未验证 提交 59bfa491 编写于 作者: C chengduo 提交者: GitHub

Merge pull request #11558 from JiayiFeng/doc_framework

Add doc reference for Variable and Parameter
......@@ -43,7 +43,8 @@ ZERO_VAR_SUFFIX = core.kZeroVarSuffix()
def grad_var_name(var_name):
"""
return gradient name for a certain var name
Returns:
str: gradient name for a certain var name
"""
return var_name + GRAD_VAR_SUFFIX
......@@ -51,10 +52,12 @@ def grad_var_name(var_name):
def convert_np_dtype_to_dtype_(np_dtype):
"""
Convert the data type in numpy to the data type in Paddle
Args:
np_dtype(np.dtype): the data type in numpy
np_dtype(np.dtype): the data type in numpy.
Returns(core.VarDesc.VarType): the data type in Paddle
Returns:
core.VarDesc.VarType: the data type in Paddle.
"""
dtype = np.dtype(np_dtype)
......@@ -120,37 +123,53 @@ def _debug_string_(proto, throw_on_error=True):
class Variable(object):
"""
Python variable. Every input and output of an operator is a variable. Every
variable belongs to a block. The variable has a name and two variables in
different blocks could have the same name.
In Fluid, every input and output of an operator is a variable. In most
cases, variables are used for holding different kinds of data or training
labels. A variable belongs to a block. All variable has its own name and
two variables in different blocks could have the same name.
There are many kinds of variables. Please reference the framework.proto for
details.
There are many kinds of variables. Each kind of them has its own attributes
and usages. Please reference the framework.proto for details.
Notes: The constructor of Variable should not be invoked directly. Please
use `Block.create_var` to create a variable.
>>> cur_program = Program()
>>> cur_block = cur_program.current_block()
>>> new_variable = cur_block.create_var(
>>> name="X", shape=[-1, 23, 48], dtype='float32')
Most of a Variable's member variables can be setted to be None. It mean
it is not available or will be specified later.
Args:
block(Block): The associated block. It will be passed by
`Block.create_var` automatically.
block(Block): The block that the variable belongs to.
type(core.VarDesc.VarType): Variable type. Please reference the
framework.proto for details.
shape(tuple|list|None): The shape of variable. -1 means the batch size.
name(str|None): The name of the variable. If setted None, it will be
generated automatically. Default: None
shape(tuple|list|None): The shape of the variable. -1 means the batch size.
Some kinds of variable do not contain shape, just set it to None.
dtype(np.dtype|core.VarDesc.VarType|str): The data type of variable.
lod_level(int): The level of lod tensor. 0 means it is not a time
Default: None
dtype(np.dtype|core.VarDesc.VarType|str|None): The data type of variable.
Default: None
lod_level (int|None): The level of lod tensor. 0 means it is not a time
series data.
capacity(int): The capacity of Channel variable. Ignored
for other types.
persistable(bool): True if the variable should be saved as check point.
Defaults to False.
stop_gradient(bool): True if the variable will stop to calculate
gradients when backward. Defaults to False.
Default: None
capacity (int|None): The capacity of Channel variable. Ignored for other
types. Default: None
persistable (bool|None): True if the variable is persistable. A persistable
variable will not be deleted after an iteration ending. Defaults: None.
error_clip (BaseErrorClipAttr|None): The error clip attributes of the
corresponding gradient variable. Default: None
stop_gradient (bool): True if the variable will stop to calculate its
gradients when backward. Default: False.
is_data (bool): True if the variable is an input data. Default: False
Notes:
The constructor of Variable should not be invoked directly. Please
use `Block.create_var` to create a variable.
Examples:
.. code-block:: python
cur_program = Program()
cur_block = cur_program.current_block()
new_variable = cur_block.create_var(name="X",
shape=[-1, 23, 48],
dtype='float32')
"""
def __init__(self,
......@@ -253,13 +272,14 @@ class Variable(object):
Get debug string.
Args:
throw_on_error(bool): True if raise an exception when self is not
intialized.
throw_on_error(bool): True if raise an exception when self is
not initialized.
with_details(bool): more details about variables and parameters
(e.g. trainable, optimize_attr, ...) will be printed when with_details is True
Returns(str): The debug string.
(e.g. trainable, optimize_attr, ...) will be printed when
with_details is True. Default False;
Returns:
str: The debug string.
"""
assert isinstance(throw_on_error, bool) and isinstance(with_details,
bool)
......@@ -276,6 +296,15 @@ class Variable(object):
__repr__ = __str__
def set_desc(self, input):
"""
Set the variable description.
Args:
input(core.VarDesc): The new VarDesc.
Returns:
None
"""
self.desc = input
@property
......@@ -312,6 +341,15 @@ class Variable(object):
return self.desc.type()
def set_error_clip(self, error_clip):
"""
Set the error_clip.
Args:
error_clip(BaseErrorClipAttr) : The new error_clip.
Returns:
None
"""
self.error_clip = error_clip
......@@ -319,8 +357,8 @@ def get_all_op_protos():
"""
Get all registered op proto from PaddlePaddle C++ end.
Returns(list): list of OpProto
Returns:
list: list of OpProto.
"""
protostrs = core.get_all_op_protos()
ret_values = []
......@@ -373,9 +411,45 @@ class OpProtoHolder(object):
class Operator(object):
"""
Python Operator class. The operator represents the build in instructions in a
Block. Users can use the build in instructions to describe their neural
network.
In Fluid, all the operation are represented by Operator, and Operator
is regarded as a build in an instruction of a Block. Users can use the
build in instructions to describe their neural network.
Args:
block(Block): The block has the current operator.
desc(core.OpDesc): The protobuf description of Operator.
type(str): The type of operator. Default None.
inputs(dict): The input of this Operator. it is a dictionary, for every
element, key is the input parameter name, and value is a list of
variables. Default None.
outputs(dict): The output of this Operator. it is a dictionary, for
every element, key is the input parameter name, and value is a list
of variables. Default None.
attrs(dict): The attributes of this Operator. it is a dictionary, for
every element, key is attribute name, and value is the attribute value.
The attribute type should be as same as the type registered in C++ side.
Default None.
Returns:
Operator: The initialized Operator.
Raises:
ValueError: If the passed input, output and attrs doesn't match the
initializing Operator's that registered in C++ side.
Notes:
The constructor of operator should not be invoked directly. Use
Block.append_op or Block.prepend_op instead.
Examples:
.. code-block:: python
cur_program = Program()
cur_block = cur_program.current_block()
# var1 += var2 + var3
cur_block.append_op(type="sum",
inputs={"X": [var1, var2, var3]},
outputs={"Out": [var1]})
"""
OP_WITHOUT_KERNEL_SET = {
'feed', 'fetch', 'save', 'load', 'recurrent', 'go',
......@@ -392,31 +466,7 @@ class Operator(object):
inputs=None,
outputs=None,
attrs=None):
"""
Constructor.
Notes: The constructor of operator should not be invoked directly. Use
Block.append_op or Block.prepend_op instead.
>>> cur_program = Program()
>>> cur_block = cur_program.current_block()
>>> # var1 += var2 + var3
>>> cur_block.append_op(type="sum",
>>> inputs={"X": [var1, var2, var3]},
>>> outputs={"Out": [var1]})
Args:
block(Block): The block has the current operator.
desc(core.OpDesc): The protobuf description.
type(str): The type of operator.
inputs(dict): The input dictionary. Key is the input parameter name.
Value is a list of variables.
outputs(dict): The output dictionary which has the same format with
inputs.
attrs(dict): The attributes dictionary. Key is attribute name. Value
is the attribute value. The attribute type should be as same as
the type registered in C++
"""
self.block = block
self.desc = desc
self.attrs = attrs
......@@ -529,12 +579,14 @@ class Operator(object):
def to_string(self, throw_on_error):
"""
To debug string.
Get debug string.
Args:
throw_on_error(bool): raise exception when self is not initialized
when throw_on_error is True
throw_on_error(bool): Whether to raise exception if self is not
initialized.
Returns(str): The debug string.
Returns:
str: The debug string.
"""
protostr = self.desc.serialize_to_string()
......@@ -552,29 +604,45 @@ class Operator(object):
def input(self, name):
"""
Get input arguments by the input parameter name
Args:
name(str): The input parameter name
Get the input arguments according to the input parameter name.
Returns(list): return the list of argument names associated with the
specific parameter name.
Args:
name(str): The input parameter name.
Returns:
list: return the list of argument names that associated with \
the specific parameter name.
"""
return self.desc.input(name)
def rename_input(self, old_name, new_name):
"""
Rename the `old_name` to `new_name`.
Args:
old_name(str): The old name of the Operator's input.
new_name(str): The new name of the Operator's input.
Returns:
None
"""
self.desc.rename_input(old_name, new_name)
def rename_output(self, old_name, new_name):
"""
Rename the `old_name` to `new_name`.
Args:
old_name(str): The old name of the Operator's output.
new_name(str): The new name of the Operator's output.
Returns:
None
"""
self.desc.rename_output(old_name, new_name)
@property
def input_names(self):
"""
Get all input parameter names
Returns(list): return a list of input parameter names
"""
return self.desc.input_names()
@property
......@@ -587,33 +655,23 @@ class Operator(object):
def output(self, name):
"""
Get output arguments by the output parameter name
Args:
name(str): The output parameter name
Get output arguments by the output parameter name.
Returns(list): return the list of argument names associated with the
specific parameter name.
Args:
name(str): The output parameter name.
Returns:
list: return the list of argument names associated with \
the specific parameter name.
"""
return self.desc.output(name)
@property
def output_names(self):
"""
Get all output parameter names
Returns(list): return a list of output parameter names
"""
return self.desc.output_names()
@property
def idx(self):
"""
Return the array index of current operator.
Returns(int): The array index in block.ops array
Raises:
ValueError: when the operator is not found.
"""
for i, op in enumerate(self.block.ops):
if op == self:
return i
......@@ -622,27 +680,40 @@ class Operator(object):
def has_attr(self, name):
"""
operator has the attribute with name or not.
Whether this Operator has the attribute with name or not.
Args:
name(str): the attribute name
name(str): the attribute name.
Returns(bool): True if has this attribute.
Returns:
bool: True if has this attribute.
"""
return self.desc.has_attr(name)
def attr_type(self, name):
"""
Get the type of attribute by attribute name
Args:
name(str): the attribute name
Get the type of attribute by attribute's name.
Returns(core.AttrType): the attribute type
Args:
name(str): the attribute name.
Returns:
core.AttrType: the attribute type.
"""
return self.desc.attr_type(name)
def set_attr(self, name, val):
"""
Set the value of attribute by attribute's name.
Args:
name(str): the attribute name.
val(bool|int|str|float|list): the value of the attribute.
Raises:
ValueError: If the type of value doesn't match with desc.attr_type(name).
"""
self.attrs[name] = val
if isinstance(val, Block):
self.desc.set_block_attr(name, val.desc)
......@@ -654,40 +725,39 @@ class Operator(object):
@property
def attr_names(self):
"""
Get all attribute names
Returns(list): The list of attribute name
"""
return self.desc.attr_names()
def attr(self, name):
"""
Get attribute by name
Get the attribute by name.
Args:
name(str): the attribute name
name(str): the attribute name.
Returns(bool|int|str|float|list): The attribute value. The return value
Returns:
bool|int|str|float|list: The attribute value. The return value
can be any valid attribute type.
"""
return self.desc.attr(name)
def block_attr(self, name):
"""
Get the block attribute by name
Args:
name(str): the attribute name
Get the block attribute by name.
Returns(int): the block index
Args:
name(str): the attribute name.
Returns:
int: the block index.
"""
return self.desc.block_attr(name)
def all_attrs(self):
"""
Get the attribute dict
Returns(dict): The Operator's attribute dict
Get the attribute dict.
Returns:
dict: The Operator's attribute dict.
"""
attr_names = self.attr_names
attr_map = {}
......@@ -700,6 +770,35 @@ class Operator(object):
class Block(object):
"""
In Fluid, a Program is consistence of multi-Block, and Block stores
VarDesc and OpDesc. In a specific Block, a VarDesc have a unique name.
One block could have some child blocks, and child block's name scopes
should inherit the parent's so that OpDesc in child block can reference
a VarDesc that is stored in the parent block.
Please reference the framework.proto for details.
Args:
program(Program): The Program that the Block belongs to.
idx(int): The block's id in the Program.
Notes:
The constructor of Block should not be invoked directly. Please
use `Program.create_block()` to create a block.
Examples:
.. code-block:: python
cur_program = Program()
cur_block = cur_program.current_block()
var = cur_block.create_var(name="X",
shape=[-1, 23, 48],
dtype='float32')
cur_block.append_op(type="abs",
inputs={"X": [var]},
outputs={"Out": [var]})
"""
def __init__(self, program, idx):
self.desc = program.desc.block(idx)
self.vars = collections.OrderedDict() # var_name --> var
......@@ -712,15 +811,17 @@ class Block(object):
def to_string(self, throw_on_error, with_details=False):
"""
To debug string.
Get debug string.
Args:
throw_on_error(bool): raise exception when self is not initialized
when throw_on_error is True
when throw_on_error is True.
with_details(bool): more details about variables and parameters
(e.g. trainable, optimize_attr, ...) will be printed when with_details is True
Returns(str): The debug string.
(e.g. trainable, optimize_attr, ...) will be printed when
with_details is True. Default False.
Returns:
str: The debug string.
"""
assert isinstance(throw_on_error, bool) and isinstance(with_details,
bool)
......@@ -752,6 +853,15 @@ class Block(object):
return self.desc.get_forward_block_idx()
def set_forward_block_idx(self, idx):
"""
Set the forward block Idx.
Args:
idx(int): the block index.
Returns:
None
"""
self.desc.set_forward_block_idx(idx)
@property
......@@ -759,6 +869,19 @@ class Block(object):
return self.desc.id
def var(self, name):
"""
Get a Variable by name from this block.
Args:
name(str): the Variable's name.
Raises:
ValueError: The If input's type is not str, or this block
doesn't have a Variable with the giving name.
Returns:
Variable: the Variable with the giving name.
"""
if not isinstance(name, basestring):
raise TypeError(
"var require string as parameter, but get %s instead." %
......@@ -769,6 +892,19 @@ class Block(object):
return v
def var_recursive(self, name):
"""
Get a Variable by name from this block recursively.
Args:
name(str): the Variable's name.
Raises:
ValueError: this block and this parent block doesn't
have a Variable with the giving name.
Returns:
Variable: the Variable with the giving name.
"""
frontier = list()
visited = set()
......@@ -815,6 +951,18 @@ class Block(object):
def rename_var(self, name, new_name):
"""
Rename variable in vars and ops' inputs and outputs
Args:
name(str): the name that need to be renamed.
new_name(str): the name that need to rename to.
Raises:
ValueError: If this block doesn't have this the giving name,
or the type of the var with the giving name is not Parameter
or Variable.
Returns:
Variable: the Variable with the giving name.
"""
if not self.has_var(name):
raise ValueError("var %s is not in current block" % name)
......@@ -878,12 +1026,27 @@ class Block(object):
return param
def append_op(self, *args, **kwargs):
"""
Appends a new Operator according to the giving arguments.
Returns:
Operator: the append Operator.
"""
op_desc = self.desc.append_op()
op = Operator(block=self, desc=op_desc, *args, **kwargs)
self.ops.append(op)
return op
def insert_op(self, index, *args, **kwargs):
"""
Insert a Operator according to the giving arguments.
Args:
index(int): the place that the operator to insert.
Returns:
Operator: the insert Operator.
"""
self.sync_with_cpp()
op_desc = self.desc.insert_op(index)
op = Operator(block=self, desc=op_desc, *args, **kwargs)
......@@ -891,11 +1054,30 @@ class Block(object):
return op
def remove_op(self, index):
"""
Remove the specific position operator.
Args:
index(int): the position that the operator to insert.
Returns:
None
"""
self.sync_with_cpp()
self.desc.remove_op(index, index + 1)
del self.ops[index]
def slice_ops(self, start, end):
"""
Return the Operator between start and end.
Args:
start(int): the start position.
end(int): the end position.
Returns:
list: the Operators between start and end.
"""
return self.ops[start:end]
def prepend_op(self, *args, **kwargs):
......@@ -906,9 +1088,8 @@ class Block(object):
def sync_with_cpp(self):
"""
Sync from the desc on the c++ end.
This method is used to synchronize the c++ desc instance generated by backward.
Sync from the desc on the c++ end. This method is used to synchronize
the c++ desc instance generated by backward.
"""
# sync variables from cpp
for var in self.desc.all_vars():
......@@ -973,9 +1154,14 @@ class Block(object):
def copy_param_info_from(self, other):
"""
Copy the information of parameters from the other block
Copy the information of parameters from the other block.
Args:
other(Block): the other block
other(Block): the other block.
Raises:
ValueError: If type of input is not Block, or the `other` and this
block is not in the same topology.
Returns:
None
......@@ -1007,11 +1193,12 @@ class Block(object):
def clone_variable(self, var):
"""
Clone a variable into current block.
Args:
var: the variable to be cloned.
Returns:
The new variable cloned from 'var' in current block.
Variable: the new variable cloned from 'var' in current block.
"""
assert isinstance(var, Variable)
ret_var = None
......@@ -1312,6 +1499,29 @@ class Program(object):
class Parameter(Variable):
"""
Parameter is derived from Variable. A parameter is a persistable
Variable, and will be updated by optimizers after each iteration.
The training of a neural network is essentially the updating of
its parameters.
Relative to a general Variable, a Parameter has several its own
member variables:
Args:
trainable(bool): True if the parameter need to be updated after
iterations.
optimize_attr(map): Parameter attributes related with optimizing.
Currently, it only contains 'learning_rate'.
Default: {'learning_rate': 1.0}
regularizer(WeightDecayRegularizer): The Regularizer which will
be applied on the parameter. Default: None
gradient_clip_attr(BaseGradientClipAttr): The gradint clip strategy
which will be applied on the parameter. Default: None
do_model_average(bool): True if the model average strategy will
be applied on this parameter.
"""
def __init__(self, block, shape, dtype, **kwargs):
if shape is None or dtype is None:
raise ValueError("Parameter must set shape and dtype")
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册