提交 60e3e355 编写于 作者: L lujun

merge branch, test=develop

......@@ -131,16 +131,7 @@ size_t NodeSize(const VarDesc& node) {
return type_size * std::abs(size);
}
size_t NodeSize(ir::Node* n) {
VarDesc* desc = nullptr;
// some op do not have block pointer
if (n->inputs[0]->Op() != nullptr) {
desc = FindVarDescInBlock(n);
} else {
desc = n->Var();
}
return NodeSize(*desc);
}
size_t NodeSize(ir::Node* n) { return NodeSize(*(n->Var())); }
std::string DebugStringImpl(VarDesc* var) {
std::stringstream ss;
......@@ -163,24 +154,22 @@ std::string DebugStringImpl(VarDesc* var) {
}
std::string DebugString(ir::Node* var) {
return DebugStringImpl(FindVarDescInBlock(var));
return DebugStringImpl(GetVarDesc(var));
}
// NOTE(dzh): based ir node, if a large node has been reused
// by a small size node, then next time it appear in pool, it will
// have the small size. Find the original node shap from blockdesc.
VarDesc* FindVarDescInBlock(ir::Node* n) {
VarDesc* GetVarDesc(ir::Node* n) {
PADDLE_ENFORCE(n->IsVar() && !n->IsCtrlVar() && n->inputs.size() == 1);
BlockDesc* block = n->inputs[0]->Op()->Block();
PADDLE_ENFORCE(block->HasVar(n->Name()),
string::Sprintf("Block do not has var %s", n->Name()));
return block->FindVar(n->Name());
return n->Var();
}
struct NodeComparator {
bool operator()(ir::Node* lhs, ir::Node* rhs) const {
auto* lhs_desc = FindVarDescInBlock(lhs);
auto* rhs_desc = FindVarDescInBlock(rhs);
if (lhs->Var()->GetType() != rhs->Var()->GetType()) return false;
auto* lhs_desc = GetVarDesc(lhs);
auto* rhs_desc = GetVarDesc(rhs);
// match data type
if (lhs_desc->GetDataType() != rhs_desc->GetDataType()) {
return false;
......@@ -204,7 +193,7 @@ void OrderedSet::Insert(ir::Node* var) {
return;
}
auto* var_desc = FindVarDescInBlock(var);
auto* var_desc = var->Var();
auto var_shape = var_desc->GetShape();
int batch_size = static_cast<int>(var_shape[0]);
......@@ -212,7 +201,7 @@ void OrderedSet::Insert(ir::Node* var) {
Iter it = nodes_.begin();
while (it != nodes_.end()) {
auto& prev = it->front();
auto* cache_desc = FindVarDescInBlock(prev);
auto* cache_desc = GetVarDesc(prev);
int cache_batch_size = cache_desc->GetShape()[0];
if ((cache_batch_size == -1 && batch_size == -1) ||
(cache_batch_size != -1 && batch_size != -1)) {
......@@ -336,10 +325,16 @@ int MinChunkSize() {
bool NodeCanReused(const VarDesc& node) {
auto type = node.GetType();
// only these types holds bulk of gpu memory
if (!(type == proto::VarType::LOD_TENSOR ||
type == proto::VarType::LOD_TENSOR_ARRAY)) {
return false;
}
// FIXME(liuwei1031) did not find good ways to test SELECTED_ROWS and
// LOD_TENSOR_ARRAY re-use logic,
// disable them in version 1.4
// if (!(type == proto::VarType::LOD_TENSOR ||
// type == proto::VarType::SELECTED_ROWS ||
// type == proto::VarType::LOD_TENSOR_ARRAY)) {
// return false;
// }
if (type != proto::VarType::LOD_TENSOR) return false;
// persistable variable is parameter
if (node.Persistable()) {
return false;
......
......@@ -20,6 +20,7 @@
#include <map>
#include <set>
#include <string>
#include <unordered_map>
#include <utility>
#include <vector>
#include "paddle/fluid/framework/data_type.h"
......@@ -140,11 +141,7 @@ size_t NodeSize(const VarDesc&);
std::string DebugString(ir::Node* var);
// NOTE(dzhwinter)
// after node reuse, the replaced node shape is
// different with its VarDesc. So need to find the
// correct VarDesc in Block.
VarDesc* FindVarDescInBlock(ir::Node* n);
VarDesc* GetVarDesc(ir::Node* n);
static inline bool IsSameDesc(OpDesc* op1, OpDesc* op2) {
return op1->Type() == op2->Type() && op1->Inputs() == op2->Inputs() &&
......
......@@ -84,7 +84,8 @@ void BatchMergePass::ApplyImpl(ir::Graph* graph) const {
// 1. record op nodes of different roles
for (auto node : nodes) {
if (node->IsVar()) continue;
if (!node->IsOp()) continue;
PADDLE_ENFORCE(node->Op(), "must find opdesc");
int op_role = boost::get<int>(node->Op()->GetAttr(
framework::OpProtoAndCheckerMaker::OpRoleAttrName()));
if ((op_role == static_cast<int>(framework::OpRole::kForward)) ||
......
......@@ -122,14 +122,14 @@ class Autograd {
std::map<std::string, std::vector<VarBase*>> input_grads =
ready_op->ApplyGrad();
for (auto it : input_grads) {
const std::vector<VarBase*>& ingrads = it.second;
for (auto it = input_grads.rbegin(); it != input_grads.rend(); ++it) {
const std::vector<VarBase*>& ingrads = it->second;
for (size_t i = 0; i < ingrads.size(); ++i) {
if (!ingrads[i]) continue;
if (ready_op->input_vars_[it.first][i]->IsStopGradient()) {
if (ready_op->input_vars_[it->first][i]->IsStopGradient()) {
continue;
}
OpBase* pre_op = ready_op->pre_ops_[it.first][i];
OpBase* pre_op = ready_op->pre_ops_[it->first][i];
if (!pre_op) continue;
dep_counts[pre_op] -= 1;
......
......@@ -148,20 +148,20 @@ inference_analysis_api_test_with_fake_data(test_analyzer_mobilenet_depthwise_con
if(WITH_MKLDNN)
set(INT8_DATA_DIR "${INFERENCE_DEMO_INSTALL_DIR}/int8")
if (NOT EXISTS ${INT8_DATA_DIR})
inference_download_and_uncompress(${INT8_DATA_DIR} "https://paddle-inference-dist.bj.bcebos.com/int8" "imagenet_val_100.tar.gz")
inference_download_and_uncompress(${INT8_DATA_DIR} ${INFERENCE_URL}"/int8" "imagenet_val_100.tar.gz")
endif()
#resnet50 int8
set(INT8_RESNET50_MODEL_DIR "${INT8_DATA_DIR}/resnet50")
if (NOT EXISTS ${INT8_RESNET50_MODEL_DIR})
inference_download_and_uncompress(${INT8_RESNET50_MODEL_DIR} "https://paddle-inference-dist.bj.bcebos.com/int8" "resnet50_int8_model.tar.gz" )
inference_download_and_uncompress(${INT8_RESNET50_MODEL_DIR} ${INFERENCE_URL}"/int8" "resnet50_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_resnet50 ${INT8_RESNET50_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc SERIAL)
#mobilenet int8
set(INT8_MOBILENET_MODEL_DIR "${INT8_DATA_DIR}/mobilenet")
if (NOT EXISTS ${INT8_MOBILENET_MODEL_DIR})
inference_download_and_uncompress(${INT8_MOBILENET_MODEL_DIR} "https://paddle-inference-dist.bj.bcebos.com/int8" "mobilenetv1_int8_model.tar.gz" )
inference_download_and_uncompress(${INT8_MOBILENET_MODEL_DIR} ${INFERENCE_URL}"/int8" "mobilenetv1_int8_model.tar.gz" )
endif()
inference_analysis_api_int8_test(test_analyzer_int8_mobilenet ${INT8_MOBILENET_MODEL_DIR} ${INT8_DATA_DIR} analyzer_int8_image_classification_tester.cc SERIAL)
endif()
......
# copyright (c) 2019 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
......@@ -11,6 +10,7 @@
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import hashlib
import unittest
import os
import numpy as np
......@@ -21,16 +21,20 @@ import functools
import contextlib
from PIL import Image, ImageEnhance
import math
from paddle.dataset.common import download
from paddle.dataset.common import download, md5file
import tarfile
random.seed(0)
np.random.seed(0)
DATA_DIM = 224
SIZE_FLOAT32 = 4
SIZE_INT64 = 8
FULL_SIZE_BYTES = 30106000008
FULL_IMAGES = 50000
DATA_DIR_NAME = 'ILSVRC2012'
IMG_DIR_NAME = 'var'
TARGET_HASH = '8dc592db6dcc8d521e4d5ba9da5ca7d2'
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
......@@ -70,19 +74,9 @@ def process_image(img_path, mode, color_jitter, rotate):
return img
def download_unzip():
int8_download = 'int8/download'
target_name = 'data'
cache_folder = os.path.expanduser('~/.cache/paddle/dataset/' +
int8_download)
target_folder = os.path.join(cache_folder, target_name)
def download_concat(cache_folder, zip_path):
data_urls = []
data_md5s = []
data_urls.append(
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partaa'
)
......@@ -91,72 +85,138 @@ def download_unzip():
'https://paddle-inference-dist.bj.bcebos.com/int8/ILSVRC2012_img_val.tar.gz.partab'
)
data_md5s.append('1e9f15f64e015e58d6f9ec3210ed18b5')
file_names = []
print("Downloading full ImageNet Validation dataset ...")
for i in range(0, len(data_urls)):
download(data_urls[i], cache_folder, data_md5s[i])
file_names.append(data_urls[i].split('/')[-1])
zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz')
file_name = os.path.join(cache_folder, data_urls[i].split('/')[-1])
file_names.append(file_name)
print("Downloaded part {0}\n".format(file_name))
if not os.path.exists(zip_path):
cat_command = 'cat'
for file_name in file_names:
cat_command += ' ' + os.path.join(cache_folder, file_name)
cat_command += ' > ' + zip_path
os.system(cat_command)
print('Data is downloaded at {0}\n').format(zip_path)
if not os.path.exists(target_folder):
cmd = 'mkdir {0} && tar xf {1} -C {0}'.format(target_folder, zip_path)
os.system(cmd)
print('Data is unzipped at {0}\n'.format(target_folder))
data_dir = os.path.join(target_folder, 'ILSVRC2012')
print('ILSVRC2012 full val set at {0}\n'.format(data_dir))
return data_dir
with open(zip_path, "w+") as outfile:
for fname in file_names:
with open(fname) as infile:
outfile.write(infile.read())
def extract(zip_path, extract_folder):
data_dir = os.path.join(extract_folder, DATA_DIR_NAME)
img_dir = os.path.join(data_dir, IMG_DIR_NAME)
print("Extracting...\n")
if not (os.path.exists(img_dir) and
len(os.listdir(img_dir)) == FULL_IMAGES):
tar = tarfile.open(zip_path)
tar.extractall(path=extract_folder)
tar.close()
print('Extracted. Full Imagenet Validation dataset is located at {0}\n'.
format(data_dir))
def print_processbar(done, total):
done_filled = done * '='
empty_filled = (total - done) * ' '
percentage_done = done * 100 / total
sys.stdout.write("\r[%s%s]%d%%" %
(done_filled, empty_filled, percentage_done))
sys.stdout.flush()
def check_integrity(filename, target_hash):
print('\nThe binary file exists. Checking file integrity...\n')
md = hashlib.md5()
count = 0
total_parts = 50
chunk_size = 8192
onepart = FULL_SIZE_BYTES / chunk_size / total_parts
with open(filename) as ifs:
while True:
buf = ifs.read(8192)
if count % onepart == 0:
done = count / onepart
print_processbar(done, total_parts)
count = count + 1
if not buf:
break
md.update(buf)
hash1 = md.hexdigest()
if hash1 == target_hash:
return True
else:
return False
def reader():
data_dir = download_unzip()
file_list = os.path.join(data_dir, 'val_list.txt')
output_file = os.path.join(data_dir, 'int8_full_val.bin')
def convert(file_list, data_dir, output_file):
print('Converting 50000 images to binary file ...\n')
with open(file_list) as flist:
lines = [line.strip() for line in flist]
num_images = len(lines)
if not os.path.exists(output_file):
print(
'Preprocessing to binary file...<num_images><all images><all labels>...\n'
)
with open(output_file, "w+b") as of:
#save num_images(int64_t) to file
of.seek(0)
num = np.array(int(num_images)).astype('int64')
of.write(num.tobytes())
for idx, line in enumerate(lines):
img_path, label = line.split()
img_path = os.path.join(data_dir, img_path)
if not os.path.exists(img_path):
continue
#save image(float32) to file
img = process_image(
img_path, 'val', color_jitter=False, rotate=False)
np_img = np.array(img)
of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3
* idx)
of.write(np_img.astype('float32').tobytes())
#save label(int64_t) to file
label_int = (int)(label)
np_label = np.array(label_int)
of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3
* num_images + idx * SIZE_INT64)
of.write(np_label.astype('int64').tobytes())
print('The preprocessed binary file path {}\n'.format(output_file))
with open(output_file, "w+b") as ofs:
#save num_images(int64_t) to file
ofs.seek(0)
num = np.array(int(num_images)).astype('int64')
ofs.write(num.tobytes())
per_parts = 1000
full_parts = FULL_IMAGES / per_parts
print_processbar(0, full_parts)
for idx, line in enumerate(lines):
img_path, label = line.split()
img_path = os.path.join(data_dir, img_path)
if not os.path.exists(img_path):
continue
#save image(float32) to file
img = process_image(
img_path, 'val', color_jitter=False, rotate=False)
np_img = np.array(img)
ofs.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
idx)
ofs.write(np_img.astype('float32').tobytes())
ofs.flush()
#save label(int64_t) to file
label_int = (int)(label)
np_label = np.array(label_int)
ofs.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
num_images + idx * SIZE_INT64)
ofs.write(np_label.astype('int64').tobytes())
ofs.flush()
if (idx + 1) % per_parts == 0:
done = (idx + 1) / per_parts
print_processbar(done, full_parts)
print("Conversion finished.")
def run_convert():
print('Start to download and convert 50000 images to binary file...')
cache_folder = os.path.expanduser('~/.cache/paddle/dataset/int8/download')
extract_folder = os.path.join(cache_folder, 'full_data')
data_dir = os.path.join(extract_folder, DATA_DIR_NAME)
file_list = os.path.join(data_dir, 'val_list.txt')
zip_path = os.path.join(cache_folder, 'full_imagenet_val.tar.gz')
output_file = os.path.join(cache_folder, 'int8_full_val.bin')
retry = 0
try_limit = 3
while not (os.path.exists(output_file) and
os.path.getsize(output_file) == FULL_SIZE_BYTES and
check_integrity(output_file, TARGET_HASH)):
if os.path.exists(output_file):
sys.stderr.write(
"\n\nThe existing binary file is broken. Start to generate new one...\n\n".
format(output_file))
os.remove(output_file)
if retry < try_limit:
retry = retry + 1
else:
raise RuntimeError(
"Can not convert the dataset to binary file with try limit {0}".
format(try_limit))
download_concat(cache_folder, zip_path)
extract(zip_path, extract_folder)
convert(file_list, data_dir, output_file)
print("\nSuccess! The binary file can be found at {0}".format(output_file))
if __name__ == '__main__':
reader()
run_convert()
......@@ -11,7 +11,7 @@ function(inference_download INSTALL_DIR URL FILENAME)
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${INSTALL_DIR}
URL ${URL}/${FILENAME}
DOWNLOAD_COMMAND wget -q -O ${INSTALL_DIR}/${FILENAME} ${URL}/${FILENAME}
DOWNLOAD_COMMAND wget --no-check-certificate -q -O ${INSTALL_DIR}/${FILENAME} ${URL}/${FILENAME}
DOWNLOAD_DIR ${INSTALL_DIR}
DOWNLOAD_NO_PROGRESS 1
CONFIGURE_COMMAND ""
......@@ -30,7 +30,7 @@ function(inference_download_and_uncompress INSTALL_DIR URL FILENAME)
${EXTERNAL_PROJECT_NAME}
${EXTERNAL_PROJECT_LOG_ARGS}
PREFIX ${INSTALL_DIR}
DOWNLOAD_COMMAND wget -q -O ${INSTALL_DIR}/${FILENAME} ${URL}/${FILENAME} &&
DOWNLOAD_COMMAND wget --no-check-certificate -q -O ${INSTALL_DIR}/${FILENAME} ${URL}/${FILENAME} &&
${CMAKE_COMMAND} -E tar xzf ${INSTALL_DIR}/${FILENAME}
DOWNLOAD_DIR ${INSTALL_DIR}
DOWNLOAD_NO_PROGRESS 1
......
......@@ -24,18 +24,21 @@ class DGCClipByNormKernel : public ClipByNormKernel<DeviceContext, T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto rampup_begin_step = context.Attr<float>("rampup_begin_step");
if (static_cast<int>(rampup_begin_step) >= 0) {
auto current_step_tensor =
context.Input<framework::Tensor>("current_step");
auto* current_step = current_step_tensor->data<T>();
if (static_cast<int>(*current_step) <
static_cast<int>(rampup_begin_step)) {
VLOG(10) << "current_step:" << *current_step
<< " < rampup_begin_step:" << rampup_begin_step
<< " so does't use dgc_clip_by_norm";
return;
}
if (static_cast<int>(rampup_begin_step) < 0) {
return;
}
auto current_step_tensor = context.Input<framework::Tensor>("current_step");
auto* current_step = current_step_tensor->data<T>();
VLOG(10) << "current_step:" << *current_step
<< ", rampup_begin_step:" << rampup_begin_step;
if (static_cast<int>(*current_step) < static_cast<int>(rampup_begin_step)) {
VLOG(10) << "current_step:" << *current_step
<< " < rampup_begin_step:" << rampup_begin_step
<< " so does't use dgc_clip_by_norm";
return;
}
return ClipByNormKernel<DeviceContext, T>::Compute(context);
......
......@@ -65,7 +65,7 @@ class LayerObjectHelper(LayerHelperBase):
def _input(self, inputs_in):
inputs = self._multiple_input(inputs_in)
if len(inputs) != 1:
raise "{0} layer only takes one input".format(self.layer_type)
raise "{0} layer only takes one input in".format(self.layer_type)
return inputs[0]
def _multiple_param_attr(self, length, param_attr_in=None):
......@@ -74,7 +74,8 @@ class LayerObjectHelper(LayerHelperBase):
param_attr = [param_attr]
if len(param_attr) != 1 and len(param_attr) != length:
raise ValueError("parameter number mismatch")
raise ValueError("parameter number mismatch in {}".format(
self.name))
elif len(param_attr) == 1 and length != 1:
tmp = [None] * length
for i in six.moves.range(length):
......@@ -91,6 +92,10 @@ class LayerObjectHelper(LayerHelperBase):
Returns input, param_attr
"""
param_attr_in = ParamAttr._to_attr(param_attr_in)
if isinstance(param_attr_in, bool):
raise ValueError('Param_attr should not be False in {}'.format(
self.name))
inputs = inputs_in if (inputs_in is not None) else []
inputs = self._multiple_input(inputs)
param_attrs = self._multiple_param_attr(len(inputs), param_attr_in)
......@@ -112,8 +117,8 @@ class LayerObjectHelper(LayerHelperBase):
if dtype is None:
dtype = each.dtype
elif dtype != each.dtype:
raise ValueError("Data Type mismatch: %d to %d" %
(dtype, each.dtype))
raise ValueError("Data Type mismatch: %d to %d in %s" %
(dtype, each.dtype, self.name))
return dtype
def get_parameter(self, name):
......@@ -126,7 +131,8 @@ class LayerObjectHelper(LayerHelperBase):
"""
param = self.main_program.global_block().var(name)
if not isinstance(param, Parameter):
raise ValueError("no Parameter name %s found" % name)
raise ValueError("no Parameter name %s found in %s" %
(name, self.name))
return param
def append_bias_op(self,
......@@ -184,7 +190,8 @@ class LayerObjectHelper(LayerHelperBase):
if isinstance(act, six.string_types):
act = {'type': act}
else:
raise TypeError(str(act) + " should be unicode or str")
raise TypeError(
str(act) + " should be unicode or str in %s ", self.name)
if (use_cudnn is not None) and use_cudnn:
act['use_cudnn'] = use_cudnn
......@@ -211,5 +218,6 @@ class LayerObjectHelper(LayerHelperBase):
"""
param = param
if not isinstance(param, cls):
raise TypeError("The input {0} parameter of method {1} must be {2}",
param, self.layer_type, cls.__name__)
raise TypeError(
"The input {0} parameter of method {1} must be {2}, in layer {3}",
param, self.layer_type, cls.__name__, self.name)
......@@ -20,7 +20,7 @@ import numpy as np
from .. import core
from ..layers import utils
from . import layers
from ..framework import Variable, OpProtoHolder
from ..framework import Variable, OpProtoHolder, Parameter
from ..layers import layer_function_generator
from ..param_attr import ParamAttr
from ..initializer import Normal, Constant, NumpyArrayInitializer
......@@ -460,46 +460,69 @@ class FC(layers.Layer):
self._param_attr = param_attr
self._bias_attr = bias_attr
self._act = act
self.__w = list()
def _build_once(self, input):
input_shape = input.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:], 1)
] + [self._size]
self._w = self.create_parameter(
attr=self._param_attr,
shape=param_shape,
dtype=self._dtype,
is_bias=False)
@property
def _w(self, i=0):
return self.__w[i]
if self._bias_attr:
size = list([self._size])
self._b = self.create_parameter(
attr=self._bias_attr,
shape=size,
dtype=self._dtype,
is_bias=True)
else:
self._b = None
@_w.setter
def _w(self, value, i=0):
assert isinstance(value, Parameter)
self.__w[i] = value
def forward(self, input):
tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="mul",
inputs={"X": input,
"Y": self._w},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": self._num_flatten_dims,
"y_num_col_dims": 1
})
def _build_once(self, input):
i = 0
for inp, param in self._helper.iter_inputs_and_params(input,
self._param_attr):
input_shape = inp.shape
param_shape = [
reduce(lambda a, b: a * b, input_shape[self._num_flatten_dims:],
1)
] + [self._size]
self.__w.append(
self.add_parameter(
'_w%d' % i,
self.create_parameter(
attr=param,
shape=param_shape,
dtype=self._dtype,
is_bias=False)))
i += 1
size = list([self._size])
self._b = self.create_parameter(
attr=self._bias_attr, shape=size, dtype=self._dtype, is_bias=True)
pre_bias = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="sum",
inputs={"X": [tmp]},
outputs={"Out": pre_bias},
attrs={"use_mkldnn": False})
def forward(self, input):
mul_results = list()
i = 0
for inp, param in self._helper.iter_inputs_and_params(input,
self._param_attr):
tmp = self._helper.create_variable_for_type_inference(self._dtype)
self._helper.append_op(
type="mul",
inputs={"X": inp,
"Y": self.__w[i]},
outputs={"Out": tmp},
attrs={
"x_num_col_dims": self._num_flatten_dims,
"y_num_col_dims": 1
})
i += 1
mul_results.append(tmp)
if len(mul_results) == 1:
pre_bias = mul_results[0]
else:
pre_bias = self._helper.create_variable_for_type_inference(
self._dtype)
self._helper.append_op(
type="sum",
inputs={"X": mul_results},
outputs={"Out": pre_bias},
attrs={"use_mkldnn": False})
if self._b:
pre_activation = self._helper.create_variable_for_type_inference(
......
......@@ -493,7 +493,8 @@ class Variable(object):
self._ivar._run_backward()
def gradient(self):
return np.array(self._ivar._grad_value())
new_ivar = self._ivar._grad_ivar()._copy_to(core.CPUPlace(), True)
return np.array(new_ivar.value().get_tensor())
def clear_gradient(self):
self._ivar._clear_gradient()
......
......@@ -832,7 +832,7 @@ class DGCMomentumOptimizer(MomentumOptimizer):
type=x.type, name=name, dtype=x.dtype, persistable=False)
helper.append_op(
type="clip_by_norm",
type="dgc_clip_by_norm",
inputs={"X": x,
"current_step": self._global_step_var},
attrs={
......@@ -845,7 +845,7 @@ class DGCMomentumOptimizer(MomentumOptimizer):
def _append_clip_norm(self, grad_var, clip_norm):
with grad_var.block.program._backward_role_guard():
return self._clip_by_norm(
x=grad_var, max_norm=clip_norm, name=grad_var.name + "@DGC")
x=grad_var, max_norm=clip_norm, name=grad_var.name)
def _dgc_op(self, param_var, clip_var, grad_var, u_var, v_var, k_var,
encoded_var):
......
......@@ -304,7 +304,7 @@ use_py_reader = False
sync = False
# how many batches we use
batch_num = 2
batch_num = 50
np.random.seed = 1
src_word_np = np.random.randint(
......@@ -1076,19 +1076,19 @@ class TestDygraphTransformer(unittest.TestCase):
static_param_updated[static_param_name_list[k -
4]] = out[k]
self.assertTrue(np.allclose(static_avg_cost_value, dy_avg_cost.numpy()))
self.assertTrue(np.allclose(static_sum_cost_value, dy_sum_cost.numpy()))
self.assertTrue(
np.allclose(
static_predict_value, dy_predict.numpy(), atol=1e-5))
np.array_equal(static_avg_cost_value, dy_avg_cost.numpy()))
self.assertTrue(
np.allclose(static_token_num_value, dy_token_num.numpy()))
np.array_equal(static_sum_cost_value, dy_sum_cost.numpy()))
self.assertTrue(
np.array_equal(static_predict_value, dy_predict.numpy()))
self.assertTrue(
np.array_equal(static_token_num_value, dy_token_num.numpy()))
for key, value in six.iteritems(static_param_init):
self.assertTrue(np.allclose(value, dy_param_init[key]))
self.assertTrue(np.array_equal(value, dy_param_init[key]))
for key, value in six.iteritems(static_param_updated):
self.assertTrue(
np.allclose(
value, dy_param_updated[key], atol=1e-4))
self.assertTrue(np.array_equal(value, dy_param_updated[key]))
if __name__ == '__main__':
......
......@@ -76,6 +76,41 @@ class LayerTest(unittest.TestCase):
class TestLayer(LayerTest):
def test_fc(self):
# pdb.set_trace()
inp = np.ones([3, 32, 32], dtype='float32')
with self.static_graph():
t = layers.data(
name='data',
shape=[3, 32, 32],
dtype='float32',
append_batch_size=False)
ret = layers.fc(t, size=4, bias_attr=False, num_flatten_dims=1)
ret2 = layers.fc(ret, size=4)
static_ret = self.get_static_graph_result(
feed={'data': inp}, fetch_list=[ret2])[0]
with self.static_graph():
t = layers.data(
name='data',
shape=[3, 32, 32],
dtype='float32',
append_batch_size=False)
fc1 = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
fc2 = nn.FC('fc2', size=4)
ret = fc1(t)
ret2 = fc2(ret)
static_ret2 = self.get_static_graph_result(
feed={'data': inp}, fetch_list=[ret2])[0]
with self.dynamic_graph():
t = base.to_variable(inp)
fc1 = nn.FC('fc1', size=4, bias_attr=False, num_flatten_dims=1)
fc2 = nn.FC('fc2', size=4)
ret = fc1(t)
dy_ret = fc2(ret)
self.assertTrue(np.array_equal(static_ret, static_ret2))
self.assertTrue(np.array_equal(static_ret, dy_ret._numpy()))
def test_layer_norm(self):
inp = np.ones([3, 32, 32], dtype='float32')
with self.static_graph():
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册