diff --git a/CMakeLists.txt b/CMakeLists.txt
index 5df83499d5dde29b205ee17fba81a63c9a643235..00996cb7ed5cc573c42b69be6db369c3654d6d1a 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -20,8 +20,10 @@ set(PADDLE_BINARY_DIR ${CMAKE_CURRENT_BINARY_DIR})
include(system)
project(paddle CXX C Go)
-message(STATUS "CXX compiler: " ${CMAKE_CXX_COMPILER} ", version: " ${CMAKE_CXX_COMPILER_VERSION})
-message(STATUS "C compiler: " ${CMAKE_C_COMPILER} ", version: " ${CMAKE_C_COMPILER_VERSION})
+message(STATUS "CXX compiler: ${CMAKE_CXX_COMPILER}, version: "
+ "${CMAKE_CXX_COMPILER_ID} ${CMAKE_CXX_COMPILER_VERSION}")
+message(STATUS "C compiler: ${CMAKE_C_COMPILER}, version: "
+ "${CMAKE_C_COMPILER_ID} ${CMAKE_C_COMPILER_VERSION}")
find_package(Sphinx)
if(NOT CMAKE_CROSSCOMPILING)
diff --git a/cmake/external/eigen.cmake b/cmake/external/eigen.cmake
index 96fc886a342cae38d5b804266d3af7bc909a4da2..c4712f19eb80b34ffbf713d2b13fc0c775312af1 100644
--- a/cmake/external/eigen.cmake
+++ b/cmake/external/eigen.cmake
@@ -19,7 +19,7 @@ ExternalProject_Add(
if (${CMAKE_VERSION} VERSION_LESS "3.3.0")
set(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/eigen3_dummy.c)
- file(WRITE ${dummyfile} "const char * dummy_eigen3 = \"${dummyfile}\";")
+ file(WRITE ${dummyfile} "const char *dummy_eigen3 = \"${dummyfile}\";")
add_library(eigen3 STATIC ${dummyfile})
else()
add_library(eigen3 INTERFACE)
diff --git a/cmake/external/openblas.cmake b/cmake/external/openblas.cmake
index 97857a686b38d935b19f510ecdcb66bcca91fe03..0e79c0cc7992060cbe3b668ec927936183389eb6 100644
--- a/cmake/external/openblas.cmake
+++ b/cmake/external/openblas.cmake
@@ -30,23 +30,21 @@ IF(NOT ${CBLAS_FOUND})
CACHE FILEPATH "openblas library." FORCE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -Wno-unused-but-set-variable -Wno-unused-variable")
+ SET(OPENBLAS_COMMIT "v0.2.20")
IF(CMAKE_CROSSCOMPILING)
SET(OPTIONAL_ARGS HOSTCC=${HOST_C_COMPILER})
GET_FILENAME_COMPONENT(CROSS_SUFFIX ${CMAKE_C_COMPILER} DIRECTORY)
SET(CROSS_SUFFIX ${CROSS_SUFFIX}/)
IF(ANDROID)
- # arm_soft_fp_abi branch of OpenBLAS to support softfp
- # https://github.com/xianyi/OpenBLAS/tree/arm_soft_fp_abi
- SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
IF(ANDROID_ABI MATCHES "^armeabi(-v7a)?$")
+ # use softfp
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 ARM_SOFTFP_ABI=1 USE_THREAD=0)
ELSEIF(ANDROID_ABI STREQUAL "arm64-v8a")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0)
ENDIF()
ELSEIF(IOS)
IF(CMAKE_OSX_ARCHITECTURES MATCHES "arm64")
- SET(OPENBLAS_COMMIT "b5c96fcfcdc82945502a2303116a64d89985daf5")
SET(OPENBLAS_CC "${OPENBLAS_CC} ${CMAKE_C_FLAGS} -isysroot ${CMAKE_OSX_SYSROOT}")
SET(OPENBLAS_CC "${OPENBLAS_CC} -arch arm64")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV8 BINARY=64 USE_THREAD=0 CROSS_SUFFIX=${CROSS_SUFFIX})
@@ -56,14 +54,12 @@ IF(NOT ${CBLAS_FOUND})
ENDIF()
ELSEIF(RPI)
# use hardfp
- SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS ${OPTIONAL_ARGS} TARGET=ARMV7 USE_THREAD=0)
ENDIF()
ELSE()
IF(APPLE)
SET(OPENBLAS_CC "${CMAKE_C_COMPILER} -isysroot ${CMAKE_OSX_SYSROOT}")
ENDIF()
- SET(OPENBLAS_COMMIT "v0.2.20")
SET(OPTIONAL_ARGS "")
IF(CMAKE_SYSTEM_PROCESSOR MATCHES "^x86(_64)?$")
SET(OPTIONAL_ARGS DYNAMIC_ARCH=1 NUM_THREADS=64)
@@ -113,7 +109,7 @@ INCLUDE_DIRECTORIES(${CBLAS_INC_DIR})
# FIXME(gangliao): generate cblas target to track all high performance
# linear algebra libraries for cc_library(xxx SRCS xxx.c DEPS cblas)
SET(dummyfile ${CMAKE_CURRENT_BINARY_DIR}/cblas_dummy.c)
-FILE(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
+FILE(WRITE ${dummyfile} "const char *dummy_cblas = \"${dummyfile}\";")
ADD_LIBRARY(cblas STATIC ${dummyfile})
TARGET_LINK_LIBRARIES(cblas ${CBLAS_LIBRARIES})
diff --git a/cmake/generic.cmake b/cmake/generic.cmake
index 66c8e3ad7ef7c80c1f388c25983425a0db5c0220..585db019d521b1699baadfae31ef95b5059c71b4 100644
--- a/cmake/generic.cmake
+++ b/cmake/generic.cmake
@@ -120,7 +120,7 @@ function(merge_static_libs TARGET_NAME)
DEPENDS ${libs})
# Generate dummy staic lib
- file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";")
+ file(WRITE ${target_SRCS} "const char *dummy_${TARGET_NAME} = \"${target_SRCS}\";")
add_library(${TARGET_NAME} STATIC ${target_SRCS})
target_link_libraries(${TARGET_NAME} ${libs_deps})
@@ -160,7 +160,7 @@ function(merge_static_libs TARGET_NAME)
DEPENDS ${libs} ${target_OBJS})
# Generate dummy staic lib
- file(WRITE ${target_SRCS} "const char *dummy = \"${target_SRCS}\";")
+ file(WRITE ${target_SRCS} "const char *dummy_${TARGET_NAME} = \"${target_SRCS}\";")
add_library(${TARGET_NAME} STATIC ${target_SRCS})
target_link_libraries(${TARGET_NAME} ${libs_deps})
@@ -324,7 +324,7 @@ function(go_library TARGET_NAME)
)
# Add dummy code to support `make target_name` under Terminal Command
- file(WRITE ${dummyfile} "const char * dummy = \"${dummyfile}\";")
+ file(WRITE ${dummyfile} "const char *dummy_${TARGET_NAME} = \"${dummyfile}\";")
if (go_library_SHARED OR go_library_shared)
add_library(${TARGET_NAME} SHARED ${dummyfile})
else()
diff --git a/doc/api/v2/fluid/layers.rst b/doc/api/v2/fluid/layers.rst
index 004ee2d8c85ce7661886179570e693d7d61bc6d8..a7c8670f66cc7f319e41155211ead2d89126117f 100644
--- a/doc/api/v2/fluid/layers.rst
+++ b/doc/api/v2/fluid/layers.rst
@@ -307,6 +307,12 @@ sequence_expand
:noindex:
+gru_unit
+--------
+.. autofunction:: paddle.v2.fluid.layers.gru_unit
+ :noindex:
+
+
lstm_unit
---------
.. autofunction:: paddle.v2.fluid.layers.lstm_unit
diff --git a/doc/design/images/control_flow_graph.png b/doc/design/images/control_flow_graph.png
new file mode 100644
index 0000000000000000000000000000000000000000..3579998e58d07abc50bd3332128d4733a391cb3b
Binary files /dev/null and b/doc/design/images/control_flow_graph.png differ
diff --git a/doc/design/images/dataflow_equations.png b/doc/design/images/dataflow_equations.png
new file mode 100644
index 0000000000000000000000000000000000000000..c10f7f69f4007952e5b0394edaa04efa1cfbb658
Binary files /dev/null and b/doc/design/images/dataflow_equations.png differ
diff --git a/doc/design/images/deep_learning.png b/doc/design/images/deep_learning.png
new file mode 100644
index 0000000000000000000000000000000000000000..026becc4d94e01e407dacb2a5314a0e5723334ff
Binary files /dev/null and b/doc/design/images/deep_learning.png differ
diff --git a/doc/design/memory_optimization.md b/doc/design/memory_optimization.md
new file mode 100644
index 0000000000000000000000000000000000000000..00f514711a46bfd5af3bae51e0d9225ecc4c8998
--- /dev/null
+++ b/doc/design/memory_optimization.md
@@ -0,0 +1,217 @@
+# Memory Optimization
+
+
+## Problem
+
+In a lecture from Andrew Ng, he attributes the recent sucess of AI due to a combination of these:
+
+- availability of Big Data
+- supercomputing power to process this Big Data over very large neural networks
+- modern algorithms
+
+Following graph shows the details:
+
+![](images/deep_learning.png)
+
+Larger model usually brings better performance. However, GPU memory is certain limited. For example, the memory size of a GTX TITAN X is only 12GB. To train complex and large model, we have to take care of memory using. Besides, memory optimization is also necessary in both online/mobile inference.
+
+## Solution
+
+### Basic Strategy
+
+There are some basic strategies to make memory optimization, including in-place operation and memory sharing.
+
+#### In-place Operation
+In a relu activation operator:
+
+$y = \max(x, 0)$
+
+If the variable x is not used in any other operator, we can make an in-place operation. In other words, the memory block of variable y and variable x are the same. In-place operation will save 50% memory occupancy immediately.
+
+#### Memory Sharing
+
+Not all operators support in-place operations. Memory sharing is a more general strategy.
+
+Following is an example:
+
+```
+a = op1(b, c);
+d = op2(a)
+e = op3(d, f)
+```
+
+In this case, variable a is no longer used, and op2 does not support in-place operation. After op2 finished, we can put the memory of variable a to a memory pool. Then, variable e can share the memory of variable a from the pool.
+
+
+### Live Variable Analysis
+
+It's not enough to only have some basic strategies. The prerequisite of memory optimization is to know if a variable is still "live" after an operation.
+
+In our design, the neural network topology is defined as a program. Luckily, [live variable analysis](https://en.wikipedia.org/wiki/Live_variable_analysis) is a classic problem in compilers which can be used in many stages, such as register allocation.
+
+In compilers, the front end of the compilers translates programs into an intermediate language with an unbounded number of temporaries. This program must run on a machine with a bounded number of registers. Two temporaries a and b can fit into the same register, if a and b are never "in use" at the same time. Thus, many temporaries can fit in few registers; if they don't all fit, the excess temporaries can be kept in memory.
+
+Therefore, the compiler needs to analyze the intermediate-representation program to determine which temporaries are in use at the same time. We say a variable is "live" if it holds a value that may be needed in the future, so this analysis is called liveness analysis.
+
+We can leran these techniques from compilers. There are mainly two stages to make live variable analysis:
+
+- construct a control flow graph
+- solve the dataflow equations
+
+
+#### Control Flow Graph
+To preform analyses on a program, it is often useful to make a control flow graph. A [control flow graph](https://en.wikipedia.org/wiki/Control_flow_graph) (CFG) in computer science is a representation, using graph notation, of all paths that might be traversed through a program during its execution. Each statement in the program is a node in the flow graph; if statemment x can be followed by statement y, there is an egde from x to y.
+
+Following is the flow graph for a simple loop.
+
+![](images/control_flow_graph.png)
+
+#### Dataflow Analysis
+
+liveness of variable "flows" around the edges of the control flow graph; determining the live range of each variable is an example of a dataflow problem. [Dataflow analysis](https://en.wikipedia.org/wiki/Data-flow_analysis) is a technique for gathering information about the possible set of values calculated at various points in a computer program.
+
+A simple way to perform data-flow analysis of programs is to set up dataflow equations for each node of the control flow graph and solve them by repeatedly calculating the output from the input locally at each node until the whole system stabilizes.
+
+- Flow Graph Terminology
+
+A flow graph node has out-edges that lead to sucessor nodes, and in-edges that come from presucessor nodes. The set *pred[n]* is all the predecessors of node n, and *succ[n]* is the set of sucessors.
+In former control flow graph, the out-edges of node 5 are 5 --> 6 and 5 --> 2, and *succ[5]* = {2, 6}. The in-edges of 2 are 5 --> 2 and 1 --> 2, and *pred[2]* = {1, 5}.
+
+- Uses and Defs
+
+An assignmemt to a variable or temporary defines that variable. An occurence of a variable on the right-hand side of an assginment(or in other expressions) uses the variable. We can speak the *def* of a variable as the set of graph nodes that define it; or the *def* of a graph node as the set of variables that it defines; and the similarly for the *use* of a variable or graph node. In former control flow graph, *def(3)* = {c}, *use(3)* = {b, c}.
+
+- Liveness
+
+A variable is *live* on an edge if there is a directed path from that edge to a *use* of the variable that does not go through any *def*. A variable is *live-in* at a node if it is live on any of the in-edges of that node; it is *live-out* at a node if it is live on any of the out-edges of the node.
+
+
+The calcution of liveness can be solved by iteration until a fixed pointer is reached. Following is the recursive formula:
+
+![](images/dataflow_equations.png)
+
+### Memory optimization transpiler
+
+At last, we take basic strategy and liveness analysis techniques learning from compilers to implement our memory optimization transpiler.
+
+#### add in-place attribute
+
+In-place is a built-in attribute of an operator. Since we treat in-place and other operators differently, we have to add an in-place attribute for every operator.
+
+
+#### contruct control flow graph
+
+Following is the ProgramDesc protobuf of [machine translation](https://github.com/PaddlePaddle/Paddle/blob/develop/python/paddle/v2/fluid/tests/book/test_machine_translation.py) example.
+
+- Block0:
+
+```
+lookup_table
+mul
+...
+while(sub-block idx 1)
+...
+array_to_lod_tensor
+cross_entropy
+...
+while_grad(sub-block idx 2)
+read_from_array
+array_to_lod_tensor
+...
+```
+
+- Block1
+
+```
+read_from_array
+read_from_array
+...
+write_to_array
+increment
+write_to_array
+less_than
+```
+
+- Block2
+
+```
+read_from_array
+increment
+...
+write_to_array
+write_to_array
+```
+
+We can transfer all the operators and variables in ProgramDesc to build a control flow graph.
+
+```python
+class ControlFlowGraph(object):
+ def __init__(self, Program):
+ self._sucessors = defaultdict(set)
+ self._presucessors = defaultdict(set)
+ self._uses = defaultdict(set)
+ self._defs = defaultdict(set)
+ self._live_in = defaultdict(set)
+ self._live_out = defaultdict(set)
+ self._program = Program
+
+ def build(self):
+ pass
+
+ def dataflow_analysis(self):
+ pass
+
+ def memory_optimization(self):
+ pass
+
+ def get_program(self):
+ return self._program
+```
+
+#### make dataflow analysis
+
+We follow guide from compilers and try to solve the dataflow equation to get liveness of every variable. If the live-in of an operator node is different from the live-out, then we can make memory sharing.
+
+For example:
+
+```
+a = op1(b, c);
+d = op2(a)
+e = op3(d, f)
+```
+
+The dataflow analysis result is:
+
+```
+live_in(op1) = {b, c, f}
+live_out(op1) = {a, f}
+
+live_in(op2) = {a, f}
+live_out(op2) = {d, f}
+
+live_in(op3) = {d, f}
+live_out(op3) = {}
+```
+
+After op1, we can process variable b and variable c; After op2, we can process variable a. After op3, we can process variable d and variable f.
+
+#### memory sharing policy
+
+A memory pool will be mantained in the stage of memory optimization. Each operator node will be scanned to determine memory optimization is done or not. If an operator satifies the requirement, following policy will be taken to handle input/output variables.
+
+```
+if op.support_inplace():
+ i --> pool
+ pool --> o
+else:
+ pool --> o
+ i --> pool
+```
+
+
+
+## Reference
+
+- [Lecture Notes From Artificial Intelligence Is The New Electricity By Andrew Ng](https://manavsehgal.com/lecture-notes-from-artificial-intelligence-is-the-new-electricity-by-andrew-ng-4712dcbf26e5)
+- Modern compiler implementation in ML, by Andrew W. Appel
+- [Optimizing Memory Consumption in Deep learning](https://mxnet.incubator.apache.org/architecture/note_memory.html)
diff --git a/doc/design/support_new_device.md b/doc/design/support_new_device.md
index f54b2b3694cc2a8f1d892792fd4d39a0484dc750..4c5f10e2ecb9ec09b78926ca27552741d02d7cc9 100644
--- a/doc/design/support_new_device.md
+++ b/doc/design/support_new_device.md
@@ -48,8 +48,8 @@ Fluid uses class [DeviceContext](https://github.com/PaddlePaddle/Paddle/blob/dev
```
- /-> CPUDeviceContext --> MKLDeviceContext
-DeviceContext ----> CUDADeviceContext --> CUDNNDeviceContext
+ /-> CPUDeviceContext
+DeviceContext ----> CUDADeviceContext
\-> FPGADeviceContext
```
@@ -79,16 +79,6 @@ private:
};
```
-- CUDNNDeviceContext
-
-```
-class CUDNNDeviceContext : public CUDADeviceContext {
- private:
- cudnnHandle_t cudnn_handle_;
-};
-```
-
-
### Memory and Tensor
diff --git a/doc/mobile/cross_compiling_for_android_cn.md b/doc/mobile/cross_compiling_for_android_cn.md
index 424d7718c64438496cf0895397babd5408e1ca02..ae24ced770492743065e37654b494caf6b4c5bc0 100644
--- a/doc/mobile/cross_compiling_for_android_cn.md
+++ b/doc/mobile/cross_compiling_for_android_cn.md
@@ -1,8 +1,9 @@
# Android平台编译指南
用户可通过如下两种方式,交叉编译Android平台上适用的PaddlePaddle库:
-- 基于Docker容器的编译方式
-- 基于Linux交叉编译环境的编译方式
+
+- [基于Docker容器的编译方式](#基于docker容器的编译方式)
+- [基于Linux交叉编译环境的编译方式](#基于linux交叉编译环境的编译方式)
## 基于Docker容器的编译方式
Docker能在所有主要操作系统(包括Linux,Mac OS X和Windows)上运行,因此,使用基于Docker容器的编译方式,用户可在自己熟悉的开发平台上编译Android平台上适用的PaddlePaddle库。
@@ -16,6 +17,12 @@ $ cd Paddle
$ docker build -t username/paddle-android:dev . -f Dockerfile.android
```
+用户也可以使用PaddlePaddle提供的官方开发镜像:
+
+```bash
+$ docker pull paddlepaddle/paddle:latest-dev-android
+```
+
### 编译PaddlePaddle C-API库
构建好开发镜像后,即可使用开发镜像来编译Android版PaddlePaddle C-API库。
Android的Docker开发镜像向用户提供两个可配置的参数:
@@ -41,23 +48,25 @@ Android的Docker开发镜像向用户提供两个可配置的参数:
ANDROID_API |
- >= 21 |
+ >= 16 |
21 |
- 编译`armeabi-v7a`,`Android API 21`的PaddlePaddle库
+
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=armeabi-v7a" -e "ANDROID_API=21" username/paddle-android:dev
```
- 编译`arm64-v8a`,`Android API 21`的PaddlePaddle库
+
```bash
$ docker run -it --rm -v $PWD:/paddle -e "ANDROID_ABI=arm64-v8a" -e "ANDROID_API=21" username/paddle-android:dev
```
-执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文**配置交叉编译参数**章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。
+执行上述`docker run`命令时,容器默认执行[paddle/scripts/docker/build_android.sh](https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/scripts/docker/build_android.sh)脚本。该脚本中记录了交叉编译Android版PaddlePaddle库常用的CMake配置,并且会根据`ANDROID_ABI`和`ANDROID_API`自动构建独立工具链、进行编译和安装。由于arm64架构要求Android API不小于21。因此当`ANDROID_ABI=arm64-v8a`,`ANDROID_API<21`时,Docker容器中将默认使用`Android API 21`的编译工具链。用户可以参考下文[配置交叉编译参数](#配置交叉编译参数)章节,根据个人的需求修改定制Docker容器所执行的脚本。编译安装结束之后,PaddlePaddle的C-API库将被安装到`$PWD/install_android`目录,所依赖的第三方库同时也被安装到`$PWD/install_android/third_party`目录。
## 基于Linux交叉编译环境的编译方式
本文档将以Linux x86-64平台为例,介绍交叉编译Android平台上适用的PaddlePaddle库的方法和步骤。
@@ -83,6 +92,7 @@ your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain
此命令将在`your/path/to/arm_standalone_toolchain`目录生成一套独立编译工具链,面向架构为32位ARM架构,支持的最小的Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。
- 构建`arm64-v8a`、 `Android API 21`的独立工具链:
+
```bash
your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain.sh \
--arch=arm64 --platform=android-21 --install-dir=your/path/to/arm64_standalone_toolchain
@@ -90,14 +100,12 @@ your/path/to/android-ndk-r14b-linux-x86_64/build/tools/make-standalone-toolchain
此命令将在`your/path/to/arm64_standalone_toolchain`目录生成一套独立编译工具链,面向架构为64位ARM64架构,支持的最小Android API级别为21,支持编译器`arm-linux-androideabi-gcc (GCC) 4.9`和`clang 3.8`。
-注意:**PaddlePaddle要求使用的编译工具链所支持的Android API级别不小于21**。
-
### 配置交叉编译参数
CMake系统对交叉编译提供了支持[cmake-toolchains](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling)。为了简化cmake配置,PaddlePaddle为交叉编译提供了工具链配置文档[cmake/cross_compiling/android.cmake](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake),以提供一些默认的编译器和编译参数相关配置。注意,从CMake 3.7版本开始,CMake官方对Android平台的交叉编译提供了通用的支持。PaddlePaddle若检测到用户使用的CMake版本不低于3.7时,将会将用户传进来的配置参数传递CMake系统,交由CMake系统本身来处理。有关参数配置的详细说明见[cmake-toolchains](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling)。
交叉编译Android版本的PaddlePaddle库时,有一些必须配置的参数:
-- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译宿主机版protoc可执行文件、目标机版protobuf库、以及Android所需`arm_soft_fp_abi`分支的目标机版OpenBLAS库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`)。
+- `CMAKE_SYSTEM_NAME`,CMake编译的目标平台,必须设置为`Android`。在设置`CMAKE_SYSTEM_NAME=Android`后,PaddlePaddle的CMake系统才认为是在交叉编译Android系统的版本,并自动编译PaddlePaddle所需的所有第三方库。此外,还会强制设置一些PaddlePaddle参数的值(`WITH_GPU=OFF`、`WITH_AVX=OFF`、`WITH_PYTHON=OFF`、`WITH_RDMA=OFF`、`WITH_MKL=OFF`、`WITH_GOLANG=OFF`)。
- `WITH_C_API`,必须设置为`ON`。在Android平台上只支持使用C-API来预测。
- `WITH_SWIG_PY`,必须设置为`OFF`。在Android平台上不支持通过swig调用来训练或者预测。
@@ -119,7 +127,7 @@ Android平台可选配置参数:
其他配置参数:
- `USE_EIGEN_FOR_BLAS`,是否使用Eigen库进行矩阵计算。可设置`ON/OFF`,默认值为`OFF`。
-- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC`的值;若环境变量`CC`没有设置,则设置成`cc`编译器。
+- `HOST_C/CXX_COMPILER`,宿主机的C/C++编译器。在编译宿主机版protoc可执行文件和目标机版OpenBLAS库时需要用到。默认设置成环境变量`CC/CXX`的值;若环境变量`CC/CXX`没有设置,则设置成`cc/c++`编译器。
常用的cmake配置如下:
@@ -147,9 +155,10 @@ cmake -DCMAKE_SYSTEM_NAME=Android \
..
```
-用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS_MINSIZEREL/RELEASE`来影响PaddlePaddle的编译过程。
+用户还可根据自己的需求设置其他编译参数。比如希望最小化生成的库的大小,可以设置`CMAKE_BUILD_TYPE`为`MinSizeRel`;若希望最快的执行速度,则可设置`CMAKE_BUILD_TYPE`为`Release`。亦可以通过手动设置`CMAKE_C/CXX_FLAGS`来影响PaddlePaddle的编译过程。
**性能TIPS**,为了达到最快的计算速度,在CMake参数配置上,有以下建议:
+
- 设置`CMAKE_BUILD_TYPE`为`Release`
- 使用`clang`编译工具链
- `armeabi-v7a`时,设置`USE_EIGEN_BLAS=ON`,使用Eigen进行矩阵计算;`arm64-v8a`时,设置`USE_EIGEN_FOR_BLAS=OFF`,使用OpenBLAS进行矩阵计算
diff --git a/doc/mobile/cross_compiling_for_android_en.md b/doc/mobile/cross_compiling_for_android_en.md
index 26858581fc1d77a9391520ac0dfd80fbd98f508c..0cf50181df4116beda3aa6faf836eda92edf6066 100644
--- a/doc/mobile/cross_compiling_for_android_en.md
+++ b/doc/mobile/cross_compiling_for_android_en.md
@@ -1,6 +1,9 @@
# Build PaddlePaddle for Android
-There are two approaches to build PaddlePaddle for Android: using Docker and on Linux without Docker.
+There are two approaches to build PaddlePaddle for Android:
+
+- [Cross-Compiling Using Docker](#cross-compiling-using-docker)
+- [Cross-Compiling on Linux](#cross-compiling-on-linux)
## Cross-Compiling Using Docker
@@ -16,6 +19,12 @@ $ cd Paddle
$ docker build -t paddle:dev-android . -f Dockerfile.android
```
+Users can directly use the published Docker image.
+
+```bash
+$ docker pull paddlepaddle/paddle:latest-dev-android
+```
+
### Build the Inference Library
We can run the Docker image we just created to build the inference library of PaddlePaddle for Android using the command below:
@@ -47,7 +56,7 @@ The Docker image accepts two arguments `ANDROID_ABI` and `ANDROID_API`:
ANDROID_API |
- >= 21 |
+ >= 16 |
21 |
@@ -93,15 +102,13 @@ Android NDK includes everything we need to build the [*standalone toolchain*](ht
The generated standalone toolchain will be in `your/path/to/arm64_standalone_toolchain`.
-**Please be aware that the minimum level of Android API required by PaddlePaddle is 21.**
-
### Cross-Compiling Arguments
CMake supports [choosing the toolchain](https://cmake.org/cmake/help/v3.0/manual/cmake-toolchains.7.html#cross-compiling). PaddlePaddle provides [`android.cmake`](https://github.com/PaddlePaddle/Paddle/blob/develop/cmake/cross_compiling/android.cmake), which configures the Android cross-compiling toolchain for CMake. `android.cmake` is not required for CMake >= 3.7, which support Android cross-compiling. PaddlePaddle detects the CMake version, for those newer than 3.7, it uses [the official version](https://cmake.org/cmake/help/v3.7/manual/cmake-toolchains.7.html#cross-compiling).
Some other CMake arguments you need to know:
-- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, and `WITH_RDMA=OFF`.
+- `CMAKE_SYSTEM_NAME` must be `Android`. This tells PaddlePaddle's CMake system to cross-compile third-party dependencies. This also changes some other CMake arguments like `WITH_GPU=OFF`, `WITH_AVX=OFF`, `WITH_PYTHON=OFF`, `WITH_RDMA=OFF`, `WITH_MKL=OFF` and `WITH_GOLANG=OFF`.
- `WITH_C_API` must be `ON`, to build the C-based inference library for Android.
- `WITH_SWIG_PY` must be `OFF` because the Android platform doesn't support SWIG-based API.
@@ -123,7 +130,7 @@ Some Android-specific arguments:
Other useful arguments:
- `USE_EIGEN_FOR_BLAS`: indicates if using Eigen. Could be `ON` or `OFF`, defaults to `OFF`.
-- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC`, or `cc`.
+- `HOST_C/CXX_COMPILER`: specifies the host compiler, which is used to build the host-specific protoc and target-specific OpenBLAS. It defaults to the value of the environment variable `CC/C++`, or `cc/c++`.
Some frequent configurations for your reference:
@@ -158,6 +165,7 @@ There are some other arguments you might want to configure.
- `CMAKE_BUILD_TYPE-Release` optimizes the runtime performance.
Our own tip for performance optimization to use clang and Eigen or OpenBLAS:
+
- `CMAKE_BUILD_TYPE=Release`
- `ANDROID_TOOLCHAIN=clang`
- `USE_EIGEN_BLAS=ON` for `armeabi-v7a`, or `USE_EIGEN_FOR_BLAS=OFF` for `arm64-v8a`.
diff --git a/doc/mobile/cross_compiling_for_ios_en.md b/doc/mobile/cross_compiling_for_ios_en.md
index aa390cd61f3fbd75e5a3b342f3559e76da35a918..19bfe86c511c7e43b462f94c8cabba420b3007f1 100644
--- a/doc/mobile/cross_compiling_for_ios_en.md
+++ b/doc/mobile/cross_compiling_for_ios_en.md
@@ -1,4 +1,4 @@
-# PaddlePaddle Compiling Guide for iOS
+# Build PaddlePaddle for iOS
This tutorial will walk you through cross compiling the PaddlePaddle library for iOS from the source in MacOS.
@@ -98,7 +98,7 @@ You can set other compiling parameters for your own need. I.E. if you are trying
- set `CMAKE_BUILD_TYPE` with `Release`
- set `IOS_USE_VECLIB_FOR_BLAS` with `ON`
-## Compile and install
+## Build and install
After CMake, run following commands, PaddlePaddle will download the compile 3rd party dependencies, compile and install PaddlePaddle inference library.
@@ -109,7 +109,7 @@ $ make install
Please Note: if you compiled PaddlePaddle in the source directory for other platforms, do remove `third_party` and `build` directory within the source with `rm -rf` to ensure that all the 3rd party libraries dependencies and PaddlePaddle is newly compiled with current CMake configuration.
-`your/path/to/install` directory will have following directories after `compile` and `install`:
+`your/path/to/install` directory will have following directories after `make install`:
- `include`, contains all the C-API header files.
- `lib`, contains PaddlePaddle C-API static library.
diff --git a/paddle/CMakeLists.txt b/paddle/CMakeLists.txt
index 7d2becbdd772747d77890321fce6721d8d17fb30..4a98ede278fad85ff2beef3c8e7dd158912f693a 100644
--- a/paddle/CMakeLists.txt
+++ b/paddle/CMakeLists.txt
@@ -24,6 +24,7 @@ else()
add_subdirectory(framework)
add_subdirectory(operators)
add_subdirectory(pybind)
+ add_subdirectory(inference)
endif()
if(WITH_SWIG_PY)
diff --git a/paddle/framework/CMakeLists.txt b/paddle/framework/CMakeLists.txt
index b4458eb9551724021636b628c5bf8c96f6e659aa..fb8c9ab96d372bde1fb4e1d86488cd5b831b93e0 100644
--- a/paddle/framework/CMakeLists.txt
+++ b/paddle/framework/CMakeLists.txt
@@ -26,7 +26,10 @@ nv_test(lod_tensor_gpu_test SRCS lod_tensor_test.cu DEPS lod_tensor)
cc_test(variable_test SRCS variable_test.cc)
-cc_library(scope SRCS scope.cc DEPS glog)
+cc_library(threadpool SRCS threadpool.cc)
+cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool)
+
+cc_library(scope SRCS scope.cc DEPS glog threadpool)
cc_test(scope_test SRCS scope_test.cc DEPS scope)
cc_library(data_transform SRCS data_transform.cc DEPS math_function tensor framework_proto)
@@ -70,8 +73,7 @@ cc_test(var_type_inference_test SRCS var_type_inference_test.cc DEPS op_registry
cc_library(selected_rows SRCS selected_rows.cc DEPS tensor)
cc_test(selected_rows_test SRCS selected_rows_test.cc DEPS selected_rows)
-cc_library(threadpool SRCS threadpool.cc)
-cc_test(threadpool_test SRCS threadpool_test.cc DEPS threadpool)
+
cc_library(init SRCS init.cc DEPS gflags device_context place stringpiece)
cc_test(init_test SRCS init_test.cc DEPS init)
diff --git a/paddle/framework/data_transform.cc b/paddle/framework/data_transform.cc
index 9d6a8424426a68ae66cf93b803c35e33e30226f2..ac6e40a3ae8f6655eecc8279543d6afe6bbb1399 100644
--- a/paddle/framework/data_transform.cc
+++ b/paddle/framework/data_transform.cc
@@ -11,6 +11,7 @@ distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
+#include
#include "paddle/framework/data_transform.h"
#include "paddle/framework/lod_tensor.h"
@@ -74,26 +75,28 @@ void TransDataType(const platform::DeviceContext* ctx,
}
}
-void TransDataLayout(const platform::DeviceContext* ctx,
+void TransDataLayout(const std::vector& axis,
+ const platform::DeviceContext* ctx,
const KernelTypePair& kernel_pair, const Variable& in,
Variable* out) {
- PADDLE_ENFORCE(in.IsType(), "Only Support Tensor transform!.");
+ PADDLE_ENFORCE(in.IsType(), "Only support Tensor transform!.");
PADDLE_ENFORCE(
platform::places_are_same_class(kernel_pair.first.place_,
kernel_pair.second.place_),
- "TransDataType Only Support DataType transform on same place!");
+ "TransDataLayout only support DataLayout transform on same place!");
+ PADDLE_ENFORCE(kernel_pair.first.data_type_ == kernel_pair.second.data_type_,
+ "TransDataLayout only support Datatype are same!");
auto src = in.Get();
auto* dst = out->GetMutable();
PADDLE_ENFORCE(arity(src.dims()) == 4, "Input Arity Only Suppport 4!");
- auto src_dim = src.dims();
- dst->Resize(src_dim);
auto place = kernel_pair.second.place_;
CopyFrom(src, place, *ctx, dst);
- const std::vector axis = {0, 2, 3, 1};
+ auto src_dim = src.dims();
std::vector dst_dim;
+
dst_dim.resize(axis.size());
for (size_t i = 0; i < axis.size(); i++) {
dst_dim[i] = src_dim[axis[i]];
@@ -102,7 +105,7 @@ void TransDataLayout(const platform::DeviceContext* ctx,
dst->Resize(make_ddim(dst_dim));
auto src_type = kernel_pair.first.data_type_;
- framework::VisitDataType(src_type, CastDataLayout(src, dst, ctx, axis));
+ framework::VisitDataType(src_type, CastDataLayout(ctx, axis, src, dst));
dst->set_layout(kernel_pair.second.data_layout_);
}
@@ -111,5 +114,22 @@ void TransDataLayout(const platform::DeviceContext* ctx,
} // namespace paddle
namespace f = paddle::framework;
+
+namespace {
+std::vector NHWC2NCHW = {0, 3, 1, 2};
+std::vector NCHW2NHWC = {0, 2, 3, 1};
+}
+
REGISTER_DATA_TRANSFORM_FN(f::KernelFP32, f::KernelFP64, f::TransDataType);
-REGISTER_DATA_TRANSFORM_FN(f::KernelNHWC, f::KernelNCHW, f::TransDataLayout);
+REGISTER_DATA_TRANSFORM_FN(f::KernelNHWC, f::KernelNCHW,
+ std::bind(f::TransDataLayout, NHWC2NCHW,
+ std::placeholders::_1,
+ std::placeholders::_2,
+ std::placeholders::_3,
+ std::placeholders::_4));
+REGISTER_DATA_TRANSFORM_FN(f::KernelNCHW, f::KernelNHWC,
+ std::bind(f::TransDataLayout, NCHW2NHWC,
+ std::placeholders::_1,
+ std::placeholders::_2,
+ std::placeholders::_3,
+ std::placeholders::_4));
diff --git a/paddle/framework/data_transform.h b/paddle/framework/data_transform.h
index 9abb3c99bf30fcf9deab59dc7ee9c02e7c7c775b..56ebc80f4386958608213f30e745f2d9528e9e5e 100644
--- a/paddle/framework/data_transform.h
+++ b/paddle/framework/data_transform.h
@@ -73,6 +73,7 @@ struct CastDataType {
auto numel = in_.numel();
auto* in_end = in_begin + numel;
auto* out_begin = out_->mutable_data(place);
+
if (platform::is_cpu_place(place)) {
platform::Transform trans;
auto* context = static_cast(ctx_);
@@ -86,9 +87,9 @@ struct CastDataType {
};
struct CastDataLayout {
- CastDataLayout(const framework::Tensor& in, framework::Tensor* out,
- const platform::DeviceContext* ctx,
- const std::vector& axis)
+ CastDataLayout(const platform::DeviceContext* ctx,
+ const std::vector& axis, const framework::Tensor& in,
+ framework::Tensor* out)
: in_(in), out_(out), ctx_(ctx), axis_(axis) {}
const framework::Tensor in_;
framework::Tensor* out_;
@@ -98,6 +99,7 @@ struct CastDataLayout {
template
void operator()() {
auto place = ctx_->GetPlace();
+
if (platform::is_cpu_place(place)) {
operators::math::Transpose trans4;
auto* context = static_cast(ctx_);
diff --git a/paddle/framework/data_transform_test.cc b/paddle/framework/data_transform_test.cc
index 8665b6248faa2d218230449c45a10f022f3fbf4f..edd305fd17ae202926b83fbec10089719baa2e16 100644
--- a/paddle/framework/data_transform_test.cc
+++ b/paddle/framework/data_transform_test.cc
@@ -106,7 +106,7 @@ TEST(DataTransform, Register) {
ASSERT_EQ(test_value, 2);
}
-TEST(DataTransform, Layout) {
+TEST(DataTransform, DataLayout) {
using namespace paddle::framework;
using namespace paddle::platform;
@@ -127,7 +127,19 @@ TEST(DataTransform, Layout) {
}
Tensor dst = out.Get();
- EXPECT_TRUE(dst.layout() != src->layout());
+
+ EXPECT_TRUE(dst.layout() == DataLayout::kNCHW);
+ EXPECT_TRUE(dst.dims() == make_ddim({2, 2, 3, 1}));
+
+ {
+ auto kernel1 = GenFromBit({1, 0, 1, 0});
+ auto kernel2 = GenFromBit({1, 0, 0, 0});
+ auto pair0 = std::make_pair(kernel1, kernel2);
+ instance.Get(pair0)(ctx, pair0, out, &in);
+ }
+
+ EXPECT_TRUE(src->layout() == DataLayout::kNHWC);
+ EXPECT_TRUE(src->dims() == make_ddim({2, 3, 1, 2}));
}
TEST(DataTransform, DataType) {
diff --git a/paddle/framework/init.cc b/paddle/framework/init.cc
index 682cff168d4d31e0565fc987604f97a671566fbd..3bea8f3d0a31a54ef9eebe5731696b64ceed13f8 100644
--- a/paddle/framework/init.cc
+++ b/paddle/framework/init.cc
@@ -75,5 +75,10 @@ bool InitDevices(const std::vector &devices) {
return true;
}
+void InitGLOG(const std::string &prog_name) {
+ google::InitGoogleLogging(prog_name.c_str());
+ google::InstallFailureSignalHandler();
+}
+
} // namespace framework
} // namespace paddle
diff --git a/paddle/framework/init.h b/paddle/framework/init.h
index 33907f9eb00fb3469b53dcf8151557cc7a2d3791..9c84a03ded52632047841f95badbcf44bc9f48d1 100644
--- a/paddle/framework/init.h
+++ b/paddle/framework/init.h
@@ -22,6 +22,8 @@ namespace framework {
void InitGflags(std::vector &argv);
+void InitGLOG(const std::string &prog_name);
+
bool InitDevices(const std::vector &devices);
} // namespace framework
diff --git a/paddle/framework/library_type.h b/paddle/framework/library_type.h
index 7707799cae8c4edc304cd81725270a85f01fd28d..1e3084835439b0d55de72a669b93acbaef7ed6b9 100644
--- a/paddle/framework/library_type.h
+++ b/paddle/framework/library_type.h
@@ -13,6 +13,7 @@ See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
+#include
namespace paddle {
namespace framework {
@@ -41,6 +42,9 @@ inline std::string LibraryTypeToString(const LibraryType& library_type) {
inline LibraryType StringToLibraryType(const char* ctype) {
std::string s(ctype);
+ for (size_t i = 0; i < s.size(); ++i) {
+ s[i] = toupper(s[i]);
+ }
if (s == std::string("PLAIN")) {
return LibraryType::kPlain;
} else if (s == std::string("MKLDNN")) {
diff --git a/paddle/framework/lod_tensor.cc b/paddle/framework/lod_tensor.cc
index 436a9e6746e3e85cc19ee0b3b20e6bcbba19ee24..6853b7ee5f9ec849784786261b5d7d4c462ba628 100644
--- a/paddle/framework/lod_tensor.cc
+++ b/paddle/framework/lod_tensor.cc
@@ -193,6 +193,9 @@ void AppendLoD(LoD *lod, const LoD &lod_length) {
lod->empty() || lod->size() == lod_length.size(),
"The lod_length should has the same size with the appended lod.");
if (lod->empty()) {
+ for (size_t i = 0; i < lod_length.size(); ++i) {
+ lod->emplace_back(1, 0); // size = 1, value = 0;
+ }
*lod = LoD(lod_length.size(), std::vector({0}));
}
for (size_t i = 0; i < lod->size(); ++i) {
@@ -230,9 +233,10 @@ void SerializeToStream(std::ostream &os, const LoDTensor &tensor,
SerializeToStream(os, static_cast(tensor), dev_ctx);
}
-void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
+void DeserializeFromStream(std::istream &is, LoDTensor *tensor,
+ const platform::DeviceContext &dev_ctx) {
{
- // the 1st field, unit32_t version for SelectedRows
+ // the 1st field, unit32_t version for LoDTensor
uint32_t version;
is.read(reinterpret_cast(&version), sizeof(version));
PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
@@ -253,7 +257,7 @@ void DeserializeFromStream(std::istream &is, LoDTensor *tensor) {
}
}
// the 3st filed, Tensor
- DeserializeFromStream(is, static_cast(tensor));
+ DeserializeFromStream(is, static_cast(tensor), dev_ctx);
}
std::vector LoDTensor::SplitLoDTensor(
diff --git a/paddle/framework/lod_tensor.h b/paddle/framework/lod_tensor.h
index 52558b64e492a500fbfaf3ab804853d97f87a7b2..b27936c1986d13d33786035adeebe14da92b190e 100644
--- a/paddle/framework/lod_tensor.h
+++ b/paddle/framework/lod_tensor.h
@@ -215,7 +215,8 @@ void AppendLoD(LoD* lod, const LoD& lod_length);
*/
void SerializeToStream(std::ostream& os, const LoDTensor& tensor,
const platform::DeviceContext& dev_ctx);
-void DeserializeFromStream(std::istream& is, LoDTensor* tensor);
+void DeserializeFromStream(std::istream& is, LoDTensor* tensor,
+ const platform::DeviceContext& dev_ctx);
} // namespace framework
} // namespace paddle
diff --git a/paddle/framework/lod_tensor_test.cc b/paddle/framework/lod_tensor_test.cc
index 0747c8db531d6ae443d76591b945cce0c9bbea2b..0868c1f6e695b8de6a755f167951f404de0942ca 100644
--- a/paddle/framework/lod_tensor_test.cc
+++ b/paddle/framework/lod_tensor_test.cc
@@ -132,7 +132,7 @@ TEST_F(LoDTensorTester, SerializeAndDeserialize) {
std::ostringstream oss;
SerializeToStream(oss, lod_tensor_, cpu_ctx);
std::istringstream iss(oss.str());
- DeserializeFromStream(iss, &dst_tensor);
+ DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
float* dst_ptr = dst_tensor.mutable_data(platform::CPUPlace());
for (int i = 0; i < kLodTensorSize; ++i) {
EXPECT_EQ(dst_ptr[i], i);
diff --git a/paddle/framework/op_desc.cc b/paddle/framework/op_desc.cc
index 781bbb4c19f1c610df485c3061ca8b510e727019..e02e572af2c4ee122d033bc7b5231be94026c180 100644
--- a/paddle/framework/op_desc.cc
+++ b/paddle/framework/op_desc.cc
@@ -64,7 +64,7 @@ class CompileTimeInferShapeContext : public InferShapeContext {
PADDLE_ENFORCE_EQ(in_var->GetType(), proto::VarDesc::LOD_TENSOR,
"The %d-th output of Output(%s) must be LoDTensor.", j,
out);
- out_var->SetLoDLevel(in_var->GetLodLevel());
+ out_var->SetLoDLevel(in_var->GetLoDLevel());
}
bool IsRuntime() const override;
@@ -260,7 +260,13 @@ struct SetAttrDescVisitor : public boost::static_visitor {
void operator()(int v) const { attr_->set_i(v); }
void operator()(float v) const { attr_->set_f(v); }
void operator()(const std::string &v) const { attr_->set_s(v); }
- void operator()(bool b) const { attr_->set_b(b); }
+
+ // Please refer to https://github.com/PaddlePaddle/Paddle/issues/7162
+ template ::value>::type>
+ void operator()(T b) const {
+ attr_->set_b(b);
+ }
void operator()(const std::vector &v) const {
VectorToRepeated(v, attr_->mutable_ints());
@@ -274,9 +280,7 @@ struct SetAttrDescVisitor : public boost::static_visitor {
void operator()(const std::vector &v) const {
VectorToRepeated(v, attr_->mutable_bools());
}
- void operator()(proto::BlockDesc *desc) const {
- attr_->set_block_idx(desc->idx());
- }
+ void operator()(BlockDesc *desc) const { attr_->set_block_idx(desc->ID()); }
void operator()(boost::blank) const { PADDLE_THROW("Unexpected branch"); }
};
diff --git a/paddle/framework/op_kernel_type.h b/paddle/framework/op_kernel_type.h
index b06002096fb109da806809f7b908d9768cf095ba..053897784c1c4350deadf39e2a009220d38f65f9 100644
--- a/paddle/framework/op_kernel_type.h
+++ b/paddle/framework/op_kernel_type.h
@@ -26,13 +26,12 @@ namespace framework {
struct OpKernelType {
struct Hash {
size_t operator()(const OpKernelType& key) const {
- int place = key.place_.which() + (1 << LEFT_SHIFT);
- int data_type =
- static_cast(key.data_type_) + (1 << (LEFT_SHIFT + 1));
- int data_layout =
- static_cast(key.data_layout_) + (1 << (LEFT_SHIFT + 2));
- int library_type =
- static_cast(key.library_type_) + (1 << (LEFT_SHIFT + 3));
+ int place = key.place_.which();
+ int data_type = static_cast(key.data_type_) << LEFT_SHIFT;
+ int data_layout = static_cast(key.data_layout_) << (LEFT_SHIFT * 2);
+ int library_type = static_cast(key.library_type_)
+ << (LEFT_SHIFT * 3);
+
std::hash hasher;
return hasher(place + data_type + data_layout + library_type);
}
diff --git a/paddle/framework/op_registry.h b/paddle/framework/op_registry.h
index bdaa25918155caca4b64b0ed60aa3f6be03eb12f..d75c0233e8e0134ddf4edc50c07490a234b65cd0 100644
--- a/paddle/framework/op_registry.h
+++ b/paddle/framework/op_registry.h
@@ -37,8 +37,8 @@ class Registrar {
public:
// In our design, various kinds of classes, e.g., operators and kernels,
// have their corresponding registry and registrar. The action of
- // registration is in the constructor of a global registrar variable, which,
- // however, are not used in the code that calls package framework, and would
+ // registration is in the constructor of a global registrar variable, which
+ // are not used in the code that calls package framework, and would
// be removed from the generated binary file by the linker. To avoid such
// removal, we add Touch to all registrar classes and make USE_OP macros to
// call this method. So, as long as the callee code calls USE_OP, the global
diff --git a/paddle/framework/scope.cc b/paddle/framework/scope.cc
index 0c01d605bcd95f5796fba1e5a3351a2640b2898a..4e80e3d974e2b646ad62d26991e4629f8c450578 100644
--- a/paddle/framework/scope.cc
+++ b/paddle/framework/scope.cc
@@ -17,6 +17,7 @@ limitations under the License. */
#include // for unique_ptr
#include // for call_once
#include "glog/logging.h"
+#include "paddle/framework/threadpool.h"
#include "paddle/string/printf.h"
namespace paddle {
@@ -87,7 +88,8 @@ void Scope::DeleteScope(Scope* scope) {
auto it = std::find(this->kids_.begin(), this->kids_.end(), scope);
PADDLE_ENFORCE(it != this->kids_.end(), "Cannot find %p as kid scope", scope);
this->kids_.erase(it);
- delete scope;
+ // Make delete async.
+ Async([scope] { delete scope; });
}
void Scope::Rename(const std::string& origin_name,
diff --git a/paddle/framework/selected_rows.cc b/paddle/framework/selected_rows.cc
index 82adfa7123a3cf40d929021602c45fe7d2e34ffa..3b3e60177a495cc99f38ee8b82af41c4c76b8652 100644
--- a/paddle/framework/selected_rows.cc
+++ b/paddle/framework/selected_rows.cc
@@ -37,8 +37,8 @@ void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
SerializeToStream(os, selected_rows.value(), dev_ctx);
}
-void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows) {
- auto tensor = *selected_rows->mutable_value();
+void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
+ const platform::DeviceContext& dev_ctx) {
{
// the 1st field, unit32_t version for SelectedRows
uint32_t version;
@@ -62,7 +62,7 @@ void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows) {
selected_rows->set_height(height);
}
// the 4st field, tensor which contains the data
- DeserializeFromStream(is, &tensor);
+ DeserializeFromStream(is, selected_rows->mutable_value(), dev_ctx);
}
} // namespace framework
diff --git a/paddle/framework/selected_rows.h b/paddle/framework/selected_rows.h
index 699e392688e9889f050592172f8bfc45f855d0b1..30d3dfc1e89f073a8180ceacf77619b36f7079a9 100644
--- a/paddle/framework/selected_rows.h
+++ b/paddle/framework/selected_rows.h
@@ -66,7 +66,8 @@ class SelectedRows {
*/
void SerializeToStream(std::ostream& os, const SelectedRows& selected_rows,
const platform::DeviceContext& dev_ctx);
-void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows);
+void DeserializeFromStream(std::istream& is, SelectedRows* selected_rows,
+ const platform::DeviceContext& dev_ctx);
} // namespace framework
} // namespace paddle
diff --git a/paddle/framework/selected_rows_test.cc b/paddle/framework/selected_rows_test.cc
index 75487c4010391aa9e519d73058184fa936dabb84..8ff3fb6a97199a2798ab29c56957a0f77fa26628 100644
--- a/paddle/framework/selected_rows_test.cc
+++ b/paddle/framework/selected_rows_test.cc
@@ -51,10 +51,12 @@ TEST_F(SelectedRowsTester, SerializeAndDeseralize) {
SerializeToStream(oss, *selected_rows_, cpu_ctx);
std::istringstream iss(oss.str());
- DeserializeFromStream(iss, &dst_tensor);
+ DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
ASSERT_EQ(selected_rows_->rows(), dst_tensor.rows());
ASSERT_EQ(selected_rows_->height(), dst_tensor.height());
+ ASSERT_EQ(selected_rows_->value().dims(), dst_tensor.value().dims());
+ ASSERT_EQ(selected_rows_->GetCompleteDims(), dst_tensor.GetCompleteDims());
}
} // namespace framework
diff --git a/paddle/framework/tensor_util.h b/paddle/framework/tensor_util.h
index 6a21f8db1e3966fd23eee0da2346b2d61f9321fb..5ac13cba4dae9c058e2d96da24dab01f44ece772 100644
--- a/paddle/framework/tensor_util.h
+++ b/paddle/framework/tensor_util.h
@@ -270,7 +270,23 @@ inline void SerializeToStream(std::ostream& os, const Tensor& tensor,
}
}
-inline void DeserializeFromStream(std::istream& is, Tensor* tensor) {
+struct DeserializedDataFunctor {
+ DeserializedDataFunctor(void** buf, Tensor* tensor,
+ const platform::Place& place)
+ : buf_(buf), tensor_(tensor), place_(place) {}
+
+ template
+ void operator()() {
+ *buf_ = tensor_->mutable_data(place_);
+ }
+
+ void** buf_;
+ Tensor* tensor_;
+ platform::Place place_;
+};
+
+inline void DeserializeFromStream(std::istream& is, Tensor* tensor,
+ const platform::DeviceContext& dev_ctx) {
uint32_t version;
is.read(reinterpret_cast(&version), sizeof(version));
PADDLE_ENFORCE_EQ(version, 0U, "Only version 0 is supported");
@@ -289,27 +305,28 @@ inline void DeserializeFromStream(std::istream& is, Tensor* tensor) {
dims.reserve(static_cast(desc.dims().size()));
std::copy(desc.dims().begin(), desc.dims().end(), std::back_inserter(dims));
tensor->Resize(framework::make_ddim(dims));
-
void* buf;
- platform::Place cpu = platform::CPUPlace();
- // TODO(Yancey1989): use VisiterDataType instead of DataType switch
- switch (desc.data_type()) {
- case proto::FP32:
- buf = tensor->mutable_data(cpu);
- break;
- case proto::FP64:
- buf = tensor->mutable_data(cpu);
- break;
- case proto::INT32:
- buf = tensor->mutable_data(cpu);
- break;
- case proto::INT64:
- buf = tensor->mutable_data(cpu);
- break;
- default:
- PADDLE_THROW("DataType %d not supported", desc.data_type());
+ auto ctx = platform::CPUDeviceContext();
+ if (platform::is_gpu_place(dev_ctx.GetPlace())) {
+#ifdef PADDLE_WITH_CUDA
+ Tensor cpu_tensor;
+ cpu_tensor.Resize(framework::make_ddim(dims));
+ framework::VisitDataType(
+ desc.data_type(),
+ DeserializedDataFunctor(&buf, &cpu_tensor, ctx.GetPlace()));
+ is.read(static_cast(buf), cpu_tensor.memory_size());
+ auto cpu_place = new platform::CPUPlace();
+ framework::CopyFrom(cpu_tensor, *cpu_place, dev_ctx, tensor);
+ delete cpu_place;
+#else
+ PADDLE_THROW("Unexpected branch");
+#endif
+ } else {
+ framework::VisitDataType(
+ desc.data_type(),
+ DeserializedDataFunctor(&buf, tensor, ctx.GetPlace()));
+ is.read(static_cast(buf), tensor->memory_size());
}
- is.read(static_cast(buf), tensor->memory_size());
}
}
diff --git a/paddle/framework/tensor_util_test.cc b/paddle/framework/tensor_util_test.cc
index 0dc5166fcabf77b48b8681ab1f050e2bc88f44ab..15cd2bd09c4a34bc7a5bb8645762a3e0aaefd713 100644
--- a/paddle/framework/tensor_util_test.cc
+++ b/paddle/framework/tensor_util_test.cc
@@ -270,11 +270,12 @@ TEST(Tensor, SerializeAndDeserialize) {
SerializeToStream(oss, src_tensor, cpu_ctx);
std::istringstream iss(oss.str());
- DeserializeFromStream(iss, &dst_tensor);
+ DeserializeFromStream(iss, &dst_tensor, cpu_ctx);
int* dst_ptr = dst_tensor.mutable_data(platform::CPUPlace());
for (int i = 0; i < 5; ++i) {
ASSERT_EQ(dst_ptr[i], array[i]);
}
+ ASSERT_EQ(dst_tensor.dims(), src_tensor.dims());
delete place;
}
#ifdef PADDLE_WITH_CUDA
@@ -292,13 +293,12 @@ TEST(Tensor, SerializeAndDeserialize) {
SerializeToStream(oss, gpu_tensor, gpu_ctx);
std::istringstream iss(oss.str());
- DeserializeFromStream(iss, &dst_tensor);
+ DeserializeFromStream(iss, &dst_tensor, gpu_ctx);
int* dst_ptr = dst_tensor.mutable_data(platform::CPUPlace());
for (int i = 0; i < 6; ++i) {
ASSERT_EQ(dst_ptr[i], array[i]);
}
-
delete gpu_place;
}
#endif
diff --git a/paddle/framework/threadpool.h b/paddle/framework/threadpool.h
index bcd8190755083ec30687675602a1c95a9c15c69e..3ac345851c38557f82698786dd3bc8e1202a4256 100644
--- a/paddle/framework/threadpool.h
+++ b/paddle/framework/threadpool.h
@@ -29,7 +29,6 @@ namespace framework {
class ThreadPool {
public:
typedef std::packaged_task Task;
- typedef std::function Fun;
/**
* @brief Get a instance of threadpool, the thread number will
@@ -67,7 +66,8 @@ class ThreadPool {
* @return std::future, we could wait for the task finished by
* f.wait().
*/
- std::future Run(const Fun& fn) {
+ template
+ std::future Run(Callback fn) {
std::unique_lock lock(mutex_);
Task task(std::bind(fn));
std::future f = task.get_future();
@@ -159,5 +159,13 @@ class ThreadPool {
std::condition_variable completed_;
};
+// Run a function asynchronously.
+// NOTE: The function must return void. If the function need to return a value,
+// you can use lambda to capture a value pointer.
+template
+std::future Async(Callback callback) {
+ return ThreadPool::GetInstance()->Run(callback);
+}
+
} // namespace framework
} // namespace paddle
diff --git a/paddle/framework/var_desc.cc b/paddle/framework/var_desc.cc
index 7d002b9ea0b597730685ee03b021c4982f787f49..aeab18d7214f8d9dd79bc3d2e0322490445b3b49 100644
--- a/paddle/framework/var_desc.cc
+++ b/paddle/framework/var_desc.cc
@@ -52,7 +52,7 @@ void VarDesc::SetLoDLevel(int32_t lod_level) {
}
}
-int32_t VarDesc::GetLodLevel() const {
+int32_t VarDesc::GetLoDLevel() const {
switch (desc_.type()) {
case proto::VarDesc::LOD_TENSOR:
return desc_.lod_tensor().lod_level();
diff --git a/paddle/framework/var_desc.h b/paddle/framework/var_desc.h
index 4fd2abe7fb215c3ac454de3e30754685111eb570..fc482c467404a6b9dfed64c43871d91d3d10c766 100644
--- a/paddle/framework/var_desc.h
+++ b/paddle/framework/var_desc.h
@@ -76,7 +76,7 @@ class VarDesc {
void SetLoDLevel(int32_t lod_level);
- int32_t GetLodLevel() const;
+ int32_t GetLoDLevel() const;
proto::VarDesc::VarType GetType() const;
diff --git a/paddle/framework/var_type.h b/paddle/framework/var_type.h
index 0e6ea8dc69fe9b7fdaa1163b8d63295624cd3abc..5b7a08a08732a6ccbc206f6a4f0aa4788ce4a219 100644
--- a/paddle/framework/var_type.h
+++ b/paddle/framework/var_type.h
@@ -17,6 +17,8 @@ limitations under the License. */
#include "paddle/framework/lod_rank_table.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/lod_tensor_array.h"
+#include "paddle/framework/selected_rows.h"
+#include "paddle/framework/variable.h"
namespace paddle {
namespace framework {
@@ -35,7 +37,7 @@ inline proto::VarDesc::VarType ToVarType(std::type_index type) {
}
template
-inline void VisitVarType(const Variable& var, Visitor visitor) {
+inline void VisitVarType(const framework::Variable& var, Visitor visitor) {
switch (ToVarType(var.Type())) {
case proto::VarDesc_VarType_LOD_TENSOR:
visitor(var.Get());
diff --git a/paddle/gserver/tests/test_LayerGrad.cpp b/paddle/gserver/tests/test_LayerGrad.cpp
index a2f07937b8834e3f3fa7a6bf2ae10f29a8d84f29..ba83667ebc9a89c37f77a7f71e6df90b54723cc0 100644
--- a/paddle/gserver/tests/test_LayerGrad.cpp
+++ b/paddle/gserver/tests/test_LayerGrad.cpp
@@ -1472,7 +1472,8 @@ TEST(Layer, RecurrentLayer) {
for (auto reversed : {false, true}) {
config.layerConfig.set_reversed(reversed);
config.testState = !reversed;
- testLayerGrad(config, "recurrent", 50, /* trans= */ false, useGpu);
+ testLayerGrad(
+ config, "recurrent", 50, /* trans= */ false, useGpu, false, 1.0);
}
}
}
@@ -1494,7 +1495,8 @@ TEST(Layer, LstmLayer) {
for (auto reversed : {false, true}) {
config.layerConfig.set_reversed(reversed);
config.testState = !reversed;
- testLayerGrad(config, "lstmemory", 100, /* trans= */ false, useGpu);
+ testLayerGrad(
+ config, "lstmemory", 100, /* trans= */ false, useGpu, false, 0.02);
}
}
for (auto useGpu : {true}) {
diff --git a/paddle/inference/CMakeLists.txt b/paddle/inference/CMakeLists.txt
new file mode 100644
index 0000000000000000000000000000000000000000..8437b2b21942ead544dab8636db1b355b7cf7bd5
--- /dev/null
+++ b/paddle/inference/CMakeLists.txt
@@ -0,0 +1,47 @@
+set(FLUID_CORE_MODULES
+ backward proto_desc paddle_memory executor prune init ${GLOB_OP_LIB})
+
+cc_library(paddle_fluid_api
+ SRCS inference.cc
+ DEPS ${FLUID_CORE_MODULES})
+
+# Merge all modules into a simgle static library
+cc_library(paddle_fluid DEPS paddle_fluid_api ${FLUID_CORE_MODULES})
+
+# ptools
+# just for testing, we may need to change the storing format for inference_model
+# and move the dependent of pickle.
+# download from http://www.picklingtools.com/
+# build in the C++ sub-directory, using command
+# make -f Makefile.Linux libptools.so
+set(PTOOLS_LIB)
+set(PTOOLS_ROOT $ENV{PTOOLS_ROOT} CACHE PATH "Folder contains PicklingTools")
+find_path(PTOOLS_INC_DIR chooseser.h PATHS ${PTOOLS_ROOT}/C++)
+find_library(PTOOLS_SHARED_LIB NAMES ptools PATHS ${PTOOLS_ROOT}/C++)
+if(PTOOLS_INC_DIR AND PTOOLS_SHARED_LIB)
+ add_definitions(-DPADDLE_USE_PTOOLS)
+ set(PTOOLS_LIB ptools)
+ message(STATUS "Found PicklingTools: ${PTOOLS_SHARED_LIB}")
+ add_library(${PTOOLS_LIB} SHARED IMPORTED GLOBAL)
+ set_property(TARGET ${PTOOLS_LIB} PROPERTY IMPORTED_LOCATION ${PTOOLS_SHARED_LIB})
+ include_directories(${PTOOLS_ROOT}/C++)
+ include_directories(${PTOOLS_ROOT}/C++/opencontainers_1_8_5/include)
+ add_definitions(-DOC_NEW_STYLE_INCLUDES) # used in ptools
+endif()
+
+add_executable(example example.cc)
+if(APPLE)
+ set(OPTIONAL_LINK_FLAGS)
+ if("${CMAKE_CXX_COMPILER_ID}" STREQUAL "Clang" OR "${CMAKE_CXX_COMPILER_ID}" STREQUAL "AppleClang")
+ set(OPTIONAL_LINK_FLAGS "-undefined dynamic_lookup")
+ endif()
+ target_link_libraries(example
+ -Wl,-force_load paddle_fluid
+ ${OPTIONAL_LINK_FLAGS}
+ ${PTOOLS_LIB})
+else()
+ target_link_libraries(example
+ -Wl,--start-group -Wl,--whole-archive paddle_fluid
+ -Wl,--no-whole-archive -Wl,--end-group
+ ${PTOOLS_LIB})
+endif()
diff --git a/paddle/inference/example.cc b/paddle/inference/example.cc
new file mode 100644
index 0000000000000000000000000000000000000000..9711b20e6fb4099a2cc497029468ebd1fd0b3456
--- /dev/null
+++ b/paddle/inference/example.cc
@@ -0,0 +1,79 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include
+#include
+#include "gflags/gflags.h"
+#include "paddle/inference/inference.h"
+
+DEFINE_string(dirname, "", "Directory of the inference model.");
+DEFINE_string(feed_var_names, "", "Names of feeding variables");
+DEFINE_string(fetch_var_names, "", "Names of fetching variables");
+
+int main(int argc, char** argv) {
+ google::ParseCommandLineFlags(&argc, &argv, true);
+ if (FLAGS_dirname.empty() || FLAGS_feed_var_names.empty() ||
+ FLAGS_fetch_var_names.empty()) {
+ // Example:
+ // ./example --dirname=recognize_digits_mlp.inference.model
+ // --feed_var_names="x"
+ // --fetch_var_names="fc_2.tmp_2"
+ std::cout << "Usage: ./example --dirname=path/to/your/model "
+ "--feed_var_names=x --fetch_var_names=y"
+ << std::endl;
+ exit(1);
+ }
+
+ std::cout << "FLAGS_dirname: " << FLAGS_dirname << std::endl;
+ std::cout << "FLAGS_feed_var_names: " << FLAGS_feed_var_names << std::endl;
+ std::cout << "FLAGS_fetch_var_names: " << FLAGS_fetch_var_names << std::endl;
+
+ std::string dirname = FLAGS_dirname;
+ std::vector feed_var_names = {FLAGS_feed_var_names};
+ std::vector fetch_var_names = {FLAGS_fetch_var_names};
+
+ paddle::InferenceEngine* engine = new paddle::InferenceEngine();
+ engine->LoadInferenceModel(dirname, feed_var_names, fetch_var_names);
+
+ paddle::framework::LoDTensor input;
+ srand(time(0));
+ float* input_ptr =
+ input.mutable_data({1, 784}, paddle::platform::CPUPlace());
+ for (int i = 0; i < 784; ++i) {
+ input_ptr[i] = rand() / (static_cast(RAND_MAX));
+ }
+
+ std::vector feeds;
+ feeds.push_back(input);
+ std::vector fetchs;
+ engine->Execute(feeds, fetchs);
+
+ for (size_t i = 0; i < fetchs.size(); ++i) {
+ auto dims_i = fetchs[i].dims();
+ std::cout << "dims_i:";
+ for (int j = 0; j < dims_i.size(); ++j) {
+ std::cout << " " << dims_i[j];
+ }
+ std::cout << std::endl;
+ std::cout << "result:";
+ float* output_ptr = fetchs[i].data();
+ for (int j = 0; j < paddle::framework::product(dims_i); ++j) {
+ std::cout << " " << output_ptr[j];
+ }
+ std::cout << std::endl;
+ }
+
+ delete engine;
+ return 0;
+}
diff --git a/paddle/inference/inference.cc b/paddle/inference/inference.cc
new file mode 100644
index 0000000000000000000000000000000000000000..48a51efcd25afeb499ab9389c2f27c8bd2515cd8
--- /dev/null
+++ b/paddle/inference/inference.cc
@@ -0,0 +1,202 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#include "inference.h"
+#include
+#include "paddle/framework/executor.h"
+#include "paddle/framework/feed_fetch_method.h"
+#include "paddle/framework/init.h"
+#include "paddle/framework/scope.h"
+
+#ifdef PADDLE_USE_PTOOLS
+#include "chooseser.h"
+#endif
+
+namespace paddle {
+
+void InferenceEngine::LoadInferenceModel(
+ const std::string& dirname,
+ const std::vector& feed_var_names,
+ const std::vector& fetch_var_names) {
+#ifdef PADDLE_USE_PTOOLS
+ std::string model_filename = dirname + "/__model__";
+ LOG(INFO) << "Using PicklingTools, loading model from " << model_filename;
+ Val v;
+ LoadValFromFile(model_filename.c_str(), v, SERIALIZE_P0);
+ std::string program_desc_str = v["program_desc_str"];
+ LOG(INFO) << "program_desc_str's size: " << program_desc_str.size();
+// PicklingTools cannot parse the vector of strings correctly.
+#else
+ // program_desc_str
+ // the inference.model is stored by following python codes:
+ // inference_program = fluid.io.get_inference_program(predict)
+ // model_filename = "recognize_digits_mlp.inference.model/inference.model"
+ // with open(model_filename, "w") as f:
+ // program_str = inference_program.desc.serialize_to_string()
+ // f.write(struct.pack('q', len(program_str)))
+ // f.write(program_str)
+ std::string model_filename = dirname + "/inference.model";
+ LOG(INFO) << "loading model from " << model_filename;
+ std::ifstream fs(model_filename, std::ios_base::binary);
+ int64_t size = 0;
+ fs.read(reinterpret_cast(&size), sizeof(int64_t));
+ LOG(INFO) << "program_desc_str's size: " << size;
+ std::string program_desc_str;
+ program_desc_str.resize(size);
+ fs.read(&program_desc_str[0], size);
+#endif
+ program_ = new framework::ProgramDesc(program_desc_str);
+ GenerateLoadProgram(dirname);
+
+ if (feed_var_names.empty() || fetch_var_names.empty()) {
+ LOG(FATAL) << "Please specify the feed_var_names and fetch_var_names.";
+ }
+ feed_var_names_ = feed_var_names;
+ fetch_var_names_ = fetch_var_names;
+ PrependFeedOp();
+ AppendFetchOp();
+}
+
+bool InferenceEngine::IsParameter(const framework::VarDesc* var) {
+ if (var->Persistable()) {
+ // There are many unreachable variables in the program
+ for (size_t i = 0; i < program_->Size(); ++i) {
+ const framework::BlockDesc& block = program_->Block(i);
+ for (auto* op : block.AllOps()) {
+ for (auto input_argument_name : op->InputArgumentNames()) {
+ if (input_argument_name == var->Name()) {
+ return true;
+ }
+ }
+ }
+ }
+ }
+ return false;
+}
+
+void InferenceEngine::GenerateLoadProgram(const std::string& dirname) {
+ framework::BlockDesc* global_block = program_->MutableBlock(0);
+
+ load_program_ = new framework::ProgramDesc();
+ framework::BlockDesc* load_block = load_program_->MutableBlock(0);
+ for (auto* var : global_block->AllVars()) {
+ if (IsParameter(var)) {
+ LOG(INFO) << "parameter's name: " << var->Name();
+
+ framework::VarDesc* new_var = load_block->Var(var->Name());
+ new_var->SetShape(var->Shape());
+ new_var->SetDataType(var->GetDataType());
+ new_var->SetType(var->GetType());
+ new_var->SetLoDLevel(var->GetLoDLevel());
+ new_var->SetPersistable(true);
+
+ // append_op
+ framework::OpDesc* op = load_block->AppendOp();
+ op->SetType("load");
+ op->SetOutput("Out", {new_var->Name()});
+ op->SetAttr("file_path", {dirname + "/" + new_var->Name()});
+ op->CheckAttrs();
+ }
+ }
+}
+
+void InferenceEngine::PrependFeedOp() {
+ if (!program_) {
+ LOG(FATAL) << "Please initialize the program_ first.";
+ }
+
+ framework::BlockDesc* global_block = program_->MutableBlock(0);
+
+ // create_var
+ framework::VarDesc* feed_var = global_block->Var("feed");
+ feed_var->SetType(framework::proto::VarDesc::FEED_MINIBATCH);
+ feed_var->SetPersistable(true);
+
+ // prepend feed_op
+ for (size_t i = 0; i < feed_var_names_.size(); ++i) {
+ std::string var_name = feed_var_names_[i];
+ LOG(INFO) << "feed var's name: " << var_name;
+
+ // prepend_op
+ framework::OpDesc* op = global_block->PrependOp();
+ op->SetType("feed");
+ op->SetInput("X", {"feed"});
+ op->SetOutput("Out", {var_name});
+ op->SetAttr("col", {static_cast(i)});
+ op->CheckAttrs();
+ }
+}
+
+void InferenceEngine::AppendFetchOp() {
+ if (!program_) {
+ LOG(FATAL) << "Please initialize the program_ first.";
+ }
+
+ framework::BlockDesc* global_block = program_->MutableBlock(0);
+
+ // create_var
+ framework::VarDesc* fetch_var = global_block->Var("fetch");
+ fetch_var->SetType(framework::proto::VarDesc::FETCH_LIST);
+ fetch_var->SetPersistable(true);
+
+ // append fetch_op
+ for (size_t i = 0; i < fetch_var_names_.size(); ++i) {
+ std::string var_name = fetch_var_names_[i];
+ LOG(INFO) << "fetch var's name: " << var_name;
+
+ // append_op
+ framework::OpDesc* op = global_block->AppendOp();
+ op->SetType("fetch");
+ op->SetInput("X", {var_name});
+ op->SetOutput("Out", {"fetch"});
+ op->SetAttr("col", {static_cast(i)});
+ op->CheckAttrs();
+ }
+}
+
+void InferenceEngine::Execute(const std::vector& feeds,
+ std::vector& fetchs) {
+ if (!program_ || !load_program_) {
+ LOG(FATAL) << "Please initialize the program_ and load_program_ first.";
+ }
+
+ if (feeds.size() < feed_var_names_.size()) {
+ LOG(FATAL) << "Please feed " << feed_var_names_.size() << " input Tensors.";
+ }
+
+ auto* place = new platform::CPUPlace();
+ framework::InitDevices({"CPU"});
+ framework::Executor* executor = new framework::Executor(*place);
+ framework::Scope* scope = new framework::Scope();
+
+ executor->Run(*load_program_, scope, 0, true, true);
+
+ // set_feed_variable
+ for (size_t i = 0; i < feed_var_names_.size(); ++i) {
+ framework::SetFeedVariable(scope, feeds[i], "feed", i);
+ }
+
+ executor->Run(*program_, scope, 0, true, true);
+
+ // get_fetch_variable
+ fetchs.resize(fetch_var_names_.size());
+ for (size_t i = 0; i < fetch_var_names_.size(); ++i) {
+ fetchs[i] = framework::GetFetchVariable(*scope, "fetch", i);
+ }
+
+ delete place;
+ delete scope;
+ delete executor;
+}
+} // namespace paddle
diff --git a/paddle/inference/inference.h b/paddle/inference/inference.h
new file mode 100644
index 0000000000000000000000000000000000000000..a3f3ef4b440036a0b27353cc092eed1bbf96eeb3
--- /dev/null
+++ b/paddle/inference/inference.h
@@ -0,0 +1,50 @@
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
+
+Licensed under the Apache License, Version 2.0 (the "License");
+you may not use this file except in compliance with the License.
+You may obtain a copy of the License at
+
+ http://www.apache.org/licenses/LICENSE-2.0
+
+Unless required by applicable law or agreed to in writing, software
+distributed under the License is distributed on an "AS IS" BASIS,
+WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
+See the License for the specific language governing permissions and
+limitations under the License. */
+
+#pragma once
+
+#include "paddle/framework/block_desc.h"
+#include "paddle/framework/lod_tensor.h"
+#include "paddle/framework/program_desc.h"
+
+namespace paddle {
+
+class InferenceEngine {
+public:
+ InferenceEngine() : program_(nullptr), load_program_(nullptr) {}
+ ~InferenceEngine() {
+ delete program_;
+ delete load_program_;
+ }
+
+ void LoadInferenceModel(const std::string& dirname,
+ const std::vector& feed_var_names,
+ const std::vector& fetch_var_names);
+ void Execute(const std::vector& feeds,
+ std::vector& fetchs);
+
+private:
+ bool IsParameter(const framework::VarDesc* var);
+ void GenerateLoadProgram(const std::string& dirname);
+ void PrependFeedOp();
+ void AppendFetchOp();
+
+private:
+ framework::ProgramDesc* program_;
+ framework::ProgramDesc* load_program_;
+ std::vector feed_var_names_;
+ std::vector fetch_var_names_;
+};
+
+} // namespace paddle
diff --git a/paddle/operators/CMakeLists.txt b/paddle/operators/CMakeLists.txt
index 7312eae0d3e3c8feecae263bfe42fd39ac458035..f1ce52332327ed2a9f290ccf412199fd5a6bbb67 100644
--- a/paddle/operators/CMakeLists.txt
+++ b/paddle/operators/CMakeLists.txt
@@ -61,106 +61,28 @@ function(op_library TARGET)
${op_common_deps})
endif()
- # net_op doesn't need pybind
- if ("${TARGET}" STREQUAL "net_op")
- set(pybind_flag 1)
- endif()
-
- if ("${TARGET}" STREQUAL "compare_op")
- set(pybind_flag 1)
- file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(equal);\n")
- endif()
-
- # conv_op contains several operators
- if ("${TARGET}" STREQUAL "conv_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(conv2d);\n")
- endif()
-
- # conv_cudnn_op contains several operators
- if ("${TARGET}" STREQUAL "conv_cudnn_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(conv2d_cudnn);\n")
- endif()
-
- # pool_op contains several operators
- if ("${TARGET}" STREQUAL "pool_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(pool2d);\n")
- endif()
-
- # pool_cudnn_op contains several operators
- if ("${TARGET}" STREQUAL "pool_cudnn_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(pool2d_cudnn);\n")
- endif()
-
- if ("${TARGET}" STREQUAL "logical_op")
- set(pybind_flag 1)
- file(APPEND ${pybind_file} "USE_OP(logical_and);\n")
- endif()
-
- # pool_with_index_op contains several operators
- if ("${TARGET}" STREQUAL "pool_with_index_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(max_pool2d_with_index);\n")
- endif()
-
- # conv_transpose_op contains several operators
- if ("${TARGET}" STREQUAL "conv_transpose_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(conv2d_transpose);\n")
- endif()
-
- # conv_transpose_cudnn_op contains two operators
- if ("${TARGET}" STREQUAL "conv_transpose_cudnn_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(conv2d_transpose_cudnn);\n")
- endif()
-
- # save_restore_op contains several operators
- if ("${TARGET}" STREQUAL "save_restore_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(save);\n")
- endif()
-
- # activation_op contains several operators
- if ("${TARGET}" STREQUAL "activation_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(sigmoid);\n")
- endif()
-
- # nccl_op contains several operators
- if ("${TARGET}" STREQUAL "nccl_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(ncclAllReduce);\n")
- endif()
-
- # reduce_op contains several operators
- if ("${TARGET}" STREQUAL "reduce_op")
- set(pybind_flag 1)
- # It's enough to just adding one operator to pybind
- file(APPEND ${pybind_file} "USE_OP(reduce_sum);\n")
- endif()
+ # Define operators that don't need pybind here.
+ foreach(manual_pybind_op "net_op" "compare_op" "logical_op" "nccl_op" "tensor_array_read_write_op")
+ if ("${TARGET}" STREQUAL "${manual_pybind_op}")
+ set(pybind_flag 1)
+ endif()
+ endforeach()
- if ("${TARGET}" STREQUAL "tensor_array_read_write_op")
- set(pybind_flag 1)
- file(APPEND ${pybind_file} "USE_NO_KERNEL_OP(read_from_array);\nUSE_NO_KERNEL_OP(write_to_array);\n")
+ # The registration of USE_OP, please refer to paddle/framework/op_registry.h.
+ # Note that it's enough to just adding one operator to pybind in a *_op.cc file.
+ # And for detail pybind information, please see generated paddle/pybind/pybind.h.
+ file(READ ${TARGET}.cc TARGET_CONTENT)
+ string(REGEX MATCH "REGISTER_OP\\(.*REGISTER_OP\\(" multi_register "${TARGET_CONTENT}")
+ string(REGEX MATCH "REGISTER_OP\\([a-z0-9_]*," one_register "${multi_register}")
+ if (one_register STREQUAL "")
+ string(REPLACE "_op" "" TARGET "${TARGET}")
+ else ()
+ string(REPLACE "REGISTER_OP(" "" TARGET "${one_register}")
+ string(REPLACE "," "" TARGET "${TARGET}")
endif()
# pybind USE_NO_KERNEL_OP
# HACK: if REGISTER_OP_CPU_KERNEL presents the operator must have kernel
- file(READ ${TARGET}.cc TARGET_CONTENT)
string(REGEX MATCH "REGISTER_OP_CPU_KERNEL" regex_result "${TARGET_CONTENT}")
string(REPLACE "_op" "" TARGET "${TARGET}")
if (${pybind_flag} EQUAL 0 AND regex_result STREQUAL "")
@@ -171,7 +93,6 @@ function(op_library TARGET)
# pybind USE_CPU_ONLY_OP
list(LENGTH cu_srcs cu_srcs_len)
list(LENGTH cu_cc_srcs cu_cc_srcs_len)
-
if (${pybind_flag} EQUAL 0 AND ${cu_srcs_len} EQUAL 0 AND ${cu_cc_srcs_len} EQUAL 0)
file(APPEND ${pybind_file} "USE_CPU_ONLY_OP(${TARGET});\n")
set(pybind_flag 1)
@@ -188,6 +109,7 @@ add_subdirectory(nccl)
if(WITH_GPU)
op_library(nccl_op DEPS nccl_common)
+ file(APPEND ${pybind_file} "USE_CUDA_ONLY_OP(ncclAllReduce);\n")
else()
set(DEPS_OPS ${DEPS_OPS} nccl_op)
endif()
@@ -239,6 +161,8 @@ list(REMOVE_ITEM GENERAL_OPS ${DEPS_OPS})
foreach(src ${GENERAL_OPS})
op_library(${src})
endforeach()
+file(APPEND ${pybind_file} "USE_OP(less_than);\nUSE_OP(logical_and);\nUSE_NO_KERNEL_OP(read_from_array);\n")
+
set(GLOB_OP_LIB ${OP_LIBRARY} CACHE INTERNAL "Global OP library")
diff --git a/paddle/operators/activation_op.h b/paddle/operators/activation_op.h
index 0885f7c570b9b52dc51597347295734fd689da8d..88c3d1c597a853abdee7753a5110be4a1726e905 100644
--- a/paddle/operators/activation_op.h
+++ b/paddle/operators/activation_op.h
@@ -15,6 +15,7 @@ limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
+#include "paddle/operators/detail/safe_ref.h"
namespace paddle {
namespace operators {
@@ -26,12 +27,16 @@ class ActivationKernel
using T = typename Functor::ELEMENT_TYPE;
void Compute(const framework::ExecutionContext& context) const override {
- auto* X = context.Input("X");
- auto* Out = context.Output("Out");
- Out->mutable_data(context.GetPlace());
-
- auto x = framework::EigenVector::Flatten(*X);
- auto out = framework::EigenVector::Flatten(*Out);
+ auto& X = detail::Ref(context.Input("X"),
+ "Cannot get input tensor X, variable name = %s",
+ context.op().Input("X"));
+
+ auto& Out = detail::Ref(context.Output("Out"),
+ "Cannot get output tensor Out, variable name = %s",
+ context.op().Output("Out"));
+ Out.mutable_data(context.GetPlace());
+ auto x = framework::EigenVector::Flatten(X);
+ auto out = framework::EigenVector::Flatten(Out);
auto* place =
context.template device_context().eigen_device();
Functor functor;
diff --git a/paddle/operators/batch_norm_op.cc b/paddle/operators/batch_norm_op.cc
index 98db28ddee7c6cdb37fe7732649d4fc38de7b873..dd7b038b00813b192177c05dc06aa165a60b5156 100644
--- a/paddle/operators/batch_norm_op.cc
+++ b/paddle/operators/batch_norm_op.cc
@@ -64,7 +64,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
PADDLE_ENFORCE(x_dims.size() >= 2 && x_dims.size() <= 5,
"Input X must have 2 to 5 dimensions.");
- const int C =
+ const int64_t C =
(data_layout == DataLayout::kNCHW ? x_dims[1]
: x_dims[x_dims.size() - 1]);
@@ -78,6 +78,7 @@ class BatchNormOp : public framework::OperatorWithKernel {
ctx->SetOutputDim("VarianceOut", {C});
ctx->SetOutputDim("SavedMean", {C});
ctx->SetOutputDim("SavedVariance", {C});
+ ctx->ShareLoD("X", "Y");
}
};
diff --git a/paddle/operators/conv_op.cc b/paddle/operators/conv_op.cc
index e65a5dce52c3c51d3d6bee1684c1e97230203d38..ad84524e1785e3b6b4586c83001852b6dba7afe8 100644
--- a/paddle/operators/conv_op.cc
+++ b/paddle/operators/conv_op.cc
@@ -44,14 +44,12 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
paddings.size(), strides.size(),
"Conv paddings dimension and Conv strides dimension should be the same.");
- int input_channels = in_dims[1];
- PADDLE_ENFORCE_EQ(input_channels, filter_dims[1] * groups,
+ PADDLE_ENFORCE_EQ(in_dims[1], filter_dims[1] * groups,
"The number of input channels should be equal to filter "
"channels * groups.");
- int output_channels = filter_dims[0];
PADDLE_ENFORCE_EQ(
- output_channels % groups, 0,
+ filter_dims[0] % groups, 0,
"The number of output channels should be divided by groups.");
std::vector output_shape({in_dims[0], filter_dims[0]});
@@ -66,6 +64,7 @@ void ConvOp::InferShape(framework::InferShapeContext* ctx) const {
dilations[i], paddings[i], strides[i]));
}
ctx->SetOutputDim("Output", framework::make_ddim(output_shape));
+ ctx->ShareLoD("Input", "Output");
}
Conv2DOpMaker::Conv2DOpMaker(OpProto* proto, OpAttrChecker* op_checker)
diff --git a/paddle/operators/detail/recv_impl.cc b/paddle/operators/detail/recv_impl.cc
index b746f9df4640bac7b5c4e83091f2c2ab67e778be..319404e56a5f3c407f313991240bbbb85fd39a2a 100644
--- a/paddle/operators/detail/recv_impl.cc
+++ b/paddle/operators/detail/recv_impl.cc
@@ -21,14 +21,9 @@ namespace detail {
Status SendRecvServerImpl::SendVariable(ServerContext *context,
const VariableMessage *in_var,
VoidMessage *out_var) {
- // TODO(typhoonzero): support different variable types.
- std::istringstream iss(in_var->serialized());
- framework::LoDTensor t;
- framework::DeserializeFromStream(iss, &t);
- TensorWithName tensor_with_name =
- std::make_pair(in_var->varname(), std::move(t));
-
- var_recv_queue_.Push(std::move(tensor_with_name));
+ MessageWithName msg_with_name =
+ std::make_pair(in_var->varname(), std::move(*in_var));
+ var_recv_queue_.Push(std::move(msg_with_name));
return Status::OK;
}
@@ -37,14 +32,8 @@ Status SendRecvServerImpl::GetVariable(ServerContext *context,
VariableMessage *out_var) {
std::string get_var_name = in_var->varname();
auto *var = scope_->FindVar(get_var_name);
- auto tensor = var->Get();
- std::ostringstream oss;
- framework::SerializeToStream(oss, tensor, platform::CPUDeviceContext());
- std::string *varname = out_var->mutable_varname();
- *varname = get_var_name;
- std::string *serialized = out_var->mutable_serialized();
- *serialized = oss.str();
+ SerializeToMessage(get_var_name, var, platform::CPUDeviceContext(), out_var);
return Status::OK;
}
diff --git a/paddle/operators/detail/send_impl.cc b/paddle/operators/detail/send_impl.cc
index a812fcf39bc19a6e06dc594c13076696e7949372..ae85cf2cec2cd8e046c0c7fd3408f2212f225819 100644
--- a/paddle/operators/detail/send_impl.cc
+++ b/paddle/operators/detail/send_impl.cc
@@ -27,14 +27,8 @@ bool RPCClient::SendVariable(const framework::Scope& scope,
auto ctx = platform::CPUDeviceContext();
auto* var = scope.FindVar(inname);
PADDLE_ENFORCE(var);
- // TODO(typhoonzero): support SelectedRows
- PADDLE_ENFORCE(var->IsType(),
- "Only support LoDTensor, %s has wrong type", inname);
- const framework::LoDTensor& tensor = var->Get();
- std::ostringstream oss;
- framework::SerializeToStream(oss, tensor, ctx);
- msg.set_varname(inname);
- msg.set_serialized(oss.str());
+ SerializeToMessage(inname, var, ctx, &msg);
+
Status status = stub_->SendVariable(&context, msg, &out_msg);
if (!status.ok()) {
LOG(ERROR) << "gRPC error: " << status.error_message();
@@ -50,19 +44,15 @@ bool RPCClient::GetVariable(const framework::Scope& scope,
call_msg.set_varname(outname);
auto ctx = platform::CPUDeviceContext();
Status status = stub_->GetVariable(&context, call_msg, &ret_msg);
+ auto* outvar = scope.FindVar(outname);
if (!status.ok()) {
LOG(ERROR) << "gRPC error: " << status.error_message();
return false;
}
std::istringstream iss(ret_msg.serialized());
+ DeserializeFromMessage(ret_msg, ctx, outvar);
- framework::LoDTensor ret_tensor;
- framework::DeserializeFromStream(iss, &ret_tensor);
- auto* outvar = scope.FindVar(outname);
- framework::LoDTensor* out_tensor = outvar->GetMutable();
- // FIXME(typhoonzero): do not copy.
- framework::CopyFrom(ret_tensor, ctx.GetPlace(), ctx, out_tensor);
return true;
}
diff --git a/paddle/operators/detail/send_recv.proto b/paddle/operators/detail/send_recv.proto
index 95c8e708986eac2a27ece70864efd7eac5f84ce8..f141c755ce14ef540aeab32c11c289179aff3f8c 100644
--- a/paddle/operators/detail/send_recv.proto
+++ b/paddle/operators/detail/send_recv.proto
@@ -1,7 +1,6 @@
-/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
-
-Licensed under the Apache License, Version 2.0 (the "License");
-you may not use this file except in compliance with the License.
+/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under
+the Apache License, Version 2.0 (the "License"); you may not use this file
+except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
@@ -13,7 +12,6 @@ See the License for the specific language governing permissions and
limitations under the License. */
syntax = "proto3";
-
package sendrecv;
service SendRecvService {
@@ -29,12 +27,18 @@ service SendRecvService {
// VariableMessage is serialized paddle variable message.
// It can be:
-// Tensor
// LoDTensor
// SelectedRows
+enum VarType {
+ LOD_TENSOR = 0;
+ SELECTED_ROWS = 1;
+}
+
message VariableMessage {
string varname = 1;
- bytes serialized = 2;
+ // TODO(Yancey1989): reference framework::proto::VarDesc::VarType
+ VarType type = 2;
+ bytes serialized = 3;
}
message VoidMessage {}
diff --git a/paddle/operators/detail/send_recv_impl.h b/paddle/operators/detail/send_recv_impl.h
index 47f730f7ae897096fbdd23a55252448cf6655fb4..1fe54f1f0536aed7d41bbdeeca076534abafe98d 100644
--- a/paddle/operators/detail/send_recv_impl.h
+++ b/paddle/operators/detail/send_recv_impl.h
@@ -14,10 +14,10 @@ limitations under the License. */
#pragma once
-#include "paddle/framework/data_type.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/scope.h"
#include "paddle/framework/selected_rows.h"
+#include "paddle/framework/var_type.h"
#include "paddle/operators/detail/simple_block_queue.h"
#include "paddle/operators/detail/send_recv.grpc.pb.h"
@@ -44,7 +44,7 @@ namespace paddle {
namespace operators {
namespace detail {
-typedef std::pair TensorWithName;
+typedef std::pair MessageWithName;
class SendRecvServerImpl final : public SendRecvService::Service {
public:
@@ -60,13 +60,13 @@ class SendRecvServerImpl final : public SendRecvService::Service {
void Done();
void SetScope(framework::Scope *scope) { scope_ = scope; };
- const TensorWithName Get() { return this->var_recv_queue_.Pop(); }
+ const MessageWithName Get() { return this->var_recv_queue_.Pop(); }
- void Push(const TensorWithName &msg) { this->var_recv_queue_.Push(msg); }
+ void Push(const MessageWithName &msg) { this->var_recv_queue_.Push(msg); }
private:
// received variable from RPC, operators fetch variable from this queue.
- SimpleBlockQueue var_recv_queue_;
+ SimpleBlockQueue var_recv_queue_;
framework::Scope *scope_;
// condition of the sub program
std::mutex mutex_;
@@ -89,6 +89,53 @@ class RPCClient {
std::unique_ptr stub_;
};
+inline void SerializeToMessage(const std::string &name,
+ const framework::Variable *var,
+ const platform::DeviceContext &ctx,
+ VariableMessage *msg) {
+ msg->set_varname(name);
+ std::ostringstream oss;
+ switch (framework::ToVarType(var->Type())) {
+ case framework::proto::VarDesc_VarType_LOD_TENSOR:
+ msg->set_type(sendrecv::VarType::LOD_TENSOR);
+ framework::SerializeToStream(oss, var->Get(), ctx);
+ break;
+ case framework::proto::VarDesc_VarType_SELECTED_ROWS:
+ msg->set_type(sendrecv::VarType::SELECTED_ROWS);
+ framework::SerializeToStream(oss, var->Get(),
+ ctx);
+ break;
+ default: {
+ PADDLE_THROW("Serialize does not support type: %s",
+ typeid(var->Type()).name());
+ break;
+ }
+ }
+ msg->set_serialized(oss.str());
+}
+
+inline void DeserializeFromMessage(const VariableMessage &msg,
+ const platform::DeviceContext &ctx,
+ framework::Variable *var) {
+ using namespace paddle::framework::proto;
+ std::istringstream iss(msg.serialized());
+ switch (msg.type()) {
+ case sendrecv::VarType::LOD_TENSOR:
+ DeserializeFromStream(iss, var->GetMutable(), ctx);
+ break;
+ case sendrecv::VarType::SELECTED_ROWS: {
+ DeserializeFromStream(iss, var->GetMutable(),
+ ctx);
+ break;
+ }
+ default: {
+ PADDLE_THROW("Deserialize does not support type: %s",
+ typeid(var->Type()).name());
+ break;
+ }
+ }
+}
+
} // namespace detail
} // namespace operators
} // namespace paddle
diff --git a/paddle/operators/load_op.cc b/paddle/operators/load_op.cc
index 08b972a233aab8596a5ce7f74ea903df3b8ef0f2..7f551f101f3b3c097f664cc3e9240c2cee7f6830 100644
--- a/paddle/operators/load_op.cc
+++ b/paddle/operators/load_op.cc
@@ -38,10 +38,10 @@ class LoadOp : public framework::OperatorBase {
out_var_name);
auto *tensor = out_var->GetMutable();
- DeserializeFromStream(fin, tensor);
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
+ DeserializeFromStream(fin, tensor, dev_ctx);
if (platform::is_gpu_place(place)) {
// copy CPU to GPU
diff --git a/paddle/operators/pool_op.cc b/paddle/operators/pool_op.cc
index 50057eb6483e9c9e745bc07dee26a0bbbbb5a48c..d3cf5fa638c53dfdfacec153211f447a1e2fa3bf 100644
--- a/paddle/operators/pool_op.cc
+++ b/paddle/operators/pool_op.cc
@@ -58,6 +58,7 @@ void PoolOp::InferShape(framework::InferShapeContext *ctx) const {
OutputSizePool(in_x_dims[i + 2], ksize[i], paddings[i], strides[i]));
}
ctx->SetOutputDim("Out", framework::make_ddim(output_shape));
+ ctx->ShareLoD("X", "Out");
}
void PoolOpGrad::InferShape(framework::InferShapeContext *ctx) const {
diff --git a/paddle/operators/recv_op.cc b/paddle/operators/recv_op.cc
index 322f8571cfd4341f064e8f9df512a8d74b91ed9d..82fceb3da7d396bcfc1d95baccc4ee36b87f4d39 100644
--- a/paddle/operators/recv_op.cc
+++ b/paddle/operators/recv_op.cc
@@ -60,7 +60,7 @@ class RecvOp : public framework::OperatorBase {
}
void Stop() override {
- detail::TensorWithName term_msg;
+ detail::MessageWithName term_msg;
term_msg.first = LISTEN_TERMINATE_MESSAGE;
rpc_service_->Push(term_msg);
rpc_server_->Shutdown();
@@ -94,7 +94,7 @@ class RecvOp : public framework::OperatorBase {
// the gradient arrives, just add suffix 0~n then average the gradient.
for (size_t i = 0; i < param_count * trainer_count; ++i) {
// blocking get one var from client.
- const detail::TensorWithName &v = rpc_service_->Get();
+ const detail::MessageWithName &v = rpc_service_->Get();
auto grad_var_name = v.first;
if (grad_var_name == LISTEN_TERMINATE_MESSAGE) {
exit_flag = true;
@@ -121,11 +121,10 @@ class RecvOp : public framework::OperatorBase {
}
auto *var = recv_scope.Var(grad_var_name);
- auto *tensor = var->GetMutable();
- // FIXME(typhoonzero): do not copy
- platform::DeviceContextPool &pool = platform::DeviceContextPool::Get();
- auto &dev_ctx = *pool.Borrow(dev_place);
- framework::CopyFrom(v.second, dev_place, dev_ctx, tensor);
+ platform::DeviceContextPool &pool =
+ platform::DeviceContextPool::Instance();
+ auto &dev_ctx = *pool.Get(dev_place);
+ detail::DeserializeFromMessage(v.second, dev_ctx, var);
}
if (exit_flag) {
break;
diff --git a/paddle/operators/send_recv_op_test.cc b/paddle/operators/send_recv_op_test.cc
index 108e2dec6b3eecadd431fd25f9a31ec17a874b6b..fa94424bf9e8e719ec0822268685b0806a109d21 100644
--- a/paddle/operators/send_recv_op_test.cc
+++ b/paddle/operators/send_recv_op_test.cc
@@ -20,22 +20,27 @@ limitations under the License. */
#include "paddle/framework/op_registry.h"
#include "paddle/framework/operator.h"
#include "paddle/framework/program_desc.h"
+#include "paddle/operators/math/math_function.h"
+#include "paddle/operators/math/selected_rows_functor.h"
#include "paddle/string/printf.h"
USE_NO_KERNEL_OP(send);
USE_NO_KERNEL_OP(recv);
USE_OP(sum);
+namespace f = paddle::framework;
+namespace p = paddle::platform;
+namespace m = paddle::operators::math;
+
// global for simplicity.
-std::unique_ptr recv_op;
+std::unique_ptr recv_op;
-void InitTensorsInScope(paddle::framework::Scope &scope,
- paddle::platform::CPUPlace &place) {
- paddle::platform::CPUDeviceContext ctx(place);
+void InitTensorsInScope(f::Scope &scope, p::CPUPlace &place) {
+ p::CPUDeviceContext ctx(place);
for (int i = 0; i < 2; ++i) {
auto var_name = paddle::string::Sprintf("x%d", i);
auto var = scope.Var(var_name);
- auto tensor = var->GetMutable();
+ auto tensor = var->GetMutable();
tensor->Resize({10, 10});
float *expect = tensor->mutable_data(place);
for (int64_t i = 0; i < tensor->numel(); ++i) {
@@ -44,21 +49,53 @@ void InitTensorsInScope(paddle::framework::Scope &scope,
}
auto out_var = scope.Var("Out");
- auto out_tensor = out_var->GetMutable();
+ auto out_tensor = out_var->GetMutable();
out_tensor->Resize({10, 10});
out_tensor->mutable_data(place); // allocate
}
-void AddOp(const std::string &type,
- const paddle::framework::VariableNameMap &inputs,
- const paddle::framework::VariableNameMap &outputs,
- paddle::framework::AttributeMap attrs,
- paddle::framework::BlockDesc *block) {
+void InitSelectedRowsInScope(f::Scope &scope, p::CPUPlace &place) {
+ p::CPUDeviceContext ctx(place);
+ int64_t height = 10;
+ int64_t row_numel = 10;
+ m::SetConstant set_one;
+ // init x0
+ std::vector rows0{0, 4, 7};
+ auto x0_var = scope.Var("x0");
+ auto x0 = x0_var->GetMutable();
+ x0->set_rows(rows0);
+ x0->set_height(height);
+ auto x0_value = x0->mutable_value();
+ x0_value->mutable_data(
+ f::make_ddim({static_cast(rows0.size()), row_numel}), place);
+ set_one(ctx, x0_value, 1.0);
+
+ // init x1
+ std::vector rows1{2, 9};
+ auto x1_var = scope.Var("x1");
+ auto x1 = x1_var->GetMutable();
+ x1->set_rows(rows1);
+ x1->set_height(height);
+ auto x1_value = x1->mutable_value();
+ x1_value->mutable_data(
+ f::make_ddim({static_cast(rows1.size()), row_numel}), place);
+ set_one(ctx, x1_value, 1.0);
+
+ auto out_var = scope.Var("Out");
+ auto out = out_var->GetMutable();
+ auto out_value = out->mutable_value();
+ out->set_height(height);
+ out_value->mutable_data(f::make_ddim({5, 10}), place);
+}
+
+void AddOp(const std::string &type, const f::VariableNameMap &inputs,
+ const f::VariableNameMap &outputs, f::AttributeMap attrs,
+ f::BlockDesc *block) {
// insert output
for (auto kv : outputs) {
for (auto v : kv.second) {
auto var = block->Var(v);
- var->SetDataType(paddle::framework::proto::DataType::FP32);
+ var->SetDataType(f::proto::DataType::FP32);
}
}
@@ -74,58 +111,99 @@ void AddOp(const std::string &type,
op->SetAttrMap(attrs);
}
-void StartServerNet() {
- paddle::framework::Scope scope;
- paddle::platform::CPUPlace place;
- InitTensorsInScope(scope, place);
+void StartServerNet(bool is_sparse) {
+ f::Scope scope;
+ p::CPUPlace place;
+ if (is_sparse) {
+ InitSelectedRowsInScope(scope, place);
+ } else {
+ InitTensorsInScope(scope, place);
+ }
// sub program run in recv_op, for simple test we use sum
- paddle::framework::ProgramDesc program;
- paddle::framework::BlockDesc *block = program.MutableBlock(0);
+ f::ProgramDesc program;
+ f::BlockDesc *block = program.MutableBlock(0);
// X for server side tensors, RX for received tensers, must be of same shape.
- AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"x0"}}}, {}, block);
+ AddOp("sum", {{"X", {"x0", "x1"}}}, {{"Out", {"Out"}}}, {}, block);
- paddle::framework::AttributeMap attrs;
+ f::AttributeMap attrs;
attrs.insert({"endpoint", std::string("127.0.0.1:6174")});
- attrs.insert({"ParamList", std::vector({"x0"})});
+ attrs.insert({"ParamList", std::vector({"Out"})});
attrs.insert({"GradList", std::vector({"x1"})});
std::string program_proto;
PADDLE_ENFORCE(program.Proto()->SerializeToString(&program_proto));
attrs.insert({"OptimizeProgram", program_proto});
- recv_op = paddle::framework::OpRegistry::CreateOp("recv", {{"RX", {"x1"}}},
- {}, attrs);
+ recv_op = f::OpRegistry::CreateOp("recv", {{"RX", {"x1"}}}, {}, attrs);
recv_op->Run(scope, place);
}
-TEST(SendRecvOp, CPU) {
- std::thread server_thread(StartServerNet);
- sleep(5); // wait server to start
+TEST(SendRecvOp, CPUDense) {
+ std::thread server_thread(StartServerNet, false);
+ sleep(3); // wait server to start
// local net
- paddle::framework::Scope scope;
- paddle::platform::CPUPlace place;
+ f::Scope scope;
+ p::CPUPlace place;
InitTensorsInScope(scope, place);
- paddle::framework::AttributeMap attrs;
+ f::AttributeMap attrs;
attrs.insert({"endpoints", std::vector({"127.0.0.1:6174"})});
attrs.insert({"epmap", std::vector({"127.0.0.1:6174"})});
- auto send_op = paddle::framework::OpRegistry::CreateOp(
- "send", {{"X", {"x1"}}}, {{"Out", {"x0"}}}, attrs);
+ auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}},
+ {{"Out", {"Out"}}}, attrs);
send_op->Run(scope, place);
auto in_var = scope.Var("x1");
- auto tensor = in_var->GetMutable();
+ auto tensor = in_var->GetMutable();
float *expected = tensor->data();
- auto out_var = scope.Var("x0");
- auto target = out_var->GetMutable();
+ auto out_var = scope.Var("Out");
+ auto target = out_var->GetMutable();
// x1 * 2 == x0
EXPECT_NE(target->memory_size(), size_t(0));
float *actual = target->data();
for (int64_t i = 0; i < target->numel(); ++i) {
EXPECT_EQ(expected[i] * 2, actual[i]);
}
+ recv_op->Stop();
+ server_thread.join();
+ recv_op.reset(nullptr);
+}
+TEST(SendRecvOp, CPUSparse) {
+ std::thread server_thread(StartServerNet, true);
+ sleep(3); // wait server to start
+ // local net
+ f::Scope scope;
+ p::CPUPlace place;
+ p::CPUDeviceContext ctx(place);
+ InitSelectedRowsInScope(scope, place);
+ f::AttributeMap attrs;
+ attrs.insert({"endpoints", std::vector({"127.0.0.1:6174"})});
+ attrs.insert({"epmap", std::vector({"127.0.0.1:6174"})});
+ auto send_op = f::OpRegistry::CreateOp("send", {{"X", {"x1"}}},
+ {{"Out", {"Out"}}}, attrs);
+ send_op->Run(scope, place);
+
+ auto x0 = scope.Var("x0")->GetMutable();
+ auto x1 = scope.Var("x1")->GetMutable();
+ auto out = scope.Var("Out")->GetMutable();
+ auto actual = out->mutable_value();
+
+ std::unique_ptr expect{new f::SelectedRows()};
+ auto expect_value = expect->mutable_value();
+ expect_value->mutable_data(f::make_ddim({5, 10}), place);
+
+ m::SelectedRowsAdd add_functor;
+ add_functor(ctx, *x0, *x1, expect.get());
+
+ EXPECT_EQ(actual->numel(), expect_value->numel());
+ EXPECT_EQ(out->rows().size(), x0->rows().size() + x1->rows().size());
+
+ for (int64_t i = 0; i < expect_value->numel(); ++i) {
+ EXPECT_EQ(expect_value->mutable_data(place)[i],
+ actual->mutable_data(place)[i]);
+ }
recv_op->Stop();
server_thread.join();
- // recv_op.reset();
+ recv_op.reset();
}
diff --git a/paddle/operators/while_op.cc b/paddle/operators/while_op.cc
index 728ef6079465d57f54dab383aac5e2bb750fe113..65d827e0e0c5cfc3897c1fd0b971b766201cc1e2 100644
--- a/paddle/operators/while_op.cc
+++ b/paddle/operators/while_op.cc
@@ -25,12 +25,12 @@ namespace operators {
using StepScopeVar = std::vector;
using LoDTensor = framework::LoDTensor;
-constexpr char kStepBlock[] = "sub_block";
-constexpr char kCondition[] = "Condition";
-constexpr char kStepScopes[] = "StepScopes";
-constexpr char kParameters[] = "X";
-constexpr char kParamGrads[] = "X@GRAD";
-constexpr char kOutputs[] = "Out";
+static constexpr char kStepBlock[] = "sub_block";
+static constexpr char kCondition[] = "Condition";
+static constexpr char kStepScopes[] = "StepScopes";
+static constexpr char kX[] = "X";
+static constexpr char kXGRAD[] = "X@GRAD";
+static constexpr char kOutputs[] = "Out";
class WhileOp : public framework::OperatorBase {
public:
@@ -67,7 +67,7 @@ class WhileOpMaker : public framework::OpProtoAndCheckerMaker {
public:
WhileOpMaker(OpProto *proto, OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
- AddInput(kParameters,
+ AddInput(kX,
"A set of variables, which are required by operators inside the "
"block of While Op.")
.AsDuplicable();
@@ -158,8 +158,8 @@ class WhileGradOp : public framework::OperatorBase {
executor.Run(*program, *cur_scope_iter, block->ID(), false);
- auto &pg_names = Outputs(kParamGrads);
- auto &p_names = Inputs(kParameters);
+ auto &pg_names = Outputs(kXGRAD);
+ auto &p_names = Inputs(kX);
PADDLE_ENFORCE_EQ(pg_names.size(), p_names.size());
for (size_t param_id = 0; param_id < pg_names.size(); ++param_id) {
if (pg_names[param_id] == framework::kEmptyVarName) {
@@ -213,11 +213,11 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
std::unique_ptr Apply() const override {
auto *grad = new framework::OpDesc();
grad->SetType("while_grad");
- grad->SetInput(kParameters, Input(kParameters));
+ grad->SetInput(kX, Input(kX));
// Not all of IGs will be generated by inner gradient operators of while op.
// Ignore IGs that is not generated by the inside block.
- auto igs = InputGrad(kParameters, /*do not drop empty gradient*/ false);
+ auto igs = InputGrad(kX, /*do not drop empty gradient*/ false);
std::unordered_set all_outs;
for (size_t i = 0; i < grad_block_[0]->OpSize(); ++i) {
for (auto &oname : grad_block_[0]->Op(i)->OutputArgumentNames()) {
@@ -231,7 +231,7 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
}
}
- grad->SetOutput(framework::GradVarName(kParameters), igs);
+ grad->SetOutput(framework::GradVarName(kX), igs);
grad->SetInput(kOutputs, Output(kOutputs));
@@ -240,7 +240,7 @@ class WhileGradOpDescMaker : public framework::SingleGradOpDescMaker {
std::unordered_set block_ins;
auto *fwd_block = this->grad_block_[0]->ParentBlock();
{
- for (auto &p : Input(kParameters)) {
+ for (auto &p : Input(kX)) {
block_ins.insert(p);
}
for (auto &o : Output(kOutputs)) {
@@ -288,8 +288,8 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(const framework::OpDesc &op_desc,
framework::BlockDesc *block) const override {
- auto p_names = op_desc.Input(kParameters);
- auto pg_names = op_desc.Output(framework::GradVarName(kParameters));
+ auto p_names = op_desc.Input(kX);
+ auto pg_names = op_desc.Output(framework::GradVarName(kX));
for (size_t i = 0; i < p_names.size(); ++i) {
auto &p_var = detail::Ref(block->FindVarRecursive(p_names[i]));
@@ -307,21 +307,21 @@ class WhileGradOpVarTypeInference : public framework::VarTypeInference {
class WhileGradOpShapeInference : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *ctx) const override {
- ctx->HasInputs(kParameters);
- ctx->HasOutputs(framework::GradVarName(kParameters));
+ ctx->HasInputs(kX);
+ ctx->HasOutputs(framework::GradVarName(kX));
ctx->HasInputs(kOutputs);
ctx->HasInputs(framework::GradVarName(kOutputs));
- auto p_names = ctx->Inputs(kParameters);
- auto pg_names = ctx->Outputs(kParamGrads);
- auto var_types = ctx->GetInputsVarType(kParameters);
+ auto p_names = ctx->Inputs(kX);
+ auto pg_names = ctx->Outputs(kXGRAD);
+ auto var_types = ctx->GetInputsVarType(kX);
std::vector names_to_set;
std::vector dims_to_set;
for (size_t i = 0; i < p_names.size(); ++i) {
if (pg_names[i] == framework::kEmptyVarName) {
continue;
}
- auto dims = ctx->GetInputsElementDim(kParameters, i);
+ auto dims = ctx->GetInputsElementDim(kX, i);
if (var_types[i] == framework::proto::VarDesc::LOD_TENSOR) {
names_to_set.push_back(pg_names[i]);
dims_to_set.push_back(dims);
diff --git a/paddle/platform/device_context.cc b/paddle/platform/device_context.cc
index ea07f2e002cb76d09a11f7a5305c2d45b780e7bd..4bf643e048dcf97f7888dcc78eb1b4fa4feee046 100644
--- a/paddle/platform/device_context.cc
+++ b/paddle/platform/device_context.cc
@@ -127,15 +127,21 @@ CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
PADDLE_ENFORCE(dynload::cublasCreate(&cublas_handle_));
PADDLE_ENFORCE(dynload::cublasSetStream(cublas_handle_, stream_));
- PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
- PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_));
+ if (dynload::HasCUDNN()) {
+ PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
+ PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream_));
+ } else {
+ cudnn_handle_ = nullptr;
+ }
}
CUDADeviceContext::~CUDADeviceContext() {
SetDeviceId(place_.device);
Wait();
PADDLE_ENFORCE(dynload::cublasDestroy(cublas_handle_));
- PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
+ if (cudnn_handle_ != nullptr) {
+ PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
+ }
eigen_stream_.reset();
eigen_device_.reset();
PADDLE_ENFORCE(cudaStreamDestroy(stream_));
@@ -160,20 +166,6 @@ cudnnHandle_t CUDADeviceContext::cudnn_handle() const { return cudnn_handle_; }
cudaStream_t CUDADeviceContext::stream() const { return stream_; }
-CUDNNDeviceContext::CUDNNDeviceContext(CUDAPlace place)
- : CUDADeviceContext(place) {
- PADDLE_ENFORCE(dynload::cudnnCreate(&cudnn_handle_));
- PADDLE_ENFORCE(dynload::cudnnSetStream(cudnn_handle_, stream()));
-}
-
-CUDNNDeviceContext::~CUDNNDeviceContext() {
- SetDeviceId(boost::get(GetPlace()).device);
- Wait();
- PADDLE_ENFORCE(dynload::cudnnDestroy(cudnn_handle_));
-}
-
-cudnnHandle_t CUDNNDeviceContext::cudnn_handle() const { return cudnn_handle_; }
-
#endif
} // namespace platform
diff --git a/paddle/platform/device_context.h b/paddle/platform/device_context.h
index 2b366e6383d23e2d31a194edd04412892a8311eb..609ea4bd3ad50e2eefa908539339903ed1f0a807 100644
--- a/paddle/platform/device_context.h
+++ b/paddle/platform/device_context.h
@@ -103,18 +103,6 @@ struct DefaultDeviceContextType {
using TYPE = CUDADeviceContext;
};
-class CUDNNDeviceContext : public CUDADeviceContext {
- public:
- explicit CUDNNDeviceContext(CUDAPlace place);
- virtual ~CUDNNDeviceContext();
-
- /*! \brief Return cudnn handle in the device context. */
- cudnnHandle_t cudnn_handle() const;
-
- private:
- cudnnHandle_t cudnn_handle_;
-};
-
#endif
/*! \brief device context pool singleton */
@@ -151,7 +139,7 @@ class DeviceContextPool {
struct Hash {
std::hash hash_;
size_t operator()(const platform::Place& place) const {
- int pre_hash = place.which() + (1 << LEFT_SHIFT);
+ int pre_hash = place.which() << LEFT_SHIFT;
if (platform::is_gpu_place(place)) {
pre_hash += boost::get(place).GetDeviceId();
}
diff --git a/paddle/platform/device_context_test.cu b/paddle/platform/device_context_test.cu
index ca10cf34639376798bf5ba05970c9c734e5a1ef8..767fe9b24a5d51630397a864c98928de52d21f31 100644
--- a/paddle/platform/device_context_test.cu
+++ b/paddle/platform/device_context_test.cu
@@ -49,21 +49,6 @@ TEST(Device, CUDADeviceContext) {
}
}
-TEST(Device, CUDNNDeviceContext) {
- using paddle::platform::CUDNNDeviceContext;
- using paddle::platform::CUDAPlace;
- if (paddle::platform::dynload::HasCUDNN()) {
- int count = paddle::platform::GetCUDADeviceCount();
- for (int i = 0; i < count; ++i) {
- CUDNNDeviceContext* device_context = new CUDNNDeviceContext(CUDAPlace(i));
- cudnnHandle_t cudnn_handle = device_context->cudnn_handle();
- ASSERT_NE(nullptr, cudnn_handle);
- ASSERT_NE(nullptr, device_context->stream());
- delete device_context;
- }
- }
-}
-
TEST(Device, DeviceContextPool) {
using paddle::platform::DeviceContextPool;
using paddle::platform::CUDADeviceContext;
diff --git a/paddle/pybind/protobuf.cc b/paddle/pybind/protobuf.cc
index 07292d47e9c165c67fe4a30ee7d851c350beb2e0..564a3700011c1b0c294c27af4b86ab967a0f0e1e 100644
--- a/paddle/pybind/protobuf.cc
+++ b/paddle/pybind/protobuf.cc
@@ -216,7 +216,7 @@ void BindVarDsec(py::module &m) {
.def("set_dtype", &VarDesc::SetDataType)
.def("shape", &VarDesc::Shape, py::return_value_policy::reference)
.def("dtype", &VarDesc::GetDataType, py::return_value_policy::reference)
- .def("lod_level", &VarDesc::GetLodLevel)
+ .def("lod_level", &VarDesc::GetLoDLevel)
.def("set_lod_level", &VarDesc::SetLoDLevel)
.def("type", &VarDesc::GetType)
.def("set_type", &VarDesc::SetType)
diff --git a/paddle/pybind/pybind.cc b/paddle/pybind/pybind.cc
index 04485ce7c1ab87f8655b0e6cbaecc36b3382f647..364db62cba6acd7ac380b5017d09f22eefa24813 100644
--- a/paddle/pybind/pybind.cc
+++ b/paddle/pybind/pybind.cc
@@ -427,6 +427,7 @@ All parameter, weight, gradient are variables in Paddle.
m.def("unique_integer", UniqueIntegerGenerator);
m.def("init_gflags", framework::InitGflags);
+ m.def("init_glog", framework::InitGLOG);
m.def("init_devices", &framework::InitDevices);
m.def("is_compile_gpu", IsCompileGPU);
diff --git a/paddle/trainer/TrainerConfigHelper.cpp b/paddle/trainer/TrainerConfigHelper.cpp
index a0a365aa0bb0ac26939a02c1cd626d0c17c6a9fe..2b68d89e48a3efd5de205ce33643b7e6320a4303 100644
--- a/paddle/trainer/TrainerConfigHelper.cpp
+++ b/paddle/trainer/TrainerConfigHelper.cpp
@@ -29,6 +29,7 @@ DECLARE_bool(with_gpu);
DECLARE_bool(parallel_nn);
DECLARE_string(config_args);
DECLARE_bool(use_mkldnn);
+DECLARE_bool(use_mkl_packed);
const char *kConfigParserModuleName = "paddle.trainer.config_parser";
const char *kConfigParserFuncName = "parse_config_and_serialize";
@@ -46,6 +47,7 @@ TrainerConfigHelper::TrainerConfigHelper(const std::string &configFilePath)
<< ",with_cost=" << FLAGS_with_cost << ",use_gpu=" << FLAGS_use_gpu
<< ",parallel_nn=" << FLAGS_parallel_nn
<< ",use_mkldnn=" << FLAGS_use_mkldnn
+ << ",use_mkl_packed=" << FLAGS_use_mkl_packed
<< ",cudnn_version=" << hl_get_cudnn_lib_version();
if (!FLAGS_config_args.empty()) {
configArgs << "," << FLAGS_config_args;
diff --git a/paddle/utils/Flags.cpp b/paddle/utils/Flags.cpp
index 9a7dc0e35622383a190f8b3a80736e6b42c9c959..ea47cf23eb6e56082eeb92f3c6dff8d03be0d679 100644
--- a/paddle/utils/Flags.cpp
+++ b/paddle/utils/Flags.cpp
@@ -27,6 +27,13 @@ DEFINE_bool(use_mkldnn, false, "Default still keep use CPU training");
DEFINE_bool(use_mkldnn, false, "Only support CPU training");
#endif
+#ifdef PADDLE_WITH_MKLML
+// TODO(TJ): change to true when fully confirmed
+DEFINE_bool(use_mkl_packed, false, "Whether to use MKL Packed Optimization");
+#else
+DEFINE_bool(use_mkl_packed, false, "Not to use MKL Packed Optimization");
+#endif
+
DEFINE_bool(parallel_nn,
false,
"Whether to use multi-threads to calculate one neural network."
diff --git a/paddle/utils/Flags.h b/paddle/utils/Flags.h
index 1832bb515ec85df3d7733e01b063a01ad6a3b282..b64295bca09a199f24605a158d1d9db7e7d91660 100644
--- a/paddle/utils/Flags.h
+++ b/paddle/utils/Flags.h
@@ -41,3 +41,4 @@ DECLARE_string(predict_file);
DECLARE_bool(prev_batch_state);
DECLARE_string(init_model_path);
DECLARE_bool(use_mkldnn);
+DECLARE_bool(use_mkl_packed);
diff --git a/python/paddle/trainer/config_parser.py b/python/paddle/trainer/config_parser.py
index 239fe4204b20a37a0869ba1e0e99adf4293dac7e..4fdf4090212e31adcccf6b119c937e70d5cbf995 100644
--- a/python/paddle/trainer/config_parser.py
+++ b/python/paddle/trainer/config_parser.py
@@ -3622,8 +3622,13 @@ class ConcatenateLayer2(LayerBase):
@config_layer('recurrent')
class RecurrentLayer(LayerBase):
+ layer_type = 'recurrent'
+
def __init__(self, name, inputs, reversed=False, bias=True, **xargs):
- super(RecurrentLayer, self).__init__(name, 'recurrent', 0, inputs,
+ use_mkl_packed = bool(
+ int(g_command_config_args.get("use_mkl_packed", 0)))
+ self.layer_type = 'mkl_packed_recurrent' if use_mkl_packed else 'recurrent'
+ super(RecurrentLayer, self).__init__(name, self.layer_type, 0, inputs,
**xargs)
config_assert(len(self.inputs) == 1, 'RecurrentLayer must have 1 input')
input_layer = self.get_input_layer(0)
diff --git a/python/paddle/v2/__init__.py b/python/paddle/v2/__init__.py
index 70f61e84997efdbe3d6f268d249be8bac15b9ecd..0de417df2cb942ce46ff8ac3acc61ae4999ed634 100644
--- a/python/paddle/v2/__init__.py
+++ b/python/paddle/v2/__init__.py
@@ -135,6 +135,8 @@ def init(**kwargs):
cp.g_command_config_args['use_gpu'] = kwargs['use_gpu']
if 'use_mkldnn' in kwargs:
cp.g_command_config_args['use_mkldnn'] = kwargs['use_mkldnn']
+ if 'use_mkl_packed' in kwargs:
+ cp.g_command_config_args['use_mkl_packed'] = kwargs['use_mkl_packed']
assert 'parallel_nn' not in kwargs, ("currently 'parallel_nn' is not "
"supported in v2 APIs.")
diff --git a/python/paddle/v2/fluid/__init__.py b/python/paddle/v2/fluid/__init__.py
index 225b41c5043b5792abb90bbad53cbbfce9a3156e..5e01b8719806f4bb0c0d985373a5f4b076e05bd5 100644
--- a/python/paddle/v2/fluid/__init__.py
+++ b/python/paddle/v2/fluid/__init__.py
@@ -1,3 +1,4 @@
+from __future__ import print_function
# import all class inside framework into fluid module
import framework
from framework import *
@@ -27,7 +28,7 @@ __all__ = framework.__all__ + executor.__all__ + [
]
-def __read_gflags_from_env__():
+def __bootstrap__():
"""
Enable reading gflags from environment variables.
@@ -36,11 +37,30 @@ def __read_gflags_from_env__():
"""
import sys
import core
+ import os
+
+ try:
+ num_threads = int(os.getenv('OMP_NUM_THREADS', '1'))
+ except ValueError:
+ num_threads = 1
+
+ if num_threads > 1:
+ print(
+ 'WARNING: OMP_NUM_THREADS set to {0}, not 1. The computation '
+ 'speed will not be optimized if you use data parallel. It will '
+ 'fail if this PaddlePaddle binary is compiled with OpenBlas since'
+ ' OpenBlas does not support multi-threads.'.format(num_threads),
+ file=sys.stderr)
+ print('PLEASE USE OMP_NUM_THREADS WISELY.', file=sys.stderr)
+
+ os.environ['OMP_NUM_THREADS'] = str(num_threads)
+
read_env_flags = ['use_pinned_memory', 'check_nan_inf']
if core.is_compile_gpu():
read_env_flags.append('fraction_of_gpu_memory_to_use')
core.init_gflags([sys.argv[0]] +
["--tryfromenv=" + ",".join(read_env_flags)])
+ core.init_glog(sys.argv[0])
if core.is_compile_gpu():
core.init_devices(["CPU", "GPU:0"])
@@ -48,4 +68,4 @@ def __read_gflags_from_env__():
core.init_devices(["CPU"])
-__read_gflags_from_env__()
+__bootstrap__()
diff --git a/python/paddle/v2/fluid/executor.py b/python/paddle/v2/fluid/executor.py
index 1d6c594b41a2c295e3818fb119362d1daba1de33..1b2075dcd5ece5706e62431b360d4dc86ea57a89 100644
--- a/python/paddle/v2/fluid/executor.py
+++ b/python/paddle/v2/fluid/executor.py
@@ -65,13 +65,6 @@ class Executor(object):
p.set_place(each)
act_places.append(p)
- # TODO(dzhwinter) : consider that our fluid tests all written in
- # CUDAPlace(gpu_id), this will be changed in the future
- if core.is_compile_gpu():
- core.init_devices(["CPU", "GPU:0"])
- else:
- core.init_devices(["CPU"])
-
# TODO(dzhwinter) : only use the first place
self.executor = core.Executor(act_places[0])
self.places = places
diff --git a/python/paddle/v2/fluid/io.py b/python/paddle/v2/fluid/io.py
index c47ce82aba7fa5ac42ac26cd25fa3ebc93e96cb2..926327b70c70d250766c2640d808bb3e3516d37b 100644
--- a/python/paddle/v2/fluid/io.py
+++ b/python/paddle/v2/fluid/io.py
@@ -36,7 +36,7 @@ def save_vars(executor, dirname, main_program=None, vars=None, predicate=None):
:param executor: executor that save variable
:param dirname: directory path
:param main_program: program. If vars is None, then filter all variables in this
- program which fit `predicate`. Default g_program.
+ program which fit `predicate`. Default default_main_program.
:param predicate: The Predicate describes a callable that returns a variable
as a bool. If it returns true, the variables will be saved.
:param vars: variables need to be saved. If specify vars, program & predicate
diff --git a/python/paddle/v2/fluid/layers/nn.py b/python/paddle/v2/fluid/layers/nn.py
index 55d8bf8a8a60a832000f7119a8bc039127ab1f3a..6883630ac6a28176258272996ed7d0e73652a40b 100644
--- a/python/paddle/v2/fluid/layers/nn.py
+++ b/python/paddle/v2/fluid/layers/nn.py
@@ -151,7 +151,7 @@ def embedding(input, size, is_sparse=False, param_attr=None, dtype='float32'):
Args:
input(Variable): Input to the function
- size(tuple|list|None): Shape of the look up table parameter
+ size(tuple|list|None): Shape of the look up table parameter
is_sparse(bool): Boolean flag that specifying whether the input is sparse
param_attr(ParamAttr): Parameters for this layer
dtype(np.dtype|core.DataType|str): The type of data : float32, float_16, int etc
@@ -236,21 +236,47 @@ def gru_unit(input,
activation='tanh',
gate_activation='sigmoid'):
"""
- GRUUnit Operator implements partial calculations of the GRU unit as following:
+ GRU unit layer. The equation of a gru step is:
- $$
- update \ gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
- reset \ gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r) \\
- output \ candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
- output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
- $$
+ .. math::
+ u_t & = actGate(xu_{t} + W_u h_{t-1} + b_u)
+
+ r_t & = actGate(xr_{t} + W_r h_{t-1} + b_r)
+
+ ch_t & = actNode(xc_t + W_c dot(r_t, h_{t-1}) + b_c)
- which is same as one time step of GRU Operator.
+ h_t & = dot((1-u_t), ch_{t-1}) + dot(u_t, h_t)
- @note To implement the complete GRU unit, fully-connected operator must be
- used before to feed xu, xr and xc as the Input of GRUUnit operator.
+ The inputs of gru unit includes :math:`z_t`, :math:`h_{t-1}`. In terms
+ of the equation above, the :math:`z_t` is split into 3 parts -
+ :math:`xu_t`, :math:`xr_t` and :math:`xc_t`. This means that in order to
+ implement a full GRU unit operator for an input, a fully
+ connected layer has to be applied, such that :math:`z_t = W_{fc}x_t`.
+
+ This layer has three outputs :math:`h_t`, :math:`dot(r_t, h_{t - 1})`
+ and concatenation of :math:`u_t`, :math:`r_t` and :math:`ch_t`.
+
+ Args:
+ input (Variable): The fc transformed input value of current step.
+ hidden (Variable): The hidden value of lstm unit from previous step.
+ size (integer): The input dimension value.
+ weight (ParamAttr): The weight parameters for gru unit. Default: None
+ bias (ParamAttr): The bias parameters for gru unit. Default: None
+ activation (string): The activation type for cell (actNode). Default: 'tanh'
+ gate_activation (string): The activation type for gates (actGate). Default: 'sigmoid'
+
+ Returns:
+ tuple: The hidden value, reset-hidden value and gate values.
+
+ Examples:
+
+ .. code-block:: python
+
+ # assuming we have x_t_data and prev_hidden of size=10
+ x_t = fluid.layers.fc(input=x_t_data, size=30)
+ hidden_val, r_h_val, gate_val = fluid.layers.gru_unit(input=x_t,
+ hidden = prev_hidden)
- TODO(ChunweiYan) add more document here
"""
activation_dict = dict(
identity=0,
@@ -366,9 +392,9 @@ def cross_entropy(input, label, **kwargs):
1) One-hot cross-entropy:
`soft_label = False`, `Label[i, 0]` indicates the class index for sample i:
-
+
.. math::
-
+
Y[i] = -\log(X[i, Label[i]])
2) Soft-label cross-entropy:
@@ -386,15 +412,15 @@ def cross_entropy(input, label, **kwargs):
As a special case of 2), when each row of 'label' has only one
non-zero element which is equal to 1, soft-label cross-entropy degenerates
to a one-hot cross-entropy with one-hot label representation.
-
+
Args:
- input (Variable|list): a 2-D tensor with shape [N x D], where N is the
- batch size and D is the number of classes. This input is a probability
+ input (Variable|list): a 2-D tensor with shape [N x D], where N is the
+ batch size and D is the number of classes. This input is a probability
computed by the previous operator, which is almost always the result
of a softmax operator.
- label (Variable|list): the ground truth which is a 2-D tensor. When
- `soft_label` is set to `False`, `label` is a tensor with shape
- [N x 1]. When `soft_label` is set to `True`, `label` is a
+ label (Variable|list): the ground truth which is a 2-D tensor. When
+ `soft_label` is set to `False`, `label` is a tensor with shape
+ [N x 1]. When `soft_label` is set to `True`, `label` is a
tensor with shape [N x D].
soft_label (bool, via `**kwargs`): a flag indicating whether to interpretate
the given labels as soft labels, default `False`.
@@ -403,7 +429,7 @@ def cross_entropy(input, label, **kwargs):
A 2-D tensor with shape [N x 1], the cross entropy loss.
Raises:
- `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \
+ `ValueError`: 1) the 1st dimension of `input` and `label` are not equal; 2) when \
`soft_label == True`, and the 2nd dimension of `input` and `label` are not \
equal; 3) when `soft_label == False`, and the 2nd dimension of `label` is not 1.
@@ -727,9 +753,9 @@ def conv2d(input,
def sequence_pool(input, pool_type, **kwargs):
"""
- This function add the operator for sequence pooling.
- It pools features of all time-steps of each instance, and is applied
- on top of the input using pool_type mentioned in the parameters.
+ This function add the operator for sequence pooling.
+ It pools features of all time-steps of each instance, and is applied
+ on top of the input using pool_type mentioned in the parameters.
It supports four pool_type:
@@ -758,7 +784,7 @@ def sequence_pool(input, pool_type, **kwargs):
Args:
input(variable): The input variable which is a LoDTensor.
- pool_type (string): The pooling type of sequence_pool.
+ pool_type (string): The pooling type of sequence_pool.
It supports average, sum, sqrt and max.
Returns:
@@ -768,7 +794,7 @@ def sequence_pool(input, pool_type, **kwargs):
.. code-block:: python
- x = fluid.layers.data(name='x', shape=[7, 1],
+ x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
avg_x = fluid.layers.sequence_pool(input=x, pool_type='average')
sum_x = fluid.layers.sequence_pool(input=x, pool_type='sum')
@@ -816,7 +842,7 @@ def sequence_first_step(input, **kwargs):
.. code-block:: python
- x = fluid.layers.data(name='x', shape=[7, 1],
+ x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_first_step = fluid.layers.sequence_first_step(input=x)
"""
@@ -849,7 +875,7 @@ def sequence_last_step(input, **kwargs):
.. code-block:: python
- x = fluid.layers.data(name='x', shape=[7, 1],
+ x = fluid.layers.data(name='x', shape=[7, 1],
dtype='float32', lod_level=1)
x_last_step = fluid.layers.sequence_last_step(input=x)
"""
@@ -1168,25 +1194,26 @@ def lstm_unit(x_t,
.. math::
- i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i)
+ i_t & = \sigma(W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i)
- f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + W_{c_f}c_{t-1} + b_f)
+ f_t & = \sigma(W_{x_f}x_{t} + W_{h_f}h_{t-1} + b_f)
- c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t+W_{h_c}h_{t-1} + b_c)
+ c_t & = f_tc_{t-1} + i_t tanh (W_{x_c}x_t + W_{h_c}h_{t-1} + b_c)
- o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + W_{c_o}c_t + b_o)
+ o_t & = \sigma(W_{x_o}x_{t} + W_{h_o}h_{t-1} + b_o)
h_t & = o_t tanh(c_t)
- The inputs of lstm unit includes :math:`x_t`, :math:`h_{t-1}` and
- :math:`c_{t-1}`. The implementation separates the linear transformation
- and non-linear transformation apart. Here, we take :math:`i_t` as an
- example. The linear transformation is applied by calling a `fc` layer and
- the equation is:
+ The inputs of lstm unit include :math:`x_t`, :math:`h_{t-1}` and
+ :math:`c_{t-1}`. The 2nd dimensions of :math:`h_{t-1}` and :math:`c_{t-1}`
+ should be same. The implementation separates the linear transformation and
+ non-linear transformation apart. Here, we take :math:`i_t` as an example.
+ The linear transformation is applied by calling a `fc` layer and the
+ equation is:
.. math::
- L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + W_{c_i}c_{t-1} + b_i
+ L_{i_t} = W_{x_i}x_{t} + W_{h_i}h_{t-1} + b_i
The non-linear transformation is applied by calling `lstm_unit_op` and the
equation is:
@@ -1198,9 +1225,12 @@ def lstm_unit(x_t,
This layer has two outputs including :math:`h_t` and :math:`o_t`.
Args:
- x_t (Variable): The input value of current step.
- hidden_t_prev (Variable): The hidden value of lstm unit.
- cell_t_prev (Variable): The cell value of lstm unit.
+ x_t (Variable): The input value of current step, a 2-D tensor with shape
+ M x N, M for batch size and N for input size.
+ hidden_t_prev (Variable): The hidden value of lstm unit, a 2-D tensor
+ with shape M x S, M for batch size and S for size of lstm unit.
+ cell_t_prev (Variable): The cell value of lstm unit, a 2-D tensor with
+ shape M x S, M for batch size and S for size of lstm unit.
forget_bias (float): The forget bias of lstm unit.
param_attr (ParamAttr): The attributes of parameter weights, used to set
initializer, name etc.
@@ -1213,14 +1243,15 @@ def lstm_unit(x_t,
Raises:
ValueError: The ranks of **x_t**, **hidden_t_prev** and **cell_t_prev**\
not be 2 or the 1st dimensions of **x_t**, **hidden_t_prev** \
- and **cell_t_prev** not be the same.
+ and **cell_t_prev** not be the same or the 2nd dimensions of \
+ **hidden_t_prev** and **cell_t_prev** not be the same.
Examples:
.. code-block:: python
x_t = fluid.layers.fc(input=x_t_data, size=10)
- prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=20)
+ prev_hidden = fluid.layers.fc(input=prev_hidden_data, size=30)
prev_cell = fluid.layers.fc(input=prev_cell_data, size=30)
hidden_value, cell_value = fluid.layers.lstm_unit(x_t=x_t,
hidden_t_prev=prev_hidden,
@@ -1239,7 +1270,11 @@ def lstm_unit(x_t,
if x_t.shape[0] != hidden_t_prev.shape[0] or x_t.shape[
0] != cell_t_prev.shape[0]:
- raise ValueError("The 1s dimension of x_t, hidden_t_prev and "
+ raise ValueError("The 1st dimensions of x_t, hidden_t_prev and "
+ "cell_t_prev must be the same.")
+
+ if hidden_t_prev.shape[1] != cell_t_prev.shape[1]:
+ raise ValueError("The 2nd dimensions of hidden_t_prev and "
"cell_t_prev must be the same.")
if bias_attr is None:
@@ -1268,17 +1303,17 @@ def lstm_unit(x_t,
def reduce_sum(input, dim=None, keep_dim=False):
"""
- Computes the sum of tensor elements over the given dimension.
+ Computes the sum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
- dim (int|None): The dimension along which the sum is performed. If
- :attr:`None`, sum all elements of :attr:`input` and return a
- Tensor variable with a single element, otherwise must be in the
- range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
+ dim (int|None): The dimension along which the sum is performed. If
+ :attr:`None`, sum all elements of :attr:`input` and return a
+ Tensor variable with a single element, otherwise must be in the
+ range :math:`[-rank(input), rank(input))`. If :math:`dim < 0`,
the dimension to reduce is :math:`rank + dim`.
- keep_dim (bool): Whether to reserve the reduced dimension in the
- output Tensor. The result tensor will have one fewer dimension
+ keep_dim (bool): Whether to reserve the reduced dimension in the
+ output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
@@ -1312,17 +1347,17 @@ def reduce_sum(input, dim=None, keep_dim=False):
def reduce_mean(input, dim=None, keep_dim=False):
"""
- Computes the mean of tensor elements over the given dimension.
+ Computes the mean of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
- dim (int|None): The dimension along which the mean is computed. If
- :attr:`None`, compute the mean over all elements of :attr:`input`
- and return a Tensor variable with a single element, otherwise
- must be in the range :math:`[-rank(input), rank(input))`. If
+ dim (int|None): The dimension along which the mean is computed. If
+ :attr:`None`, compute the mean over all elements of :attr:`input`
+ and return a Tensor variable with a single element, otherwise
+ must be in the range :math:`[-rank(input), rank(input))`. If
:math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
- keep_dim (bool): Whether to reserve the reduced dimension in the
- output Tensor. The result tensor will have one fewer dimension
+ keep_dim (bool): Whether to reserve the reduced dimension in the
+ output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
@@ -1356,22 +1391,22 @@ def reduce_mean(input, dim=None, keep_dim=False):
def reduce_max(input, dim=None, keep_dim=False):
"""
- Computes the maximum of tensor elements over the given dimension.
+ Computes the maximum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
- dim (int|None): The dimension along which the maximum is computed.
- If :attr:`None`, compute the maximum over all elements of
- :attr:`input` and return a Tensor variable with a single element,
- otherwise must be in the range :math:`[-rank(input), rank(input))`.
+ dim (int|None): The dimension along which the maximum is computed.
+ If :attr:`None`, compute the maximum over all elements of
+ :attr:`input` and return a Tensor variable with a single element,
+ otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
- keep_dim (bool): Whether to reserve the reduced dimension in the
- output Tensor. The result tensor will have one fewer dimension
+ keep_dim (bool): Whether to reserve the reduced dimension in the
+ output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Variable: The reduced Tensor variable.
-
+
Examples:
.. code-block:: python
@@ -1400,22 +1435,22 @@ def reduce_max(input, dim=None, keep_dim=False):
def reduce_min(input, dim=None, keep_dim=False):
"""
- Computes the minimum of tensor elements over the given dimension.
+ Computes the minimum of tensor elements over the given dimension.
Args:
input (Variable): The input variable which is a Tensor or LoDTensor.
- dim (int|None): The dimension along which the minimum is computed.
- If :attr:`None`, compute the minimum over all elements of
- :attr:`input` and return a Tensor variable with a single element,
- otherwise must be in the range :math:`[-rank(input), rank(input))`.
+ dim (int|None): The dimension along which the minimum is computed.
+ If :attr:`None`, compute the minimum over all elements of
+ :attr:`input` and return a Tensor variable with a single element,
+ otherwise must be in the range :math:`[-rank(input), rank(input))`.
If :math:`dim < 0`, the dimension to reduce is :math:`rank + dim`.
- keep_dim (bool): Whether to reserve the reduced dimension in the
- output Tensor. The result tensor will have one fewer dimension
+ keep_dim (bool): Whether to reserve the reduced dimension in the
+ output Tensor. The result tensor will have one fewer dimension
than the :attr:`input` unless :attr:`keep_dim` is true.
Returns:
Variable: The reduced Tensor variable.
-
+
Examples:
.. code-block:: python
diff --git a/python/paddle/v2/fluid/layers/ops.py b/python/paddle/v2/fluid/layers/ops.py
index d2ff6841a317aaf6903edadc9213f69ef6c41216..23fe13f9bbf3e81802ac86415472e6aa603711b1 100644
--- a/python/paddle/v2/fluid/layers/ops.py
+++ b/python/paddle/v2/fluid/layers/ops.py
@@ -1,9 +1,24 @@
from ..registry import register_layer
-__all__ = [
- 'mean', 'mul', 'dropout', 'reshape', 'sigmoid', 'scale', 'transpose',
- 'sigmoid_cross_entropy_with_logits', 'elementwise_add', 'elementwise_div',
- 'elementwise_sub', 'elementwise_mul', 'clip', 'abs', 'sequence_softmax'
+
+__activations__ = [
+ 'abs', 'tanh', 'sigmoid', 'relu', 'sqrt', 'ceil', 'floor', 'log', 'round'
]
+__all__ = [
+ 'mean',
+ 'mul',
+ 'dropout',
+ 'reshape',
+ 'scale',
+ 'transpose',
+ 'sigmoid_cross_entropy_with_logits',
+ 'elementwise_add',
+ 'elementwise_div',
+ 'elementwise_sub',
+ 'elementwise_mul',
+ 'clip',
+ 'sequence_softmax',
+] + __activations__
+
for _OP in set(__all__):
globals()[_OP] = register_layer(_OP)
diff --git a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
index fc073f6be8563a363c0f98b9235ae267fa68562d..51bfe2973db7bd2ec4b43bb588be4c1fcfb11e74 100644
--- a/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
+++ b/python/paddle/v2/fluid/tests/book/test_recognize_digits_mlp.py
@@ -14,6 +14,7 @@ hidden1 = fluid.layers.fc(input=image,
param_attr=fluid.ParamAttr(
regularizer=regularizer,
clip=fluid.clip.ClipByValue(10)))
+
hidden2 = fluid.layers.fc(input=hidden1,
size=64,
act='relu',
@@ -73,5 +74,9 @@ for pass_id in range(PASS_NUM):
+ " test_acc=" + str(test_pass_acc))
if test_pass_acc > 0.7:
+ fluid.io.save_inference_model(
+ "./recognize_digits_mlp.inference.model/", ["x"], [predict],
+ exe)
exit(0)
+
exit(1)
diff --git a/python/paddle/v2/fluid/tests/test_layers.py b/python/paddle/v2/fluid/tests/test_layers.py
index 9d2dcca56dd1361b9e2448be9f1d5403f8ee17e3..77f0f11f1bcd5fa88700a33eec5a2abc2666ed02 100644
--- a/python/paddle/v2/fluid/tests/test_layers.py
+++ b/python/paddle/v2/fluid/tests/test_layers.py
@@ -177,8 +177,8 @@ class TestBook(unittest.TestCase):
name='x_t_data', shape=[10, 10], dtype='float32')
x_t = layers.fc(input=x_t_data, size=10)
prev_hidden_data = layers.data(
- name='prev_hidden_data', shape=[10, 20], dtype='float32')
- prev_hidden = layers.fc(input=prev_hidden_data, size=20)
+ name='prev_hidden_data', shape=[10, 30], dtype='float32')
+ prev_hidden = layers.fc(input=prev_hidden_data, size=30)
prev_cell_data = layers.data(
name='prev_cell', shape=[10, 30], dtype='float32')
prev_cell = layers.fc(input=prev_cell_data, size=30)