use_cuda
):
if
use_cuda
:
return
10
return
2
gpu_img
,
gpu_label
=
init_data
(
batch_size
=
_batch_size
(),
img_shape
=
img_shape
,
label_range
=
999
)
cpu_img
,
cpu_label
=
init_data
(
batch_size
=
_batch_size
(),
img_shape
=
img_shape
,
label_range
=
999
)
feed_dict_gpu
=
{
"image"
:
gpu_img
,
"label"
:
gpu_label
}
feed_dict_cpu
=
{
"image"
:
cpu_img
,
"label"
:
cpu_label
}
model
=
SE_ResNeXt50Small
def
_feed_dict
(
use_cuda
):
if
use_cuda
:
return
feed_dict_gpu
return
feed_dict_cpu
def
_get_result_of_origin_model
(
use_cuda
):
global
remove_bn
global
remove_dropout
remove_bn
=
True
remove_dropout
=
True
first_loss
,
last_loss
=
TestParallelExecutorBase
.
check_network_convergence
(
model
,
feed_dict
=
_feed_dict
(
use_cuda
),
iter
=
_iter
(
use_cuda
),
batch_size
=
_batch_size
(),
use_cuda
=
use_cuda
,
use_reduce
=
False
,
optimizer
=
optimizer
)
return
first_loss
,
last_loss
origin_cpu_first_loss
,
origin_cpu_last_loss
=
_get_result_of_origin_model
(
False
)
if
core
.
is_compiled_with_cuda
():
origin_gpu_first_loss
,
origin_gpu_last_loss
=
_get_result_of_origin_model
(
True
)
def
_get_origin_result
(
use_cuda
):
if
use_cuda
:
assert
core
.
is_compiled_with_cuda
(),
"Doesn't compiled with CUDA."
return
origin_gpu_first_loss
,
origin_gpu_last_loss
return
origin_cpu_first_loss
,
origin_cpu_last_loss
class
TestResnet
(
TestParallelExecutorBase
):
@
classmethod
def
setUpClass
(
cls
):
os
.
environ
[
'CPU_NUM'
]
=
str
(
4
)
global
remove_dropout
global
remove_bn
remove_dropout
=
False
remove_bn
=
False
def
_compare_reduce_and_allreduce
(
self
,
model
,
use_cuda
,
iter
=
20
,
delta2
=
1e-5
):
def
_compare_reduce_and_allreduce
(
self
,
use_cuda
,
delta2
=
1e-5
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
global
remove_bn
global
remove_dropout
remove_bn
=
True
remove_dropout
=
True
img
,
label
=
init_data
(
batch_size
=
batch_size
,
img_shape
=
img_shape
,
label_range
=
999
)
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
feed_dict
=
_feed_dict
(
use_cuda
),
iter
=
_iter
(
use_cuda
),
batch_size
=
_batch_size
(),
use_cuda
=
use_cuda
,
use_reduce
=
False
,
optimizer
=
optimizer
)
reduce_first_loss
,
reduce_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
feed_dict
=
_feed_dict
(
use_cuda
),
iter
=
_iter
(
use_cuda
),
batch_size
=
_batch_size
(),
use_cuda
=
use_cuda
,
use_reduce
=
True
,
optimizer
=
optimizer
)
...
...
@@ -232,10 +272,9 @@ class TestResnet(TestParallelExecutorBase):
all_reduce_first_loss_seq
,
all_reduce_last_loss_seq
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
feed_dict
=
_feed_dict
(
use_cuda
),
iter
=
_iter
(
use_cuda
),
batch_size
=
_batch_size
(),
use_cuda
=
use_cuda
,
use_reduce
=
False
,
optimizer
=
optimizer
,
...
...
@@ -243,10 +282,9 @@ class TestResnet(TestParallelExecutorBase):
reduce_first_loss_seq
,
reduce_last_loss_seq
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
feed_dict
=
_feed_dict
(
use_cuda
),
iter
=
_iter
(
use_cuda
),
batch_size
=
_batch_size
(),
use_cuda
=
use_cuda
,
use_reduce
=
True
,
optimizer
=
optimizer
,
...
...
@@ -267,37 +305,28 @@ class TestResnet(TestParallelExecutorBase):
for
loss
in
zip
(
all_reduce_last_loss_seq
,
reduce_last_loss_seq
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
delta2
)
def
_c
heck_resnet_convergence
(
self
,
model
,
check_func_1
,
check_func_2
,
use_cuda
,
iter
=
20
,
delta2
=
1e-5
,
compare_seperately
=
Tru
e
):
def
_c
ompare_result_with_origin_model
(
self
,
get_origin_result
,
check_func_2
,
use_cuda
,
delta2
=
1e-5
,
compare_seperately
=
True
,
rm_drop_out
=
False
,
rm_bn
=
Fals
e
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
global
remove_dropout
global
remove_bn
remove_dropout
=
True
remove_bn
=
True
global
remove_dropout
remove_bn
=
rm_bn
or
use_cuda
remove_dropout
=
rm_drop_out
img
,
label
=
init_data
(
batch_size
=
batch_size
,
img_shape
=
img_shape
,
label_range
=
999
)
func_1_first_loss
,
func_1_last_loss
=
check_func_1
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
use_cuda
=
use_cuda
)
func_1_first_loss
,
func_1_last_loss
=
get_origin_result
(
use_cuda
)
func_2_first_loss
,
func_2_last_loss
=
check_func_2
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
feed_dict
=
_feed_dict
(
use_cuda
),
iter
=
_iter
(
use_cuda
),
batch_size
=
_batch_size
(),
use_cuda
=
use_cuda
)
if
compare_seperately
:
...
...
@@ -311,97 +340,55 @@ class TestResnet(TestParallelExecutorBase):
self
.
assertAlmostEquals
(
np
.
mean
(
func_1_last_loss
),
func_2_last_loss
[
0
],
delta
=
delta2
)
def
_compare_with_fused_all_reduce
(
self
,
model
,
use_cuda
,
iter
=
20
,
delta2
=
1e-5
):
if
use_cuda
and
not
core
.
is_compiled_with_cuda
():
return
global
remove_bn
remove_bn
=
True
img
,
label
=
init_data
(
batch_size
=
batch_size
,
img_shape
=
img_shape
,
label_range
=
999
)
all_reduce_first_loss
,
all_reduce_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
use_cuda
=
use_cuda
,
fuse_all_reduce_ops
=
False
,
optimizer
=
optimizer
)
reduce_first_loss
,
reduce_last_loss
=
self
.
check_network_convergence
(
model
,
feed_dict
=
{
"image"
:
img
,
"label"
:
label
},
iter
=
iter
,
batch_size
=
batch_size
,
use_cuda
=
use_cuda
,
fuse_all_reduce_ops
=
True
,
optimizer
=
optimizer
)
for
loss
in
zip
(
all_reduce_first_loss
,
reduce_first_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
1e-5
)
for
loss
in
zip
(
all_reduce_last_loss
,
reduce_last_loss
):
self
.
assertAlmostEquals
(
loss
[
0
],
loss
[
1
],
delta
=
delta2
)
def
test_seresnext_with_reduce
(
self
):
self
.
_compare_reduce_and_allreduce
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
True
,
delta2
=
1e-2
)
self
.
_compare_reduce_and_allreduce
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
False
,
iter
=
5
)
def
test_seresnext_with_fused_all_reduce
(
self
):
self
.
_compare_with_fused_all_reduce
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
True
,
delta2
=
1e-3
)
self
.
_compare_with_fused_all_reduce
(
model
=
SE_ResNeXt50Small
,
use_cuda
=
False
,
iter
=
2
,
delta2
=
1e-3
)
self
.
_compare_reduce_and_allreduce
(
use_cuda
=
False
,
delta2
=
1e-3
)
self
.
_compare_reduce_and_allreduce
(
use_cuda
=
True
,
delta2
=
1e-2
)
def
test_seresnext_with_learning_rate_decay
(
self
):
check_func_1
=
partial
(
self
.
check_network_convergence
,
optimizer
=
optimizer
,
use_parallel_executor
=
True
)
# NOTE(zcd): This test is compare the result of use parallel_executor and executor,
# and the result of drop_out op and batch_norm op in this two executor
# have diff, so the two ops should be removed from the model.
check_func_1
=
_get_origin_result
check_func_2
=
partial
(
self
.
check_network_convergence
,
optimizer
=
optimizer
,
use_parallel_executor
=
False
)
self
.
_check_resnet_convergence
(
SE_ResNeXt50Small
,
check_func_1
,
check_func_2
,
use_cuda
=
True
,
compare_seperately
=
False
)
self
.
_check_resnet_convergence
(
SE_ResNeXt50Small
,
self
.
_compare_result_with_origin_model
(
check_func_1
,
check_func_2
,
use_cuda
=
False
,
rm_drop_out
=
True
,
rm_bn
=
True
,
compare_seperately
=
False
,
iter
=
2
,
delta2
=
1e-3
)
self
.
_compare_result_with_origin_model
(
check_func_1
,
check_func_2
,
use_cuda
=
True
,
rm_drop_out
=
True
,
rm_bn
=
True
,
compare_seperately
=
False
)
def
test_seresnext_with_fused_optimizer_ops
(
self
):
check_func_1
=
partial
(
self
.
check_network_convergence
,
fuse_all_optimizer_ops
=
False
)
def
test_seresnext_with_fused_all_reduce
(
self
):
# NOTE(zcd): In order to make the program faster,
# this unit test remove drop_out and batch_norm.
check_func_1
=
_get_origin_result
check_func_2
=
partial
(
self
.
check_network_convergence
,
fuse_all_optimizer_ops
=
True
)
# TODO(zcd): this test failed random, I will fix it in next PR.
# self._check_resnet_convergence(
# SE_ResNeXt50Small,
# check_func_1,
# check_func_2,
# use_cuda=True,
# delta2=1e-3)
self
.
_check_resnet_convergence
(
SE_ResNeXt50Small
,
self
.
check_network_convergence
,
optimizer
=
optimizer
,
fuse_all_reduce_ops
=
True
)
self
.
_compare_result_with_origin_model
(
check_func_1
,
check_func_2
,
use_cuda
=
False
,
iter
=
2
,
rm_drop_out
=
True
,
rm_bn
=
True
)
self
.
_compare_result_with_origin_model
(
check_func_1
,
check_func_2
,
use_cuda
=
True
,
rm_drop_out
=
True
,
rm_bn
=
True
,
delta2
=
1e-3
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录